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Abstract

In this paper we study key exchange protocols in a model where the key exchange takes place
between devices with limited displays that can be compared by a human user. If the devices
display the same value then the human user is convinced that the key exchange terminated
successfully and securely, and if they do not then the user knows that it came under attack. The
main result of this paper is a rigorous proof that the numeric comparison mode for device pairing
in Bluetooth version 2.1 is secure, under appropriate assumptions regarding the cryptographic
functions used. Our proof is in the standard model and in particular does not model any of the
functions as random oracles. In order to prove our main result, we present formal definitions for
key exchange in this model and show our definition to be equivalent to a simpler definition. This
is a useful result of independent interest that facilitates an easier security analysis of protocols
in this model.

1 Introduction

A central problem in cryptography is that of enabling parties to communicate secretly and reliably
in the presence of an adversary. This is often achieved by having the parties run a protocol for
generating a mutual and secret session key. This session key can then be used for secure com-
munication using known techniques (e.g., applying encryption and message authentication codes
to all communication). Two important parameters to define regarding this problem relate to the
strength of the adversary and the communication model and/or initial setup for the parties. The
problem of session-key generation was initially studied by Diffie and Hellman [8] who considered
a passive adversary that can eavesdrop on the communication of the parties, but cannot actively
modify messages on the communication line. Thus, the parties are assumed to be connected by
reliable, albeit non-private, channels. Many efficient and secure protocols are known for this sce-
nario. In contrast, in this paper, we consider a far more powerful adversary who can modify and
delete messages sent between the parties, as well as insert messages of its own choice. It is well
known that in the presence of such a powerful adversary, it is impossible for the parties to generate
a secret session key if they have no initial secrets and can only communicate over the adversarially
controlled channel. This is due to the fact that the adversary can carry out a separate execution
with each of the parties, where in each execution it impersonates the other. Since there is no initial
secret (like a password or public-key infrastructure), there is nothing that prevents the adversary
from succeeding in its impersonation.
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The common solution to the above problem is to indeed introduce a shared secret, like a
password, or to assume a public-key infrastructure. However, these solutions are not always possible
nor always desired (a user cannot memorize a long private-key and short human-memorizable
passwords are notoriously problematic). Another option is therefore to assume that the parties
have an additional authenticated communication channel that cannot be tampered with by the
adversary and can be used to send a short message [10, 15]. There are a number of ways that such
a channel can be implemented in reality. In this paper, we consider the case that the parties running
the key exchange protocol (or, more accurately, the devices) each have a screen upon which they can
display a short (say, 6 digit) number. The human user then compares to make sure that both devices
display the same number, and if they do, is convinced that the key exchange terminated securely.
We remark that although this does not seem to be an authenticated communication channel, it is
essentially equivalent to one. This is because one party can send a short message to the other party
(using the insecure channel), and then they can both display the message on their screens. If the
adversary modifies the message en route, then this will be detected by the human user who will
reject the result. Thus, the screens can be used to communicate a single short number from one
party to the other (for usability reasons, it is required that only a single value be displayed).

Our results. Our main result is a rigorous proof of security of the numeric comparison mode in
the simple pairing protocol of Bluetooth version 2.1 [1]. The importance of this result is due to
the popularity of Bluetooth, and the unfortunate historic fact that vulnerabilities have often been
found in unproven key exchange protocols, sometimes many years after they were released. We
stress that our analysis focuses solely on the numeric comparison mode and says nothing about
the security of the entire standard (and in particular, nothing about the security regarding the
interplay between the different modes and backward compatibility with version 2.0). We prove the
security of the protocol in the standard model, by appropriately modeling the functions used in the
Bluetooth protocol as standard cryptographic primitives. We stress that we do not model any of
the functions as ideal primitives (like random oracles), although this would have made the proof of
security much easier.

In order to prove our results, we present a formal definition of comparison-based key exchange
that is based on the definitions of key exchange of [3, 4]. Our definition is similar in spirit to that
of [15], except that we focus specifically on the problem of key exchange, whereas [15] considered
a more general setting of message authentication. As is standard for definitions of security for key
exchange protocols, we consider a complex setting where many different protocol instances are run
concurrently. Since it is difficult to analyze the security of protocols in complex settings, we present
an alternative definition that implies our main definition. The alternative definition is slightly more
restrictive but seems to capture the way protocols typically work in this setting. This definition is
easier to work with, and to demonstrate this further, we show that it is equivalent to a definition
whereby only a single protocol execution takes place. We believe that this alternative definition
and its equivalence to the simpler setting is of independent interest as it facilitates significantly
easier proofs of security of protocols in this model.

Related work. The problem of secure key exchange has achieved a huge amount of attention,
whether it be in the plain model with an eavesdropping adversary, or whether it considers an ac-
tive adversary and assumes the existence of a full public-key infrastructure, shared high quality
secrets or low quality passwords. The comparison-based model that we consider here was first
studied in [11, 12, 10], with a more general treatment appearing in [15]. Tight bounds for achieving
information-theoretic security in this model were shown in [14]. The MA-DH protocol of [13] has
many similarities to the Bluetooth v2.1 numeric comparison protocol analyzed in this paper. Nev-
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ertheless, it has significant differences, making it necessary to provide a separate security analysis
and proof.

2 Comparison-Based Secure Key-Exchange – Definitions

2.1 Defining Security

Preliminaries. We denote the security parameter by n. A function f : N → [0, 1] is negligible
if for every polynomial p(·) there exists an integer N such that for every n > N it holds that
f(n) < 1/p(n). We denote an arbitrary negligible function by negl.

Background. In this section, we adapt the definition of secure key exchange of [3, 4] to our setting.
Although the basic ideas are similar, there are a number of fundamental differences between this
model and the classic model of key exchange. First and foremost, the parties do not only interact
via regular communication channels. In particular, the parties are able to carry out a numeric
comparison between two short numbers of length `, and this can be used to prevent the adversary
from carrying out a successful man-in-the-middle attack. We formally model the comparison as
part of the protocol in the following simple way: each entity participating in a key exchange holds
a local public “comparison variable” (the variable is public in the sense that the adversary can read
its value whenever it wishes). The comparison variable can be set only once in any instance (i.e., it
is write-once only); this rules out protocols that use multiple comparisons (arguably, such protocols
have more limited use in practice). Another fundamental difference between this setting and the
classic model of key exchange is that it is not enough for the adversary to learn the secret key that
one of the parties obtains at the end of a protocol execution (it can always succeed in doing this
by just interacting with the party). Rather, the adversary only succeeds if it manages to learn the
secret key that a pair of parties obtain in an execution in which the parties’ comparison variables
are equal. A third difference is that there is no public-key infrastructure or secret setup information
and thus all instances of the protocol are identical. This is in contrast to the shared secret setting
where each pair of parties hold a shared secret key, and every protocol instance run by a party is
initialized with the party’s secret key. Despite this, the protocol is supposed to be secure in the
presence of an active adversary, and not just an eavesdropping one.

We remark that in our setting here, it makes no sense to allow a single party to run many
instances of the protocol concurrently. This is because each party has only one interface for dis-
playing the comparison variable, and so more than one execution cannot be run at the same time.
In addition, since there is no shared setup between different executions, allowing more than one
execution would be equivalent in any case (when there is no shared setup, a number of executions
by a single party is equivalent to a number of parties running a single execution each). Of course,
the different parties running different executions may be running concurrently. We could addition-
ally allow each party to run many executions sequentially, but this clearly makes no difference and
thus for simplicity we just assume that each party runs one execution.

