
Polynomial Runtime and Composability

Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade

CWI, Saarland University, and Universität Karlsruhe

January 12, 2009

Abstract. To prove security of a multi-party cryptographic protocol, one often reduces
attacks on the protocol to attacks on a suitable computational problem. Thus, if the com-
putational problem is hard, then the protocol is secure. But to allow for a security reduc-
tion, the protocol itself and the attack on the protocol must be efficient, i.e., polynomial-
time. Of course, the obvious way to enforce an overall polynomial runtime of the protocol
is to require each individual protocol machine and adversarial entity to be polynomial-
time. However, as the specific case of zero-knowledge protocols demonstrates, an a priori
polynomial-time bound on all entities may not be an optimal choice because the running
time of some machines needs to depend on that of others. As we want to be able to model
arbitrary protocol tasks, we work in the Universal Composability framework (UC). This
framework additionally provides strong composability guarantees. We will point out that
in the UC setting, finding a useful notion of polynomial-time for the analysis of general
protocols is a highly non-trivial task.
Our goal in this work is to find a good and useful definition of polynomial-time for multi-
party protocols in the UC setting that matches the intuition of what is feasible. A good
definition should have the following properties:
Flexibility: All “intuitively feasible” protocols and protocol tasks should be considered

polynomial-time.
Soundness: All“intuitively feasible”attacks (i.e., adversaries) should be considered polynomial-

time.
Completeness: Only “intuitively feasible” attacks should be considered polynomial-time. In

particular, this implies that the security of protocols can be reduced to computational
hardness assumptions.

Composability: The induced security notion should support secure (universal) composition
of protocols.

Simplicity: The notion should be easy to formulate, and for all practical cases, it should
be easy to decide whether a protocol or attack runs in polynomial time.

The problem of finding a good definition of polynomial time in the UC framework has
been considered in a number of works, but no definition satisfying the five above criteria
had been found so far. This seemingly simple problem is surprisingly elusive and it is hard
to come up with a definition that does not involve many technical artifacts.
In this contribution, we give a definition of polynomial time for cryptographic protocols
in the UC model, called reactively polynomial, that satisfies all five properties. Our notion
is simple and easy to verify. We argue for its flexibility, completeness and soundness with
practical examples that are problematic with previous approaches. We give a very general
composition theorem for reactively polynomial protocols. The theorem states that arbitrarily
many instances of a secure protocol can be used in any larger protocol without sacrific-
ing security. Our proof is technically different from and substantially more involved than
proofs for previous protocol composition theorems (for previous definitions of polynomial
runtime). We believe that it is precisely this additional proof complexity, which appears
only once and for all in the proof of the composition theorem, that makes a useful definition
as simple as ours possible.

Keywords: Universal composability, polynomial runtime, multi-party protocols, protocol
composition.
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1 Introduction

1.1 Introduction to the problem

The security of cryptographic protocols is often based on the hardness of certain compu-
tational problems, such as, e.g., inverting a given trapdoor one-way permutation. Break-
ing the protocol security then requires solving the underlying computational problem.
To prove this, one generally considers reductions, i.e., one translates a successful cryp-
tographic attack on the protocol security into an algorithm that solves the underlying
computational problem. For such a reduction to work, it is necessary that the complexity
of protocol runs is bounded, so that the protocol situation can be translated into the
setting in which the computational assumption is formulated. Typically, computational
assumptions are formulated against algorithms which are probabilistic polynomial time.
That means, one usually assumes that an arbitrary but fixed polynomial upper-bounds
the runtime of the algorithm.

So it is not merely of aesthetic interest to find a notion that captures the notion of
polynomial time complexity for cryptographic protocols. It is also a practical necessity
to conduct security proofs.

Our goal in this contribution is to find a useful and meaningful notion of polyno-
mial time complexity for cryptographic protocols that matches the intuition of what is
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feasible. In particular, the induced security notion should be useful when analyzing the
composition of protocols.

More specifically, we endeavor to find a notion of polynomial-time together with a
variant of the UC security notion such that the following requirements are fulfilled:

Flexibility: All “intuitively feasible” protocols and protocol tasks should be considered
polynomial-time. In particular, natural protocol tasks like secure channels should be
polynomial-time and not be excluded for formal reasons.

Soundness: All“intuitively feasible”attacks (i.e., adversaries) should be considered polynomial-
time. Otherwise, we would have no guarantee that a secure protocol indeed with-
stands real-world attacks. In particular, in the context of universal composability the
very important “dummy adversary” should be polynomial-time.

Completeness: Only “intuitively feasible” attacks should be considered polynomial-time.
Otherwise, the resulting security notion would be too strong and the security of
protocols could not be reduced to computational hardness assumptions.

Composability: The security notion should support secure composition of an arbitrary
number of concurrent protocol instances in arbitrary contexts (universal composi-
tion).

Simplicity: the notion should be easy to formulate, and for all practical cases, it should
be easy to decide whether a protocol or attack runs in polynomial time.

The UC framework. Since we strive for composability, we work in the protocol frame-
work of universal composability (UC) [Can01, Can05a].1 The UC framework [Can01,
Can05a] defines the security of a protocol (often called the real protocol) by comparison
with an ideal protocol. The ideal protocol usually comprises only a single trusted ma-
chine, a so-called ideal functionality, which is secure by construction. The ideal protocol
can be thought of as the specification of the protocol task that should be achieved by the
real protocol. In the UC framework, the real protocol is considered to be a secure imple-
mentation of the ideal protocol if only those attacks are possible in the real protocol that
are also possible in the ideal protocol. More precisely, for any adversary that interacts
with (attacks) the real protocol, there is a corresponding adversary (the simulator) that
interacts with the ideal protocol such that no protocol environment interacting with both
the protocol and the adversary can distinguish between an execution of the real and an
execution of the ideal protocol. In this case we say that the real protocol emulates the
ideal protocol. To be able to use computational assumptions in the protocol design, one
usually requires the adversary, the simulator, the environment, and both the ideal and
the real protocol to be polynomial-time.

Since ideal functionalities can model very different protocol tasks, the UC framework
is very versatile. Furthermore, it gives very strong composability guarantees: If a protocol
π emulates a protocol ρ, and a protocol σ that uses the ideal protocol ρ as a subprotocol

1 We stress that our observations and results apply as well in any other protocol framework in which
security is defined through an interactive simulation. In particular, our results apply also in the
frameworks of Reactive Simulatability (RSIM) [PW01, BPW04b], SPPC [DKMR05, Küs06], and
environmental security [Gol04, Section 7.7.2].
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emulates some ideal functionality F , then after replacing ρ by its implementation π, σ
still emulates F . This enables the modular design of security protocols.

We give a detailed overview over the UC framework in Section 2.

1.2 Straightforward approaches and why they fail

An a priori polynomial bound on the overall runtime. Probably the most
obvious approach is to allow only machines of polynomial (time) complexity as entities
in a protocol run. That is, there is a fixed polynomial qM , so that machine M halts and
cannot be activated again after at most qM (k) overall steps. (Here and in the following,
k ∈ N denotes the security parameter, that intuitively measures the “amount of desired
security.”) We assume that this bound is an a priori runtime bound; that is, we assume
that qM only depends on the machine M , but not on the context M is run in (in
particular, not on the runtime of the machines M interacts with). This bound applies
to honest protocol parties as well as to adversarial entities. In the UC setting, these are
the adversary, the simulator, and the environment.

This approach has several disadvantages. First, it becomes impossible to formulate
natural protocol tasks with an (a priori) unbounded number of activations. For instance,
already a public key encryption system cannot be expressed, since it should permit an
unbounded number of encryptions. This is a violation of flexibility.

An obvious workaround (extensively used, e.g., in the“cryptographic library”[BPW03])
would be to artificially bound in advance the number and size of inputs to a crypto-
graphic system. For instance, a secure channel might shut down after a certain (fixed in
advance) number of transmitted bits. We do not recommend this workaround: it might
not be clear in advance how often, say, a secure channel will be used. Furthermore, this
workaround creates the additional (intuitively unneccessary) hassle of fixing and keeping
track of all concrete running time bounds. Strictly speaking, even the finally deployed
protocol implementation would need to keep track of the number of its activations and
stop working after a given time.

But there is a second, very severe technical drawback that becomes apparent when
considering the composition of cryptographic protocols. Recall that in the UC security
definition, the environment that represents the a larger protocol context, is chosen last.
But if all protocol machines have a priori runtime bounds, there is an environment that
can “exhaust” all protocol machines and even a given adversary, e.g., by sending them
useless messages and force them to waste their limited runtime by processing them. This
has been shown not only to cause severe technical artifacts. It actually renders many
natural protocol tasks formally impossible when allowing only machines with a priori
polynomial runtime bounds, cf. [HMQU05, Küs06].

An a priori polynomial runtime bound per activation. As a second straight-
forward approach, let us consider machines that perform only a polynomial number of
steps in each activation (possibly even dependent on input size instead of security pa-
rameter), but may be activated an unbounded number of times. This overcomes the
flexibility problems of forcing an upper a priori polynomial bound on the overall runtime.
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However, it allows two machines (e.g., in the UC context, this could be the adversary
and the environment) to effectively run infinitely by activating each other over and over
again. This not only causes completeness problems (and thus makes reductions to compu-
tational assumptions difficult). It also prevents secure composition of protocols, since the
combination of two polynomial-time machines into one machine (a standard technical
tool used during the proof of composition theorems) may no longer be polynomial, see
[HMQU05].

Learning from zero-knowledge. The above problems with a priori runtime bounds
arise because of a dependency problem: an entity that is chosen later in the security
definition might have a larger polynomial runtime bound than any entity that was cho-
sen earlier on. Hence, any entity can in principle “exhaust” all previously chosen entities.
(For instance, an environment machine can exhaust a protocol machine or even an ad-
versary.) This unwanted effect occurs also in the more specific setting of (black-box)
zero-knowledge simulators (e.g., [Gol07]): a black-box zero-knowledge simulator should
be efficient (in a reasonable sense), yet it interacts with an adversary that is chosen after
that (black-box) simulator.

And while a zero-knowledge adversary cannot directly exhaust a simulator by too
many queries (in black-box zero-knowledge, the adversary is only queried by the simula-
tor, not the other way around), the conceptual difficulties that arise from this dependence
are similar to our case. Namely, for successful simulation, a zero-knowledge simulator may
require time complexity that depends on the adversary’s time complexity.

So while for a given polynomial-time adversary, the simulator’s complexity will always
be polynomial-time, there may not be an a priori bound on the simulator’s runtime.

An a posteriori polynomial bound on overall runtime. This gives reason to con-
sider machines that are polynomial-time for any given machine (of arbitrary complexity)
they interact with. (For zero-knowledge, several such notions appear in the literature; an
explicit discussion and analysis has been conducted in [Gol07].) We claim that, while an
a posteriori runtime bound is useful in the zero-knowledge context, it does not constitute
a good definition of polynomial runtime for general protocols.

For general protocols, by a posteriori runtime we mean that every protocol machine
and the adversary run in polynomial time in every given (but arbitrary) context.

For instance, consider a trivial repeater R, i.e., a machine that outputs all incoming
data. Since we did not fix an a priori upper bound on the size of the incoming data,
R repeats incoming data of arbitrary length. In particular, R runs in exponential time
when interacting with a machine M that sends 12k

to R. Hence a repeater would also not
satisfy the a posteriori polynomial runtime definitions from the zero-knowledge case.2,3

2 There is a subtlety here: by “polynomial,” we mean polynomial in the (global) security parameter,
whereas in the zero-knowledge case, it is customary to assume that “polynomial” means polynomial
in the size of the input. However, in the context of general protocols, the former interpretation of
“polynomial” is preferred, since it allows for a meaningful analysis of composed and nested protocols
as well as protocols with constant input size like oblivious transfer.

3 In fact, a priori and a posteriori polynomial runtime coincide when arbitrary, unbounded contexts
are considered. Namely, say that a machine M runs at most q steps when running in a context C,
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As above, this violates flexibility and, when also enforcing an a posteriori polynomial
runtime bound for adversaries, it might endanger soundness. In fact, in the context of
UC, the dummy adversary, which basically is a repeater, would not be allowed by an
a posteriori polynomial runtime bound. The dummy adversary is an essential technical
tool to prove composition theorems, cf. also Section 6. Hence, we also cannot guarantee
composability.

A natural way to relax the a posteriori runtime bounds definition would be the
following: one could allow machines M that have polynomial time complexity when
running with any (a priori) polynomial-time machine M ′.

Let us call this modified a posteriori notion a posteriori polynomial-time in bounded
contexts (APPT-BC). Note that the repeater R from above is indeed APPT-BC. How-
ever, we are now faced with a different problem: two APPT-BC machines M1 and M2,
running together, may result in an exponential-time network. (For instance, on input
x, M1 might send xx to M2 and vice versa. This would not contradict the APPT-BC
property of M1 and M2 individually, but would lead to a clearly exponential network
{M1,M2} where M1 and M2 send a growing message back and forth.) This lack of com-
posability of the APPT-BC notion itself can lead to problems in the UC composition

theorem, in which the combination of several machines into one is an integral operation
(see Section 1.5 for a detailed explanation). Basically, our approach will be not to try to
overcome the problem completely, but to prove that all composition operations in (our
variant of) the composition theorem lead to polynomially bounded networks.

We stress, however, that we will not use the APPT-BC notion exactly as described
above, since there is a second problem with APPT-BC runtime bounds. Namely, if we
demand that a machine M always meets the APPT-BC runtime bounds (and not, say,
with overwhelming probability only), then the induced security notion does not even
allow for secure composition of one protocol instance with a larger protocol. We prove
this in Section 9.1.4

Further remarks concerning expected polynomial time. In the above, we have
oversimplified our presentation of polynomial runtime in zero-knowledge definitions. For
zero-knowledge, there are a number of subtleties and additional complications. These
are mostly due to the fact that in zero-knowledge, a simulator may rewind the adver-
sary. Most notably, specifically for black-box zero-knowledge, it is preferable to allow

where q = qC(k) is a polynomial (in the security parameter) that may depend on C. Then, there is a
context C∗ that maximizes M ’s runtime by, for each security parameter k, acting like argmaxC qC(k).
By definition, qC∗ (k) ≥ qC(k) for all contexts C, and hence qC∗(k) is a single polynomial that bounds
M ’s runtime in arbitrary contexts. Thus, M ’s runtime is already a priori polynomially bounded. (Note
that argmaxC qC(k) exists. Otherwise would could construct a context C∗ with qC∗ (k) ≥ 2k which
would be a contradiction.) We conclude that we do not gain on generality by allowing a posteriori
runtime bounds, at least when we consider arbitrary, unbounded contexts.

4 The intuitive reason is that real and ideal protocol might behave identically only up to a small prob-
ability. Hence, real and ideal protocol might give slightly different (runtime) guarantees to adversary
and environment. Now a larger protocol that uses the real, resp. ideal protocol as a subprotocol might
ensure that the runtime of the real subprotocol will always be bounded, while the runtime of the ideal
protocol will only almost always be. This can lead to a situation in which any successful simulation
will sometimes (with negligible probability) require superpolynomial time.
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simulators that run in expected polynomial time rather than strict polynomial time.
However, since rewinding is not allowed in UC (essentially since a rewinding simulator
may not behave well under concurrent composition), these additional issues do not affect
us. For additional discussion and definitions connected to zero-knowledge, we refer to
[Gol01, Chapter 4] and, in particular, to [Gol07]. We also remark that some of our results
might not hold when substituting (strict) polynomial-time in our results with expected
polynomial-time, see Section 9.1.

