
Thermocommunication

Julien Brouchier1, Nora Dabbous2,3, Tom Kean4, Carol Marsh4, and David Naccache5

1 Institut supérieur de l’électronique et du numérique
Maison des Technologies - place Georges Pompidou fr-83000, Toulon, France.

julien.brouchier@isen.fr
2 Telecom ParisTech - Département informatique et réseaux

46, rue Barrault, fr-75634, Paris Cedex 13, France
3 Ingenico

192 Avenue Charles de Gaulle, fr-92200, Neuilly, France
nora.dabbous@ingenico.com

4 Algotronix Ltd.
p.o. Box 23116, Edinburgh, eh8 8yb, United Kingdom

tom@algotronix.com, carol@algotronix.co.uk
5 École normale supérieure, Département d’informatique

45, rue d’Ulm, f-75230, Paris Cedex 05, France.
david.naccache@ens.fr

Abstract. Looking up – you realize that one of the twelve light bulbs of your living
room chandelier has to be replaced. You turn electricity off, move a table to the center
of the room, put a chair on top of the table and, new bulb in hand, you climb up on
top of the chair. As you reach the chandelier, you notice that. . . all bulbs look alike
and that you have forgotten which bulb needed to be changed.

Restart all over again?

Luckily, an effortless creative solution exists. By just touching the light bulbs you can
determine the cold one and replace it! Put differently, information about the device’s
malfunction leaked-out via its temperature...

1 Introduction

In addition to its usual complexity postulates, cryptography silently assumes that secrets can
be physically protected in tamper-proof locations. All cryptographic operations are physical
processes where data elements must be represented by physical quantities in physical struc-
tures. These physical quantities must be stored, sensed and combined by the elementary
devices (gates) of any technology out of which we build tamper-resistant machinery. At any
given point in the evolution of a technology, the smallest logic devices must have a definite
physical extent, require a certain minimum time to perform their function and dissipate a
minimal switching energy when transiting from one state to another.

Confining a program during its execution so that it cannot leak information to other pro-
grams is both an old concern [2] and a difficult task. Recently, several researchers succeeded
to fingerprint distant machines by measuring temperature side-effects on clocks [6].

But can temperature also leak secrets within a computer or within a chip?



2 Process-To-Process Thermocommunication

We started by implementing a covert channel between two processes (a sender and a receiver)
running on the same machine. Producing heat is simple: all the sender has to do is launch
massive calculations. To sense temperature inside the machine, we considered the following
options:

Fan-based solutions: pcs have an internal fan whose (software readable!) angular speed
is strongly correlated to the motherboard’s temperature. Alternatively, fan speed variations,
causing acoustic noise differences, might also be monitored by the machine’s microphone.

Built-in sensors: Most hard-disks contain software-readable sensors.

smart (Self-Monitoring Analysis & Reporting Technology) is an ibm standard for mon-
itoring the disk’s status using built-in sensors. Measured parameters are called attributes;
and attribute 194 is temperature. Extreme heat peaks can also be monitored by reading the
Pentium’s overheat hardware flag, IA32 THERM STATUS.

Faults as heat detectors: Programs for purposely provoking errors (e.g. cpuburn-in.exe)
are commonly used to adjust cpu speed immediately below the hardware failure threshold.
Such programs heat the cpu and continuously monitor for erroneous calculations to deter-
mine the machine’s over-clocking limits. For convert communication purposes, the absence
of faults can be interpreted by the receiver as a zero and the presence of faults as a one.

We successfully leaked meaningful data using fan speed measurements. The experiment
was successfully repeated on two different hardware platforms: a pc under Debian Linux
2.6.22 (Intel Core2 Duo, 1.80ghz, 2gb ram) and a MacBookPro under Mac os x 10.5.2
(Intel Core2 Duo, 2.16ghz, 3gb ram).

In our experiments, the sender stabilized a sequence of heat levels using Proportional
Integral Derivative (pid) regulation.

A pid controller is a generic control loop feedback mechanism widely used in industrial
control systems. A pid controller attempts to correct the error between a measured process
variable and a desired set-point by calculating and then outputting a corrective action that
adjusts the process accordingly.

The algorithm involves three parameters: the Proportional, the Integral and Derivative
constants. The Proportional constant Kp determines the reaction to the current error, the
Integral constant Ki determines the reaction based on the sum of recent errors, and the
Derivative constant Kd determines the reaction based on the rate at which the error has
been changing. The weighted sum of these three actions is used to adjust the process via a
control stimulus.

By tuning the three constants, the controller can provide a control action designed for
specific process requirements. The controller’s response can be described in terms of sensitiv-
ity to an error, the degree to which the controller overshoots the set-point and the tolerable
degree of system oscillation.



In our case, the pid process, shown in Figure 1, stabilized the fan speed e(t), at a
target set-point E chosen by the sender. pid drives the machine’s computational load as a
weighted sum of e(t), the derivative of e(t) and the integral of e(t) (over a time-period ∆).
Our program transmits one bit per three minutes, a rate at which a typical rsa secret key
(one 512-bit prime factor) leaks in a day.

Figure 2 shows the fan angular speeds measured by the receiver. Information was mod-
ulated by setting the fan speed to 3500, 4000, 4500 or 5000 revolutions per minute (rpm),
interpreted by the receiver as 3500 + data× 500.

Figure 2 shows that the sender modulated the data stream 0201 1121 0321 0321 3321.
The receiver accurately measured the stream (each acquisition was averaged during three
minutes), reversed it (1233 1230 1230 1211 1020), converted it from quaternary to hex-
adecimal (0x6F 0x6C 0x6C 0x65 0x48) and successfully displayed the corresponding ascii
message HELLO.