The definition. A protocol for secure key exchange assumes that there is a set of principals
which are the parties (clients, servers or others) who will engage in the protocol. We denote by
Πi the instance of the protocol that is run by user Pi (recall that in contrast to [3, 4] each party
runs one execution only). The adversary is given oracle access to these instances and may also
control some of the instances itself. We remark that unlike the standard notion of an “oracle”,
in this model instances maintain state which is updated as the protocol progresses. In addition
to information regarding the protocol execution, the state of an instance Πi includes the following
variables (initialized as null):
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• sidi: the session identifier of this particular instance;

• compi: the aforementioned write-once comparison variable of the instance; we denote the
length of compi by `;

• pidi: the partner identifier which is the name of the principal Pj with whom Pi’s comparison
variable is compared (we note that pidi can never equal i); in our setting here, it is always
the case that if pidi = j then pidj = i because the human comparing the variables will always
work in this way;1

• acci: a boolean variable set to true or false denoting whether Πi accepts or rejects at the end
of the execution.

Partnering. We say that two instances Πi and Πj are partnered if the following properties hold:
(1) pidi = j (and thus by our requirement pidj = i); and (2) sidi = sidj 6= null. The notion of
partnering is important for defining security, as we will see.

The adversary model. The adversary is given total control of the external network (i.e., the
network connecting clients to servers). In particular we assume that the adversary has the ability to
not only listen to the messages exchanged by players, but also to interject messages of its choice and
modify or delete messages sent by the parties.2 The above-described adversarial power is modeled
by giving the adversary oracle access to the instances of the protocol that are run by the principals.
Notice that this means that the parties actually only communicate through the adversary. The
oracles provided to the adversary are as follows:

• Execute(i, j): When this oracle is called, pidi is set to j and pidj is set to i, and then a complete
protocol execution between instances Πi and Πj is run. The oracle-output is the protocol
transcript (i.e., the complete series of messages exchanged by the instances throughout the
execution). These oracle calls reflect the adversary’s ability to passively eavesdrop on protocol
executions. As we shall see, the adversary should learn nothing from such oracle calls. If an
Init call has already been made including i or j, then Execute(i, j) is ignored.

• Init(i, j): This call initializes pidi = j and pidj = i. If pidi or pidj is already set, then this
call does nothing. In addition, it returns the first message that Πi sends to Πj in a protocol
execution.

• Send(i,M): This call sends the message M to the instance Πi. The output of the oracle is
whatever message the instance Πi would send after receiving the message M (given its current
state). This oracle allows the adversary to carry out an active man-in-the-middle attack on
the protocol executions.

• Reveal(i): This call outputs the secret key ski that instance Πi outputs at the end of the
protocol execution. This oracle allows the adversary to learn session keys from previous
and concurrent executions, modeling improper exposure of past session keys and ensuring
independence of different session keys in different executions.

1This is in contrast to the standard setting of key exchange where P1 may think that it’s interacting with P2 who
in turn thinks that it’s interacting with P3.

2In principle, the adversary should also be given control over a subset of the oracles, modeling the case of an
“inside attacker”. However, in our setting, there are no initial secrets and thus this makes no difference.
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• Test(i): This call is needed for the definition of security and does not model any real adver-
sarial ability. The adversary is only allowed to query it once, and the output is either the
private session key of Πi, denoted ski, or a random key sk that is chosen independently of
the protocol executions (each case happens with probability 1/2). The adversary’s aim is to
distinguish these two cases. We let bi

test denote the bit chosen by Test(i) to determine whether
to output ski or a random sk.

The security of key exchange protocols is composed of three components: non-triviality, correctness
and privacy. We begin by stating the non-triviality requirement (this is different from the definition
in [3, 4] because we also require that compi = compj so that a human user will accept the result):

Non-triviality: If two instances Πi and Πj that hold each other’s partner identifier communicate
without adversarial interference (as in an Execute call), then Πi and Πj are partnered, compi =
compj and they both accept.

Correctness: If two partnered instances Πi and Πj accept (i.e., acci = accj = 1) and compi =
compj , then they must both conclude with the same session key (i.e., ski = skj).

Privacy: We now define what it means for a protocol to be private. Intuitively, a protocol achieves
privacy if the adversary cannot distinguish real session keys from random ones. (This then implies
that the parties can use their generated session keys in order to establish secure channels; see [5]
for more discussion on this issue.) Of course, the adversary can always correctly guess the bit in
a Test(i) query if it queried Reveal(i) or Reveal(j) when Πi and Πj are partnered. Therefore, A is
only said to have succeeded if these oracles were not queried. In addition, we are only interested
in the case that A correctly guesses the key when compi = compj and both instances accept. This
is due to the fact that if compi 6= compj then the human user will not accept the result, and if one
of the instances does not accept then no session-key will be output by that instance. This yields
the following definition of adversarial success. Formally, we say that an adversary A succeeds if the
following conditions are all fulfilled:

1. A outputs bi
test

2. compi = compj and acci = accj = true

3. If Πi and Πj are partnered then A did not query Reveal(i) or Reveal(j).

Now, the adversary’s advantage is formally defined by:

Adv(A) = |2 · Prob[A succeeds ]− 1| .

We reiterate that an adversary is only considered to have succeeded if it correctly guesses the bit
used by the Test(i) oracle, compi = compj , and the adversary did not query Reveal(i) or Reveal(j)
when Πi and Πj are partnered. We stress that if pidi = j but sidi 6= sidj , then Πi and Πj are not
partnered and thus the adversary succeeds if compi = compj and it correctly guesses the bit used
by the Test(i) oracle, even if it queried Reveal(j).

An important observation here is that when there is no initial setup and only a short comparison
channel of length ` is used, the adversary can gain an advantage of 2−` for every pair of instances by
just running two separate executions with two instances and hoping that their comparison variables
will end up being equal. A protocol is therefore called private if it is limited to random success of
this fashion. Notice that in Execute oracle calls, the adversary is passive and thus it should only
have a negligible advantage in guessing the secret key of such an instance, irrespective of the value
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of `. We do not explicitly require this, but rather provide it with a 2−` advantage only when it
queries the Send oracle. This is reminiscent of the definition for password-based key exchange of [2].
In order to define this, we define Qsend to be the number of protocol instances without common
partner identifiers to which the adversary made Send oracle queries. We stress that if A makes
multiple Send queries to Πi and to Πj , and pidi = j, then this is counted as 1 in Qsend. Formally,
a protocol is said to be private if the advantage of the adversary is at most negligibly more than
Qsend/2`, where ` is the length of the comparison variable. In summary,

Definition 2.1 (comparison-based key exchange): A comparison-based key exchange protocol with
a comparison variable of length ` ∈ N is said to be secure if for every probabilistic polynomial-time
adversary A that makes at most Qsend queries of type Send to different protocol instances without
common partner identifiers, there exists a negligible function negl such that

Adv(A) <
Qsend

2`
+ negl(n).

Furthermore, the probability that the non-triviality or correctness requirement is violated is at most
negligible in the security parameter n.

