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Abstract. A multi-set (ms) is a set where an element can occur more
than once. ms hash functions (mshfs) map mss of arbitrary cardinality
to fixed-length strings.

This paper introduces a new rsa-based mshf. The new function is ef-
ficient and produces small hashes. We prove that the proposed mshf is
collision-resistant under the assumption of unforgeability of deterministic
rsa signatures.

In many practical applications, programmers need to compare two (un-
ordered) sets of integers. A trivial solution consists in sorting both sets
(O(n log n)) and comparing them linearly. We show how ms hash func-
tions can be turned into a linear-time, constant-space integer set equality
test.

1 Introduction

A multi-set (ms) is a set where elements can occur more than once. ms hash
functions (mshfs) were introduced by Clarke et alii in [5]. While standard hash
functions map arbitrary-length strings to fixed-length strings, mshfs map mss
of arbitrary cardinality to fixed-length strings.

An mshf H is incremental if H(A
⋃

B) can be computed from H(A) in time
proportional to ]B.

The MSet-Mu-Hash mshf defined in [5] is ms-collision-resistant, produces
small hashes (typically ∼= q such that solving discrete logarithms modulo q is
hard3) and is computationally efficient. MSet-Mu-Hash is provably secure in the
random oracle model under the discrete logarithm assumption.

In this work we introduce a new mshf. The proposed function is ms-collision
resistant, produces hashes of the size of an rsa modulus and is computationally
efficient (comparable to MSet-Mu-Hash). However, we prove the new mshf’s
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security under an assumption different than [5]’s, namely: the unforgeability of
deterministic rsa signatures.

Moreover, we show that mshfs provide a practical solution to the Set Equal-
ity Problem (sep). sep consists in deciding whether two (unordered) sets of n
integers are equal. Efficient sep solutions allow, for instance, to check that two
hard drives contain the same files, or that two differently indexed databases con-
tain the same fields. The sep is related to the Set Inclusion Problem (sip) where
one needs to decide whether a set A is a subset of another set B.

In the algebraic computation model where the only allowed operation is com-
parison, the sep can be solved in O(n log n) by sorting both lists; Ben-Or showed
that this is optimal [2]. In 2004, Katriel [9] proposed a linear-time set equality
test in the algebraic computation model where simple algebraic computations
are allowed. Katriel maps the sets into Z[X] and compares polynomials rather
than integers. In essence, [9] shows that sep is easier when the sets contain in-
tegers. However, [9] is impractical as it requires to evaluate the polynomial of a
huge value.

Using our mshf, we propose a practical linear-time, constant-space integer
ms equality test. The algorithm can be used in practice to compare very large mss
and does not yield false negatives. Immunity against false positives is guaranteed
if a specific type of rsa signatures is secure.

This non cryptographic application of rsa is quite unusual as, in general,
cryptography ”borrows” techniques from other fields (such as complexity theory,
number theory or statistics) rather than the other way round.

2 The MSet-Mu-Hash Function

Let B be a set. We consider a ms X = {x1, . . . , xn} ∈ Bn. The MSet-Mu-Hash
function proposed by Clarke et alii [5] is defined as follows: Let q be a large
prime and H : B → GF (q) be a poly-random function4.

MSet-Mu-Hash(X) =
n∏

i=1

H(xi) mod q

This function is proven to be ms-collision resistant in the random oracle
model under the discrete logarithm assumption. It produces small hashes (typ-
ically, the size of a prime q such that solving discrete logarithms modulo q is
hard) and is computationally efficient.

4 H is a poly-random function if no polynomial time (in the logarithm of q) algorithm
with oracle access H can distinguish between values of H and true random strings,
even when the algorithm is permitted to select the arguments to H. cf. to [7].



3 Katriel’s Set Equality Test

Let X = {x1, . . . , xn} ∈ Zn and Y = {y1, . . . , yn} ∈ Zn. Katriel [9] defines the
polynomials:

p(z) =
n∏

i=1

(z − xi), q(z) =
n∏

i=1

(z − yi) and d(z) = p(z)− q(z)

As d(z) ≡ 0 ⇔ X = Y , the test ascertains that d ≡ 0.

A trivial way to do this would be to check that d has n + 1 roots. However,
this would require n + 1 evaluations of d and as an evaluation of d is linear in
n, the test will become quadratic in n.

