
Applying Time-Memory-Data Trade-Off to

Meet-in-the-Middle Attack

Jiali Choy, Khoongming Khoo, and Chuan-Wen Loe

DSO National Laboratories
20 Science Park Drive, Singapore 118230

Email: cjiali,kkhoongm,lchuanwe@dso.org.sg

Abstract. In this paper, we present several new attacks on multiple
encryption block ciphers based on the meet-in-the-middle attack. In the
first attack (GDD-MTM), we guess a certain number of secret key bits
and apply the meet-in-the-middle attack on multiple ciphertexts. The
second attack (TMTO-MTM) is derived from applying the time-memory
trade-off attack to the meet-in-the-middle attack on a single ciphertext.
We may also use rainbow chains in the table construction to get the
Rainbow-MTM attack. The fourth attack (BS-MTM) is defined by com-
bining the time-memory-data trade-off attack proposed by Biryukov and
Shamir to the meet-in-the-middle attack on multiple ciphertexts. Lastly,
for the final attack (TMD-MTM), we apply the TMTO-Data curve,
which demonstrates the general methodology for multiple data trade-offs,
to the meet-in-the-middle attack. GDD-MTM requires no pre-processing,
but the attack complexity is high while memory requirement is low. In
the last four attacks, pre-processing is required but we can achieve lower
(faster) online attack complexity at the expense of more memory in com-
parison with the GDD-MTM attack. To illustrate how the attacks may
be used, we applied them in the cryptanalysis of triple DES. In partic-
ular, for the BS-MTM attack, we managed to achieve pre-computation
and data complexity which are much lower while maintaining almost
the same memory and online attack complexity, as compared to a time-
memory-data trade-off attack by Biryukov et al. at SAC 2005. In all, our
new methodologies offer viable alternatives and provide more flexibility
in achieving time-memory-data trade-offs.

Keywords. block cipher, meet-in-the-middle, time-memory-data trade-
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1 Introduction

In [4], Diffie and Hellman described a meet-in-the-middle (MTM) attack that
can be applied on a multiple encryption cipher consisting of a concatenation of
L ≥ 2 block ciphers, each with independent keys. Due to this attack, the effective
security of triple DES with a 168-bit key is reduced to 112 bits. We give a brief
description of the MTM attack in Section 3.



There were subsequent improvements on the MTM attack after its discovery.
One such improvement, described in [6, Section 7.37], is to apply a guess-and-
determine technique to the MTM attack. We shall call this attack a guess-and-
determine MTM attack (GD-MTM). The GD-MTM attack stipulates that the
attacker must initially guess a certain number of key bits of the first block cipher.
We propose an extension of this attack, which we call guess-and-determine MTM
attack with multiple data (GDD-MTM) to cater for the case when a plaintext
is encrypted by the cipher under several keys of which only one needs to be
recovered. When applied to triple DES, as compared to the typical MTM attack
without pre-computation which needs time complexity of 2112 and memory com-
plexity of 256, the GD-MTM attack achieves lower memory complexity of 248 at
the cost of higher time complexity of 2120, while the GDD-MTM attack achieves
lower time complexity of 2104 at the expense of 214 data and 264 memory re-
quirements. We expound on the GD-MTM and GDD-MTM attacks in Section
4.

In [5], Hellman introduced the time-memory trade-off (TMTO) attack which
is a generic cryptanalytic attack that can be applied to any cipher algorithm us-
ing one data point. This attack circumvents exhaustive search by pre-computing
and pre-storing a large amount of data. During the online phase, the attack uses
the data generated by an unknown key to conduct a ciphertext or keystream
comparison in order to recover the key quickly. The advantage of this attack
is that with pre-computation done offline, the time taken in the online stage
is shortened at the expense of more memory required. Later in 2003, Oechslin
[8] proposed an improved technique called rainbow chains to derive a single pre-
computation table. His method reduces the TMTO attack complexity by a factor
of 2.

Then in [3], Biryukov et al. suggested a time-memory-data trade-off attack
adapted from [2], which we shall call the BS attack. In the BS attack, they only
need to find one key out of a family of ciphertexts which are the encryptions of
the same plaintext under different keys. In this way, only a portion of the key
space needs to be covered in the pre-computation phase. In addition, they also
performed a new unified analysis of Hellman’s attack in the presence of multiple
data, thereby achieving new time-memory-data trade-offs previously unknown.
This paved the way for more flexibility in attack modes depending on case-by-
case time-memory-data requirements. The BS attack is a special case of this new
framework which we name as the TMD attack.

However, for block ciphers with a large key size such as triple DES, we found
that by applying the attacks suggested in [3], the data requirements and pre-
computation complexity tend to be high. For example, for the BS attack on triple
DES, the data complexity is 242 and the pre-computation complexity is 2126, with
284 complexity for both time and memory. In Sections 5 to 7 of our paper, we
address this issue by proposing novel ways of applying the TMTO, Rainbow, BS,
and TMD attacks to the MTM attack. We derive four new attacks: the TMTO-
MTM, Rainbow-MTM, BS-MTM, and TMD-MTM attacks. While the earlier



two sections (on GD-MTM and GDD-MTM attacks) deal with attacks that
involve no pre-computation, the last four attacks all require pre-computation.

When applying the TMTO-MTM attack to triple DES using single data, we
found that the attack complexity was 280 and the memory complexity was 2101.
The pre-processing stage has a complexity of 2113. The Rainbow-MTM attack
achieves a slightly better attack complexity of 279 while maintaining the same
requirements for memory and data. These can be considered as attacks with
attack and memory complexities which are in between the MTM attack without
precomputation (2112 attack complexity and 256 memory complexity) and the
MTM attack with precomputation (256 attack complexity, 2113 pre-computation
and memory complexities).