We note that the bound of Qsend/2` for A’s advantage is optimal. Specifically, one can construct
an adversary A who obtains this exact advantage by separately interacting with two protocol
instances Πi and Πj for which pidi = j and pidj = i. At the end of the execution, A will know
both ski and skj and will succeed if compi = compj . If this does not hold, then A can just invoke
an Execute oracle call for two other instances, query the Test oracle for one of those instances, and
then just randomly guess the test result, succeeding with probability one half. The advantage of
this adversary A is as follows. First, under the assumption that an honest protocol execution yields
a uniformly distributed comparison variable, we have that compi = compj with probability exactly
2−`. In this case, A succeeds with probability 1. Noting further that if compi 6= compj then A
succeeds with probability 1/2, we have:

Pr[A succeeds] = Pr[A succeeds | compi = compj ] · Pr[compi = compj ]
+Pr[A succeeds | compi 6= compj ] · Pr[compi 6= compj ]

= 1 · 1
2`

+
1
2
·
(

1− 1
2`

)

=
1
2`

+
1
2
− 1

2`+1
=

1
2

+
1

2`+1

implying that A’s advantage is 1/2`. Noting finally that Qsend = 1 in this case, we have that A
achieves the upper bound of Qsend/2` on the advantage as stated in Definition 2.1. The above
argument holds for any value of Qsend (and not just the special case that Qsend = 1). In this
case, A interacts separately with Qsend pairs and succeeds if for any of the pairs it holds that
compi = compj (or with probability 1/2 otherwise, as above). Since the probability that compi =
compj in at least one of the executions is Qsend/2` we have that A succeeds with probability
Qsend/2` + 1

2 · (1−Qsend/2`). As above, this results in an advantage of Qsend/2`, as required.

An alternative definition. In Section 2.2 below we present an alternative definition that is
easier to work with. We prove that security under the alternative definition implies security under
Definition 2.1 and thus it suffices to use the alternative definition. In addition, we prove that
when considering the alternative definition, security in the concurrent setting with many protocols
instances is equivalent to security in a one-time setting where an adversary interacts once with a
protocol instance P1 and once with a protocol instance P2 (and where pid1 = 2 and pid2 = 1).
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2.2 A Stronger Definition

We now present an alternative definition that is more restrictive, but as we will see, is useful for
proving the security of protocols. Informally speaking, the alternative definition states that an
adversary can succeed in one of two ways: either by guessing the key for an instance Πi that is
partnered with some other instance Πj , or by somehow causing two accepting instances Πi and Πj

that are not partnered to have the same comparison value, meaning that compi = compj . Recall
that our original definition required the adversary to guess the key in the case that compi = compj

(and we did not care if Πi and Πj were partnered except to exclude the case where a Reveal query
was made), whereas here the adversary succeeds immediately if compi = compj without the need
to learn the key. Another difference from the original definition is that we separately consider the
adversary’s success in each case. That is, we require that the adversary can succeed in guessing
the key of partnered instances with probability at most 1/2 + negl(n), and separately require that
the adversary can succeed in having two unpartnered instances conclude with the same comparison
value with probability at most Qsend/2` + negl(n).

Formally, we define two events referring to the adversary’s success:

1. An adversary A succeeds in a guess attack, denoted succguess
A , if it outputs the correct bi

test

bit after querying Test(i) for an instance Πi that is partnered with some other instance Πj ,
and Reveal(i) or Reveal(j) were not queried.

2. An adversary A succeeds in a comparison attack, denoted succcomp
A , if there exist two accepting

instances Πi and Πj with pidi = j and pidj = i that are not partnered and yet compi = compj .

We are now ready to define security:

Definition 2.2 (comparison-based key exchange – stronger definition): A comparison-based key
exchange protocol with a comparison variable of length ` ∈ N is said to be secure if for every
probabilistic polynomial-time adversary A that makes at most Qsend queries of type Send to different
protocol instances without common partner identifiers,

Pr[succguess
A ] <

1
2

+ negl(n) and Pr[succcomp
A ] <

Qsend

2`
+ negl(n).

Furthermore, the probability that the non-triviality or correctness requirement is violated is at most
negligible in the security parameter n.

Observe that under the assumption that independent executions are partnered with only negli-
gible probability, the strategy described after Definition 2.1 that achieves an advantage of Qsend/2`

also achieves that same advantage under the stronger definition. Therefore, as above, the bound
is optimal. (Note that if independent executions may be partnered with non-negligible probability,
then the protocol cannot be secure by Definition 2.2 because an adversary just needs to run inde-
pendent executions with Πi and Πj and then if they turn out to be partnered it knows the secret
key with certainty and so it succeeds in a guess attack. This is in contrast to Definition 2.1 where
such a strategy would not be considered successful unless it also holds that compi = compj .)

Before proceeding, we show that Definition 2.2 is no weaker than Definition 2.1. This demon-
strates that it suffices to prove security under Definition 2.2. We have not succeeded in finding
an example proving that Definition 2.2 is strictly stronger (i.e., that there exist protocols that are
secure according to Definition 2.1 and not according to Definition 2.2), although we conjecture that
this is the case. Nevertheless, as we will see below, Definition 2.2 is easier to work with, and it
seems to cover the way natural protocols are designed in this model.
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Claim 2.3 Let Π be a protocol that is secure according to Definition 2.2. Then, Π is also secure
according to Definition 2.1.

Proof: Let A be an adversary. We begin by showing the connection between A’s success by
Definition 2.1 and the events succguess

A and succcomp
A . Consider the event that A succeeded according

to Definition 2.1. This means that A guessed bi
test correctly and compi = compj , and if Πi and Πj

are partnered then A did not query Reveal(i) or Reveal(j). Consider two cases:

1. Case 1 – Πi and Πj are partnered: in this case, the event succguess
A occurred;

2. Case 2 – Πi and Πj are not partnered: in this case, the event succcomp
A occurred (compi must

equal compj and they must both accept because otherwise A would not have succeeded by
Definition 2.1).

It therefore follows that if A succeeds by Definition 2.1, then at least one of the events succguess
A

and succcomp
A must have occurred. That is, for every adversary A,

Pr[A succeeds] ≤ Pr[succguess
A ∨ succcomp

A ] (1)

Now, let A be any adversary. We construct an adversary A′ that internally runs A and behaves in
exactly the same way. The only difference is that if A′ observes that succcomp

A has occurred, then
it outputs a random bit btest (instead of what A outputs); in contrast, if succcomp

A has not occurred
then A′ outputs the bit btest that A outputs. Observe that for A′ it holds that

Pr[succguess
A′ ∧ succcomp

A′ ] = Pr[succguess
A′ | succcomp

A′ ] · Pr[succcomp
A′ ] =

1
2
· Pr[succcomp

A′ ]

because whenever succcomp
A′ occurs, the probability of succguess

A′ occurring is exactly 1/2 (A′ outputs
a random btest in this case). Furthermore, if the event (succguess

A ∨ succcomp
A ) occurs then event

(succguess
A′ ∨ succcomp

A′ ) also occurs; in order to see this note that A′ only behaves differently to A if
succcomp

A already occurred. Thus, Pr[succguess
A ∨ succcomp

A ] ≤ Pr[succguess
A′ ∨ succcomp

A′ ].
Combining the above with Eq. (1) we have:

Pr[A succeeds] ≤ Pr[succguess
A ∨ succcomp

A ]
≤ Pr[succguess

A′ ∨ succcomp
A′ ]

= Pr[succguess
A′ ] + Pr[succcomp

A′ ]− Pr[succguess
A′ ∧ succcomp

A′ ]

= Pr[succguess
A′ ] + Pr[succcomp

A′ ]− 1
2
· Pr[succcomp

A′ ]

= Pr[succguess
A′ ] +

1
2
· Pr[succcomp

A′ ]

≤ 1
2

+ negl(n) +
1
2

(
Qsend

2`
+ negl(n)

)

=
1
2

+
Qsend

2`+1
+ negl′(n)

where the second last inequality is by the assumption that Π is secure according to Definition 2.2.
We conclude that Pr[A succeeds] ≤ 1/2+Qsend/2`+1 + negl(n) and so Adv(A) ≤ Qsend/2` + negl(n)
proving that Π is secure according to Definition 2.1, as required.
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2.3 Single versus Multiple Executions

Definitions 2.1 and 2.2 are cast in a setting where many different protocol instances take place
concurrently. This models the real-world scenario, and as such the definition takes this complex
setting into account. However, this also makes it difficult to analyze security. It is therefore
desirable to work in a more restricted setting where the adversary interacts once with two protocol
instances Π1 and Π2 where pid1 = 2, using the Send and Test oracles (i.e., the Reveal and Execute
oracles are removed). Needless to say, analyzing the security of protocols in such a restricted setting
is much simpler. In this section, we show that the restricted and general settings are equivalent
when considering Definition 2.2, under the assumption that two independent executions of the
protocol conclude with the same comparison value with probability that is negligibly close to 2−`.
(We do not know whether equivalence between the general and restricted settings also holds for
Definition 2.1 but did not succeed in proving it.) Before continuing, we remark that since there
are only two protocol instances, one of each party, we just denote them P1 and P2 (by the parties
playing them) and not as “instances” (which are needed when many executions involving P1 are
run).