Katriel evaluates d(z) only once, at a point α which is too large to be a root
of d(z), unless d(z) ≡ 0:

α = 1 + 2(mn)n where m = max{x1, . . . , xn, y1, . . . , yn}

The test is simply :

return(d(α) ?= 0)

Complexity: This test requires the computation of:

n∏

i=1

(α− xi)−
n∏

i=1

(α− yi)

Which can be done in 2(n−1) multiplications but requires a memory capacity
quadratic in n. Indeed:

n∏

i=1

(α− xi) ∼= αn ∼= ((mn)n)n = (mn)n2

Storing this value requires n2 log2(mn) bits. e.g., to compare lists of 220 two-
byte integers (m = 216, n = 220), one needs a 36 × 240 bit memory, i.e. ∼ 4
terabytes. This makes [9] of little practical use.

4 A New rsa-Based mshf

We now describe a new rsa-based mshf and a corresponding ms equality test.



4.1 Digital Signatures

The digital signature of a message m is a string that depends on m and a secret
known only to the signer. Digital signatures are traditionally (e.g. [8]) defined
as follows:

Definition 1 (Signature Scheme). A signature scheme {Generate, Sign, Ver-
ify} is a collection of three algorithms:

– The key generation algorithm Generate is a probabilistic algorithm that, given
1k, outputs a pair of matching public and secret keys, {pk, sk}.

– The signing algorithm Sign takes the message m to be signed and the secret
key sk and returns a signature x = Signsk(m). Sign may be probabilistic.

– The verification algorithm Verify takes a message m, a candidate signature
x′ and the public key pk. It returns a bit Verifypk(m,x′), equal to one if the
signature is accepted, and zero otherwise. We require that:

Verifypk(m, Signsk(m)) = 1

The security of signature schemes was formalized in an asymptotic setting
by Goldwasser, Micali and Rivest in [8]. Here we use the definitions of [1] that
provide a framework for a concrete security analysis of digital signatures and
consider resistance against adaptive chosen-message attacks; i.e. a forger F who
dynamically obtains signatures of messages of his choosing and attempts to
output a valid forgery.

A valid forgery is a message/signature pair (m̃, x̃) such that Verifypk(m̃, x̃) = 1
whilst the signature of m̃ was never requested by F .

Definition 2. A forger F is said to (t, qsig, ε)-break the signature scheme if
after at most qsig(k) signature queries and t(k) processing time, F outputs a
valid forgery with probability at least ε(k) for any k > 0.

Definition 3. A signature scheme is euf-cma (t, qsig, ε)-secure if there is no
forger capable of (t, qsig, ε)-breaking the signature scheme.

Definition 4. A signature scheme is euf-cma-secure if for any forger F that
(t(k), qsig(k), ε(k))-breaks the scheme, if t(k) and qsig(k) are polynomial, then
ε(k) is negligible.

4.2 rsa Signatures

rsa [10] is certainly the most famous public-key cryptosystem:

System parameters : Two integers k, ` ∈ N and a function µ : {0, 1}` → {0, 1}k.
Generate : On input 1k,

– Randomly select two distinct k/2-bit primes p and q.



– Compute N = pq.
– Pick a random encryption exponent e ∈ Z∗φ(N)

– Compute the corresponding decryption exponent d = e−1 mod φ(N).
The output of the key generation process is {N, e, d}; the public key is pk =
{N, e} and the private key is sk = {N, d}.

Sign : Return y = µ(m)d mod N .
Verify : If ye mod N = µ(m) then return 1 else return 0.

4.3 Coron-Koeune-Naccache Long-Message rsa Encoding

Signing long messages with rsa is possible using a construction proposed by
Coron, Koeune and Naccache (ckn) in [6] (and improved in [4]). ckn split a
long message into short blocks, encode each block with µ and multiply all the
encoded blocks modulo N . Before encoding a block, ckn’s procedure appends to
each block a 0 and the block’s index i. Then the product of so-formed encodings
is appended to 1 and re-encoded again with µ.

System parameters : Two integers k > 0 and a ∈ [0, k − 1] and a function

µ : {0, 1}k+1 → {0, 1}k

Generate : As in standard rsa.
Sign : Split the message m into (k−a)-bit blocks such that m = m[1]|| . . . ||m[r].