The BS-MTM attack is a further generalization of the TMTO-MTM attack
in which the goal is now to recover one key out of several keys which are used to
encrypt the same plaintext. This attack can be viewed as an improvement of the
TMTO-MTM attack as the pre-computation complexity is reduced by a factor
equal to the data complexity. Also, if the data, time and memory complexities
are denoted by D, M and T respectively, then M2T is reduced by a factor
equal to at least D2. When applied to triple DES, with pre-computation of
299 and a data complexity of 214, we can achieve 284 complexity for online
attack time and 285 complexity for memory. Thus it has comparable time and
memory requirements as Biryukov et al.’s attack [3] but requires less data and
pre-computation complexity. This will make the attack more feasible as it is
usually very hard to obtain many encryptions (242 compared to 214) of the same
plaintexts under different keys. Moreover, a pre-computation complexity of 299

seems more achievable than a pre-computation complexity of 2126.
More flexibility is achieved by the TMD-MTM attack where we apply the new

TMD trade-off in [3] to the MTM attack. For example, if we can afford a larger
memory in our previous attack, e.g. 299, then we can reduce the online attack
complexity to 271 while keeping the data complexity at 214 and pre-computation
at 299.

2 Number of Plaintext-Ciphertext Pairs Needed for
Verification

Suppose that the B-bit encryption function, E, is the composition of two block
ciphers, E1K1(·) and E2K2(·), so that E acts on a plaintext P and outputs the
ciphertext C given by

C = E(K1,K2)(P ) = E2K2(E1K1(P )).

Suppose that K1 ∈ GF (2)n1 , K2 ∈ GF (2)n2 , and that K1, K2 are independent.
Then there will be at least ⌊n1+n2

B
⌋ keys mapping a given plaintext P to a certain

ciphertext C. Therefore, in order to verify if a possible key (S1, S2) is indeed the
cipherkey (K1, K2), q = ⌈n1+n2

B
⌉ plaintext-ciphertext pairs

(PT1, CT1), (PT2, CT2), . . . , (PTq, CTq)



need to be tested to check if E2S2(E1S1(PTi)) = CTi for all i. If so, then
(K1, K2) = (S1, S2).

In the case of multiple data where we only need to find one key out of several
keys used to encrypt the same plaintext, the size of the key space is still fixed
at 2n1+n2 . Therefore, for both cases of single and multiple data, q = ⌈n1+n2

B
⌉

plaintext-ciphertext pairs are required to verify the correct key.

3 Background: Meet-in-the-Middle Attack (MTM)

The meet-in-the-middle attack is a well-known attack (e.g. see [6, page 235]). We
shall give a description of it here. Suppose, as before, that the B-bit encryption
function is the composition of two block ciphers so that

C = E(K1,K2)(P ) = E2K2(E1K1(P )),

where K1 ∈ GF (2)n1 , K2 ∈ GF (2)n2 . Assume further, that there are q plaintext-
ciphertext pairs available,

(PT1, CT1), (PT2, CT2), . . . , (PTq, CTq)

where q = ⌈n1+n2

B
⌉. The meet-in-the-middle (MTM) attack tries to find the key

(K1, K2) and works according to Algorithm 1 below.

Algorithm 1 : MTM Attack

1. Compute C′ = E1K1(PT1) over all possible values of K1. Store the pair
(C′, K1) and sort according to C′. This step has complexity 2n1 and needs
2n1 memory.

2. Compute C′′ = E2−1
K2

(CT1) over all possible values of K2. For all K2, look
for a match for C′′ from the pair (C′′, K2) in the stored table. Once any
possible key (S1, S2) has been identified, test if E2S2(E1S1(PTi)) = CTi for
all i = 2, . . . , q. Discard (S1, S2) if it does not satisfy this equation for any i.
After this step, all the wrong keys will be filtered out, leaving only the correct
key with overwhelming probability.

Note that if n2 < n1, we could have stored a table of C′ = E2−1
K2

(C) in step
1 and then computed C′′ = E1K1(P ) to search for collision from the table in
step 2. This will take up less memory.

The meet-in-the-middle attack on multiple encryption uses 2n1 memory. The
attack complexity is as follows:

1. If n1 > B, then

attack complexity = 2n1 + 2n2 + 2n2+(n1−B) · (⌈
n1 + n2

B
⌉ − 1).

The first term corresponds to encryption of PT1 over possible values of K1.
The middle term corresponds to decryption of CT1 over possible values of



K2. The magnitude of the last term is due to the fact that for each partially
decrypted ciphertext C′′ = E2−1

K2
(C1), there will be 2n1−B keys, S1, mapping

P to C′′, so that 2n2+(n1−B) possible keys will be identified and each has to
be verified by ⌈n1+n2

B
⌉ − 1 other plaintext-ciphertext pairs. In this instance,

the attack complexity can be subdivided into two cases:
(a) attack complexity ≈ 2n1+n2−B if n2 > B; or
(b) attack complexity ≈ 2n1 if n2 ≤ B.

2. If n1 ≤ B, then

attack complexity = 2n1 + 2n2 + 2n2 · (⌈
n1 + n2

B
⌉ − 1)

since there will be at most one key, S1, mapping P to each C′′. Therefore,
(a) attack complexity ≈ 2n2 if n2 > B; or
(b) attack complexity ≈ max(2n1 , 2n2) if n2 ≤ B.