3 Machine-To-Machine Thermocommunication

As we write these lines, we do not know if information can transit between two different pcs
inside a closed (unventilated) rack but experiments show that information leaks when nine
pcs slotted in the rack’s lower decks are simultaneously turned into heat sources to send
information to one receiving pc, located in the rack’s upmost deck (1 bit per 20 minutes).

sub add

setpoint )(teKp

∫∆+t

t

i deK ττ )(

dt

tde
K d

)(

sender process receiver process

Fig. 1. Proportional Integral Derivative (pid) regulation



4 Circuit-To-Circuit Thermocommunication

In a second experiment, we challenged a hardware protection mechanism called the ”Moat
& Drawbridge” [1]. Figure 3-a shows a traditional fpga (Field Programmable Gate Ar-
ray) containing intellectual property (ip) cores belonging to three different manufacturers
(e.g. a microprocessor (blue), a cryptographic coprocessor (red) and a network interface
(pink)). Circuit synthesis tools ”melt” the ip cores into one circuit. Hence each ip core is
not guaranteed total control over its internal secrets. The Moat & Drawbridge design, and
the mechanism developed by Xilinx and the nsa in [3], consist in using custom synthesis
tools that reserve some of the target fpga’s clbs (Configurable Logic Blocs) as communica-
tion channels. The result is shown in figure 3-b. Whenever any of the cores ”needs privacy”
it ”lifts the drawbridge” by disconnecting the communication clbs depicted in green. This
isolation technique was implemented on Virtex-4 fpgas and found to be satisfactory by [1]
and [3].

0

1000

2000

3000

4000

5000

6000

1 144 287 430 573 716 859 1002 1145 1288 1431 1574 1717 1860 2003 2146 2289 2432 2575 2718 2861 3004 3147 3290 3433 3576fa
n

 a
n

g
u

la
r 

sp
ee

d
 (

R
P

M
)

time (seconds)

02011121032103213321

Fig. 2. Temperature-correlated plot (fan speed vs. time)

A secret leakage mechanism defeating these protections is depicted in Figure 3-c. The
challenge consisted in implementing both a heat source and a heat sensor using purely digital
means. Generating heat is easy: we did so using a battery of ring oscillators similar to the
one depicted in Figure 4. A ring oscillator is a ring made of an odd number of inverting
buffers.

Upon HeatEnable signal activation the device starts oscillating, charging and discharging
internal conductors and hence generating heat. To sense heat, we also use a ring oscillator.



IP core

IP core

Confidential IP core

CLBs reserved for drawbridges

Heat sensor

Heat source

A. Traditional design B. Moat & Drawbridge design 

C. Temperature attack of
the Moat & Drawbridge design

Fig. 3. fpga synthesis methods)

HeatEnable

Fig. 4. Ring oscillator



The frequency at which a ring oscillator oscillates is highly temperature-dependent. Hence by
using the ring oscillator to clock a long shift-register and by regularly measuring the progress
of data in this shift-register, frequency differences (and hence temperature differences) can be
sensed. The heat sensor is a small circuit consisting of less than 200 slices in a Xilinx Spartan
3. Experimentally, we achieved a relatively high leakage throughput (1 bit/s), because silicon
is very thermally conductive.

5 Thermo-Bugs

We also conducted experiments with the ”temperature bug” shown in Figure 5. The user
can interact with the bug using two leds (1), an infrared interface (2) for data read-back
and an activation switch (4). The bug’s pic 16f913 controller (3) stores the temperature
acquisitions in a 256k i2c cmos serial eeprom (5). The device’s mini-battery and quartz (on
the printed circuit board’s backside) are not shown. The bug can record 16,000 temperature
points over 18 hours with a programmable start of recording of up to a year. Measurable
temperatures range between −10◦ and +70◦. Software running on the machine successfully
modulated to the bug, externally attached to the pc’s chasing, 80 data bits in 16 hours.

More classic acoustic bugs, listening to fan speed variations could also be used. Note
that acoustic threats were considered in the past [5], but in [5] the fan was considered as a
nuisance and not as an information source6.

6 Questions & Further Research

The experiments reported in this paper raise several interesting questions:

– Can overheating faults caused by software be exploited to mount fault attacks [4]?
– From a defensive perspective, can ”guard processes” be used to regulate an invariant

(or random) internal temperature?
– Can operating systems randomly assign computing bandwidth to threads, thereby pre-

venting any specific thread from controlling alone the motherboard’s temperature?
– Is the isothermal coating (or active cooling) of sensitive system parts necessary and

realistic?
– Can temperature allow convert communication between applets in Java virtual machine?

References

1. T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T. Levin, T. Nguyen and
C. Irvine, Moats and Drawbridges: An Isolation Primitive for Reconfigurable Hardware Based
Systems, Proceedings of ieee-sp’07, ieee Symposium on Security and Privacy, pages 281-295,
2007.

6 ”...the interesting acoustic signals are mostly above 10KHz, whereas typical computer fan noise
is concentrated at lower frequencies and can thus be filtered out by suitable equipment...”



� � � �

�

Fig. 5. Miniature temperature bug (3cm2).)

2. B. Lampson, A Note on the Confinement Problem, cacm, 16(10), pages 613-615, 1973.

3. M. McLean and J. Moore. fpga-based single chip cryptographic solution - securing fpgas for
red-black systems. Military Embedded Systems, March 2007.

4. D. Naccache, Finding faults, ieee Security and Privacy, 3(5), pages 61-65, 2005.

5. A. Shamir and E. Tromer, Acoustic cryptanalysis - On nosy people and noisy machines.
http://people.csail.mit.edu/tromer/acoustic.

6. S. Zander and S. Murdoch, An Improved Clock-skew Measurement Technique for Revealing
Hidden Services, Proceedings of the 17-th usenix Security Symposium, pages 211-225, 2008.