Acyclic runtime dependencies. One reason why definitions of polynomial runtime
can be difficult is that two machines (e.g., repeaters) can be combined such that they send
messages back and forth and consume an unlimited amount of runtime. This problem
can be solved by the following approach: In a network of machines, one defines an acyclic
directed graph on the set of machines. If there is an edge from M ′ to M , we call M ′ the
parent of M . Then we call a machine M polynomial-time if its running time is bounded
by an fixed (a priori) polynomial in the total length and number of incoming messages
sent by the parents of M . Incoming messages not coming from the parents of M are
allowed, but do not increase the allowed running time of M .

Although this approach allows for more protocols than a priori polynomial-time (bet-
ter flexibility), many protocols will still be rejected by such a definition as there is not
distinguished direction in which messages flow. For example, a database functionality
(described in Section 1.4 below) would not be considered polynomial-time because in
some cases the database would need running time from the parties retrieving data from
the database, and in some cases the parties retrieving the data would need running time
from the database.

Another problem is that it is not clear which running time dependency should hold
between the protocol, the environment, and the adversary or simulator. If the protocol
gets running time from the adversary or simulator, the latter may be forced to terminate
before the protocol run is complete, leading to soundness or completeness issues. If the
adversary or simulator gets running time from the protocol, the protocol may be unable
to react to messages arriving over the insecure network (that is controlled by the ad-
versary), and hence some natural protocols will be disallowed (flexibility deficits). (The
latest version of the UC framework [Can05a] uses a variant of this approach. Much of the
complexity of the definition of polynomial-time there is due to the necessity to clarify
which machine gets running time from which.)

1.3 Previous work

Length functions. Backes [Bac02] was the first to observe the technical artifacts that
arise from a priori polynomial runtime bounds. His solution, which has been incorporated
into the Reactive Simulatability framework (RSIM) [BPW04b], was to employ length
functions, a technical tool to guard machines from being flooded with useless messages.
This overcomes the soundness issues of straightforward approaches. Yet, since these RSIM
machines still have an (a priori) upper polynomial bound on the overall runtime, this
does not achieve flexibility. Natural tasks like that of a public key encryption system
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(that allows an unbounded number of encryptions) still cannot be expressed. Besides,
length functions are a rather technical tool, that resulted from a technical artifact, and
are intuitively not easily explainable.

Continuously polynomial time. In this situation, Hofheinz et al. [HMQU05] sug-
gested to allow protocols that are, as a whole, polynomial time in their input size. This
achieves flexibility. With a specific, dedicated restriction on allowed attacks, they could
also achieve (and demonstrate with examples) completeness and soundness of their def-
inition. Namely, in their setting, neither protocols nor adversaries are required to ever
terminate; however, the“relative computation speed”of adversary and protocol has to be
polynomially related, and only polynomial execution prefixes are considered. However,
they do not give a universal composition theorem that would allow for the composition
of more than a constant number of protocol instances. Furthermore, their restriction of
allowed attacks is somewhat unintuitive and lacks simplicity.

In the UC framework. In the Universal Composability (UC) framework [Can01,
Can05a] of Canetti, there are a number of approaches to define polynomial runtime. In
the initial formulation [Can01], an a priori polynomial overall bound on the number of
computational steps of each protocol entity was mandated. When the technical artifacts
of this became clear, several definitions were proposed [Can04a, Can04b, Can05b]. The
most recent version [Can05a] of the UC framework uses a definition in which machines
may be activated in principle infinitely often. However, at any point in time, a certain con-
dition must be fulfilled that relates the runtime so far with the input/output behavior of
that machine. In particular, the input which a machine M gives to other (sub-)machines
must be smaller in size than the overall input M gets. This means that a protocol has to
take care that its own input is large enough in size such that all necessary subprotocol
invocations are allowed. In many cases, padding of the “top-level inputs” is necessary,
which complicates the specification of natural tasks (see Section 3 for more details). In
Section 3, we also show that composability might be a problem, since the technical tool
of a (complete) dummy adversary is not available which however is used in the proof
of the Universal Composition Theorem. Besides, the current UC notion of polynomial
runtime is arguably somewhat complicated and not simple.

In the SPPC framework. In a different line of work, Datta et al. [DKMR05] and
Küsters [Küs06] propose different notions of polynomial runtime for cryptographic pro-
tocols in the SPPC framework [DKMR05]. In [DKMR05], a natural extension to the
length function approach from [Bac02] is put forward. Specifically, where length func-
tions merely allowed a machine to block messages from certain “spamming” senders, the
guards from [DKMR05] allow a machine to specify algorithms that decide whether an
incoming message is blocked or not. The computational steps used for deciding whether
a message is blocked or not are not counted as computational steps of the receiving ma-
chine. However, the notion from [DKMR05] requires that machines still have an a priori
polynomial upper runtime bound, thus inducing the same flexibility issues as with length
functions.
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Other frameworks. Two notions of polynomial runtime for protocols are proposed
in [Küs06], both specific to the specific nature of protocols used. In both cases, the
specific flow of messages determines whether a protocol setting is polynomial-time or
not. In [Gol07], it is investigated whether the notion of expected polynomial time allows
for composability. Although this question is answered positively, their approach does not
allow machines to run in polynomial time in the length of the incoming communication.
(It must be stated that allowing such protocols was not the aim of [Gol07], their goal
was to give the simulator additional power which is needed in some settings.)

Summarizing, all notions except for [HMQU05] only allow us to formalize a very
limited class of protocols (excluding, e.g., the database example described below), causing
flexibility deficits. And [HMQU05] only gives a limited composability result, and their
notion is not simple.

1.4 Some problematic use cases

To illustrate the kind of natural protocols that may be rejected by too restrictive a
definition of polynomial time, we give two simple and natural examples of problematic
protocol tasks. Recall that, since we strive for composability, we work in the UC frame-
work. Hence, protocol tasks are specified as ideal functionalities (that reflect the ideally
desired behavior).

Secure channels. A natural protocol functionality is that of a secure channel, again
modeled as a single machine. For simplicity, let us say that the machine accepts only
inputs of the form (send, receiver,message), and gives outputs of the form (message,
sender,message) (where the semantics should be clear).

We stress that this ideal functionality may be activated arbitrarily often, with arbi-
trarily large message inputs. Hence, this functionality does not satisfy a polynomial-time
notion that bounds the number of activations or the size of allowed inputs a priori. This
eliminates most so far presented polynomial-time notions, except for (a) the variation on
a posteriori polynomial-time bounds, (b) the notion from [HMQU05], (c) and the most
recent polynomial-time definition of the UC model. In particular, all polynomial-time
definitions that enforce an a priori runtime bound on machines do not allow to model a
simple secure channel.

A database functionality. Consider a publicly available centralized database, for-
malized as an ideal functionality, i.e., as a single database machine. The database machine
accepts inputs of the form (store, key, data) and (retrieve, key), with the obvious se-
mantics (namely, an input (store, key, data) stores data under key, and (retrieve, key)
retrieves that data again).

We stress that this database machine may be activated arbitrarily often, with ar-
bitrarily large (store) inputs. Hence, similar to the preceding case of a secure channel,
this database machine does not satisfy a polynomial-time notion that a priori bounds the
number of activations or the size of allowed inputs. Additionally, observe that the quo-
tient of output and input size of database queries may be arbitrarily large: consider one
party storing a large database entry and then another party retrieving it—the retrieve
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instruction itself is short, although the corresponding output may become arbitrarily
large. This latter property prevents a modeling in the most recent version of the UC
framework.5

The same problems as with the database functionality also occur when considering
an anonymous bulletin-board (as often used in remote voting protocols, e.g., [JCJ05,
MCC08]). Here every user can post messages (which corresponds to storing an entry
in the database), and every user can read the bulletin-board (which corresponds to
retrieving an entry from the database).

On the inapplicability of input padding. Furthermore, the database example also
illustrates why padding, a solution often advocated to circumvent the runtime restrictions
in the UC framework [Can05a] is not always applicable. By padding we mean that
a protocol specification or functionality expects inputs that are padded to a suitable
length such that the machine receiving these inputs is allowed to run longer. In the case
of the database functionality however, padding does not solve the problem, since a party
retrieving an entry does not know in advance what the length of the data returned from
the database will be, and thus that party cannot know how long a padding has to be
used. Also the party storing the entry cannot add sufficient padding because it cannot
know how many times the entry will be retrieved. (More details on this problem are
given in Section 3 which also gives further examples of problems that might occur with
too restrictive notions of polynomial time.)

1.5 Our work

Our approach: reactively polynomial protocols. We propose a new notion of
polynomial runtime for cryptographic protocols. Our notion, called reactively polynomial,
treats a protocol as polynomial-time, iff the following holds:

In all protocol contexts that terminate after an a priori fixed poly-
nomial number of steps,

the whole protocol runs only a polynomial number of steps with
overwhelming probability.

Note that this notion is a variation on the a posteriori polynomial runtime bounds from
Section 1.2. The most notable difference is the relaxation of only demanding a polynomial
number of steps with overwhelming probability. We stress that this relaxation is essential
to allow for a composition theorem; see Section 9.1 for a detailed explanation and proof.
(We remark, however, that it is not essential whether the considered protocol context is
polynomial-time or only polynomial-time with overwhelming probability; see Section 4,
page 25 for an explanation.)

5 Technically speaking, [Can05a] allows the database as a functionality, however it does not allow a pro-
tocol party with that behavior; in particular, this makes it impossible to implement this functionality,
even when using a uncorruptible trusted party. See Section 3 for details.
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It should also be noted that being reactively polynomial is a property of the pro-
tocol as a whole, not of the individual machines (unlike the property of being a priori
polynomial).

Flexibility. We claim that the notion of a reactively polynomial protocol captures
all intuitively feasible protocol tasks. We admit that such a claim is hard to formally
substantiate, since the set of intuitively feasible protocol tasks is not formally defined.
However, it is clear that reactively polynomial generalizes a priori and a posteriori poly-
nomial runtime bounds as discussed above. Furthermore, it is easily verified that the
problematic use cases from Section 1.4 can be modeled as reactively polynomial proto-
cols (resp. ideal functionalities). (For instance, consider the database example: in any
given a priori polynomial-time protocol context, only a fixed polynomial number of
retrieve queries can happen, each retrieving only a polynomially-sized piece of data.
Hence, the database functionality is reactively polynomial.) Summarizing, we claim that
our notion is flexible.

Soundness and completeness. We call an adversary for a given reactively polyno-
mial protocol valid (i.e., allowed), if the adversary, together with the protocol, is reac-
tively polynomial. We argue that this (together with the precise definition of security)
achieves soundness and completeness, as none of the discussed technical artifacts occur. In
particular, neither adversaries nor protocol machines can be “exhausted,” while all intu-
itively polynomial-time attacks are still valid. Additionally, in our notion the important
“dummy adversary” is valid, which is important both for composability and soundness. On
the other hand, the notion of reactively polynomial protocols and adversaries induces a
security notion that lies (strictly) in between the traditional UC security notion and a
relaxation of UC discussed in [Lin03]. Thus, our new notion still provides a reasonable
and useful definition of security.

Protocol composition. We demonstrate that our notion induces a composable secu-
rity notion by proving a universal composition theorem. This proof is considerably more
complex than proofs of composability for previous notions of polynomial runtime (such
as, e.g., the proofs from [Can01, BPW04a, Can05a, DKMR05]). Ironically, this complex-
ity seems to result from the simplicity of our notion: in the proof, it is necessary to prove
that certain combinations of protocol pieces are still reactively polynomial. The good
news is that these results do not have to be proven during the design of the protocol. As
a consequence, our composition theorem needs only relatively few assumptions, which
might come in very handy during protocol design. We now provide further details.

Common structure of (universal) composition theorems. Put very briefly, a
(universal) composition theorem states that whenever one protocol instance is secure,
then also multiple protocol instances are secure, even when used in arbitrary contexts.
In the UC framework, security means existence of a simulator. Hence, to prove a UC com-
position theorem, one usually (explicitly) constructs a simulator S∞ for many protocol
instances from a simulator S for one protocol instance. This construction usually (e.g.,
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[Can01, BPW04a]) is conceptually simple: S∞ is the combination of multiple instances
of S.6 To prove security, one must show that
1. the constructed simulator S∞ is valid (in the sense that S∞ fulfils the respective

polynomial-time notion), and
2. S∞ achieves a successful simulation (in the sense of the UC security definition).
The first of these properties is usually trivially verified, while the second property is
shown using a hybrid argument.

The obstacle with reactively polynomial simulators. In the case of reactively
polynomial protocols and adversaries, however, the first property (S∞ is a valid adver-
sary) is not trivially verified. Concretely, as hinted above, the composition of several
reactively polynomial machines may no longer be reactively polynomal. As an example,
consider a “double-repeater” R that resends every incoming message twice (i.e., on in-
coming message x, it sends xx). Any single such machine is clearly reactively polynomial.

However, pipelining k such machines R yields a machine R′ which, e.g., sends 12k
when

receiving 1. Thus, R′ is exponential-time and not reactively polynomial. We stress that
we consider this property of our reactively polynomial notion not to be an artifact, but
a necessity. The lack of composability of the notion itself is simply the price we have to
pay for completeness, i.e., for the ability to model natural functionalities such as secure
channels or (double-)repeaters. If we want to model such machines (and this is the design
decision we made), then we have to deal with the technical consequences.

Our techniques to overcome the obstacle. Hence, we have to explicitly prove
that the combined simulator S∞ constructed in the composition is, together with the
composed protocol, reactively polynomial. To this end, we use not only that one simu-
lator instance S is reactively polynomial. We also employ the fact that S achieves UC
indistinguishability. More concretely, we show that if S∞ was not reactively polynomial,
then we could distinguish a simulation by S from a real attack on a single protocol
instance.

We stress that in order to make the preceding argument work, we have to tweak
the original construction of S∞ from S. Namely, in order to prove statements about
S∞’s time complexity, we provide runtime bounds for each S-instance inside S∞. These
runtime bounds are derived via a hybrid argument, through a reduction to S’s security
property (i.e., to the assumption that S provides a good simulation). However, this hybrid
argument requires a highly symmetric ordering of S-instances inside S∞. We hence have
to rearrange and randomize the order of S-instances inside S∞. This leads to a highly
symmetric, but more complex proof argument. We emphasize that the main part of the
proof now lies in proving that S∞ is a valid (i.e., reactively polynomial) simulator. That
S∞ achieves a good simulation follows as a byproduct of our argument.

1.6 Organization

After introducing some notation, we review the Universal Composability framework (in
which our work takes place) and the UC composition theorem in Section 2. We motivate

6 Of course, we are oversimplifying here. A more accurate presentation will be given in Section 2.1.
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our work by highlighting the problematic aspects of previous polynomial runtime notions
in Section 3. Our own polynomial runtime notion is presented in Section 4. In Section 5
and Section 6, we prove some basic but important properties of our notion, which will
turn out useful in the proof of the composition theorem in Section 7. Section 8 gives an
example of our notion in action. In Section 9, we discuss two variations of our notion.
Finally, Section 10 relates our notion to the standard UC definitions.

1.7 Notation

We say an algorithm A is polynomial-time if A’s runtime is bounded by a polynomial
in the length of A’s first input (assuming that A’s input is a tuple of bitstrings). This
notation facilitates the use of a security parameter k, since we will usually pass 1k

as the first argument. Two ensembles {X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ of
probability distributions are statistically indistinguishable, if there is a negligible function
µ such that for all k ∈ N, z ∈ {0, 1}∗, the statistical distance between X(k, z) and Y (k, z)
is bounded by µ(k). Two ensembles {X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ are
computationally indistinguishable (written X(k, z) ≈ Y (k, z)) if for every nonuniform
probabilistic polynomial-time algorithm C there exists a negligible function µ such that
for all k ∈ N, z ∈ {0, 1}∗ we have that

∣∣Pr[D(1k, z,X(k, z)) = 1]−Pr[D(1k, z, Y (k, z)) =
1]

∣∣ ≤ µ(k).