Remark 1. The attack complexity is increased by a factor of at most ⌈n1+n2

B
⌉

times the approximate complexities we have given in 1(a),(b) and 2(a),(b) above.
However, since ⌈n1+n2

B
⌉ usually lies between 2 and 4, the increase is not signifi-

cant and hence, we choose not to take it into account in our paper. We will make
similar approximations in subsequent derivations.

As can be observed from the discussion above, this attack has complexity
much less than the exhaustive search complexity of 2n1+n2 but requires the use
of memory.

Example 1. Suppose we apply the MTM attack on triple DES where E1K1(·) is
encryption over the first DES block with a 56-bit key and E2K2(·) is encryption
over the remaining two DES blocks with a 112-bit key. This falls into case 2(a)
and hence, the attack complexity is 2112. The memory used is 256. This is less
than the exhaustive search complexity of 2168.

Sometimes when we can afford to have high pre-computation complexity and
large memory, we can pre-compute step 1 of the MTM attack by fixing a par-
ticular plaintext, P , to speed up the actual attack. In this case, n1 > n2. The
attack complexities are similar to cases 1 and 2 described above, except that
this time, we exclude the first term, 2n1 , corresponding to the first step in Al-
gorithm 1 since this is done in the pre-computation. In order to ensure that
the attack complexity is always given by 2n2 , we shall assume that the key size
of K1 is always bounded by the effective block size by executing the attack on
⌈n1

B
⌉ blocks of B-bit plaintexts, where B is the true block size of the cipher.

Then both the memory required and the pre-computation complexity will be
increased to ⌈n1

B
⌉ · 2n1 and the effective block size is B′ = B · ⌈n1

B
⌉. In this case,

only ⌈n1+n2

B
⌉−⌈n1

B
⌉ plaintext-ciphertext pairs are needed for verification of each

possible key in step 2 of Algorithm 1. Although we stipulate this requirement
only for the MTM attack with pre-computation so far, it shall turn out, as we
will see in later sections, that this rule will also apply to all the other attacks
in this paper which need pre-computation. Those without pre-computation will
not need this requirement. The MTM attack with pre-computation is illustrated
in the following example.



Example 2. Suppose we apply the MTM attack on triple DES where E1K1(·)
is encryption over the first two DES blocks with a 112-bit key and E2K2(·) is
encryption over the remaining DES block with a 56-bit key. Since ⌈n1

B
⌉ = 2,

the effective fixed plaintext is taken to be a concatenation of two 64-bit fixed
plaintext blocks. We can pre-compute step 1 of the MTM attack with 2 · 2112 =
2113 complexity and store the result in 2 · 2112 = 2113 memory. In this way, we
can recover the key from any ciphertext C encrypted from P with complexity
256 by step 2 of the MTM attack.

Note that in the attack of Example 2, we require the ciphertext to be the en-
cryption of a fixed plaintext. This still works in practice because many plaintext
messages contain some fixed header, e.g. MIME header, postscript header, pdf
header, version number, and we can take this as PT1.

To avoid confusion, we shall refer to the attack in Example 1 as a MTM
attack without pre-computation and the attack in Example 2 as a MTM attack
with pre-computation.

4 Applying Guess-and-Determine Method to
Meet-in-the-Middle Attack Using Single and Multiple
Data (GD-MTM and GDD-MTM respectively)

In [6, Section 7.37], there is a suggestion to independently guess s bits of K1 for
some fixed s (0 ≤ s ≤ n1). In this modification of the MTM attack (without
pre-computation), the table for K1 requires 2n1−s memory for each set of s bits
guessed. We call this version from [6] the GD-MTM attack. As before, suppose
that there are q plaintext-ciphertext pairs available,

(PT1, CT1), (PT2, CT2), . . . , (PTq, CTq)

where q = ⌈n1+n2

B
⌉. The GD-MTM attack is described in Algorithm 2 as follows:

Algorithm 2 : GD-MTM Attack

1. Fix s bits of K1 at a particular value.
2. Compute C′ = E1K1(PT1) over all values of K1 with the s bits fixed as

stated in step 1. The table for K1 will only contain 2n1−s entries. This step
has 2n1−s time complexity and requires 2n1−s memory.

3. Compute C′′ = E2−1
K2

(CT1) over all possible values of K2. For all K2, look
for a match for C′′ from the pair (C′′, K2) in the table. Once any possible
key (S1, S2) has been identified, test if E2S2(E1S1(PTi)) = CTi for all i =
2, . . . , q. Discard (S1, S2) if it does not satisfy this equation for any i.

4. Repeat steps 2 and 3 by varying the same s bits over all possible values.

The memory complexity is 2n1−s since all computations are done online and
the memory is cleared whenever the attacker rebuilds the table for each new
guess. The attack complexity is as follows:



1. If n1 − s > B, then

attack complexity = 2s

[

2n1−s + 2n2 + 2n2+(n1−s−B) · (⌈
n1 + n2

B
⌉ − 1)

]

≈ 2n1 + 2n2+s + 2n1+n2−B

The last term is derived from the fact that for each value of K1 with s bits
fixed and each partially decrypted ciphertext C′′, there will be 2n1−s−B keys,
S1, identified. Again, the attack complexity is given by:
(a) attack complexity ≈ 2n1+n2−B if n2 > B; or
(b) attack complexity ≈ 2n1 if n2 ≤ B.

2. If n1 − s ≤ B, then

attack complexity = 2s

[

2n1−s + 2n2 + 2n2 · (⌈
n1 + n2

B
⌉ − 1)

]

≈ 2n1 + 2n2+s + 2n2+s

Therefore,
(a) attack complexity ≈ 2n2+s if n2 > B; or
(b) attack complexity ≈ max(2n1 , 2n2+s) if n2 ≤ B.