We remark that security in this setting is defined exactly as before, except that here Qsend is
always fixed to 1. Despite this, for the sake of clarity, we repeat the definition.

Definition 2.4 (restricted setting): A comparison-based key exchange protocol with a compari-
son variable of length ` ∈ N is said to be secure in the one-time setting if for every probabilistic
polynomial-time adversary A interacting with P1 and P2 where pid1 = 2 and pid2 = 1, it holds that

Pr[succguess
A ] <

1
2

+ negl(n) and Pr[succcomp
A ] <

1
2`

+ negl(n).

Furthermore, the probability that the non-triviality or correctness requirement is violated is at most
negligible in the security parameter n.

Intuitively, the one-time and multiple-execution settings are equivalent because there is no secret
state that is used by the parties over different executions. For example, they have no long-term
secret password, or public key infrastructure. This means that an attacker who succeeds in the
multiple-execution setting can be simulated in the one-time setting by just internally simulating
all of the executions except for one. We stress that such a strategy cannot be carried out in the
password setting because it is not possible to simulate all of the executions of a given party (except
one) without knowing its password. We now formally prove the equivalence:

Theorem 2.5 Let Π be a two-party protocol for comparison-based key exchange such that two inde-
pendent executions of Π conclude with the same comparison value with probability that is negligibly
close to 2−`. Then, Π is secure as in Definition 2.2 if and only if it is secure in the one-time setting
as in Definition 2.4.

Proof: Non-triviality is immediate because the distribution over honestly-run executions is the
same in the one-time and multiple execution settings. Thus, if non-triviality is violated in one
setting with non-negligible probability it will also be violated in the other setting with non-negligible
probability. Correctness is also not difficult to show. This is due to the fact that it must hold,
except with negligible probability. Thus an adversary in a single execution setting can internally
simulate multiple executions while running just one. The probability that correctness is violated on
the single execution actually being run is a polynomial fraction of the probability in the multiple
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execution setting. Thus, if the probability is negligible in the one-time setting, it must also be
negligible in the multiple execution setting. (The formal details of how the internal executions are
run can be derived from the more involved proof of security below.)

We now prove the equivalence with respect to security. It is immediate that if Π is secure under
Definition 2.2 then it is secure under Definition 2.4 because in this case Qsend ≤ 1. The more
interesting direction states that security under Definition 2.4 implies security under Definition 2.2.
Let Π be secure under Definition 2.4. We separately prove that for every A, Pr[succguess

A ] <
1
2 + negl(n) and Pr[succcomp

A ] < Qsend/2` + negl(n) in the general setting.
We begin by proving that Pr[succguess

A ] < 1
2 +negl(n). Assume by contradiction that there exists

an adversary A and a non-negligible function ε = ε(n) such that Pr[succguess
A ] = 1

2 + ε in the general
setting. We construct an adversary A′ for the one-time setting that works as follows. Let t be an
upper-bound on the number of protocol instances that A invokes in its attacks (we can always take
t to be the running-time of A). Then, adversary A′ chooses a random i ∈ {1, . . . , t} and internally
simulates for A all of the protocol instance pairs – answering all the Execute, Send and Reveal
queries – except for the ith pair; this ith pair is run externally using P1 and P2 that A′ interacts
with (the ith pair is defined by the ith Init oracle call for which neither pid is already set). If A
queries its Test oracle on the ith pair, then A′ outputs the guess bit btest that A outputs; otherwise
A outputs a random btest ∈R {0, 1} for its guess. We now analyze the probability that the event
succguess

A′ occurs in this one-time setting. We use the fact that A queries its Test oracle on the ith
pair with probability exactly 1/t:

Pr[succguess
A′ ] =

1
t
· Pr[succguess

A ] +
(

1− 1
t

)
· 1
2

=
1
t
·
(

1
2

+ ε

)
+

(
1− 1

t

)
· 1
2

=
1
2t

+
ε

t
+

1
2
− 1

2t

=
1
2

+
ε

t
.

Noting that t is a polynomial and thus if ε is non-negligible then so is ε/t, we have that A′ succeeds
in a guessing attack in the one-time setting, in contradiction to the security of Π by Definition 2.4.
This proves that no A can succeed in a guessing attack in the general setting with probability that
is non-negligibly greater than 1/2.

We now proceed to prove that for every A, Pr[succcomp
A ] < Qsend/2` + negl(n) in the general

setting. Assume by contradiction that there exists an adversary A sending Qsend queries to the
Send oracle and a non-negligible function ε = ε(n) such that Pr[succcomp

A ] = Qsend/2` + ε. Without
loss of generality, we can assume that A always asks exactly Qsend queries to its Send oracle. We
now use A to construct an adversary A′ that contradicts the assumed security of Π in the one-time
setting. The adversary A′ works as follows:

1. A′ chooses a uniformly distributed index i ∈R {1, . . . , Qsend}
2. A′ invokes A internally and internally simulates all the protocol instances, except for the

ith pair invoked by A). The ith pair of instances is run externally with P1 and P2 that A′
interacts with. We remark that all of the Execute, Test, Send and Reveal queries for pairs
other than the ith pair are all answered by A′ internally. In contrast, the Test and Send and
queries for the ith pair are forwarded by A′ externally to its own oracles. A′ halts after the
ith pair concludes the execution; A′ does not output anything because its aim is to succeed
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in a comparison attack, not a guess attack. (If A makes a Reveal query on the ith pair then
this is only meaningful after the ith pair has concluded. It therefore doesn’t matter.)

We now analyze the probability that succcomp
A′ occurs. It is clear that the simulation by A′ of the

general setting for A is perfect. Furthermore, the probability that A succeeds in its comparison
attack on the ith pair equals exactly 1/Qsend times the probability thatA succeeds in its comparison
attack in general (this is because i is uniformly distributed). Thus, we conclude that

Pr[succcomp
A′ ] =

1
Qsend

· Pr[succcomp
A ] =

1
Qsend

·
(

Qsend

2`
+ ε

)
=

1
2`

+
ε

Qsend
.

Now, if ε is non-negligible then so is ε′ = ε/Qsend. Therefore, A′ succeeds in a comparison attack
in the one-time setting with probability non-negligibly greater than 1/2` in contradiction to the
security of Π in the one-time setting.

Discussion – Definition 2.2 versus Definition 2.1. As we have seen, Definition 2.2 has a
significant advantage in that it suffices to prove security in the one-time setting, as formulated in
Definition 2.4. We argue that it has another advantage in that it is easier to provide a separate
analysis of the two potential attacks than a single combined one. Thus, as we will see when
we analyze protocols below, the introduction of Definition 2.2 and its proof of equivalence to
Definition 2.4 constitute a significant contribution that greatly simplifies the typically difficult task
of proving the security of key exchange protocols.