2 The UC framework

We briefly review the framework proposed by [Can01]. An interactive Turing machine
(ITM) is a Turing machine that has additional tapes for incoming and for outgoing com-
munication.7 An ITM may be activated by a message on an incoming communication
tape. At the end of an activation, the ITM may send a message on an outgoing com-
munication tape to another ITM. The recipient of a message is addressed by the unique
ID of that ITM. The actions of an ITM may depend on a global parameter k ∈ N, the
so-called security parameter.

A network is modeled as a (possibly infinite) system of ITMs.8 We call a system S
of ITMs executable if it contains an ITM Z with a distinguished input and output tape.
An execution of S with input z ∈ {0, 1}∗ and security parameter k ∈ N is the following
random process: First, Z is activated with the message z on its input tape. Whenever
an ITM M1 ∈ S finishes an activation with an outgoing message m addressed to another

7 Actually, the UC framework distinguishes various types of incoming and outgoing communication
tapes, namely tapes for input, output, subroutine invocation, subroutine results, incoming messages
and outgoing messages. These distinctions are necessary to formulate the notion of polynomial-time
given in [Can05a]. However, these distinctions are immaterial for our definition of polynomial time,
thus we will only consider incoming and outgoing communication tapes in this exposition.

8 Infinite systems are necessary to allow e.g., for systems where an arbitrary number of instances of
a given ITM can be invoked. In the case of infinite systems we require the system to be uniform
in the sense that given the ID of an ITM, we can compute the code of that ITM in deterministic
polynomial-time.
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ITM M2 ∈ S on its outgoing communication tape, the other ITM M2 is invoked with
incoming message m on its incoming communication tape. If an ITM terminates its acti-
vation without an outgoing message the ITM Z is activated. If an ITM sends a message
to a non-existing ITM, Z is activated with that message. Z may send messages in the
name of any non-existing machine.9 When the ITM Z sends a message on its output tape,
the execution of S terminates. The output of Z we denote by EXECS(k, z) (where we set
EXECS(k, z) := 0 if the execution does not terminate).10 Furthermore, by TIMES(k, z)
we denote the total number of steps executed by all ITMs in S. If the execution does
not terminate, we set TIMES(k, z) := ∞. Further we write TIMES(k, z,M) for the total
number of steps executed by the ITM M ∈ S. Given a system of ITMs π (representing
a protocol) and two ITMs Z (environment) and A (adversary) we will usually write
EXECπ,A,Z(k, z) and TIMEπ,A,Z(k, z) for EXECπ∪{A,Z}(k, z) and TIMEπ∪{A,Z}(k, z).

A network without the machine Z and without an adversary (the adversary is simply
defined as being an ITM with a special id) is called a protocol.

Using the above network model, security is usually defined by comparison. We define
an ideal protocol ρ (formally a system of ITMs) that usually consists only of one machine,
a so-called ideal functionality. Then we define what it means that another protocol π
(securely) emulates ρ.

Definition 1 (UC – classical definition). Let π and ρ be systems of polynomial-time
ITMs. We say that π emulates ρ if for any polynomial-time ITM A (the adversary)
there exists a polynomial-time ITM S (the simulator) such that for any polynomial-time
ITM Z (the environment) the following families of random variables are computationally
indistinguishable:

{
EXECπ,A,Z(k, z)

}
k∈N,z∈{0,1}∗

and
{

EXECρ,S,Z(k, z)
}

k∈N,z∈{0,1}∗

Note that for this definition to be complete, we have to specify what we mean by
polynomial-time machines. In classical definitions of UC [Can01], polynomial-time ma-
chines are assumed to run a polynomial number of steps in the security parameter (we
call this a priori polynomial-time; cf. Definition 5 below). Other approaches define other
meanings of polynomial-time, see e.g., [Can05a].

For a complete definition of the UC framework, many more details must be specified,
e.g., how secure and insecure channels are modeled, how messages are scheduled, how
the adversary can corrupt parties, etc. Since these aspects are orthogonal to the results
in this paper, we refer the interested reader to [Can05a].

2.1 The Composition Theorem

Arguably, one of the most important properties of the UC framework is its universal
composition theorem. The composition theorem guarantees that whenever a protocol π

9 We allow Z to impersonate non-existing ITMs to simplify the formulation of Definition 7 below.
10 Since our modeling will guarantee that all valid systems will terminate with overwhelming probability,

the value of EXECS(k, z) in the case of non-termination is unimportant. We arbitrarily fix 0 for
concreteness.
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emulates some ideal functionality F , we can use π instead of F in any larger protocol
context without losing security.

We will illustrate this with a small example. Assume that FCOM is a functionality
for commitments (it is not necessary for this example to know how this functionality is
designed). Assume further that we are given some protocol π that emulates FCOM. Now
we design a protocol σFCOM that uses the ideal commitment FCOM and implements some
more complex functionality G. Since FCOM is an ideal commitment, no cryptography is
involved in using FCOM (in particular, we have perfect hiding and binding properties).
This greatly simplifies the proof that σFCOM implements G. In some cases, σFCOM might
not use any cryptography at all, and the security proof can be done by an information
theoretical argument. Unfortunately, since FCOM is an ideal assumption, σFCOM cannot
be implemented in a real life setting. Instead one has to replace all calls to FCOM by calls
to the protocol π. The question arises whether the resulting protocol σπ still securely
emulates G.

Here the universal composition theorem of the UC framework comes into play. It
guarantees that if π emulates F , then σπ emulates σF . Since we also know that σF

emulates G, it follows that σπ implements G (using the transitivity of the security notion)
and hence σπ is a secure protocol for the task described by G.

Note that without the composition theorem, we would have had to analyze σπ in one
go instead of analyzing the simpler protocols π and σF individually.

In order to state the universal composition theorem, one first needs to define the
operation of composing, i.e., one needs to specify the meaning of constructions of the
form σπ. We will one give an informal definition and refer to [Can05a] for details.

Definition 2 (Composition – informal). Let a protocol π and a protocol σ be given.
Assume that the machines in σ send messages to the machines in π. Then let σπ be
the protocol that contains the machines from π and from σ. In σπ, the machines in
π are modified such that instead of expecting messages from the environment Z and
sending messages to Z, they expect messages from machines in σ and send the answers
to machines in σ. (That is, π plays the role of the environment for σ.) Furthermore, σ
can call invoke arbitrarily many instances of π. We assume that the invocations of π are
tagged with a session id that identifies the instance of π, and that the answers produced
by an instance of π carry the same session id. New instances of π spring into existence
whenever a new session id is used for the first time (by σ or by the adversary).11

This definition also specifies the meaning of σF for an ideal functionality F since a
functionality is just a special case of a protocol.

Note that σ is allowed to invoke arbitrarily many instances of π. In our example
above, this would mean that σ is allowed to use an arbitrary number of commitments
instead of just a single one.

Using this notation, we can formulate the universal composition theorem from [Can05a].

11 Formally, all possible instances of π are already present from the beginning and are only activated if
needed. This is the reason why we need systems to be possibly infinite. However, for the intuition it
is often easier to assume that machines are created when needed.
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Theorem 3 (Universal composition theorem). Let π, ρ, and σ be a priori polyno-
mial protocols. Assume that π emulates ρ. Then σπ emulates σρ.

There is also a weaker variant of the universal composition theorem, which we call
the simple composition theorem. Here we require that σ invokes only one instance of π
or ρ, respectively.

Note the restriction that π, ρ, and σ have to be a priori polynomial. It is easy to see
that the composition theorem does not hold if no computational restriction is put on
these protocols.12 Yet, the restriction to strict polynomial time is a strong one; one of
the goals of this paper is to find a variant of the UC definition where this restriction is
relaxed.

We give a short proof sketch of the universal composition theorem from [Can05a] to
enable comparisons with our proof of the universal composition theorem in the case of
reactive polynomial time (Section 7).

Proof sketch (of Theorem 3). Assume π, ρ, and σ as in Theorem 3, and let A
denote the dummy adversary, i.e., an adversary that only executes orders from the envi-
ronment Z, and reports its own view to Z. By assumption, π emulates ρ, so that there
exists a simulator S such that

EXECπ,A,Z ≈ EXECρ,S,Z (1)

for all a priori polynomial environments Z. (Here ≈ denotes computational indistin-
guishability.) Hence, informally, S emulates attacks on (one instance of) π, while actually
running with (one instance of) ρ.

Our goal is to show that σπ emulates σρ. The dummy adversary is complete in the
sense that without loss of generality, it is the only adversary that needs to be considered
(see Section 6 for a detailed discussion). Hence it suffices to construct a simulator S∞

with
EXECσπ ,A,Z ≈ EXECρ,S∞,Z (2)

for any a priori polynomial Z.
Recall that the dummy adversary A only collects information and executes orders.

Hence, the dummy adversary A attacking σπ can be seen as a combination of several
dummy adversaries, namely dummy adversaries Ai that only attack one instance of sub-
protocol π each, and a dummy adversary Aσ that only attacks σ itself. (See Figure 1(a).)
Each Ai is “responsible” for messages from one π-instance.

We will construct S∞ as a combination of Aσ and several S-instances, one for each
invoked instance of subprotocol ρ. Similarly to protocol σπ, each Si is responsible for
messages from one ρ-instance in σρ. (See Figure 1(b).) Since each S-instance by as-
sumption simulates attacks performed on one π-instance, while running together with
one ρ-instance, this intuitively achieves that S∞ simulates attacks on many π-instances,
while running together with many ρ-instances.

12 Even if π emulates ρ, the protocols might be distinguishable by an unbounded machine. Then an
unbounded σ can be constructed that determines whether it is running as σπ or σρ and gives different
output accordingly.
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Now the only difference between σπ and σρ is precisely that in σπ, all ρ-instances of σρ

have been replaced with π-instances. Hence, S∞ simulates attacks on σπ, while actually
running with σρ. To formally show that this holds, we have to reduce the fact that S∞

is a good simulator to our assumption, namely the fact that S is a good simulator.

To this end, let us assume that S∞ is not a good simulator, i.e., that there exists an
environment Z such that

EXECσπ ,A,Z 6≈ EXECρ,S∞,Z . (3)

We apply a hybrid argument. Namely, consider the hybrid network Hl which is a “mix”
of real and ideal network in the following sense. Hl consists of Z and σ, where the first
l of σ’s subprotocol invocations are connected to an instance of ρ (with simulator Si),
and the remaining subprotocol instances are connected to an instance of π (with dummy
adversary Ai). The situation is depicted in Figure 1(c). In this notation, (3) is equivalent
to

EXECH0 6≈ EXECHp(k)
,

where p(k) is the number of subprotocol instances that σ invokes. A hybrid argument
shows that there is an index l = l(k) such that

EXECHl
6≈ EXECHl+1

. (4)

Informally, this means that “changing one subprotocol instance from π to ρ makes a
difference.” However, our assumption that π emulates ρ guarantees that changing a
single subprotocol instance from π to ρ does not make a difference. All that remains is
to formalize this contradiction.

We thus build an environment Z∗
l that encompasses the whole hybrid network Hl,

only without the (l + 1)-th subprotocol instance (the part of Figure 1(c) enclosed by a
dashed line). Hence, running Z∗

l with π and A yields an execution of Hl, and running
Z∗

l with ρ and S yields an execution of Hl+1. Our assumption (1) on S hence guarantees
that

EXECHl
= EXECπ,A,Z∗

l
≈ EXECρ,S,Z∗

l
= EXECHl+1

,

which contradicts (4). Hence (3) cannot hold, which means that we have proved our
goal (2).

Finally, we also have to prove that our constructed simulator S∞ is allowed in the
sense that S∞ is polynomial-time as required by Definition 1. For a priori polynomial-
time notions this is usually easy to verify, since the combination of polynomially many
polynomial-time machines always yields a polynomial-time machine.

3 Difficulties with prior notions

In order to illustrate the difficulties that can arise when trying to model polynomial
time in UC-like notions, we will sketch a few of the problems that arise in prior no-
tions of polynomial time. We will concentrate on difficulties with the UC framework of
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Fig. 1. Relevant networks for the proof of Theorem 3. (a) depicts environment Z, run-
ning with protocol σπ and dummy adversary A. For presentation, A is split up into
dummy adversaries Aσ and Ai for protocol σ and all respective π-instances. (b) illus-
trates Z running together with σρ and the simulator S∞ constructed during the proof.
For presentation, S∞ is split up into adversaries Aσ and Si for σ and the respective
ρ-instances. (c) shows (surrounded by a dashed line) the hybrid environment Z∗

l used in
the reduction that proves the settings (a) and (b) indistinguishable (from Z’s point of
view).
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[Can05a]. However, we stress that we simply chose this example since [Can05a] is the
most well-known and popular model. E.g., in the Reactive Simulatability (RSIM) frame-
work [BPW04b] the issue is solved using so-called length-functions which are also known
to lead to difficulties (see, e.g., [HMQU05]).

Network model. We first sketch very roughly how polynomial time is modeled in
[Can05a]. Our description is far from complete but it should be sufficient to understand
the examples below. The ITMs in a network are arranged in a hierarchy of invocation.
The top level contains the environmentZ. The second level contains the machines directly
invoked by Z, namely the adversary (or simulator) and the protocol machines. Further
levels might include subroutines of the protocol machines (these subroutines may, e.g.,
result from the composition, in this case they are the ITMs comprising the subprotocol).
Finally, the lowest level will usually contain the functionalities, which are modeled as
subroutines shared by different ITMs. There are two kinds of communication in the
network. We have vertical communication between a machine and its subroutines, called
subroutine input and subroutine output. And we have horizontal communication between
different machines, which represents messages sent over the network. Commonly, these
messages will be sent between machines on the same level or between machines on
any level and the adversary. The adversary communicates with the environment using
vertical communication (since protocol and adversary are considered subroutines of the
environment), and with protocol machines using horizontal communication (since this
represents communication over the network). The auxiliary input of Z is considered a
subroutine input for Z.

Polynomial time definition. In this setting, we model polynomial time by requiring
the following property of any ITM in the network (cf. Definition 3 in [Can05a] for details
and motivation):

Definition 4 (Canetti-PPT). An ITM M is PPT in the sense of [Can05a] (short:
Canetti-PPT) if and only if M runs in time which is polynomial in n := k+nI−nO−k·nN .
(That is, there is a fixed polynomial p such that the number of M ’s computational steps
taken so far never exceeds p(n).) Here k is the security parameter, nI the total length
of the subroutine inputs received from a higher level, nO the total length of subroutine
outputs passed to a lower level, and nN the number of ITMs that M communicates with.

Note that we will always have nI ≤ nO (since otherwise n < 0), i.e., we cannot send
longer inputs to subroutines than we get from a higher level. This is why it is necessary
that Z gets some initial subroutine input, namely the auxiliary input.

Padding. At a first glance it might seem that the requirement that no ITM can call
subroutines with inputs longer than the inputs of that ITM itself is very restrictive.
However, this is solved by the use of padding: when designing a protocol and the cor-
responding ideal functionality, one requires all inputs to contain a padding of sufficient
length such that the protocol machines are able to call their subroutines/functionalities.
For example, a functionality F for secure message transmission would expect an input
of the form (m, 1t(|m|)) where t is a polynomial that depends on the protocol we would
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like to use to implement F . Although an explicit treatment of this padding can be cum-
bersome in some cases, it at least allows to write protocols without an a-priori bound on
their runtime.

However, an example for a protocol where the use of padding meets its limits is the
case of the database functionality D described in Section 1. This functionality represents
a publicly available centralized database. The functionality D accepts queries of the
form (store, key, data) and (retrieve, key). Upon retrieve, the data previously stored
with key is returned. As a functionality, this machine is Canetti-PPT even without any
padding (it does not invoke subroutines, so nO = 0, and thus the functionality is allowed
to run in polynomial time in the total length of the queries).