Comparing the usual MTM attack outlined in Section 3 with the GD-MTM
attack, it can be observed that if n1 ≤ B and n2 > B, then the GD-MTM attack
is effective for building smaller lookup tables using less memory in exchange for
more time needed to repeat the procedure.

We propose a simple extension of GD-MTM to GDD-MTM (guess-and-
determine MTM attack with multiple data) for the case where a plaintext is
encrypted by the block cipher under several keys and the attacker only needs to
recover one key out of several keys. Assume that we have D = 2d encryptions of

P using different keys and we are only required to find one of them,
(

K
(i)
1 , K

(i)
2

)

by attacking:

C0 = E
(K

(0)
1 ,K

(0)
2 )

(P ), C1 = E
(K

(1)
1 ,K

(1)
2 )

(P ), . . . , C2d−1 = E
(K

(2d
−1)

1 ,K
(2d

−1)
2 )

(P )

where E(K1,K2)(·) = E1K1(E2K2(·)). Also assume that for each i = 0, 1, . . . , 2d−1,
we have q′ other plaintext-ciphertext pairs available:

(PT
(i)
1 , CT

(i)
1 ), (PT

(i)
2 , CT

(i)
2 ), . . . , (PT

(i)
q′ , CT

(i)
q′ ),

all encrypted using key (K
(i)
1 , K

(i)
2 ), where q′ = ⌈n1+n2

B
⌉ − 1. With multiple

data applied to the usual MTM attack without pre-computation described in
Algorithm 1, C′ only needs to be computed over 2n1−d values of K1. However,
if we also guess s bits of K1 at the beginning of the attack, then each table of
K1 will contain just 2n1−d−s entries. The assumption is that one of the s bits
guess should correspond to at least one of the 2d keys with high probability. The
process is outlined in the Algorithm 3 below.



Algorithm 3 : GDD-MTM Attack

1. Fix s bits of K1 at a particular value.
2. Compute C′ = E1K1(P ) over 2n1−d−s values of K1 with the s bits fixed as

stated in step 1. The table for K1 will only contain 2n1−d−s entries. This
step has time complexity 2n1−d−s and requires 2n1−d−s memory.

3. Compute C′′
0 = E2−1

K2
(C0) over all possible values of K2. For all K2, look for

a match for C′′
0 from the pair (C′′

0 , K2) in the table. Once any possible key
(S1, S2) has been identified, test if E2S2(E1S1(PTi)) = CTi for ⌈n1+n2

B
⌉ − 1

other plaintext-ciphertext pairs (PTi, CTi). Discard (S1, S2) if it does not
satisfy this equation for any i.

4. If the correct key (K
(0)
1 , K

(0)
2 ) is not found, then repeat steps 3 and 4 for

j = 1, . . . , 2d − 1 consecutively until one correct key is found. Note that the
set of ⌈n1+n2

B
⌉− 1 plaintext-ciphertext pairs used for verification need not be

uniform across all the different Cj .
5. If no correct key is found by step 4, vary the same s bits of K1 over the rest

of the 2s possibilities and repeat steps 1 to 4 until a correct key is found.

In this case, the memory complexity is 2n1−d−s. The attack complexity is
given as follows:

1. If n1 − d − s > B, then

attack complexity

= 2s
[

2n1−d−s + 2d
(

2n2 + 2n2+(n1−d−s−B) · (⌈n1+n2

B
⌉ − 1)

)]

≈ 2n1−d + 2n2+d+s + 2n1+n2−B

The two subcases are:

(a) attack complexity ≈ 2n1+n2−B if n2 > B; or
(b) attack complexity ≈ max(2n1−d, 2n1+n2−B) if n2 ≤ B.

2. If n1 − d − s ≤ B, then

attack complexity
= 2s

[

2n1−d−s + 2d
(

2n2 + 2n2 · (⌈n1+n2

B
⌉ − 1)

)]

≈ 2n1−d + 2n2+d+s + 2n2+d+s

Therefore,

(a) attack complexity ≈ 2n2+d+s if n2 > B; or
(b) attack complexity ≈ max(2n1−d, 2n2+d+s) if n2 ≤ B.

Example 3. Now let us apply the GD-MTM attack to the 168-bit triple DES
encryption of a fixed plaintext P where E1K1(·) is encryption of a fixed plaintext
P over the first DES block with a 56-bit key and E2K2(·) is encryption over
the remaining two DES blocks with a 112-bit key. Assume that our system
has a memory limitation of 248, that is, s = 8. Then the time complexity is
2112+8 = 2120.



Example 4. In this example, we shall apply the GDD-MTM attack to 168-bit
triple DES encryption of a fixed plaintext P to recover one key out of a key-
pool of 214 keys, that is, d = 14. We take E1K1(·) to be encryption of a fixed
plaintext P over the first two DES blocks with a 112-bit key and E2K2(·) to
be encryption over the remaining DES block with a 56-bit key. Suppose we can
afford 264 memory so that s is fixed at 34. Then the time complexity is given by
max(2112−14, 256+14+34) = 2104.

Comparing Examples 3 and 4, we see that with multiple data, the attacker can
achieve lower time complexity at the expense of more memory requirement.