3 Bluetooth Pairing in Numeric Comparison Mode

In this section, we describe the Bluetooth pairing protocol in the numeric comparison mode. We
also describe the cryptographic functions that are used by the protocol, and state the assumptions
that are needed regarding each one in order to prove the security of the protocol. The Bluetooth
specification refers to devices A and B; in order to be consistent with our definitional notations,
we refer to parties P1 and P2 instead.

3.1 Cryptographic Tools and Functions

The numeric comparison mode in the Bluetooth simple pairing protocol uses the following tools:
• An Elliptic curve group in which it is assumed that the Decisional Diffie-Hellman problem is

hard. We denote the group by G, the generator by g, and the group order by q.

• A non-interactive computationally binding and non-malleable commitment scheme C. We de-
note a commitment to a string x using coins r by C(x; r). The computational binding property
means that it is infeasible for any polynomial-time adversary A to find x, r, x′, r′ where x 6= x′

but C(x; r) = C(x′; r′). Informally speaking, non-malleability [9] means that given a commit-
ment c = C(x; r) it is infeasible for a polynomial-time adversary to generate a commitment c′ so
that later given (x, r) it can produce (x′, r′) such that c′ = C(x′; r′) and x, x′ are related via a
predetermined polynomial-time computable relation; this is typically called non-malleability with
respect to opening [7]. Our formal definition can be found in Appendix A and is adapted from
the definition in [6] with some minor changes.

The commitment scheme is instantiated as follows: in order to commit to a string x, ra

where ra is uniformly distributed and half of the length of the key for HMAC-SHA256, choose a
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random string rb which is also half of the length of the key for HMAC-SHA256, compute HMAC-
SHA256r(x) where r = (ra, rb), and set the commitment value to be the 128 most significant bits
of the result. We remark that it may appear to be more natural to use randomness that is the
entire length of the HMAC key and then let x be the entire string that is committed to. Indeed,
this would have been more natural. However, in the Bluetooth protocol, part of r must be
considered to remain secret and we therefore take it to be part of the value being committed to.
We remark that the computational binding of this commitment scheme follows directly from the
assumption that it is hard to find a collision in SHA256. The assumption on non-malleability
is less studied, but seems reasonable given the chaotic behavior of such functions. We remark
also that it follows trivially from any random-oracle type assumption.

• A function g : {0, 1}∗ → {0, 1}` with the property that when any long-enough part of the input
is uniformly distributed, then the output is close to uniform. We formalize this by allowing an
adversary to choose two values α and β and then asking what the probability is that g(α, r) = β
when r ∈R {0, 1}n/2 is uniformly distributed. We call this computational 2-universal hashing.
In order to be consistent with the exact use of g in the protocol, we first introduce the following
notation: For an arbitrary string α, we denote by α[r] the string derived by combining α and
r in a predetermined way. (In our use, α[r] will either be the concatenation of r after α, or it
involves parsing α into α1 and α2 where |α2| = n/2 and then setting α[r] = (α1, r, α2).) Then:

Definition 3.1 A function g : {0, 1}∗ → {0, 1}` is a computational 2-universal hash function if
for every probabilistic polynomial-time machine A there exists a negligible function negl such
that

Pr(α,β)←A(1n);r←{0,1}n/2 [g(α[r]) = β] <
1
2`

+ negl(n)

We stress that r ∈R {0, 1}n/2 is uniformly distributed and thus chosen independently of α and
β output by A. The function g in Bluetooth is defined by g(x) = SHA256(x)mod 232. It seems
very reasonable to assume that SHA256 fulfills this property.

• A pseudorandom function F keyed with keys output from Diffie-Hellman key exchange over
Elliptic curve groups. This is implemented using HMAC-SHA256 and taking the 128 most
significant bits. Formally, we say that a function F is pseudorandom when keyed with G if it is a
pseudorandom function when the key is a random element of G. It is easy to show that if F is
pseudorandom when keyed with G and the Decisional Diffie-Hellman (DDH) assumption holds
in G, then it is pseudorandom when keyed with the result of a Diffie-Hellman key exchange.
This follows directly from DDH which states that the result of a Diffie-Hellman key exchange
is indistinguishable from a random element in G. For simplicity, we state this directly in the
Definition below:

Definition 3.2 Let gen(1n) be an algorithm that outputs the description of a group G, its gen-
erator g, and its order q. A function ensemble F = {Fk} is pseudorandom when DDH-keyed with
gen if for every probabilistic polynomial-time distinguisher D there exists a negligible function
negl such that

∣∣∣Pr
[
DF

gab (1n, ga, gb) = 1
]
− Pr

[
DH(1n, ga, gb) = 1

]∣∣∣ < negl(n)

where (G, g, q) ← gen(1n), a, b are randomly chosen in {1, . . . , q}, and H is a truly random
function ensemble.
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As we have mentioned, any function ensemble that is pseudorandom when keyed with a random
element from G is also pseudorandom when DDH-keyed with gen, under the assumption that the
DDH assumption holds relative to gen. Note that a “standard” pseudorandom function receives
a uniformly distributed bit string. Therefore, this does not necessarily suffice (a random element
of G is not necessarily a uniformly distributed bit string).

3.2 The Protocol and Correctness

The Bluetooth simple pairing protocol in numeric comparison mode appears in Figure 1 and is
denoted Π. It is easy to see that Protocol Π is non-trivial. The proof that Π fulfills correctness is
also not difficult and appears after the protocol description.

Protocol Π

• Pre-protocol exchange: Parties P1 and P2 exchange party identifiers 1 and 2 (in Bluetooth, these are
their respective Bluetooth addresses) as well as additional auxiliary information α1 and α2 (we will ignore
the content of this information here). P1 sets pid1 = 2, and P2 sets pid2 = 1.

• Phase 1 – Public-Key Exchange:

1. The initiating party P1 generates a Diffie-Hellman value by choosing a random a ∈ {1, . . . , q} and
computing pk1 = ga. P1 sends pk1 to P2.

2. Upon receiving pk1 from P1, party P2 chooses a random b ∈ {1, . . . , q}, computes pk2 = gb, and sends
pk2 to P1.

3. Party P1 sets sid1 = (pk1, pk2) and party P2 sets sid2 = (pk1, pk2).

• Phase 2 – Authentication Stage 1:

1. P2 chooses a random string r2 ∈R {0, 1}n and sends c2 = C(pk2, pk1, 0; r2) to P1.

2. P1 chooses a random string r1 ∈R {0, 1}n and sends r1 to P2.

3. P2 sends r2 to P1. Upon receiving r2, party P1 checks that c2 = C(pk2, pk1, 0; r2), where c2 is the
value it received above and pk1, pk2 are as exchanged in phase 1.

4. P1 sets comp1 = g(pk1, pk2, r1, r2) and P2 sets comp2 = g(pk1, pk2, r1, r2).

• Phase 3 – Authentication Stage 2:

1. P1 computes k = (pk2)
a and P2 computes k = (pk1)

b, where the computation is in the group G.

2. P1 computes e1 = Fk(r1, r2, 0, α1, 1, 2) and sends e1 to P2. (Note that 1 and 2 here, and below, are
the parties identifiers and not constants. Thus, they are actually the parties’ Bluetooth addresses and
more.)