However, even simple protocol machines that use the database D may not be polynomial-
time any more. For instance, consider a party P1 that wants to copy the entry stored
at key1 to key2. With the current specification of the database functionality, this is only
possible by retrieving the data data stored at key1 and then storing data under key
key2. However, to do so, P1 needs to run Ω(|data |) steps. Thus the input (e.g., from the
protocol environment Z) of P1 needs a padding whose length is dependent on l := |data |.
For one, this length l might not be known in advance (it depends on the inputs of other
protocol parties), so it is unclear how to specify the length of the padding P1 expects.
It seems possible to interactively let P1 ask its own environment for a suitably long
padding depending on the size l of the database entry. However, these solutions are
(seemingly unnecessarily) cumbersome and might make the analysis more complicated.
Furthermore, even if we would model P1 to have an interactive protocol interface that,
e.g., first requests additional padding of sufficient length and then copies the data, this
might have implications on the simulatability of the protocol: in some cases, whether and
to what extent the database is used might have to be hidden from the environment; for
example, if in the real and the ideal model, a different number of queries to the database
is performed by some larger protocol.

Dummy adversary and composition. A very instructive case is the question
whether the dummy adversary is complete. Intuitively, the dummy adversary is an ad-
versary that simply does what it is told by the environment and forwards all messages
received from the protocol to the environment. By completeness of the dummy adversary
we mean that it is sufficient to consider only the dummy adversary as a real adversary
A in the UC security definition Definition 1. (See Section 6 for a detailed exposition.)
Validity13 and completeness of such a dummy adversary is crucial for the proof of the
Universal Composition Theorem. Unfortunately, a machine as in Definition 12 that just
forwards messages in both directions is not Canetti-PPT (i.e., it is not valid) since it may
have to forward messages that come from the protocol, i.e., via horizontal communica-
tion. In order to handle this problem, [Can05a] proposes to define the dummy adversary
Ã as follows:

13 We say that an adversary A is valid if A is considered in the (UC) security definition, i.e., if A is in
the set of “allowed” adversaries.
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– When asked by the environment Z to send a message m to the protocol, that message
m is sent. (Since A is a subroutine of Z, this is permitted.)

– When receiving a message m from the protocol, the adversary Ã first sends l := |m|
to Z. If it then receives 1l from Z, it sends m to Z.

This definition now allows to forward arbitrary messages, however, it raises the following
difficulties: First, it is very sensitive to the machine and network model. In particular,
for Ã to compute l = |m|, it is necessary that messages are always prefixed with their
length (otherwise Ã will take time Ω(l) for measuring l). Further, it is necessary that m
is still accessible when 1l is received from the environment, although Ã did not have the
runtime to copy m to some working tape. However, assuming a suitable machine model,
these problems are easily solvable. More problematic is the second difficulty: The dummy
adversary is not complete, i.e., security with respect to the dummy adversary does not
imply security with respect to arbitrary Canetti-PPT adversaries.14 Note that this poses
a problem for two reasons: First, the dummy adversary is a very useful construct when
proving the security of concrete protocols, allowing to consider only a single adversary,
and second, the proof of the Universal Composition Theorem in [Can05a] uses the dummy
adversary in an integral way (however, we do not know whether only the proof or the
theorem itself is invalidated).

To see that the dummy adversary from [Can05a] is really not complete (in contrad-
ication to [Can05a, Claim 10]), assume a function f with the following property: We
have |f(t, x)| = |x|, and f(t, x) can be computed in time polynomial in t + |x|, but for
any polynomial p, there is a polynomial p̃ such that f(p̃(k), x) cannot be computed prob-
abilistically in time p(k) given a uniformly chosen x ∈ {0, 1}k. (more exactly, in time
p(k), the probability of guessing f(p̃(k), x) is negligible). A candidate for such a function
would be, e.g., applying some suitable hash function t-times to x.

We then define the protocol π to expect a message (1t, x) with |x|, 2t ≤ k from Z and
then to send (1t, f(t, x)) to the adversary.15 Further, we define the protocol ρ to expect
a message (1t, x) with |x|, 2t ≤ k from Z and then to send (t, x) to the adversary. Note
that both π and ρ are Canetti-PPT.

First, we show that π emulates ρ with respect to the dummy adversary. The dummy
adversary first sends the number t + |f(t, x)| = t + |x| to the environment and only
when receiving 1t+|x|, it sends (1t, f(t, x)) to the environment. Thus the corresponding
simulator also sends t + |x| to the environment, and when receiving 1t+|x|, it computes
f(t, x) and sends (1t, f(t, x)) to the environment. The simulator is Canetti-PPT since
computing f(t, x) and sending (1t, f(t, x)) takes time polynomial in the length of 1t+|x|.

Now, we show that π does not emulate ρ with respect to arbitrary Canetti-PPT
adversaries. For a polynomial p̃, let Zp̃ be an environment that chooses a random x ∈
{0, 1}k and sends (1p̃(k), x) to the protocol. Let A be an adversary, that upon receipt of
(1t, f(t, x)) forwards f(t, x) to the environment. Now a suitable simulator has to compute

14 This contradicts Claim 10 on page 45 of [Can05a]. The mistake in their proof was the assumption that
the simulator S constructed there is always Canetti-PPT.

15 Depending on the exact machine model, we might also send 1t and f(t, x) in two separate messages
if receiving a very long 1t might make accessing f(t, x) impossible.
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f(t, x) from (t, x). Since the simulator has a fixed runtime polynomial p, there is a p̃ such
that f(p̃(k), x) cannot be computed in time p(k). Thus, in an interaction with Zp̃, that
simulator will return f(t, x) = f(p̃(k), x) only with negligible probability, allowing Z to
distinguish real and ideal model. Thus π does not emulate ρ.

Dummy parties. A useful construct in UC-like security definitions is that of a dummy
party. Such a dummy-party is used when considering a single ideal functionality as the
protocol, for each player we then introduce a dummy-party that forwards the messages
between the functionality and the environment. These parties are very useful, e.g., for
modeling corruptions (in particular in the adaptive case) in the ideal model. (In [Can05a]
such dummy-parties are introduced on page 51 under the caption “Ideal protocols”.)
However, since dummy-parties have to forward messages from the functionality to the
environment, they are not Canetti-PPT. An interactive padding convention would have
to be introduced similar to those used with the dummy adversary, but in this case the
same padding convention would have to be followed by the parties in the real protocol
since otherwise the environment could trivially distinguish the real and the ideal model.

Summary. We want to stress again that the problems mentioned in this section do
not compromise the essence of the results of [Can05a]. E.g., probably no “reasonable”
cryptographic protocol will fail to compose because of quirks in the modeling of polyno-
mial time; most results in the UC setting are robust with respect to the details of the
modeling. However, to put these results on exact and rigorous foundations, it is necessary
to develop a model of polynomial time that does not lead to any formal inconsistencies.

4 Our definition of polynomial runtime

In order to define a computational security notion, we first have to fix a definition of
polynomial time. Classically, an ITM is considered to be polynomial-time if it runs in
polynomial time in the security parameter. This notion we will call a priori polynomial
time:

Definition 5 (A priori polynomial time). An ITM M runs in a priori polynomial
time if there is a polynomial p such that for any sequence of incoming messages, M runs
at most p(k) steps with probability 1 upon security parameter k.

However, as seen in the introduction, this definition is far from being flexible enough.
Many protocols that are intuitively considered to be polynomial-time are rejected by
this definition, e.g., a secure channel functionality or a database. Investigating these
examples, we see that what we intuitively expect from a polynomial-time protocol is
that when the protocol is used in an a priori polynomial-time context, the whole system
still runs in polynomial time. For example, although a channel is not a priori polynomial-
time (cf. Section 1.4), a channel can be implemented in polynomial time if the messages
sent through it are generated by a a priori polynomial time machine.

To capture even more protocols, we can slightly relax the condition, and only require
that the whole system runs in polynomial time with overwhelming probability.16 The

16 It turns out that this relaxation is indeed necessary for our security notion, see Section 9.1.
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resulting notion is maybe the weakest notion of polynomial time that still makes sense.
Any weaker definition would allow for protocols that interact with an a priori polynomial
environment and run a superpolynomial number of steps with non-negligible probability.
We call this notion reactive polynomial time, and it is formalised by the following two
definitions.

Definition 6 (Polynomial time with overwhelming probability). An executable
system S of ITMs runs in polynomial time with overwhelming probability (short: polynomial-
time w.o.p.) if there is a polynomial p and a negligible function µ such that for all
k ∈ N, z ∈ {0, 1}∗ we have TIMES(k, z) > p(k) with probability at most µ(k).

Definition 7 (Reactive polynomial time). A system S of ITMs runs in reactive
polynomial time if for any a priori polynomial-time ITM Z the system S ∪ {Z} runs in
polynomial time with overwhelming probability.

We remark that in this definition, S can impersonate any machine that the machines
in S could ever run with (cf. footnote 9). For example, if S is a protocol and does not
contain an adversary, then Z also controls messages that are sent over the (insecure)
network (by impersonating the adversary). And if S already contains an adversary, then
Z can only control the protocol inputs and outputs. In particular, Definition 7 makes
sense both for protocols S without adversary, and systems S that include a protocol and
an adversary.

Is the notion too permissive? At a first glance, this notion might seem too weak.
One might argue that the system S is allowed a running time k2c

, where kc is the
running time of Z for some constant c. It might seem that such constructions lead to too
powerful a system S of possibly exponential runtime. However, this is not the case, since
our definition guarantees that the overall network, and thus in particular S, will always
run in polynomial time in k (Lemma 9 below). The seeming power only stems from the
fact that the polynomial that bounds the running time may depend on Z, thus there is
no polynomial p independent of Z such that S runs in polynomial time in p(k + t) where
t is the running time of Z.

We remark that this absence of a uniform polynomial bound p reflects the modeling
of existing notions of zero-knowledge and simulatability. For example, in [Gol01], the
definition of (non black-box) zero-knowledge is—roughly—formulated as follows: for any
polynomial-time verifier there is a polynomial-time simulator such that the verifier’s
and the simulator’s output is indistinguishable. In particular, the running time of the
simulator does not have to be polynomially bounded in the running time of the verifier.
Instead, it is only required that if the verifier runs in polynomial time, so does the
simulator. In particular, the simulator might run, e.g., tlogk t steps17 where t is the running
time of the (simulated) verifier and k the length of the common input x. This is analogous
to our modeling if we identify the verifier’s runtime with that of Z and the length of the
common input with the security parameter.

17 Note that this should not be confused with the quasipolynomial tlog t which would not be allowed.
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However, if a uniform bound on the running time of S is needed, it is possible to
strengthen the notion in a way that disallows an arbitrary dependency on Z’s complexity.
Namely, a stricter definition, called uniform reactive polynomial time, is also conceivable:
The runtime of S has to be bounded by p(k + q) w.o.p. where q is the runtime of Z
and p is a polynomial independent of Z. (In contrast, Definition 7 allows p to depend on
Z.) Indeed, uniform reactive polynomial time is as suitable a notion of polynomial time
as reactive polynomial time, and we show in Section 9.2 that the results of this paper
also hold for that notion. We have chosen Definition 7 as our main notion because—
although this may not be obvious at a first glance—it better reflects how polynomial-
time is classically modeled in cryptography. We want to stress however, that this is just
a design choice and that we prove all our results for both notions.

Why allow a negligible error? In Definition 7 we have introduced the notion of a
reactively polynomial network S roughly as follows: For any ITM Z, the network S∪{Z}
is polynomial w.o.p. However, the reader might question whether the additional gener-
ality of allowing networks that run in superpolynomial time with negligible probability
is not offset by the added complexity. Instead, we could require S ∪ {Z} to be a pri-
ori polynomial; the resulting notion we call strong reactive polynomial time. Replacing
reactive polynomial time by strong reactive polynomial time in Definition 8, we get a
seemingly simpler security definition. Unfortunately, it can be shown that the resulting
security definition does not fulfil the Universal Composition Theorem (Theorem 16). See
Section 9.1 for additional details and proofs.

Security notion. Equipped with the notion of reactive polynomial time, we can
now look for a variant of the UC notion that can handle arbitrary reactively polynomial
protocols (i.e., we want that all the usual properties like the composition theorem hold for
reactively polynomial protocols). To design such a UC variant, we first have to specify
what machines should be considered valid adversaries and simulators. With classical
notions, a valid adversary/simulator would run in a priori polynomial time. However,
this is not sufficient in our context, since in this case the adversary/simulator might
have to terminate before the protocol. In this case the real protocol might continue to
work without adversary, whereas the ideal protocol might rely on a simulator, making a
successful simulation impossible (examples for such ideal protocol tasks are the public-key
encryption functionality FPKE and the signature functionality FSIG, cf. [Can01]). Hence,
we instead try to find the largest class of adversaries/simulators for a given protocol
such that the definition still makes sense, i.e., such that the overall system does not run
in superpolynomial time. Obviously, we minimally require that the adversary and the
protocol together are still reactively polynomial. It will turn out that this requirement
is also sufficient to get the properties we expect from a UC notion (see the following
sections). We therefore call an adversary/simulator valid if the network consisting of
adversary/simulator and the real/ideal protocol is reactively polynomial. Finally, we
have to specify which environments to allow. To ensure that the overall protocol is
still at least polynomial w.o.p., we require an a priori polynomial environment. Note
that in contrast to the adversary/simulator, an a priori polynomial environment is fully
sufficient, since intuitively its task is to observe whether there is some polynomial p
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such that the real and the ideal protocol can be distinguished within time p. Combining
these observations into a single definition, we propose the following variant of the UC
definition that can handle reactively polynomial protocols:

Definition 8 (UC with respect to reactive polynomial time). We say an ITM
M is valid for π (or ρ) if π ∪ {M} (or ρ ∪ {M}) runs in reactive polynomial time.

Then π emulates ρ (with respect to reactive polynomial time) if for any ITM A
that is valid for π, there is an ITM S that is valid for ρ such that for every a priori
polynomial-time ITM Z the following families of random variables are computationally
indistinguishable:

{
EXECπ,A,Z(k, z)

}
k∈N,z∈{0,1}∗

and
{

EXECρ,S,Z(k, z)
}

k∈N,z∈{0,1}∗

In the following, we will simply say “UC” and “emulate” instead of “UC/emulate with
respect to reactive polynomial time”.

Note that there might be other possibilities how to model a UC definition that can
handle reactively polynomial protocols (e.g., one could define that an adversary A is
valid if for all reactively polynomial protocols π, the network π ∪ {A} is reactively
polynomial). However, all other variants the authors have considered seem to break at
least one of the properties that we minimally expect from a viable UC variant (i.e.,
the composition theorem holds, the relation is transitive and reflexive, and no networks
running in superpolynomial time with non-negligible probability occur).

Note further that we only claim that our security definition makes sense when consid-
ering reactively polynomial protocols. If we apply the definition to unbounded protocols,
unexpected effects may occur (e.g., the set of valid adversaries may be empty).

Why not allow a negligible error for the runtime bounds of the protocol
context? Given that it is essential to allow a negligible error for the runtime bounds
of protocol and adversary, the question arises why the runtime bound for the protocol
context Z in Definition 8 has to hold with probability 1 (by Definition 5). Alternatively,
one could allow environments Z that run in polynomial time only with overwhelming
probability. We do not pursue this variation further because it leads to an equivalent
Definition 8: Any Z that runs in a priori polynomial-time except with negligible proba-
bility µ(k) can be substituted with an a priori polynomial-time Z ′ that behaves like Z,
except with probability µ(k). Hence Z ′ distinguishes real and ideal protocol whenever
Z does.

Similarly, one might allow Z to run in a posteriori polynomial time (see page 5). This
would lead to an equivalent Definition 8, too, by an argument analogous to that given
in footnote 3.