5 Applying Time-Memory Trade-Off to Meet-
in-the-Middle Attack (TMTO-MTM and
Rainbow-MTM)

In this section, we apply the time-memory trade-off (TMTO) attack of [5] to
the MTM attack with pre-computation and we call it the TMTO-MTM attack.
Basically, we apply the TMTO attack to the pre-computation step 1 of the
MTM attack. Again we have the same restriction as Example 2, i.e. we require
the ciphertext to be the encryption of a fixed plaintext P . Furthermore, for
this attack and subsequent ones (Rainbow-MTM, BS-MTM, and TMD-MTM),
all of which require pre-computation, we shall also assume that the key size of
K1 is always bounded by the effective block size, B′. This is done by attacking
⌈n1

B
⌉ blocks of B-bit plaintexts, where B is the effective block size of the cipher.

Then B′ = B · ⌈n1

B
⌉ and both the memory and pre-computation complexities are

increased by a factor of ⌈n1

B
⌉. Let E′ be defined by

E′
(K1,K2)

(P1 ‖ . . . ‖ P⌈
n1
B

⌉) = E2K2(E1K1(P1)) ‖ . . . ‖ E2K2(E1K1(P⌈
n1
B

⌉)).

E1′ and E2′ are also defined in a similar way.
For the TMTO-MTM attack, assume that we have C = E′

(K1,K2)
(P ) (where

P is a concatenation of ⌈n1

B
⌉ fixed plaintext blocks). Also assume that we have

q′′ other plaintext-ciphertext pairs available:

(PT1, CT1), (PT2, CT2), . . . , (PTq′′ , CTq′′),

all encrypted with E using key (K1, K2), where q′′ = ⌈n1+n2

B
⌉ − ⌈n1

B
⌉. The

algorithm is shown in Algorithm 4.

Algorithm 4 : TMTO-MTM Attack

1. Pre-processing:

(a) Choose two positive integers m, t such that 2n1 = mt2. Fix a plaintext
P (where P is a concatenation of ⌈n1

B
⌉ plaintext blocks) and let C =

E2′K2(E1′K1(P )). Define a one-way function g(K) = E1′K(P ).



(b) Form t tables of size m × t as follows: For each table, randomly choose
m distinct start points Xi,0, i = 0, 1, . . . , m−1 and compute m chains of
values of length t, Xi,1 = f(Xi,0), Xi,2 = f(Xi,1), . . . , Xi,t = f(Xi,t−1),
where f(x) = h ◦ g(x) and h is a simple reversible modification of the
output of f (e.g. bit shuffling) if n1 = B′; otherwise, h is a truncation
from B′ bits to n1 bits followed by a simple transformation if n1 < B′.
This will form a table of size m × t. Repeat this process to form t such
tables where all the start points are distinct. Each h should be different
for all t tables. We expect to cover most of the key space of K1 by this
process, which has complexity mt2 · ⌈n1

B
⌉ = 2n1 · ⌈n1

B
⌉.

(c) To reduce memory requirements, discard all intermediate points and sort
the start and end points (Xi,0, Xi,t) according to the end points Xi,t.
Store the start and end points of each table using mt · ⌈n1

B
⌉ memory.

2. Attack:

(a) Compute C′ = h(E2′−1
K2

(C)) over all possible values of K2.

(b) For a particular K2, check to see if C′ is equal to an end-point Xi,t of
a table. If it is, then we can guess that (Xi,t−1, K2) is a possible en-
cryption key. The value Xi,t−1 can be computed from f t−1(Xi,0). Check
whether E2′−1

K2
(C) = E1′Xi,t−1

(P ) to see if (Xi,t−1, K2) is a possible key.

If it is, test if E2K2(E1Xi,t−1(PTi)) = CTi for
(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

other
plaintext-ciphertext pairs. Discard (Xi,t−1, K2) if it does not satisfy this
equation for any i.

(c) If not, compute f j(C′), j = 1, . . . , t − 1 and check to see if it is equal
to an end-point Xi,t of a table. If it is, then (Xi,t−1−j , K2) is a possible
encryption key. The value Xi,t−1−j can be computed from f t−1−j(Xi,0).
Again, check whether E2′−1

K2
(C) = E1′Xi,t−1−j

(P ) to see if (Xi,t−1−j , K2)

is indeed a possible key. If it is, test if E2K2(E1Xi,t−1−j
(PTi)) = CTi for

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

other plaintext-ciphertext pairs. Discard (Xi,t−1−j , K2)
if it does not satisfy this equation for any i. The complexity of covering
a table (excluding verification) is t · ⌈n1

B
⌉.

(d) If the key (K1, K2) is not found in a table, then repeat steps 2(b) and 2(c)
for the other t−1 tables to find the key. Thus the total complexity of cov-
ering these tables for all keys K2 (excluding verification) is t2 ·2n2 · ⌈n1

B
⌉.

As we have noted, the pre-processing complexity in step 1 is 2n1 · ⌈n1

B
⌉ =

mt2 · ⌈n1

B
⌉. Assuming we use a memory of 2mem · ⌈n1

B
⌉ = mt · ⌈n1

B
⌉ for our attack,

the attack complexity in step 2 is

t2 · 2n2 · ⌈n1

B
⌉ + 2n2 ·

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

= (mt2/mt)2 · 2n2 · ⌈n1

B
⌉ + 2n2 ·

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

= (2n1/2mem)2 · 2n2 · ⌈n1

B
⌉ + 2n2 ·

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

= 22(n1−mem)+n2 · ⌈n1

B
⌉ + 2n2 ·

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

≈ 22(n1−mem)+n2 + 2n2 .



Example 5. Suppose as in Example 2, we apply the TMTO-MTM attack on
triple DES where E1K1(·) is encryption over the first two DES blocks with 112-
bit key and E2K2(·) is encryption over the remaining DES block with 56-bit keys.
The effective fixed plaintext is taken to be a concatenation of two 64-bit fixed
plaintext blocks. Suppose we can only afford 2101 instead of 2113 memory. Then
the pre-processing complexity of TMTO-MTM is 2113 but the attack complexity
is now 22(112−100)+56 = 280 instead of 256.