3. P2 checks that e1 = Fk(r1, r2, 0, α2, 1, 2); if yes it sends P1 the value e2 = Fk(r1, r2, 0, α1, 2, 1) and
sets acc2 = true; otherwise P2 sets acc2 = false and aborts.

4. P1 checks that e2 = Fk(r1, r2, 0, α1, 2, 1); if yes it sets acc1 = true, and if not it sets acc1 = false and
aborts.

• Phase 4 – Link-Key Calculation:

1. Party P1 outputs sk1 = Fk(r1, r2, β, 2, 1) where β is a fixed string.

2. Party P2 outputs sk2 = Fk(r1, r2, β, 2, 1).

Figure 1: Bluetooth 2.1 Pairing – Numeric Comparison Mode

Claim 3.3 Assume that F is a pseudorandom function when DDH-keyed with gen, as in Defini-
tion 3.2. Then, protocol Π meets the correctness requirement, except with negligible probability.
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Proof: We need to show that if P1 and P2 are partnered, they both accept and compi = compj ,
then sk1 = sk2 except with negligible probability. Now, if P1 and P2 are partnered, then this implies
that sid1 = sid2 and so they both received each other’s correct Diffie-Hellman values pk1 and pk2.
Now, P1 and P2 accept if and only if the e1 and e2 values of phase 3 pass the checks. If both
parties hold the same r1 and r2 values then they clearly accept, and also output the same session
key sk1 = sk2 (this is due to the fact that the only other values involved in the computation of sk1

and sk2 are constants). Thus, correctness holds unless the following event occurs: parties P1 and
P2 hold different values r1 and r2, and yet they both accept. (This is a problem because sk1 6= sk2

with overwhelming probability and yet the parties are still partnered and accept.) Denote by r1, r
′
2

the values held by P1 and by r′1, r2 the values held by P2 (recall that P1 chose r1 but received r2;
we denote the fact that P1 may not have received the same r2 as that sent by P2 by writing r′2). It
suffices to show that

Pr[(r1, r
′
2) 6= (r′1, r2) ∧ Fk(r1, r

′
2, 0, α2, 1, 2) = Fk(r′1, r2, 0, α2, 1, 2)] < negl(n)

However, this follows immediately from the assumption that F is a pseudorandom function when
DDH-keyed with gen (equality would only occur with a truly random function with negligible
probability). Formally, assume that there exists an adversary A that causes correctness to be
violated with non-negligible probability. This implies that

Pr[(r1, r
′
2) 6= (r′1, r2) ∧ Fk(r1, r

′
2, 0, α2, 1, 2) = Fk(r′1, r2, 0, α2, 1, 2)] = ε(n)

for some non-negligible function ε. We construct a distinguisher D that works as follows (recall
that by Definition 3.2, D receives ga, gb for input and is given oracle access to either Fgab or a
random function). Upon input ga, gb, D sets pk1 = ga and pk2 = gb, invokes A and simulates an
execution of Protocol Π in the one-time setting, running P1 and P2. When A sends a Send query
to party P1 causing it to reply with its message in the public-key exchange phase then D replies
with pk1. Likewise, when A sends an analogous query to P2, D replies with pk2. In contrast to the
public-key exchange phase, D runs the authentication stage 1 phase as honest P1 and P2 would
(note that the secret values a and b are not needed in this phase). Then, when D reaches phase 3
and it has to compute the e1 and e2 values, it uses its oracle. If (r1, r

′
2) 6= (r′1, r2) then D computes

e1 and e2 using its oracle and outputs 1 if and only if they are equal. If (r1, r
′
2) = (r′1, r2) then D

outputs a random bit. Now, when D’s oracle is Fgab , the simulation for A by D is identical to a
real execution. It therefore follows that:

Pr[DF
gab (ga, gb) = 1] = Pr[DF

gab (ga, gb) = 1 ∧ (r1, r
′
2) 6= (r′1, r2)]

+ Pr[DF
gab (ga, gb) = 1 ∧ (r1, r

′
2) = (r′1, r2)]

= ε(n) +
1
2

In contrast,

Pr[DH(pk1, pk2) = 1] = Pr[DH(pk1, pk2) = 1 ∧ (r1, r
′
2) 6= (r′1, r2)]

+ Pr[DFk(pk1, pk2) = 1 ∧ (r1, r
′
2) = (r′1, r2)]

= negl(n) +
1
2

because a truly random function collides on two different values with only negligible probability.
Therefore, ∣∣∣Pr[DFk(pk1, pk2) = 1]− Pr[DH(pk1, pk2) = 1]

∣∣∣ = ε(n)− negl(n)
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which is non-negligible, in contradiction to the assumption on the pseudorandomness of F when
keyed with a Diffie-Hellman key.

4 The Proof of Security

We now prove that Π is a secure comparison-based key-exchange protocol. The structure of our
proof demonstrates the usefulness of Definition 2.4 as a tool; a proof of security that works directly
with Definition 2.1 would be much more complex.

Theorem 4.1 Assume that the Decisional Diffie-Hellman assumption holds relative to gen, that
F is a pseudorandom function when DDH-keyed with gen, that C is a computationally-binding
non-malleable commitment scheme and that g is a computational 2-universal hash function. Then,
Protocol Π is a secure comparison-based key-exchange protocol.

Proof: We prove the security of Π in two stages. First, we prove that succguess
A occurs with

probability at most negligibly greater than 1/2. Intuitively, this holds because if P1 and P2 are
partnered, then this implies that they both have the same Diffie-Hellman values and so essentially
have completed a Diffie-Hellman key exchange undisturbed, with the adversary only eavesdropping.
This in turn implies that Fk is a pseudorandom function and thus the session keys that are out-
put are pseudorandom. We then proceed to prove that succcomp

A occurs with probability at most
negligibly greater than 2−`. This follows from the security of the commitment scheme C and the
2-universality of g. Specifically, phase 2 of the protocol can be viewed as a method of choosing
two random strings r1 and r2 that are (computationally) independent of each other. In order for
this to hold even if A carries out a man-in-the-middle attack, the commitment scheme C must be
non-malleable (see Appendix A). This forces A to either just copy the commitment sent by P2 or
modify it, in which case it will contain an independent r2 value. If A copies the commitment, then
it will contain the parties’ public keys. However, by the assumption that they are not partnered,
these keys do not match with those that the parties received in the protocol. A must therefore
modify the commitment, resulting in r1 and r2 being independent of each other. Once this is
given, it is possible to apply the 2-universality of g stating that whichever is chosen last causes the
comparison value to be almost uniformly distributed. We proceed now to the formal proof.

As stated, we prove the protocol using Definition 2.4, and apply Theorem 2.5 and Claim 2.3 to
derive that the protocol is secure also under Definition 2.1. Note that in order to apply Theorem 2.5
we have to show that two independent executions of Π conclude with the same comparison value
with probability that is negligibly close to 2−`. However, this follows immediately from the assump-
tion that g is computationally 2-universal (and the fact that the r1 and r2 values are independently
chosen in the two different executions).