Let α =
r∏

i=1

µ(0||i||m[i]) mod N where i is an a-bit string representing i.

Let y = µ(1||α) and return yd mod N .

Verify : Let y = xe mod N and recompute α =
r∏

i=1

µ(0||i||m[i]) mod N .

If y = µ(1||α) then return 1 else return 0.

4.4 The New mshf

Let N, e, d be parameters selected as in sub-section 4.3. We additionally require
that e is a prime number and e > n. Let µ : {0, 1}k → {0, 1}k be an encoding
function. We propose the following mshf:

Apply µ to all the elements of X = {x1, . . . , xn} and multiply all the encoded
integers modulo N :

H(X) =
n∏

i=1

µ(xi) mod N

Note that d and e are not used in the function and that H is incremental as
it can be updated easily if new elements need to be added to the set.

This construction is very similar to ckn’s long-message rsa encoding. The
difference is that indices are omitted because the order of the elements is not
taken into account. The equality test for two mss X and Y is simply :



return(H(X) ?= H(Y ))

The setup is a slightly modified rsa since we additionally require that e is a
prime number and that e > n. The latter requirement is not a problem as n is
the size of the compared mss (e.g. n < 230).

5 ms Collision-Resistance Proof

We now prove the ms collision-resistance of our mshf. We show that computing
a collision in time t with probability ε implies forging µ-encoded rsa signatures
in polynomially-related t′ and ε′.

Let Generate’(k, n) be an algorithm that, given two positive integers k and
n, returns (N, e, d, µ) such that (N, e, d) are rsa parameters, |N | = k and e is a
prime number such that e > n. Moreover, µ : {0, 1}k → {0, 1}k is such that the
deterministic-padding rsa scheme obtained using µ and (N, e, d) is euf-cma
secure.

Given k and n and an output of Generate’(k, n), we consider two different
games.

In the first game Game1, a forger F is given {N, e, µ}. F has access to a
signing oracle S that, when given mi ∈ {0, 1}k, answers µ(mi)d mod N . After
q1(k, n) signature requests to S and t1(k, n) computing time, F outputs with
probability ε1(k, n) a forgery (m, s) such that s = µ(m)d mod N and m was
never signed by S. When n = n(k) is a polynomial in k, the security of the
µ-based rsa deterministic-encoding signatures implies that, for any F , if t1(k)
and q1(k) are polynomial then ε1(k) is negligible.

In the second game Game2, an adversary A is given {N, e, µ, n}. This ad-
versary’s goal is to produce a collision. It wins if it can find two sets X =
{x1, . . . , xn′} and Y = {y1, . . . , yn′′} where xi, yi ∈ [0, 2k[ such that X 6= Y ,
n′ ≤ n, n′′ ≤ n and

n′∏

i=1

µ(xi) ≡
n′′∏

i=1

µ(yi) (mod N)

A runs in time t2(k, n) and succeeds with probability ε2(k, n).

Theorem 1. If there exists an adversary A that finds a collision in time t2(k, n)
with probability ε2(k, n), then there exists a forger F that finds a forgery after
q1(k, n) < 2n queries to S and t1(k, n) = t2(k, n) +O(n2) +O(nk2) computing
time, with probability ε1(k, n) = ε2(k, n).

Proof. Let A be an adversary that finds a collision in time t2 with probability
ε2. We construct a forger F as follows.

F first uses A to try to obtain a collision. If, after t2 time units, A does not
succeed, F stops. This happens with probability 1− ε2.



Otherwise, A returns a collision. This happens with probability ε2 and in
this case F learns X = {x1, . . . , xn′} and Y = {y1, . . . , yn′′} such that X 6= Y
and:

n′∏

i=1

µ(xi) ≡
n′′∏

i=1

µ(yi) (mod N)

We denote by ]X(x) number of occurrences of an element x in a ms X.
Since X 6= Y , there exists xi0 such that ]X(xi0) 6= ]Y (xi0) and without loss

of generality, we assume that ]X(xi0) > ]Y (xi0).
Let a = ]X(xi0)− ]Y (xi0) (note that 1 ≤ a ≤ n′).
The forger F finds xi0 and a by sorting and comparing X and Y . We have:

∏

i∈V

µ(xi)× µ(xi0)
]X(xi0 ) ≡

∏

i∈W

µ(yi)× µ(xi0)
]Y (xi0 ) (mod N)

where V is the subset of {1, . . . , n′} corresponding to the indices of the xi

not equal to xi0 and W is the subset of {1, . . . , n′′} corresponding to the indices
of the yi not equal to xi0 .