Thus the TMTO-MTM attack is a trade-off of less memory at the expense of
more attack complexity for the pre-computed MTM attack.

In [8], Oechslin published a new way of forming the pre-computation table
using rainbow chains. In this method, only one table is required with mt starting
points and chains of length t, where mt2 = size of key space. Each chain uses t
reduction functions, fi, starting with reduction function f1 and ending with re-
duction function ft. If two chains collide, they merge only if the collision appears
at the same position in both chains. The probability of success of the rainbow
attack was found to be approximately equal to the success probability of t clas-
sical tables of size m× t. This method reduces the number of table look-ups by a
factor of t compared to the Hellman’s original TMTO method. Rainbow chains
eliminate the occurrence of loops and any merges amongst chains are detectable.
Furthermore, they reduce the total complexity of the attack by a factor of 2.

We may apply the rainbow attack to the precomputation step of the MTM
attack in a way analogous to how the TMTO-MTM attack was constructed.
We call this the Rainbow-MTM attack. More specifically, the process is given in
Algorithm 5.

Algorithm 5 : Rainbow-MTM Attack

1. Pre-processing:
(a) Choose two positive integers m, t such that 2n1 = mt2. Fix a plaintext P

and define a one-way function g(K) = E1′K(P ).
(b) Form a table of size mt × t as follows: Randomly choose mt distinct

start points Xi,0, i = 0, 1, . . . , mt−1 and compute mt chains of values of
length t, Xi,1 = f1(Xi,0), Xi,2 = f2(Xi,1), . . . , Xi,t = ft(Xi,t−1), where
fi(x) = hi ◦ g(x) and hi is a simple reversible modification of the output
of f (e.g. bit shuffling) if n1 = B′; otherwise, hi is a truncation from B′

bits to n1 bits followed by a simple transformation if n1 < B′. This will
form a table of size mt× t. Ensure that all the mt endpoints are distinct.
This pre-processing step has complexity mt2 · ⌈n1

B
⌉ = 2n1 · ⌈n1

B
⌉.

(c) Sort the start and end points (Xi,0, Xi,t) according to the end points Xi,t.
Store them using mt · ⌈n1

B
⌉ memory.

2. Attack:
(a) Compute C′ = E2′−1

K2
(C) over all possible values of K2.

(b) For a particular K2, check to see if ht(C
′) is equal to an end-point Xi,t

of a table. If it is, then we can guess that (Xi,t−1, K2) is a possible
encryption key. The value Xi,t−1 can be computed by rebuilding the chain
from the corresponding start point Xi,0. Check whether C′ = E1′Xi,t−1

(P )



to see if (Xi,t−1, K2) is indeed a possible encryption key. If it is, test
if E2K2(E1Xi,t−1(PTi)) = CTi for

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

other plaintext-
ciphertext pairs. Discard (Xi,t−1, K2) if it does not satisfy this equation
for any i.

(c) If the correct key is not found, compute ft ◦ ft−1 ◦ . . .◦ ft−j+1 ◦ht−j(C
′),

j = 1, . . . , t − 1 and check to see if it is equal to an end-point Xi,t. If it
is, then (Xi,t−1−j , K2) is a possible encryption key. The value Xi,t−1−j

can be computed from the start point Xi,0. Again, check whether C′ =
E1′Xi,t−1−j

(P ) to see if (Xi,t−1−j , K2) is indeed a possible key. If it is, test

if E2K2(E1Xi,t−1−j
(PTi)) = CTi for

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

other plaintext-
ciphertext pairs. Discard (Xi,t−1−j , K2) if it does not satisfy this equation
for any i.The total complexity of covering this table for all keys K2 (ex-

cluding verification) is t(t+1)
2 · 2n2 · ⌈n1

B
⌉ ≈ t2

2 · 2n2 · ⌈n1

B
⌉.

So for this attack, as compared to the TMTO-MTM attack, the time com-
plexity is reduced slightly to 22(n1−mem)+n2−1 ·⌈n1

B
⌉+2n2 while the memory and

pre-computation requirements remain the same.

Remark 2. In [1, Section 6.1], there was a criticism levelled against rainbow
chains. According to them, in the Hellman scheme, it is possible to store just half
the number of bits of the start and end points compared to the Rainbow scheme,
reducing time complexity by a factor of 4 and therefore offsetting the claimed
improvement of the Rainbow scheme which only reduces the time complexity by
a smaller factor of 2. However, we believe that rainbow chains still offer other
important advantages as given in [8, Section 3].

Remark 3. In [7], the authors suggested another method of dealing with the case
when the key size is greater than the block size of the cipher. For their attack,
the pre-processing stage computes 2n1−B tables, where each row of a particular
table starts with a B-bit string which is then concatenated with an (n1 −B)-bit
fixed string to encrypt the zero vector. The result is then concatenated with
the fixed string again and the same procedure is repeated to obtain a chain of
values. Note, however, that they assume the more stringent requirement that
B < n1 ≤ 2B.

6 Applying Biryukov-Shamir Time-Memory-Data
Trade-Off to Meet-in-the-Middle Attack (BS-MTM)

Let us consider a scenario where a plaintext is encrypted by a block cipher under
several keys. One such example was suggested by Biryukov et al. in [3] where
they attacked the Unix password encryption scheme. Because they only need
to recover one key out of several keys, they can apply the time-memory-data
(TMD) trade-off attack of [2]. To distinguish between this attack and a more
general attack that we will discuss in the next section, we will refer to this



attack as the BS attack. In the BS attack, the complexity of pre-processing can
be reduced from N to N/D where N is the key space and D is the size of the
keypool from which one needs to be found.