And if we instead quantify over environments Z that are APPT-BC (cf. page 6),
then we might loose completeness as no guarantees can be made about the running time
of Z when running with π ∪ {A} or ρ ∪ {S} (since these networks are not necessarily a
priori polynomial time).

How easy is it to show reactive polynomiality? Since we are interested in actu-
ally analyzing protocols, it is crucial that it is easy to check whether a given protocol,
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adversary or simulator is allowed in our setting. For all concrete protocols and ideal func-
tionalities that we are aware of, this is easy to check: these protocols consist of a fixed
polynomial number of rounds (for each protocol invocation or input) with messages and
running time that are of polynomial size in the respective protocol input. (Ideal func-
tionalities are generally even easier to handle, since they consist only of one machine.)
Thus we immediately get that the protocol runs in polynomial time with any a priori
polynomial-time Z. The validity of adversaries and simulators may, at first glance, be
harder to verify. After all, nothing is known a priori about a real adversary A, and it is
not immediately clear how the complexity of A would be in, say, a blackbox simulation
inside the corresponding simulator S.

Fortunately, there is a very simple real adversary, the so-called dummy adversary
that we can restrict ourselves to, cf. Section 6. It suffices to give a good simulator for
this dummy adversary. Thus, security can be proven by analyzing only a single simulator.
All concrete constructions of such simulators that we are aware of are in fact valid in
the sense of Definition 8. (In fact, since in many simulator descriptions occurring in the
literature, there is no discussion of when the simulator actually halts, they may not be
considered polynomial-time in any of the stricter notions of polynomial time occurring
in prior work.)

Relation to classical notions. Furthermore, the reader might ask in what relation
our notion stands to the classical UC definitions. Since the classical definitions are not
meaningful for protocols that are not a priori polynomial, we are interested in the case
that π and ρ are a priori polynomial protocols. In this case, it turns out that UC with
respect to reactive polynomial time lies strictly between two common classical definitions:
UC and specialized-simulator UC18. That is, if π emulates ρ with respect to classical UC,
this strictly implies that π emulates ρ with respect to reactive polynomial time, which
in turn strictly implies that π emulates ρ with respect to classical specialized-simulator
UC. We believe that the fact that UC with respect to reactive polynomial time lies
strictly between two established notions gives additional evidence that our notion indeed
captures intuitive security requirements. See Section 10 for additional details and proofs.

5 Basic properties

In this section, we state some simple but important properties of our definition.

Efficient executions. The first lemma guarantees that the executions EXECπ,A,Z

and EXECρ,S,Z that are considered in Definition 8 do not run in superpolynomial time.

Lemma 9. Let π be a protocol, A an adversary or simulator that is valid for π, and
Z an a priori polynomial-time environment. Then there is an a priori polynomial-time

18 Specialized-simulator UC is defined like UC, with the difference that the simulator may depend on the
environment. We stress that we consider the specialized-simulator UC notion as defined by [Lin03],
which is not equivalent to the UC notion from [Can05a]. There also exists a specialized-simulator UC
variant in [Can05a] that is equivalent to standard UC (see [Can05a, Claim 12]).
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probabilistic Turing machine M such that M(1k, z) and EXECπ,A,Z(k, z) are statistically
indistinguishable in k.

Proof. Since A is valid for π, π ∪ {A} is reactively polynomial. Since Z is a priori
polynomial, it follows that π ∪ {A,Z} is polynomial w.o.p.. So there is a polynomial p
such that TIMEπ,A,Z(k, z) < p(k) with overwhelming probability. By letting M(1k, z)
simulate EXECπ,A,Z(k, z) for at most p(k) steps, the lemma follows. ut

Reflexivity and transitivity. A very important property of UC-type security defi-
nitions which is often underestimated is that the relation of emulation is reflexive and
transitive. A non-reflexive relation (i.e., a protocol does not emulate itself) would at
least raise some doubts about the meaningfulness of the definition.19 A non-transitive
relation strongly lessens the usefulness of the composition theorem. For example, a typi-
cal use case of the composition theorem is the following: We have that π emulates ρ and
σρ emulates τ (where ρ and τ usually are ideal functionalities). Using the composition
theorem we then get that σπ emulates σρ which emulates τ . By transitivity, it follows
that σπ emulates τ . It may seem that transitivity is a trivial property, but surprisingly
many of our approaches failed this property.

Lemma 10 (Reflexivity, transitivity). Let π, ρ and σ be protocols. Then π emulates
π (reflexivity), and if π emulates ρ and ρ emulates σ, then π emulates σ (transitivity).

Proof. We first show reflexivity: If A is a valid adversary for π, then S := A is a valid
simulator for π, and for all Z we have EXECπ,A,Z = EXECπ,S,Z , so π emulates π.

We now show transitivity: Let A be a valid adversary for π. Then, since π emulates
ρ, there is a valid simulator S for ρ such that EXECπ,A,Z and EXECπ,S,Z are computa-
tionally indistinguishable for all a priori polynomial Z. Then A′ := S is a valid adversary
for ρ, so since ρ emulates σ, there is a valid simulator S ′ for σ such that EXECρ,A′,Z and
EXECσ,S′,Z are computationally indistinguishable for all a priori polynomial Z. Using
the transitivity of the computational indistinguishability, we see that for every A valid
for π there is a S ′ valid for σ such that EXECπ,A,Z and EXECσ,S′,Z are computationally
indistinguishable for all a priori polynomial Z. Thus π emulates σ. ut

On generalizations of transitivity. Successive application of Lemma 10 yields for
any constant n that π1 emulates πn whenever πi emulates πi+1 for all 1 ≤ i < n. We
cannot hope for more (e.g., if n is polynomial in the security parameter k). Namely,
consider an infinite sequence π1, π2, . . . of protocols such that πi emulates πi+1 for all
i. Let p(k) be any function with limk→∞ p(k) = ∞. In this situation, one might hope
that π1 emulates πp(k), where πp(k) is the protocol that behaves like πp(i) when invoked
with security parameter k = i. (Such a form of transitivity would be extremely useful,
e.g., to avoid “full-fledged hybrid arguments,” and instead focus on two individual hybrid
systems.) However, this “generalized transitivity” does not hold in general. For instance,

19 Unless, of course, the non-reflexivity is only due to syntactical reasons, e.g., if the ideal protocol is
formally required to consist of a functionality.
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say that πi outputs 1 on security parameter p(k) = i, and 0 otherwise. Note that this
implies that πi emulates πi+1 for any fixed i. However, π1 outputs 0 almost always, and
πp(k) outputs 1 always.

Note that this impossibility is not a property specific to our definition, the example
given here works with essentially any security notion unless it uses concrete security
bounds.

One-bit output without loss of generality. Finally, the following lemma states
that without loss of generality we can consider only environments that give a single bit of
output. While this property is not necessary for a useful security definition (and indeed,
some UC-like security notions do not fulfil it, e.g., specialized-simulator UC [Lin03]), it
can sometimes be convenient to assume that the output consists of a single bit, and some
authors even define the UC notion with respect to one-bit output.

Lemma 11. We say that π emulates ρ with respect to one-bit output, if Definition 8
applies when quantifying only over environments Z that give a single bit of output.

Then π emulates ρ with respect to one-bit output if and only if π emulates ρ.

Proof. By definition, UC implies UC with respect to one-bit output. So we only have
to show the opposite direction. Assume that π does not emulate ρ. Then (using the
definition of computational indistinguishability), there is a valid adversary A for π such
that for every valid simulator for ρ, there exists an a priori polynomial environment Z,
a nonuniform probabilistic polynomial-time algorithm D and a sequence zk ∈ {0, 1}∗,
such that

∣∣Pr[D(1k, zk,EXECπ,A,Z(k, zk)) = 1] − Pr[D(1k, zk,EXECρ,S,Z(k, zk)) = 1]
∣∣

is not negligible. Let for the moment A and S be fixed. For the nonuniform probabilis-
tic polynomial-time algorithm D, there is a uniform probabilistic polynomial-time algo-
rithm D̂ and a sequence dk of strings of polynomial length such that D̂(1k, dk, zk, x) =
D(1k, zk, x). Let Ẑ be the environment that upon security parameter 1k and auxiliary
input (dk, zk) simulates Z with auxiliary input zk. When Z would give output x, then
Ẑ gives output D(1k, dk, zk, x). Let ẑk := (dk, zk). Then Pr[EXECπ,A,Ẑ(k, ẑk) = 1] =

Pr[D(1k, zk,EXECπ,A,Z(k, zk)) = 1] and Pr[EXECρ,S,Ẑ(k, ẑk) = 1] = Pr[D(1k, zk,EXECρ,S,Z(k, zk)) =

1]. Thus
∣∣Pr[EXECπ,A,Ẑ(k, ẑk) = 1] − Pr[EXECρ,S,Ẑ(k, ẑk) = 1]

∣∣ is not negligible. Sum-
marizing, we have that there is a valid adversary A such that for any valid simulator S
there exists an a priori polynomial environment Ẑ such that EXECπ,A,Ẑ and EXECρ,S,Ẑ
are not computationally indistinguishable. Thus π does not emulate ρ with respect to
one-bit output. ut

6 Dummy Adversary

A very useful tool for dealing with a UC-like definition is the concept of the dummy
adversary.

Definition 12 (Dummy Adversary). The dummy adversary is the following machine.
Whenever it receives a message from the protocol (this may include control messages
like the responses to corruption requests), it forwards that message to the environment
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(including the id of the sender of the message). When it receives a message from the
environment to send a given message to a given recipient (which may be a normal mes-
sage, or a control message like a corruption request), the dummy adversary sends that
message to the required recipient.

The usefulness of the dummy adversary stems from the fact that for many variants of
the UC definition (including ours, see below) one can without loss of generality consider
only the dummy adversary (we say, the dummy adversary is complete). This has several
advantages. First, security proofs can be formulated much simpler, since we can assume
a single given adversary and construct a simulator for that given adversary (instead of
formulating a generic transformation from adversaries to simulators). Second, even with
classical UC definitions, the proof of the universal composition theorem uses the dummy
adversary (at least if we allow polynomially many instances of the subprotocol). And
third, some authors find it more intuitive to define security directly with respect to the
dummy adversary.

Furthermore, in our situation, the dummy adversary has additional advantages. First,
even the proof of the simplest case of the composition theorem (where only a single
instance of the subprotocol may be invoked) heavily depends on the completeness of
the dummy adversary. Second, the security definition as formulated in Definition 8 may
be hard to handle, since it requires us to prove the existence of a valid simulator for
every valid adversary. Since the definition of validity depends on the protocols under
consideration, it may be very difficult to find a simple characterisation of the set of all
adversaries. However, when using the dummy adversary, such a characterisation is not
necessary, and it is sufficient to construct a concrete valid simulator for this concrete and
simple adversary.

However, despite the seeming simplicity of the concept of the dummy adversary, some
care has to be taken. In the classical UC notion, the adversary is required to be a priori
polynomial. Since the dummy adversary does not have any a priori bound on the length or
number of messages it delivers for the environment, it is not a priori polynomial. So in the
classical UC notion one instead has to consider a family of dummy-adversaries that are
parametrized over the maximum number and length of messages they can transmit. This
introduces additional complexity into proofs using the dummy adversary. Fortunately, it
turns out that for our UC variant such a family of dummy-adversaries is not necessary
since for every reactively polynomial protocol, the dummy adversary is valid.

Lemma 13 (Validity of the dummy adversary). If π is a reactively polynomial
protocol, the dummy adversary is valid for π.

Proof. Assume that the dummy adversary Ã was not valid. Then there is an a priori
polynomial ITM Z such that π∪{Ã,Z} is not polynomial w.o.p. Since Ã only forwards
messages between Z and π, we can construct an a priori polynomial ITM Z ′ that directly
sends and receives those messages to and from π. Then Z ′∪{π} is not polynomial w.o.p.
This is a contradiction to the fact that Z ′ is a priori polynomial and π is reactively
polynomial.20 ut

20 We stress that that by Definition 7, Z ′ may impersonate the adversary when running with π.
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Ã

Z ′
p

(c)

Z

A

ρ

S̃

Z ′
p

(d)

Z

A

ρ

S̃

Z ′

(e)

Z

A

ρ

S̃
S

(f)

Fig. 2. Networks in the proof of the completeness of the dummy adversary. The hatched
background of machine A in (c) and (d) denotes an enforced runtime bound of p(k).

Of course, the validity of the dummy adversary does not yet ensure its usefulness.
Instead, we need to be able to consider without loss of generality only the dummy
adversary. This is guaranteed by the following theorem.

Theorem 14 (Completeness of the dummy adversary). We say π emulates ρ
with respect to the dummy adversary if there is an ITM S̃ that is valid for ρ such that
for every a priori polynomial-time ITM Z the ensembles EXECπ,Ã,Z and EXECρ,S̃,Z

are computationally indistinguishable. Here Ã denotes the dummy adversary.
Assume that π is reactively polynomial. Then π emulates ρ if and only if π emulates

ρ with respect to the dummy adversary.

Proof. Assume that π emulates ρ. Since the dummy adversary Ã is valid for π by
Lemma 13, it directly follows that π emulates ρ with respect to the dummy adversary.

Assume now that π emulates ρ with respect to the dummy adversary Ã. Let S̃ be
the corresponding simulator, i.e., S̃ is valid for ρ and the ensembles EXECπ,Ã,Z and
EXECρ,S̃,Z are computationally indistinguishable for any a priori polynomial Z.

To show that π emulates ρ we have to show that for any valid adversary A, there is
a valid simulator S such that the ensembles EXECπ,A,Z and EXECρ,S,Z are computa-
tionally indistinguishable for any a priori polynomial Z. Let therefore A be an adversary
that is valid for π, and let Z be an a priori polynomial environment. We will construct
a valid simulator for ρ that depends only on A (and not on Z). The network consisting
of π, Z and that adversary A is depicted in Figure 2 (a).

Since A is valid and Z is a priori polynomial, the network π ∪ {A,Z} is polynomial
w.o.p. In other words, there is a polynomial p such that TIMEπ,A,Z(k, z) ≤ p(k) with
overwhelming probability for all z ∈ {0, 1}∗ and k ∈ N.

We now construct the environment Z ′ which is supposed to run with the dummy ad-
versary Ã. The environment Z ′ simulates the original environment Z and the adversary
A. Whenever A sends a message to the protocol π, the environment Z ′ instead instructs
the dummy adversary Ã to send that message. Conversely, whenever the dummy adver-
sary Ã informs the environment Z ′ of an incoming message, that message is passed to
the simulated adversary A.

Obviously, the resulting network (cf. Figure 2 (b)) is a faithful simulation of the
original network, in other words, EXECπ,A,Z = EXECπ,Ã,Z′ .

Now we modify Z ′ as follows, resulting in a new environment Z ′
p: When the running

time of the simulated A exceeds p(k), then Z ′
p terminates with a special output beep (we
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assume that Z never outputs beep). Since TIMEπ,A,Z(k, z) > p(k) only with negligible
probability, the modified environment Z ′ terminates with output beep only with negli-
gible probability (when running with π and Ã, cf. Figure 2 (c)). Therefore EXECπ,Ã,Z′

and EXECπ,Ã,Z′
p

are computationally indistinguishable (in fact even statistically indis-

tinguishable). Note further that since Z is a priori polynomial, and the simulated A runs
at most p(k) steps, the environment Z ′

p is a priori polynomial, too.

Thus, since π emulates ρ with respect to the dummy adversary, EXECπ,Ã,Z′
p

and

EXECρ,S̃,Z′
p

(cf. Figure 2 (d)) are computationally indistinguishable.