We get:

µ(xi0)
a ≡

∏

i∈V

µ(xi)
−1 ×

∏

i∈W

µ(yi) (mod N) (1)

The integer xi0 does not appear on the right side of this equation.
F computes u and k such that au = ke + 1 (since e is prime and 0 < a ≤

n′ ≤ n < e, a is invertible modulo e). F obtains from the signing oracle S
the signatures si = µ(xi)

d mod N of all xi such that i ∈ V and the signatures
s′i = µ(yi)

d mod N of all yi for i = 1, . . . , n′′. Then F computes:

s =




(∏

i∈V

si

)−1

×
∏

i∈W

s′i




u

× µ(xi0)
−k (mod N)

One can show that s = µ(xi0)
d mod N using equation (1):

µ(xi0)
au ≡

∏

i∈V

µ(xi)
−u ×

∏

i∈W

µ(yi)
u (mod N)

µ(xi0)
ke+1 ≡

∏

i∈V

µ(xi)
−u ×

∏

i∈W

µ(yi)
u (mod N)

µ(xi0) ≡
∏

i∈V

µ(xi)
−u ×

∏

i∈W

µ(yi)
u × µ(xi0)

−ke (mod N)

µ(xi0)
d ≡

∏

i∈V

µ(xi)
−ud ×

∏

i∈W

µ(yi)
ud × µ(xi0)

−k (mod N)

µ(xi0)
d ≡ s (mod N)



This implies that (xi0 , s) is a valid (message, signature) pair. Since the mes-
sage xi0 was never sent to S, F succeeds in finding a forgery. The number of
queries to S is #V + n′′ = (n′ − a) + n′′ < 2n.

We now evaluate F ’s running time. First, F runs A in time t2(k, n). Finding
xi0 and a by sorting and comparing X and Y takes O(n log n) time5. Computing
u and k takes O(n2) time6; s can be computed in 2n modular multiplications
(i.e. O(nk2) time), n modular inversions (still O(nk2) time), two modular expo-
nentiations (O(k2 log n) dominated by O(nk2)) and an evaluation of µ, that we
omit. All in all, the total running time of F is:

t1(k, n) = t2(k, n) +O(n2) +O(nk2)

ut

Using Theorem 1 we infer that no algorithm can efficiently find collisions:

Theorem 2. If n = n(k) is polynomial, the success probability of any adversary
that running in polynomial time t2(k) is negligible.

Proof. Assume that n(k) is polynomial and that A finds a collision in polynomial
time t2(k). We want to show that ε2(k) is negligible.

By virtue of Theorem 1, there exists an F that finds a forgery after q1(k) sig-
nature queries in time t1(k). The number of queries q1(k) < 2n(k) is polynomial.
As we have seen that t1(k, n) = t2(k, n) + O(n2) + O(nk2) is also polynomial.
Therefore the attacker’s success probability ε1(k) is negligible. By virtue of The-
orem 1, ε1(k) = ε2(k) and hence ε2(k) is negligible. ut

Theorem 2 validates the mshf’s asymptotic behavior.

In practical terms the above means that if a modulus N and a deterministic
encoding function µ can be safely used to produce rsa signatures, they can also
be used to compute ms hashes.

6 Conclusion & Further Research

In this paper, we proposed a new mshf whose collision-resistance is directly
linked to the security of deterministic-encoding rsa signatures.

The function allows to test if two integer sets are equal using moderate mem-
ory and computational resources. The test does not yield false negatives and
with carefully chosen parameters, it does not yield false positives either since we
prove that a single false positive would imply the insecurity of deterministic rsa
signature encoding.

5 Dominated by O(n2).
6 Extended Euclidean algorithm.



While this gives a practical answer to a theoretical question asked by Katriel,
we still do not know how to generalize the proposed construction to solve the
sip i.e. test if a set A is a subset of a set B.

Another open question is whether a similar construction based on an aggre-
gate signature scheme (e.g. [3]) could also be used to provide mshf functions.
The idea would be to multiply hashes7 of set elements and prove the resulting
mshf’s collision-resistance under the assumption that the aggregate signature
scheme is secure.
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