In this section, we shall try to recover the key from ciphertexts encrypted
from a fixed plaintext P by applying the BS attack to the MTM attack with
pre-computation. Our new attack is called the BS-MTM attack. Assume, as in
Section 4 that we have D = 2d encryptions of P (where P is a concatenation of
⌈n1

B
⌉ fixed plaintext blocks) using different keys and we only need to find one of

them, i.e. find one of (K
(i)
1 , K

(i)
2 ) by attacking:

C0 = E′

(K
(0)
1 ,K

(0)
2 )

(P ), C1 = E′

(K
(1)
1 ,K

(1)
2 )

(P ), . . . , C2d−1 = E′

(K
(2d

−1)
1 ,K

(2d
−1)

2 )
(P ),

where E′
(K1,K2)

(·) = E1′K1
(E2′K2

(·)). This means that the effective block size to

be B′ = B · ⌈n1

B
⌉ ≥ n1. Also assume that for each i = 0, 1, . . . , 2d−1, we have q′′

other plaintext-ciphertext pairs available:

(PT
(i)
1 , CT

(i)
1 ), (PT

(i)
2 , CT

(i)
2 ), . . . , (PT

(i)
q′′ , CT

(i)
q′′ ),

all encrypted with E using key (K
(i)
1 , K

(i)
2 ), where q′′ = ⌈n1+n2

B
⌉ − ⌈n1

B
⌉. Algo-

rithm 6 illustrates the attack.

Algorithm 6 : BS-MTM Attack

1. Pre-processing:

(a) Choose two positive integers m, t such that 2n1 = mt2. Fix a plaintext P
and define a one-way function g(K) = E1′K(P ).

(b) Form t/2d tables of size m × t as in step 1(b) of Algorithm 4 with com-
plexity mt2/2d · ⌈n1

B
⌉ = 2n1−d · ⌈n1

B
⌉. This will cover 1/2d of the keyspace

of K1.
(c) Sort and store the start and end points of each table using mt/2d · ⌈n1

B
⌉

memory as in step 1(c) of Algorithm 4.

2. Attack:

(a) Compute C′
0 = h(E2′−1

K2
(C0)) over all possible values of K2.

(b) Search to see if C′
0, f(C′

0), . . . , f
t−1(C′

0) is equal to one of the end points
of any of our stored tables and compute the key K1 from the correspond-
ing start point as in steps 2(b), 2(c) and 2(d) of Algorithm 4. The com-
plexity of covering these tables for all keys K2 (excluding verification) is
t/2d · t · 2n2 · ⌈n1

B
⌉.

(c) If the correct key
(

K
(0)
1 , K

(0)
2

)

is not contained in the space of 2n1−d keys

computed, then proceed to repeat the attack for Cj, j = 1, . . . , 2d −1 con-
secutively until one correct key is found. Note that the set of

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

plaintext-ciphertext pairs used for verification phase need not be uniform
across all the different Cj .



As we have noted, the pre-processing complexity in step 1 is 2n1−d · ⌈n1

B
⌉.

Assuming we use a memory of 2mem · ⌈n1

B
⌉ = mt/2d · ⌈n1

B
⌉ for our attack, the

attack complexity in step 2 is

2d · t2/2d · 2n2 · ⌈n1

B
⌉ + 2d · 2n2 ·

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

= (mt2/mt)2 · 2n2 · ⌈n1

B
⌉ + 2n2+d ·

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

= (2n1/(2mem × 2d))2 · 2n2 · ⌈n1

B
⌉ + 2n2+d ·

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

= 22(n1−d−mem)+n2 · ⌈n1

B
⌉ + 2n2+d ·

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

≈ 22(n1−d−mem)+n2 + 2n2+d.

Example 6. Suppose we want to attack the 168-bit triple DES encryption of
a fixed plaintext P and we only need to recover one key out of a key pool
of 214 keys. We apply the BS-MTM attack where E1K1(·) is encryption of a
fixed plaintext P over the first two DES blocks with a 112-bit key and E2K2(·)
is encryption over the remaining DES block with a 56-bit key. If we use 285

memory, then the pre-computation complexity is 2112−14 ·2 = 299 and the attack
complexity is 22(112−14−84)+56 = 284. In comparison, according to [3, Table 2],
a direct application of the time-memory-data trade-off attack on triple DES
where we recover one key out of a pool of 242 keys requires: 284 memory, 2126 pre-
computation and 284 attack complexity. Therefore, our BS-MTM attack achieves
lower data and pre-processing complexity than the BS attack.

7 Applying TMTO - Data Curve to Meet-in-the-Middle
Attack (TMD-MTM)

In [3], the authors also presented a unifying framework for the analysis of multiple
data trade-offs. The BS attack adapted from [2] is considered as a special case of
this more general framework. Furthermore, they identified a new class of single
table multiple data trade-offs which cannot be obtained from the BS attack. In
this section, we shall apply their more general TMD attack to the MTM attack
with pre-computation and we call our new attack the TMD-MTM attack. The
mode of this attack follows a similar procedure to the BS-MTM attack as outlined
in Algorithm 6. The main difference lies in the use of the birthday bound as will
be highlighted later. Suppose, as before, that B′ = B · ⌈n1

B
⌉ ≥ n1. The attack is

given by Algorithm 7 as follows:

Algorithm 7 : TMD-MTM Attack

1. Pre-processing:
(a) Fix a plaintext P and define a one-way function g(K) = E1′K(P ).
(b) Form r tables of size m×t as in step 1(b) of algorithm 4. The parameters

(r, m, t) are chosen such that the tables will cover 1/2d of the keyspace
of K1 (where D = 2d is the number of encryptions of P using different
keys). The exact conditions that they must satisfy will be given below.