Since EXECπ,Ã,Z′
p

= beep only with negligible probability, EXECρ,S̃,Z′
p

= beep holds

only with negligible probability. Therefore we can replace Z ′
p by Z ′, and thus EXECρ,S̃,Z′

p

and EXECρ,S̃,Z′ (cf. Figure 2 (e)) are computationally indistinguishable.

By constructing a simulator S that simulates both A and S̃, we get the situation
depicted in Figure 2 (f). Since this is essentially just a regrouping of machines, we have
EXECρ,S̃,Z′ = EXECρ,S,Z .

Summarising our results so far, we have that EXECπ,A,Z and EXECρ,S,Z are compu-
tationally indistinguishable. Note that this holds for any Z, and that the construction
of S does not depend on Z.

It is left to show that S is valid for ρ. Since S̃ is valid for ρ, the network ρ∪ {Z ′
p, S̃}

is polynomial w.o.p. (Figure 2 (d)). Since the network ρ ∪ {Z ′
p, S̃} behaves differently

from ρ ∪ {Z ′, S̃} (Figure 2 (e)) only if Z ′
p output beep which happens with negligible

probability, the network ρ ∪ {Z ′, S̃} is polynomial w.o.p., too. Then also ρ ∪ {S,Z}
(Figure 2 (f)) is polynomial w.o.p. Since this holds for any a priori polynomial Z, it
follows that ρ ∪ {S} is reactively polynomial, and therefore S is valid for ρ. ut

7 Universal Composition Theorem

Arguably the most salient property of the UC security definition (and other security
definitions of the same kind like RSIM [PW01, BPW04b]) is the so-called composition
theorem. The composition theorem guarantees that we can securely replace an ideal func-
tionality with its implementation. More formally, the composition theorem states that
whenever π emulates ρ, then σπ emulates σρ. The composition theorem is a well-known
result for classical UC notions and comes in two flavors. One flavor allows σ to invoke an
arbitrary number of instances of the subprotocol π or ρ, respectively (universal compo-
sition theorem), while the other, more restricted flavor requires σ to invoke only a single
instance of the subprotocol (called the simple composition theorem in the following). It
is known that for some variants of the UC notion only the simple composition theorem
holds [HU06]. For UC with respect to reactive polynomial time, however, the universal
composition theorem holds (see below) of which the simple composition theorem is a
direct consequence. Nevertheless, since the proof of the universal composition theorem
is quite involved, here we start with the conceptually simpler theorem for simple compo-
sition. We believe that reading the proof for this simple composition theorem first will
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Fig. 3. Networks appearing in the proof of the simple composition theorem

help the reader to familiarize himself with the setting and our model before attempting
to go through the more involved proof of the universal composition theorem.

Theorem 15 (Simple Composition Theorem). Let π, ρ and σ be protocols. Assume
that π emulates ρ. Assume that σ calls only one subprotocol instance. Assume further
that π and σπ are reactively polynomial. Then σπ emulates σρ.

Proof. Let A be the dummy adversary. Since π is reactively polynomial, A is a valid ad-
versary for π. Therefore there exists a simulator S that is valid for ρ such that EXECπ,A,Z

and EXECρ,S,Z are computationally indistinguishable.

To show the composition theorem, by Theorem 14 it is sufficient to show that S is
valid for σπ and that for any a priori polynomial environment Z

EXECσπ ,A,Z and EXECσρ,S,Z (5)

are computationally indistinguishable. These networks are depicted in Figures 3 (a)
and (d).

Let therefore Z be an arbitrary a priori polynomial environment.

In the classical UC definitions, the proof would now continue by replacing Z and σ
by a machine Z ′ simulating these machines (Figure 3 (b)). Then Z ′ could be considered
as an environment for π, and A would be an adversary for π. Since π emulates ρ we
could then replace π and A by ρ and S (Figure 3 (c)) and finally replace Z ′ by Z and σ
(Figure 3 (d)). However, in our setting we have to be more careful. First, an adversary
that is valid for σπ is not necessarily valid for π. Second, the resulting environment
Z ′ is not necessarily a priori polynomial. And third, we further have to show that the
simulator S is valid for σπ and not only for π.

The first point can be easily handled since we assumed A to be the dummy adversary.
In this case, A is also valid for π so the problem does not occur. Note however that if
A was an arbitrary adversary, this would not hold. Therefore the completeness of the
dummy adversary is essential for our proof.

The second point can be solved by first replacing σ by an a priori polynomial protocol
with a sufficiently large polynomial runtime bound p and only then constructing an a
priori polynomial environment Z ′ that simulates Z and the modified σ. This will be
shown in more detail in the following.

The third point is handled at the end of this proof, see below.
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Since σπ is reactively polynomial, so is σπ ∪ {A} (by Lemma 13). Hence for any a
priori polynomial environment Z the network σπ ∪ {A,Z} is polynomial w.o.p. In other
words, there is a polynomial p such that TIMEσπ ,A,Z(k, z) ≤ p(k) with overwhelming
probability for all z ∈ {0, 1}∗ and k ∈ N.

We now construct the environment Z ′ as follows: Z ′ simulates the environment Z and
all machines in σ. However, when the total running time of all machines in σ exceeds p(k),
then Z ′ terminates with a special output beep (we assume that Z never outputs beep).
Since TIMEσπ ,A,Z(k, z) > p(k) only with negligible probability, the running time of σ will
exceed p(k) only with negligible probability. Thus Z ′ terminates with output beep only
with negligible probability (when running with π and A, cf. Figure 3 (b)) and performs
a faithful simulation of Z and σ otherwise. Therefore EXECσπ ,A,Z and EXECπ,A,Z′ are
computationally indistinguishable (in fact even statistically indistinguishable).

Since Z is a priori polynomial, and since Z ′ enforces a polynomial runtime bound for
the simulated machines in σ, the resulting environment Z ′ is a priori polynomial, too.

Therefore by definition of S, the simulator S is valid for ρ, and the ensembles
EXECπ,A,Z′ and EXECρ,S,Z′ are computationally indistinguishable. (Cf. Figures 3 (b)
and (c).)

Since in an execution EXECπ,A,Z′ the output beep occurs only with negligible prob-
ability, the probability of output beep is also negligible for the computationally indistin-
guishable EXECρ,S,Z′ . Since Z ′ faithfully simulates Z and σ unless it gives output beep,
we can again replace Z ′ by Z and σ, resulting in the network σπ∪{S,Z} (cf. Figure 3 (d)).
Thus the ensembles EXECρ,S,Z′ and EXECσρ,S,Z are computationally indistinguishable
(in fact even statistically indistinguishable).

Summarising, we have

EXECσπ ,A,Z ≈ EXECπ,A,Z′ ≈ EXECρ,S,Z′ ≈ EXECσρ,S,Z

where ≈ denotes computational indistinguishability. Thus EXECσπ ,A,Z and EXECσρ,S,Z

are computationally indistinguishable and (5) is shown.
It is left to show that S is valid for σρ. Since S is by construction valid for ρ, and

since Z ′ is a priori polynomial, we have that ρ ∪ {S,Z ′} is polynomial w.o.p.
As seen above, the output EXECρ,S,Z′ is beep only with negligible probability, and

Z ′ faithfully simulates σ and Z otherwise. Therefore, since the running time of ρ∪{S,Z ′}
is polynomial w.o.p., so is that of the network σρ ∪ {S,Z} which results from replacing
Z ′ by σ and Z.

Since this holds for every a priori polynomial Z, it follows that σρ ∪{S} is reactively
polynomial, so the simulator S is valid for σρ. ut

We now state our main result in this section, the universal composition theorem:

Theorem 16 (Universal Composition Theorem). Let π, ρ and σ be protocols, such
that π and σπ are reactively polynomial. The protocol σ may call an arbitrary number of
subprotocol instances. Assume that π emulates ρ. Then σπ emulates σρ.

On the assumptions in the composition theorem(s). We remark that there is an
interesting asymmetry in the preconditions in Theorem 15 and Theorem 16. Namely, it is
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required that π and σπ are reactively polynomial, while ρ and σρ need not be. Although
probably protocols which are not reactively polynomial will not be used in applications
of the composition theorem, the absence of additional proof obligations may make proofs
that use the composition theorem simpler.

On the assumption that σπ is reactively polynomial. An important point is
the fact that we have to show that the composed protocol σπ is reactively polynomial
before we can show that it is secure. This is an extra assumption compared, e.g., to
the composition theorem of [Can05a]. In their setting, σπ is automatically polynomial
as soon as σ and π are. In our setting, this may not be the case (so in a certain sense,
the definition of reactive polynomiality itself does not compose). However, we stress
that in most practical situations, the reactive polynomiality of the composed protocol
is very easy to show, while the security is the interesting property. We believe that this
additional proof obligation is a necessary result of the high generality of our approach. In
particular, one can easily derive a version of this composition theorem that does not have
this condition: When restricting the protocols to some subclass of reactively polynomial
protocols that is closed under composition (e.g., those studied in [DKMR05, Can05a])
one automatically gets a composition theorem without this condition as a corollary of
Theorem 16.

Proof sketch (of Theorem 16). Recall the original proof of the universal composi-
tion theorem reproduced in Section 2.1. In that proof, we have constructed a simulator
S∞ for σρ from a simulator S for ρ. Concretely, S∞ was essentially a combination of
many instances of S. It is easy to see that S∞ is a priori polynomial whenever S is. How-
ever, we do not know that S∞ is reactively polynomial (when combined with the ideal
protocol) whenever S is. (Recall that the combination of several reactively polynomial
machines may not be reactively polynomial.)

Hence, we cannot apply the original reasoning of the universal composition theorem
because we do not know if the constructed simulator S∞ satisfies our polynomial-time
notion. Furthermore, the hybrid networks Hl from the analysis in Section 2.1 may or
may not satisfy any polynomial runtime bounds (which is a prerequisite for applying
the theorem assumption that π emulates ρ). For example, it is possible to construct
protocols π and ρ such that k copies of π running concurrently as well as k copies of ρ
are reactively polynomial, but k

2 copies of π with k
2 copies of ρ run in exponential time,

even though they cannot communicate directly.21 So even when we require both σπ and
σρ to be reactively polynomial, the hybrid network Hp/2 might not be.

We approach these issues by inductively proving that the networks Hj (j = 1, . . . , p)
are reactively polynomial. Of course, since we apply an inductive step a polynomial

21 As a rough sketch, assume that there are two puzzles A and B of variable hardness. When Z solves a
puzzle of type A of hardness s for π, then π solves a puzzle of type B of hardness 2s for Z. Similarly
when Z solves puzzles of type B for ρ of hardness s, then ρ solves puzzles of type A and hardness
2s for Z. Both π and ρ are reactively polynomial, even when executed polynomially many times. But
when Z relays the messages between k instances of π and ρ, these instances will solve puzzles up
to a hardness 2k. Of course, these protocols can be easily distinguished by Z; hence this particular
example does not invalidate the proof of the composition theorem.

34



number of times, we have to keep track of the concrete complexities and probabilities
carefully. To prevent these concrete bounds from growing too quickly, we use the following
approach.

Recall that the hybrid environment Z̃∗
l from the proof sketch of Theorem 3 mapped

subprotocol invocations directly to instances of π, resp. ρ (with the corresponding ad-
versaries). Concretely, the first l − 1 subprotocol instances are mapped to ρ-instances,
the l-th subprotocol instance is the challenge instance, and the remaining subprotocol
instances are mapped to π-instances. (See also Figure 1(c).) For our purposes, we modify
the Z̃∗

l into an environment Z∗
l as follows: Instead of directly mapping the subprotocol

sessions invoked by σ to instances of the real, resp. ideal protocol, our hybrid environment
Z∗

l applies a random permutation to the instance indices 1, . . . , l. (In other words, Z∗
l

proceeds like Z̃∗
l , but randomly shuffles the subprotocol indices.) Assume that for some i

we already know that Z∗
i with π runs in polynomial time with overwhelming probability

1 − ti−1. If we replace π by ρ, by assumption the environment Z∗
i cannot distinguish

the two cases, so in particular, we know that all i − 1 internal instances of ρ simulated
by Z∗

i still run in polynomial time with probability 1 − ti−1 (up to a negligible error h).
Now consider the probability ti that one of the i internal or external instances of ρ runs
in superpolynomial time. Since the instances 1, . . . , i of ρ are randomly permuted, the
instances of ρ cannot “know” which of them is the external instance, so with probability
i−1

i ti one of the internal instances will run in superpolynomial time, thus ti ≤
i

i−1ti−1.

Since
∏

i
i

i−1 is polynomial even for a polynomial number of factors, the probabilities
ti that the hybrid networks Hi run in superpolynomial time will stay negligible. This
proves that all hybrid networks Hl are reactively polynomial.

Note that in this argument, to derive the runtime bounds of the hybrid networks Hl,
we needed that two consecutive Hl are indistinguishable; and to show that indistinguisha-
bility, we need the polynomial runtime bound. Fortunately, we for the indistinguishability
of Hl and Hl+1, we need runtime bounds on Hl but not on Hl+1. Hence, we can derive
both the indistinguishability and the runtime bounds in one simultaneous induction.
Of course, in the full proof we additionally have to keep track of the concrete runtime
polynomials, and we have to ensure that the negligible error h is independent of i.

We remark that in the full proof, the hybrid network Hl is not constructed explicitly;
instead, we directly analyze the networks π ∪ {A,Z∗

l } and ρ∪ {S,Z∗
l−1} which simulate

the machines in Hl.

The full proof. The rest of this section will be devoted to the proof of Theorem 16.
In this, as usual, k ∈ N will always denote the security parameter, and A will always
denote the dummy adversary. Furthermore, S will always denote a simulator such that
ρ ∪ {S} is reactively polynomial, and for every a priori polynomial Z, we have

EXECπ,A,Z ≈ EXECρ,S,Z (6)
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Fig. 4. The hybrid environment Z∗
l,p internally simulates environment Z with dummy

adversary A and protocol σ. The subroutine calls of σ (and A) are translated as follows:
l − 1 subsessions are simulated inside Z∗

l,p as ideal instances of ρ with simulator S. The
subsession with session-id sidout = sidΠ−1(l) is relayed outside of Z∗

l,p, i.e., to the adver-
sary and protocol Z∗

l,p itself is running with. The remaining subsessions are simulated in
Z∗

l,p as real instances of π together with the dummy adversary. Which subsessions are
relayed where is governed by the permutation Π.

The existence of such a good simulator22 for ρ and A follows from the fact that with π,
also π ∪ {A} is reactively polynomial (Lemma 13), and hence our security assumption
that π emulates ρ implies the existence of such an S.

In analogy to existing composability proofs, a good simulator S∞ for σρ and A can
be obtained by simply running many copies of the simulator S concurrently, one for each
session of ρ. The main difficulty in proving that S∞ is good is to show that the network
σρ ∪ {S∞} is reactively polynomial. This is also the main difference to existing proofs
for (universal) composition theorems.

We start by defining a hybrid environment for our hybrid argument. This hybrid
argument is, due to the absence of a priori and uniform runtime bounds, considerably
more complicated than existing hybrid arguments for composition theorems in classical
models (such as [Can01, Can05a]).

Definition 17 (Hybrid environment Z∗
l,p). Let π, ρ, and σ protocols, such that π

and σπ are reactively polynomial. Let A be the dummy adversary and S be a simulator
that is valid for ρ such that EXECπ,A,Z ≈ EXECρ,S,Z for all a priori polynomial Z. Let
Z be an a priori polynomial environment.

Let furthermore p = p(k) be a polynomial and l ∈ N ∪ {∞}.

Then the environment Z∗
l,p (to be run either with π or with ρ) proceeds as follows:

1. Uniformly pick a random permutation Π on {1, . . . , p(k)}. Define Π(i) := i for
i > p(k).

22 By good simulator S for ρ and A we mean here and in the following that ρ∪{S} is reactively polynomial
and that EXECπ,A,Z ≈ EXECρ,S,Z for every a priori polynomial Z
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2. Start a simulation of Z with protocol σ and adversary A. Note that σ and A may
invoke and communicate with subprotocol instances of π or ρ. Denote the session-id
of the i-th invoked instance by sid i.