We begin by proving that for every probabilistic polynomial-time A interacting with P1 and
P2, it holds that

Pr[succguess
A ] <

1
2

+ negl(n)

Recall that succguess
A occurs if A outputs the correct btest value after querying Test(1) or Test(2) and

P1 is partnered with P2. Now, by the protocol description, the session identifiers are defined to be
(pk1, pk2) and thus if sid1 = sid2 it follows that P1 and P2 hold the same Diffie-Hellman values.
Intuitively, this means that if A can guess the correct btest value with non-negligible probability,
then it can solve the DDH problem in G with non-negligible advantage. The formal reduction
follows. Let A be a probabilistic polynomial-time adversary and let ε be a function such that
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Pr[succguess
A ] = 1

2 + ε(n). We show that ε must be negligible by presenting a distinguisher D that
solves the DDH problem in G with advantage ε. Distinguisher D receives (ga, gb, k) and attempts
to determine if k = gab or if k ∈R G. D invokes A and when it sends a Send oracle query to
which P1 is supposed to reply with its public-key exchange message, then D replies with pk1 = ga.
Likewise, when A sends an analogous message for P2 then D replies with pk2 = gb. If A does
not forward the same pk1, pk2 messages unmodified (and so P1 and P2 are not partnered) then D
outputs a random bit and halts. Otherwise, it proceeds. (Note that D may need to proceed with
the simulation before knowing if they are partnered. In this case, it assumes that they will be,
and if it turns out to be incorrect it immediately outputs a random bit and halts.) Now, from
this step on, D acts exactly like the honest P1 and P2 would. In particular, when D reaches the
authentication stage 2 of the protocol, it uses the value k that it received in its input to compute
e1 and e2. Likewise, it uses k to compute sk1 and sk2. Now, when A queries Test(1) or Test(2), D
chooses a random b ∈R {0, 1} and replies with sk1 (or sk2 respectively) if b = 0 and with a random
value s̃k ∈R {0, 1}|sk1| otherwise. Finally, D outputs 1 if and only if A outputs btest = b.

If k = gab then the simulation above by D is exactly what A would see in a real protocol
execution. Therefore,

Pr[D(ga, gb, gab) = 1] =
1
2

+ ε(n)

In contrast, when k is a random value, the simulation by D is “wrong”. In particular, the
e1, e2, sk1, sk2 values are computed using a random key k independent of pk1, pk2, instead of using
gab. We would like to claim that A outputs btest = b with probability 1/2 in this case, but this may
not be true because k has been used to compute e1, e2 which are seen by A. Thus, if A was not
computationally bounded it could determine btest = b. Nevertheless, we prove that if F is indeed a
pseudorandom function, then A can output btest = b with probability at most 1/2 + negl(n). Let δ
be a function such that A outputs btest = b in this case with probability 1/2 + δ(n). We first prove
that δ is a negligible function. Specifically, we construct a distinguisher DF who receives an oracle
that is either the pseudorandom function Fk or a truly random function. DF invokes A and works
in the same way as D with the following differences. First, DF generates random pk1 and pk2 values
itself and uses them. Second, it computes e1, e2, sk1, sk2 using its function oracle. If DF is given a
random function oracle, then sk1, sk2 are completely random and independent of everything that
A has seen so far. Thus, information-theoretically, A outputs btest = b with probability exactly
1/2. In contrast, if DF is given Fk as an oracle, then it generates exactly the same distribution as
D when k ∈R G is a random value. It follows that in this case A outputs btest = b with probability
1/2 + δ(n). This implies that

∣∣∣Pr[DFk
F (1n) = 1]− Pr[DH

F (1n) = 1]
∣∣∣ = δ(n)

and so δ must be a negligible function, by the assumption that Fk is a pseudorandom function.
Combining the above, we have that

∣∣∣Pr[D(ga, gb, gab) = 1]− Pr[D(ga, gb, k) = 1]
∣∣∣ =

∣∣∣∣
1
2

+ ε(n)− 1
2
− δ(n)

∣∣∣∣ = |ε(n)− δ(n)|

and so ε must also be a negligible function, proving that succguess
A occurs with probability that is

at most negligibly greater than 1/2, as required.

We now prove that for every probabilistic polynomial-time A interacting only with P1 and P2,
it holds that

Pr[succcomp
A ] <

1
2`

+ negl(n)

16



Recall that succcomp
A holds if P1 and P2 are not partnered, and yet comp1 = comp2. Since the

session identifier in Π is defined to be the pair of public keys (pk1, pk2) exchanged in the first phase,
we have that succcomp

A can only hold if P1 and P2 hold different public keys. This occurs if at least
one of the keys sent by an instance was not received as-is by the other instance, but was rather
“modified” en route by A.

We introduce the following notation that will be helpful in the proof below. If one instance
sends a message α, then we denote by α′ the message received by the other instance. Thus, the
public key sent by P1 is denoted pk1 and the public key received by P2 is denoted pk′1. Using
this notation, we have that P1 and P2 are not partnered if P1 has sid1 = (pk1, pk′2) and P2 has
sid2 = (pk′1, pk2), and either pk1 6= pk′1 or pk2 6= pk′2 or both.

Now, the first authentication stage involves P2 sending c2 = C(pk2, pk′1, 0; r2) and P1 receiving
some c′2. Then, P1 sends r1 and P2 receives r′1. Finally, P2 returns r2 and P1 receives some string
r′2. Using the above notation, we have that succcomp

A occurs if and only if

(pk1, pk′2) 6= (pk′1, pk2) and g(pk1, pk′2, r1, r
′
2) = g(pk′1, pk2, r

′
1, r2) (2)

(Note that comp1 = g(pk1, pk′2, r1, r
′
2) and comp2 = g(pk′1, pk2, r

′
1, r2).) Without loss of generality,

we assume that A always causes P1 and P2 to be not partnered (otherwise it always fails so this
does not make any difference), and so (pk1, pk′2) 6= (pk′1, pk2) always. We analyze the probability
that Eq. (2) holds in two disjoint cases related to the possible schedulings of messages by A:

1. Case 1 – P2 sends r2 after P1 has received c′2: The main difficulty in the proof here is due
to the fact that it is theoretically possible that A can make c′2 depend on c2 (and likewise r′2
can depend on r2). Therefore, the inability of A to succeed depends on the non-malleability
of the commitment scheme C; see Definition A.1 in Appendix A (familiarity with the exact
definition is needed for the proof below). Let A be a probabilistic polynomial-time adversary.
We prove that succcomp

A occurs in this case with probability that is at most negligibly greater
than 2−`. First, we show that there exists an adversary Â, a relation R̂ and a distribution D̂
for the non-malleability experiment Exptreal

Â,R̂,D̂
(1n) such that

Pr[Exptreal
Â,R̂,D̂

(1n) = 1] = Pr[succcomp
A ] (3)

Adversary Â for the non-malleability experiment begins by invoking A (the adversary for
the key exchange protocol) and emulating the parties P1 and P2 until the point that P2 is
supposed to send c2. Note that at this point, the keys pk′1 and pk2 are fully defined. Then,
Â outputs z = (pk2, pk′1). The distribution D̂ receives z, chooses a random ra

2 ∈R {0, 1}n/2

and outputs m1 = (pk2, pk′1, 0, ra
2). Adversary Â then receives com1 (by the definition of C,

com1 is a commitment to m1 using random coins rb
2 of length n/2), and hands it to A as if it

is the commitment c2 sent by P2 in the key exchange protocol. When A sends a commitment
c′2 to P1, then Â defines this to be com2 and outputs it. Following this, as defined in the
non-malleability experiment, Â receives dec1 which is the string (pk2, pk′1, 0, ra

2 , rb
2). Â defines

r2 = (ra
2 , rb

2) and hands it to A as if coming from P2. Finally, when A wishes to send r′2
to P1, Â defines dec2 = (pk′2, pk1, 0, ra

2
′, rb

2
′) and σ = (pk1, pk′2, r1, r

′
1, r

b
2, r

b
2
′) where these are

the appropriate strings sent in the emulation carried out by Â (Â needs to include rb
2 and

rb
2
′ because these are not part of the messages m1, m2 but randomness used to generate the

commitments). Finally, R outputs 1 if and only if g(pk1, pk′2, r1, r
′
2) = g(pk′1, pk2, r