(c) Sort and store the start and end points of each table using rm · ⌈n1

B
⌉

memory as in step 1(c) of Algorithm 4.



2. Attack:

(a) Compute C′
0 = h(E2′−1

K2
(C0)) over all possible values of K2.

(b) Search to see if C′
0, f(C′

j), . . . , f
t−1(C′

0) is equal to one of the end points
of any of our stored tables and compute the key K1 from the correspond-
ing start point as in steps 2(b), 2(c) and 2(d) of Algorithm 4.

(c) If the correct key
(

K
(0)
1 , K

(0)
2

)

is not contained in the space of 2n1−d

keys computed, then proceed to repeat the attack and verification for Cj,
j = 1, . . . , 2d − 1 consecutively until one correct key is found. Note that
the set of

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

plaintext-ciphertext pairs used for verifica-
tion phase need not be uniform across all the different Cj .

In our TMD-MTM attack, we shall assume that the number of columns of each
table is ≫ 1 and

time for one table look-up ≈ time for one invocation of f.

Then we have the relations:

N = 2n1

PC = rmt (# g invocations in the pre-computation phase)
= N

D
(coverage)

PC′ = PC · ⌈n1

B
⌉ (pre-computation complexity)

M = rm
M ′ = M · ⌈n1

B
⌉ (memory)

D = 2d (# encryptions of P using different keys)
T = rtD
T ′ = 2n2 · T · ⌈n1

B
⌉ + 2n2+d ·

(

⌈n1+n2

B
⌉ − ⌈n1

B
⌉
)

≈ 2n2+drt + 2n2+d (time for online phase)
mt2 ≤ N (birthday bound)
T ′ < PC′


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
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



















(1)

The last inequality in (1) was added since in practical attacks, we usually require
the online attacking time to be less than the offline table preparation time. We
can solve for r, m and t to get:

t = N
MD

≥ 1 (number of columns)

m = N
T

(number of rows)

r = MT
N

≥ 1 (number of tables)

mt2 = N3

TM2D2 ≤ N (birthday bound)


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












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

















(2)



Based on these, we can derive the TMTO curve given by:

D = Nw

MT = Nx

M = Ny

mt2 = Nz

PC = N1−w

T = Nx−y































(3)

where
2w + x + y + z = 3

0 ≤ w < 1
0 ≤ y, x − y < 1 ≤ x

w + y ≤ 1
0 ≤ z ≤ 1

n2

n1
< 1 − (w + x) + y































(4)

Therefore, any set of parameters (w, x, y, z) satisfying (4) gives a valid attack.
We can also express (r, m, t) in terms of (w, x, y, z) as follows:

r = Nx−1

m = N1−(x−y)

t = N1−w−y







(5)

It is now easy to see that the BS-MTM attack is a special case of the TMD-
MTM attack with z = 1, i.e. mt2 = N . In Example 6, we used the parameters
(w, x, y, z) = (1

8 , 1, 3
4 , 1).

Example 7. Now let us apply the TMD-MTM attack to the 168-bit triple DES
encryption of a fixed plaintext P to recover one key out of a keypool of 214 keys.
In this case w = 1

8 . As before, E1K1(·) is encryption of a fixed plaintext P over
the first two DES blocks with a 112-bit key and E2K2(·) is encryption over the
remaining DES block with a 56-bit key. In order to achieve minimum attack
complexity T ′ = 256 · Nx−y + 270, we take x to be minimum (i.e. x = 1) and y
to be maximum (i.e. y = 1−w = 7

8 ). Then z = 3− (2w + x + y) = 7
8 . This gives

M ′ = 299, PC′ = 299 and T ′ = 271 with parameters (w, x, y, z) = (1
8 , 1, 7

8 , 7
8 ).

Since r = x = 1, only 1 table is needed. Comparing with the BS-MTM attack in
Example 6, this TMD-MTM attack has lower attack complexity at the expense
of more memory required.

8 Conclusion

In this paper, we presented one new no pre-computation attack using the guess-
and-determine technique for multiple data — the GDD-MTM attack — impro-
vising the previously known GD-MTM attack for single data. We have also
proposed four new attacks involving pre-computation — the TMTO-MTM,
Rainbow-MTM, BS-MTM, and TMD-MTM attacks — by applying the TMTO,



Rainbow, BS, and TMD attacks respectively to the MTM attack. Figure 1 below
gives a comparison of the time-memory-data trade-offs of the attacks on triple
DES.

Fig. 1. Attacks on 3-key triple DES

Remark 4. For all the attacks with pre-computation in Figure 1 except the BS
attack, the attacks are done on two blocks of fixed plaintext.

As can be observed, the attacks without pre-computation generally have
higher attack complexities but require less memory. The attacks with pre-computation
can afford much lower online attack complexities but require larger memory and
pre-computations. Another difference is that the no pre-computation attacks are
known plaintext attacks while the pre-computation attacks are chosen plaintext
attacks. In both types of attacks, the presence of multiple data can help reduce
the time/memory/pre-computation complexities.

Our proposed attacks provide viable methods to achieve new time-memory-
data trade-offs apart from previously known attacks. In particular, our new
attacks involving pre-computation are desirable as they can achieve lower data
and pre-computation complexity than the attacks suggested by Biryukov [3].
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