3. Calls to the i-th instance of π are answered as follows:
(a) if Π(i) < l, then relay to a simulation of protocol ρ with simulator S,
(b) if Π(i) = l, then relay to outside of Z∗

l,p, i.e., to the protocol and adversary that
Z∗

l,p runs with,
(c) if Π(i) > l, then relay to a simulation of protocol π with dummy adversary.
During this, the session-id sid i is removed from and added to the messages as neces-
sary for interfacing to and from σ and A.

4. When Z terminates, terminate with the same output as Z.

It will be useful to abbreviate out := Π−1(l), i.e., out is the index such that messages
for session sidout are relayed to the outside of Z∗

l,p.

Definition 18 (Hybrid environments Z∗
R,p, [Z

∗
l,p]q, [Z

∗
R,p]q). In the situation of Definition 17,

and for a polynomial q = q(k), define environments Z∗
R,p, [Z∗

l,p]q, and [Z∗
R,p]q just like

Z∗
l,p, only with the following exceptions:

– Z∗
R,p initially uniformly chooses l ∈ {1, . . . , p(k)} on its own,

– [Z∗
l,p]q terminates with output (timeout , l) as soon as one of the following holds:
• the internally simulated protocol σ runs more than p(k) steps, or
• the internally simulated protocol σ or the simulation of Z invokes more than p(k)

subprotocol sessions, or
• one internally simulated subprotocol session (where we count steps of the respec-

tive instances of S, π, and ρ, but not those of A) runs more than q(k) steps.
Without losing on generality, we assume that Z never outputs (timeout , ∗) on its own
(this can be enforced, e.g., by a different encoding of Z’s own output). Hence, from
a (timeout , l) output of [Z∗

l,p]q, we can deduce that one of the preceding conditions is
fulfilled.

– [Z∗
R,p]q is defined as [Z∗

l,p]q, but initially uniformly chooses l ∈ {1, . . . , p(k)} on its
own.

Note that the environments [Z∗
l,p]q and [Z∗

R,p]q stop execution as soon as one of the
internally simulated non-A machines run more than a polynomial number of steps (or if
more than polynomially many of those internal simulations are started). By construction
of the dummy adversary A, this makes [Z∗

l,p]q and [Z∗
R,p]q a priori polynomial-time,

whereas Z∗
l,p and Z∗

R,p might not be.
The next definition will be useful in the analysis of the environments defined above.

It defines events that are fulfilled when certain complexity bounds are surpassed.

Definition 19 (Events Bi
q, B

σ
p,q, Bp,q, B

6=i
p,q). Assume a network of the form σπ∪{A,Z}.

For i ∈ N, denote by Bi
q the event that the machines associated with the i-th session-

id sid i of π run more than q(k) overall steps. Denote by Bσ
p the event that either the

machines from protocol σ (not counting machines from π) run more than p(k) overall
steps, or that σ and Z have invoked in total more than p(k) sessions of π.
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Furthermore, let

Bp,q := Bσ
p ∨

∨

i∈NBi
q

B 6=i
p,q := Bσ

p ∨
∨

i′ 6=i

Bi′
q .

For networks of the form π ∪ {A,Z∗} with Z∗ = Z∗
l,p or one of its variants, define

Bi
q, Bσ

p , Bp,q, and B 6=i
p,q analogously. As usual, the machines associated with session-id

sid i include a possible copy of S, but not a possible copy of A.23

We write “Bi
q in N” etc. to emphasize the specific network N in which the event is

considered (e.g., “Bσ
p in π ∪ {A,Z∗

R,p}”).

Note that we have defined B 6=out

p,q such that [Z∗
l,p]q gives output (timeout , l) if and

only if the event B 6=out

p,q occurs.
The following simple observations will prove substantial for the later arguments.

Lemma 20. In the situation of Definition 17, for arbitrary p, and l ∈ N, the network
equivalences

ρ ∪ {S,Z∗
l,p} = π ∪ {A,Z∗

l+1,p} (7)

σπ ∪ {A,Z} = π ∪ {A,Z∗
1,p} (8)

σρ ∪ {S,Z} = ρ ∪ {S,Z∗
∞} = π ∪ {A,Z∗

∞} (9)

hold in the following sense. For each equivalence, the common distribution of the view
of all machines (simulated and non-simulated, but excluding instances of the dummy
adversary A))24 on the left-hand-side is identical to common distribution of the view of
all machines on the right-hand-side.

Here we do not count the view of Z∗
l,p itself, but only the common view all of its

submachines, except for A-instances.

Proof. For Equation 7, this is clear since all in both networks, precisely l ideal protocol
instances are present, in both cases with the session-ids (sidΠ−1(1), . . . , sidΠ−1(l)).

Similarly, in the networks from Equation 8, only real instances are run, and in
Equation 9, only ideal instances are run. (Note that Z∗

∞’s execution does not depend on
the network it runs in, since Z∗

∞ never activates the network it runs with.) ut

The following lemma will not only act as a “base case” in the upcoming inductive
argument. It will also be useful to derive the existence of some concrete complexity
bounds.
23 This asymmetry is to ensure that we can compare “timeout events” in systems of the form πρ∪{A,Z}

and π ∪ {A, [Z∗]} where the dummy adversary relays a different set of connections. Intuitively, this is
justified by the fact that the dummy adversary can be considered just as being the a set of connections
and not participating actively in the computation.

24 See footnote 23.

38



Lemma 21. In the situation of Definition 17, there exist polynomials p = p(k) and
q = q(k), and a negligible function µ = µ(k) such that for all k ∈ N and all auxiliary
inputs z ∈ {0, 1}∗ for Z, the following holds. We have that Pr[Bp,q] ≤ µ(k), both in
π ∪ {A,Z∗

1,p} and in ρ ∪ {S,Z∗
1,p}.

Proof. By assumption, σπ is reactively polynomial. So by Lemma 13, also the network
σπ∪{A} is reactively polynomial. Since the original environment Z is a priori polynomial-
time, σπ ∪ {A,Z} is polynomial-time with overwhelming probability. Hence, there is a
polynomial p = p(k) and a negligible function µ1 = µ1(k), such that

Pr[Bp,p in π∪{A,Z∗
1,p}]

(8)
= Pr[Bp,p in σπ∪{A,Z}] ≤ Pr[TIMEσπ,A,Z > p(k)] ≤ µ1(k).

(10)
As discussed above, by construction, [Z∗

1,p]p is a priori polynomially bounded and

outputs (timeout , 1) iff B 6=out

p,p occurs. Since S is a good simulator for ρ, this implies

Pr[B 6=out

p,p in ρ ∪ {S,Z∗
1,p}]

(∗)
= Pr[B 6=out

p,p in ρ ∪ {S, [Z∗
1,p]p}]

(∗∗)

≤ Pr[B 6=out

p,p in π ∪ {A, [Z∗
1,p]p}] + µ2(k)

(∗)
= Pr[B 6=out

p,p in π ∪ {A,Z∗
1,p}] + µ2(k)

(10)

≤ µ1(k) + µ2(k). (11)

for some negligible µ2 = µ2(k). Here (∗) uses that [Z∗
1,p]p behaves like Z∗

1,p until B 6=out

p,p

occurs. And (∗∗) uses that B 6=out

p,p can be efficiently computed from the output of [Z∗
1,p]p.

Now, since [Z∗
1,p]p is a priori polynomial-time, ρ ∪ {S, [Z∗

1,p]p} is polynomial with
overwhelming probability. Hence, there is a polynomial q = q(k) with q > p and a
negligible function µ3 = µ3(k) with

Pr[Bout

q in ρ ∪ {S, [Z∗
1,p]p}] ≤ Pr[TIMEρ,S,[Z∗

1,p]p > q(k)] ≤ µ3(k). (12)

Since [Z∗
1,p]p simulates Z∗

1,p until it outputs (timeout , 1) which in turn happens with
probability at most µ1 + µ2 in an execution with ρ and S by (11), an execution of
ρ∪ {S, [Z∗

1,p]p} and an execution of ρ∪ {S,Z∗
1,p} differ with probability at most µ1 + µ2.

Using (12) it follows that

Pr[Bout

q in ρ ∪ {S,Z∗
1,p}] ≤ µ1(k) + µ2(k) + µ3(k). (13)

Let µ := 2µ1 + 2µ2 + µ3. Since q > p, we have Bp,q = Bσ
p ∨

∨
i∈NBi

q ⇒ Bσ
p ∨

∨
i6=out

Bi
p ∨

Bout

q = B 6=out

p,p ∨ Bout

q . So

Pr[Bp,q in ρ ∪ {S,Z∗
1,p}] ≤ Pr[B 6=out

p,p ∨ Bout

q in ρ ∪ {S,Z∗
1,p}]

(11,13)

≤ µ(k). (14)

Finally, since q > p, we have Bp,q = Bσ
p ∨

∨
i∈NBi

q ⇒ Bσ
p ∨

∨
i∈NBi

p = Bp,p and thus get

Pr[Bp,q in π ∪ {A,Z∗
1,p}] ≤ Pr[Bp,p in π ∪ {A,Z∗

1,p}]
(10)

≤ µ1(k) ≤ µ(k). (15)

Equations (15) and (14) show the lemma. ut
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For the remainder of this section, fix p, q, and µ as given by Lemma 21. For readability,
we will drop p and q from the notation of the hybrid environments and events. That is,
we will abbreviate Z∗

i := Z∗
i,p, Z

∗
R := Z∗

R,p, [Z∗
i ] := [Z∗

i,p]q, and [Z∗
R] := [Z∗

R,p]q. Also, we

will write B := Bp,q, Bi := Bi
q, Bσ := Bσ

p,q, and B 6=i := B 6=i
q

Lemma 22. In the situation of Definition 17, there exists a negligible function h = h(k)
such that for all k ∈ N, all l ∈ {1, . . . , p(k)}, and all auxiliary inputs z ∈ {0, 1}∗ for Z,
we have ∣∣∣Pr[B 6=out in π ∪ {A,Z∗

l }] − Pr[B 6=out in ρ ∪ {S,Z∗
l }]

∣∣∣ ≤ h(k). (16)

Note the universality of h; in particular it does not depend on l.

Proof. By construction, [Z∗
R] is a priori polynomial-time. Therefore, we have the compu-

tational indistinguishability EXECπ,A,[Z∗
R

](k, z) ≈ EXECρ,S,[Z∗
R

](k, z). Now let

δl(k) := max
z∈{0,1}∗

∣∣∣Pr[B 6=out in π ∪ {A, [Z∗
l ]}] − Pr[B 6=out in ρ ∪ {S, [Z∗

l ]}]
∣∣∣,

and let l∗(k) be an index l∗ ∈ {1, . . . , p(k)} that maximizes δl∗(k).25

Let D be the non-uniform polynomial-time algorithm that upon input (1k, z,X)
outputs 1 iff X = (timeout , l∗(k)). Since [ZR] chooses a random l ∈ {1, . . . , p(k)} and
then behaves like [Zl], and thus in particular only outputs (timeout , l∗(k)) if l = l∗(k),
we have for all k ∈ N and l ∈ {1, . . . , p(k)} that

h′(k) := max
z∈{0,1}∗

∣∣∣Pr[D(1k, z,EXECπ,A,[Z∗
R

](k, z)) = 1] − Pr[D(1k, z,EXECρ,S,[Z∗
R

](k, z)) = 1]
∣∣∣

= max
z∈{0,1}∗

1
p

∣∣∣Pr[D(1k, z,EXECπ,A,[Z∗

l∗(k),p
](k, z)) = 1] − Pr[D(1k, z,EXECρ,S,[Z∗

l∗(k),p
](k, z)) = 1]

∣∣∣

= max
z∈{0,1}∗

1
p

∣∣∣Pr[B 6=out in π ∪ {A, [Z∗
l∗ ]}] − Pr[B 6=out in ρ ∪ {S, [Z∗

l∗ ]}]
∣∣∣

= 1
pδl∗(k)(k) ≥ 1

pδl(k).

Since EXECπ,A,[Z∗
R

] ≈ EXECρ,S,[Z∗
R

], and D is non-uniform polynomial-time, we have

that h′ is negligible.26 Therefore h(k) := p(k)h′(k) is negligible, too, and δl(k) ≤ h(k)
for all k.

Now observe that for all l, the environment [Z∗
l ] behaves by construction exactly like

Z∗
l unless B 6=out occurs. The lemma follows. ut

25 The maximum is reached because [Z∗
l ] is a priori polynomial-time and hence considers only a finite

prefix of z (the length depending only on the security parameter k). Hence one can assume that there
are only finitely many different z for each k.

26 Here we use that we have defined computational indistinguishability with respect to non-uniform
distinguishers. In case of uniform distinguishers, the lemma can be shown with a more complicated
but uniform D that guesses l∗ by sampling runs of π ∪ {A, [ZR]} and approximating δl.
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Lemma 23. In the situation of Definition 17, there exists a negligible function ν such
that for all k ∈ N, all l ∈ N ∪ {∞}, and all z ∈ {0, 1}∗, the following holds. We have
Pr[B] ≤ ν(k), in all of the following networks:

π ∪ {A,Z∗
l }, π ∪ {A,Z∗

R}, π ∪ {A, [Z∗
l ]}, π ∪ {A, [Z∗

R]},

ρ ∪ {S,Z∗
l }, ρ ∪ {S,Z∗

R}, ρ ∪ {S, [Z∗
l ]}, ρ ∪ {S, [Z∗

R]}.

Proof. Fix a security parameter k ∈ N and auxiliary input z ∈ {0, 1}∗. For l ∈ {1, . . . , p(k)},
define tl := Pr[B in ρ∪{S,Z∗

l }]. Our goal will be to give a common negligible bound on
all tl. Now Lemma 21 shows that t1 ≤ µ(k) where µ is negligible. The bounds on tl for
l > 1 will now be derived inductively.

Fix some l ∈ {2, . . . , p(k)}. Recall that in an execution of ρ∪{S,Z∗
l }, the session-ids

(sidΠ−1(1), . . . , sidΠ−1(l)) refer to l identical ideal instances of ρ∪{S}. The sessions with
the first l − 1 session-ids in the list are simulated inside Z∗

l . Only the last ideal session
in this list, the one with session-id sidout = sidΠ−1(l), is relayed outside of Z∗

l . By the
uniform choice of Π, however, the distribution of this list of session-ids is invariant under
any (fixed) permutation. Hence, for runs of ρ ∪ {S,Z∗

l }, we have for any fixed j < l:

Pr[¬B 6=Π−1(l) ∧ BΠ−1(l)] = Pr[¬B 6=Π−1(j) ∧ BΠ−1(j)]. (17)

Thus,

Pr[B 6=Π−1(l)] ≥ Pr[∃j ≤ l − 1 : BΠ−1(j)] ≥ Pr[∃j ≤ l − 1 : ¬B 6=Π−1(j) ∧ BΠ−1(j)]

(∗)
=

l−1∑

j=1

Pr[¬B 6=Π−1(j) ∧ BΠ−1(j)]
(17)
= (l − 1)Pr[¬B 6=Π−1(l) ∧ BΠ−1(l)]. (18)

Here (∗) uses the fact that the events ¬B 6=Π−1(j) ∧ BΠ−1(j) are mutually exclusive for
different j. We obtain

Pr[B]
(∗)
= Pr[B 6=Π−1(l)]+Pr[¬B 6=Π−1(l) ∧BΠ−1(l)]

(18)

≤ Pr[B 6=Π−1(l)]+ 1
l−1 Pr[B 6=Π−1(l)]

= l
l−1 Pr[B 6=Π−1(l)] = l

l−1 Pr[B 6=out ]. (19)

Here (∗) uses the fact that B ⇔ B 6=Π−1(l) ∨ BΠ−1(l).