′
1, r2), where

the values input to g are parsed from m1, m2 and σ. Eq. (3) follows from the observation
that Â’s emulation of an execution of Π for A is perfect, and from the fact that R outputs 1
if and only if succcomp

A occurs.
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Now, by the assumption that the commitment scheme C is non-malleable with respect to
opening, we have that there exists an adversary Â′ such that

Pr[Exptreal
Â,R̂,D̂

(1n) = 1] < Pr[ExptsimÂ′,R̂,D̂
(1n) = 1] + negl(n)

We don’t know how Â′ works, but we do know that it first outputs a string z and then a pair
(σ,m2). The output of the experiment is then equal to 1 if and only if g(pk1, pk′2, r1, r

′
2) =

g(pk′1, pk2, r
′
1, r2), where pk1, pk′2, pk′1, pk2, r1, r

′
1, r′2 are all derived from z, σ and m2, and ra

2

is uniformly distributed and independent of all other values. We stress that ra
2 is random and

independent since ra
2 ∈R {0, 1}n/2 is chosen randomly by D̂ and not given to Â′. (Note that

we cannot say anything about rb
2 because this is chosen by Â′ as part of σ.) We conclude

this case by using the computational 2-universality of g. That is, letting β = comp1 (which is
fully defined by z, σ and m2) and α1 = (pk′1, pk2, r

′
1), α2 = rb

2 (again, fully defined by z and
σ), we have that

Prra
2←{0,1}n/2 [g(α1, r

a
2 , α2) = β] <

1
2`

+ negl(n).

Thus
Pr[ExptsimÂ′,R̂,D̂

(1n) = 1] <
1
2`

+ negl(n),

implying that

Pr[succcomp
A ] = Pr[Exptreal

Â,R̂,D̂
(1n) = 1]

< Pr[ExptsimÂ′,R̂,D̂
(1n) = 1] + negl(n) <

1
2`

+ negl′(n)

proving that the probability that succcomp
A is at most negligibly greater than 2−`, as required.

(We remark that the above proof only works in the scheduling case where A sends c′2 to P1

before receiving r2 from P2, because in the non-malleability experiment com2 must be output
by the adversary before it receives dec1.)

2. Case 2 – P2 sends r2 before P1 has received c′2: Observe that phase 2 involves P2 sending c2, P1

sending r1 and then P2 replying with r2. Thus, in this case, A effectively runs the executions
with P1 and P2 sequentially. That is, A concludes phase 2 with P2 before beginning phase 2
with P1. Intuitively, in this case, succcomp

A can only occur with probability 2−` because comp2

is fixed before r1 is chosen by P1. Thus, the computational 2-universality of g suffices to show
that comp1 = comp2 with probability at most negligibly greater than 2−`. More formally, let
β be the comp2 value of P2. By this scheduling case, this is fixed before P1 receives c′2 and
so, in particular, before it chooses r1. However, if A can choose r′2 after receiving r1 from
P1, then the property of g no longer holds (recall that α and β must be independent of r).
Intuitively this is not a problem due to the computational binding property of C.

Formally, let A be an adversary for the key exchange protocol; we assume that A always sends
a valid r′2 to P1 (otherwise P1 rejects). We construct α and β as required for g as follows.
Invoke A and emulate an execution with P1 and P2 until the end of phase 2 with P1. Since
phase 2 has finished, the strings c′2 and r′2 are fully defined, as are pk1, pk′1, pk2, pk′2, r2, r

′
1

(recall that phase 2 with P2 concluded before it even started with P1). These values therefore
define α and β as follows: α = (pk1, pk′2, r′2) and β = comp2 = g(pk′1, pk2, r

′
1, r2). Now, we

argue that
Pr[succcomp

A ] < Prr←{0,1}n [g(α, r) = β] + negl(n) (4)
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In order to see that this holds, after A sends r′2 at the end of phase 2 (in the above procedure
for determining α and β), rewind A to the point before r1 is sent by P1. Then, replace it
with the random string r in Eq. (4). The value r1 sent by P1 in the process of determining α
and β is identically distributed to the value r from Eq. (4). Now, there are two possibilities:
A sends the same r′2 as when determining α and β, or A sends a different r′2. In the first
case, we have that succcomp

A occurs if and only if g(α, r) = β. In the second case, we have
that A can be used to contradict the binding property of C (the formal reduction of this
fact is straightforward and thus omitted). Thus, this case can occur with at most negligible
probability. Eq. (4) therefore follows. By the security of g, we have that succcomp

A occurs with
probability at most negligibly greater than 2−` + negl(n), as required.

This completes the proof of security.
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A Non-Malleable Commitments – Definition

Informally speaking, a commitment scheme is non-malleable if given a commitment c it is com-
putationally hard to generate a commitment c′ that is “related” by some predefined relation R.
When considering computationally binding commitments, it is possible that c′ can actually be a
commitment to any value. Therefore, it is not clear what it means that the value committed to
in c′ is related to the value committed to in c. This problem is solved by defining the notion with
respect to opening [7]. This means that given a decommitment for c to some value x, it is hard for
the adversary (who generated c′ after being given c) to generate a decommitment for c′ to some
x′ so that x′ is related to x. Of course, the probability of success depends on the relation (some
are “easier” than others). Therefore, the requirement is that it is possible to generate a related
commitment c′ given c with the same probability as it is possible to generate a related x′ without
even being given x. This is formalized by defining two experiments: a real experiment in which the
adversary is given c, and a simulation experiment where the adversary just outputs a message and
hopes that it’s related. Our formal definition is adapted from [6] with two minor changes. First,
we allow the adversary A to provide input to the distribution machine that generates the value to
be committed to. Second, we allow the adversary to output state information which is used by the
relation. Both of these changes do not seem to make it particularly easier for the adversary, but
they make the definition much more useful for proving the security of protocols which rely on non
malleability. The experiments relate to a probabilistic polynomial-time adversary A, a polynomial-
time computable relation R and a probabilistic polynomial-time samplable distribution D. We also
denote the committer/sender algorithm by P1 and the receiver algorithm by P2 (the receiver takes
for input a commitment string and a decommitment value and output a string that represents the
value that was committed to). The experiments are defined as follows:

Experiment Exptreal
A,R,D(1n):

1. z ← A(1n)

2. m1 ← D(1n, z)

3. (com1, dec1) ← P1(m1)

4. com2 ← A(1n, com1)

5. (σ, dec2) ← A(1n, com1, dec1)

6. m2 ← P2(com2, dec2)

7. Output 1 if and only if com1 6= com2 and R(σ,m1,m2) = 1
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Experiment ExptsimA′,R,D(1n):

1. z ← A′(1n)

2. m1 ← D(1n, z)

3. (σ,m2) ← A′(1n)

4. Output 1 if and only if R(σ,m1,m2) = 1

We now define security by stating that for every A in the real experiment there exists an A′ who
succeeds with almost the same probability in the simulation experiment. We allow the machine
A′ to know the distribution machine D and relation R (unlike [6]); this suffices for our proof of
security and is possibly a weaker requirement.

Definition A.1 A non-interactive commitment scheme C with sender/receiver algorithms (P1, P2)
is non-malleable with respect to opening if for every probabilistic polynomial-time A, every proba-
bilistic polynomial-time samplable distribution D and every polynomial-time computable ternary
relation R, there exists a probabilistic polynomial-time A′ and a negligible function negl such that:

Pr
[
Exptreal

A,R,D(1n) = 1
]

< Pr
[
ExptsimA′,R,D(1n) = 1

]
+ negl(n)
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