Therefore we have

tl = Pr[B in ρ ∪ {S,Z∗
l }]

(19)

≤ l
l−1 Pr[B 6=out in ρ ∪ {S,Z∗

l }]

(16)

≤ l
l−1

(
Pr[B 6=out in π ∪ {A,Z∗

l }] + h(k)
)

≤ l
l−1

(
Pr[B in π ∪ {A,Z∗

l }] + h(k)
)

(7)
= l

l−1

(
Pr[B in ρ ∪ {S,Z∗

l−1}] + h(k)
)

= l
l−1(tl−1 + h(k))
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Hence for any l ∈ {1, . . . , p(k)} we have

tl ≤




l∏

γ=2

γ

γ − 1


 t1 +




l∑

j=2

l∏

γ=j

γ

γ − 1


 h(k)

= lt1 +

l∑

j=2

l
j−1 h(k) ≤ lt1 + l2h(k) ≤ p(k)µ(k) + p(k)2h(k) =: ν(k). (20)

Since p is polynomial, and µ and h are negligible, ν is negligible as well. Note that the
construction of ν does not depend on k, l, or z.

For bounding tl in case l > p(k) (this includes the case l = ∞), consider executions
of Z∗

l . Now if l > p(k), then Z∗
l runs the first p(k) subprotocol sessions that σ asks for

internally as ideal instances, independently of the concrete value of l and Z∗
l ’s surround-

ing network. (Note that only the Π−1(l)-th invoked session gets relayed outside, and
that Π−1(l) = l > p(k) for l > p(k).) Since the invocation of more than p(k) sessions
causes Bσ and thus B, this implies that for l > p(k),

Pr[B in ρ ∪ {S,Z∗
l }] = Pr[B in π ∪ {A,Z∗

l }] (21)

Pr[B in ρ ∪ {S,Z∗
l }] = Pr[B in ρ ∪ {S,Z∗

p(k)+1}]. (22)

We get for l > p(k):

tl = Pr[B in ρ ∪ {S,Z∗
l }]

(22)
= Pr[B in ρ ∪ {S,Z∗

p(k)+1}]

(21)
= Pr[B in π ∪ {A,Z∗

p(k)+1}]
(7)
= Pr[B in ρ ∪ {S,Z∗

p(k)}] = tp(k)

(20)

≤ ν(k).

Combining this with (20), we see that

∀l ∈ N ∪ {∞} : Pr[B in ρ ∪ {S,Z∗
l }] ≤ ν(k). (23)

With Equation 7 for the case l > 1 and Lemma 21 for the case l = 1 (using that µ ≤ ν
by construction), we also obtain

∀l ∈ N ∪ {∞} : Pr[B in π ∪ {A,Z∗
l }] ≤ ν(k) (24)

for the same ν. The remaining bounds from the lemma statement can be derived from
Equation 23 and Equation 24 by using that

– Z∗
l and [Z∗

l ] proceed identically unless B occurs (since B is implied by B 6=out), so
Pr[B] is identical with these environments,

– Z∗
R first picks l ∈ {1, . . . , p(k)} and then runs Z∗

l , so any bound on Pr[B] that holds
for all Z∗

l also holds for Z∗
R. ut

Lemma 24. In the situation of Definition 17, we have the computational indistinguisha-
bility EXECπ,A,Z∗

1
(k, z) ≈ EXECπ,A,Z∗

∞
(k, z).
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Proof. First, we have the following chain of computational indistinguishabilities:

EXECπ,A,Z∗
R
≈ EXECπ,A,[Z∗

R
] ≈ EXECρ,S,[Z∗

R
] ≈ EXECρ,S,Z∗

R
. (25)

The first and third indistinguishability hold because Z∗
R and [Z∗

R] behave identically
unless B occurs, and Lemma 23 bounds Pr[B] by a negligible function in these networks.
The second indistinguishability holds since S is a good simulator, and [Z∗

R] is a priori
polynomial.

Thus, for any non-uniform polynomial-time distinguisher D, the following is negligi-
ble:

∣∣∣Pr[D(1k, z,EXECπ,A,Z∗
R
(k, z)) = 1] − Pr[D(1k, z,EXECρ,S,Z∗

R
(k, z)) = 1]

∣∣∣

=
1

p(k)

∣∣∣
p(k)∑

l=1

(
Pr[D(1k, z,EXECπ,A,Z∗

l
(k, z)) = 1] − Pr[D(1k, z,EXECρ,S,Z∗

l
(k, z)) = 1]

)∣∣∣

(7)
=

1

p(k)

∣∣∣
p(k)∑

l=1

(
Pr[D(1k, z,EXECπ,A,Z∗

l
(k, z)) = 1] − Pr[D(1k, z,EXECπ,A,Z∗

l+1
(k, z)) = 1]

)∣∣∣

=
1

p(k)

∣∣∣Pr[D(1k, z,EXECπ,A,Z∗
1
(k, z)) = 1] − Pr[D(1k, z,EXECπ,A,Z∗

p(k)+1
(k, z)) = 1]

∣∣∣
(∗)

≥
1

p(k)

(∣∣∣Pr[D(1k, z,EXECπ,A,Z∗
1
(k, z)) = 1] − Pr[D(1k, z,EXECπ,A,Z∗

∞
(k, z)) = 1]

∣∣∣ + ν(k)
)

.

(26)

Here (∗) uses Lemma 23 and the fact that Z∗
p(k)+1 and Z∗

∞ behave identically unless B
occurs.

Thus
∣∣Pr[D(1k, z,EXECπ,A,Z∗

1
(k, z)) = 1] − Pr[D(1k, z,EXECπ,A,Z∗

∞
(k, z)) = 1]

∣∣ is
negligible and and hence

EXECπ,A,Z∗
1
≈ EXECπ,A,Z∗

∞
ut

We can finally proceed to prove the main result.

Proof (of Theorem 16). Recall that A always denotes the dummy adversary. As in
Definition 17 and all the preceding helping lemmas, let S be a simulator for a single
instance of ρ, such that for all a priori polynomial Z, we have EXECπ,A,Z ≈ EXECρ,S,Z .
Now we construct a good simulator S∞ for σρ, such that σρ ∪ {S∞} is reactively poly-
nomial, and such that EXECσπ ,A,Z ≈ EXECσρ,S∞,Z for every a priori polynomial Z.

This construction of S∞ is actually the same as in previous proofs of universal com-
posability (e.g., as in the setting of [Can01]) and conceptually simple: S∞ internally
simulates a copy of the dummy adversary A for attacking σ itself, and as many in-
stances of S as needed, one for each session that the simulation of A or the protocol σ
asks for. Messages between A and instances of π are rerouted to the corresponding in-
stances of S. Messages between the instances of S and instances of protocol ρ are directly
relayed to S∞’s outside, i.e., to the ρ-hybrid setting in which S∞ is executed. Informally,
we get the situation depicted in Figure 5 when S∞ is run with an environment Z and
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protocol σρ. Note that the only difference to the hybrid simulator from the proof the
composition theorem in the classical UC setting is that S∞ has no upper bound on the
number of instances of S it simulates. In particular, S∞ is not a priori polynomial even
if S is.

Z

A

σ
.
.
. non-simulated

instances of ρ

instances of S
simulations of

.

.

.

subprotocol
invocations

. . .

Fig. 5. The dashed box surrounds simulator S∞, running with environment Z and pro-
tocol σρ (i.e., with protocol σ in the ρ-hybrid model). S internally simulates the dummy
adversary A and instances of simulator S.

Now we make the following claim of execution equalities: for all environments Z,
auxiliary inputs z and security parameters k, we claim

EXECσπ ,A,Z(k, z) = EXECπ,A,Z∗
1
(k, z) (27)

EXECσρ,S∞,Z(k, z) = EXECπ,A,Z∗
∞

(k, z). (28)

Equation 27 follows from Equation 8. For Equation 28, note that the permutation Π in
the definition of Z∗

l dictates which subsession instance queries are relayed where, but
since all subsessions in ρ ∪ {S,Z∗

∞} are ideal instances, this does not have any impact.
(This has already been exploited in the proof of Equation 9.) Note also that Z∗

∞ never
invokes the external machines A and Z∗

∞, but relays all session-ids to the unbounded
number of internal instances of σ and S.

Combining Equation 27 and Equation 28 with Lemma 24 shows the indistinguisha-
bility EXECσπ ,A,Z ≈ EXECσρ,S∞,Z .

It remains to show that σρ ∪ {S∞} is reactively polynomial (and thus S∞ is valid
for σρ). Fix any a priori polynomial Z to run with σρ ∪ {S∞}. The above argument for
Equation 28 shows that

Pr[B in σρ ∪ {S∞,Z}] = Pr[B in π ∪ {A,Z∗
∞}].

Now the right hand side of this equation is negligible by Lemma 23. Hence Pr[B] is
negligible in σρ ∪{S∞,Z}. Since in this network, event B occurs already if any machine
exceeds a certain fixed polynomial runtime bound (or if more than a fixed polynomial
number of machines are invoked), σρ ∪ {S∞,Z} is polynomial-time with overwhelming
probability. Hence σρ ∪ {S∞} is reactively polynomial. ut
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8 Example: Secure Message Transmission

In this section we will use a toy example to show how using UC with respect to reactive
polynomial time differs from using classical UC. In particular, we will demonstrate that
for using our notion, one does not have to perform more complicated checks whether a
protocol is polynomial time than one would have to do using the classical UC notion
anyway. For this, we will consider an implementation of the functionality FSMT for secure
message transmission. The functionality FSMT is defined as follows:

Functionality FSMT

The functionality FSMT proceeds as follows:

– When receiving an input (Send,m) from party P1, then send (Sent, |m|) to the
adversary, and send a delayed message (Sent,m) to P2.

27

Note that this functionality does not impose any bounds on the number or length of the
transmitted messages. Yet it is easy to see that it is reactively polynomial, because the
running time of FSMT is linear in the length of the inputs from the environment and the
simulator. We will realise FSMT in the authenticated channel model in the case of static
corruption and make use of an ideal key exchange functionality FKE. The functionality
FKE is defined as follows:

Functionality FKE

The functionality FKE proceeds as follows (on security parameter k):

– When receiving an input (Key) from party P1, then choose a random key K ∈ {0, 1}k ,
send (Key) to the adversary, and send (Key,K) as delayed messages to P1 and P2.

Let (E,D) be an IND-CPA secure encryption scheme (we assume for simplicity that
the keys for (E,D) are uniformly distributed keys of length k). Note, that this encryption
scheme is not a priori polynomial, but polynomial in its input. Next, we implement FSMT

using the following (unsurprising) protocol.

Protocol SMT

– Whenever P1 receives (Send,m) from the environment, it invokes a new instance of
FKE. Let K be the key that is sent to P1 and P2 by FKE.

– Then P1 sends c := EK(m) to P2 over an authenticated channel.
– Upon receipt of a message c from P1, P2 computes m := DK(c) and sends (Sent,m)

to the environment.
For simplicity, we only elaborate on the case that no party is corrupted.28 First, we
verify that SMT is indeed reactively polynomial. For each input (Send,m) from the
environment, one instance of the functionality FKE is invoked, and one encryption and
one decryption is performed, whose complexity is polynomial in the length of m. So the

27 By delayed we mean that the adversary may schedule the delivery of that message. That is, the
functionality queues the message and only sends it upon an explicit request from the adversary. See
[Can05a] for details.

28 For secure message transmission, this is actually the interesting case.
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total complexity of SMT is polynomial in the total length of all messages m received
from the environment, so SMT is reactively polynomial.

We now examine whether SMT emulates FSMT. By Theorem 14, it is sufficient to
give a simulator S for the dummy adversary A. The simulator S for the protocol SMT

is straightforward: Whenever the simulator receives (Sent, l) from FSMT, it informs the
environment that an instance of FKE has been invoked. When the environment tells
S to deliver the key to P1, the simulator chooses an arbitrary message m̃ of length l
and a random key K and informs the environment that the message EK(m̃) has been
transmitted over the authenticated channel.

To show that SMT emulates FSMT, we have to see that EXECSMT,A,Z and EXECFSMT,S,Z

are computationally indistinguishable for any a priori polynomial environment Z, and
that S is a valid simulator for ρ. The computational indistinguishability follows from the
fact that (E,D) is IND-CPA and therefore the environment cannot distinguish between
EK(m̃) and EK(m). We will not go into details, since this part of the proof is standard
and does not differ from the analogous proof in the classical UC setting. To see that S is
valid, we have to see that {FSMT,S} is reactively polynomial. For each message m that
is sent, the machines in {FSMT,S} will only send messages that are polynomial in the
length of m (most notably the encryption EK(m̃)). Since computing these messages also
takes only polynomial time in |m|, the overall complexity of {FSMT,S} is polynomially
bounded in the total length of the messages m. Thus S is valid. Note that interestingly,
the simulator S by itself is not reactively polynomial. When receiving (Sent, l) he chooses
a random message m̃ of length l, and the integer l is exponential in the length |l| of its
representation. However, the fact that FSMT would never send (Sent, l) without receiv-
ing a message of length l guarantees that the overall network is reactively polynomial.
This, too, shows the flexibility of our approach; earlier models of polynomial time in the
UC setting would require FSMT to send (Sent, 1|m|) for this technical reason.

We have seen that SMT emulates FSMT in the FKE-hybrid model. Assume now that
we want to implement FSMT without using an ideal key exchange. Let therefore DH

be a Diffie-Hellman key exchange. Under the decisional Diffie-Hellman assumption, it
is not hard to see that DH emulates FKE (in the case of static corruption at least).
To see that SMTDH (i.e., the protocol SMT using DH as subprotocol) emulates FSMT,
we have to apply the Universal Composition Theorem 16. The protocol DH is a priori
polynomial (since it generate only a single key of fixed length), so in particular it is
reactively polynomial. Furthermore, we have to see that SMTDH is reactively polynomial.
Analogous to the above, we count the number of steps occurring when a message m is
transmitted and see that the complexity of SMTDH is polynomial in the total length of the
messages transmitted. So SMTDH is reactively polynomial, too. Therefore Theorem 16
applies, and SMTDH emulates FSMT.

9 Variants of our approach

In this section, we present two variants of our notion of polynomial time and of the
corresponding security notion. The goal is to give the reader the possibility to better
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understand which of our design choices are necessary and which are just a matter of
taste.

In Section 9.1, we introduce a simplification of the definition of reactive polynomial
time, strong reactive polynomial time. Strong reactive polynomial time requires that the
overall system (including Z) runs in polynomial time with probability 1 (instead of just
overwhelming probability as in Definition 7). We show that this variant is not viable
because the composition theorem does not hold.

In Section 9.2, we present the notion of uniform reactive polynomial time. In Definition 7,
we required that for any reactively polynomial system S and any a priori polynomial
ITM Z, the complexity of S ∪ {Z} is polynomial w.o.p. However, now requirement was
made as to how the polynomial bounding the running time of S ∪ {Z} depends on the
polynomial bounding the running time of Z. In contrast, in the case of uniform reactive
polynomial time we require that these two polynomials are polynomially related. We
show that the choice between reactive polynomial time in the sense of Definition 7 and
uniform reactive polynomial time is largely a matter of choice and the all our results
also apply to uniform polynomial time.

9.1 Strong reactive polynomial time

In Section 4 we have introduced the notion of a reactively polynomial network S roughly
as follows: For any ITM Z, the network S ∪ {Z} is polynomial w.o.p. However, the
reader might question whether the additional generality of allowing networks that run in
superpolynomial time with negligible probability is not offset by the added complexity.
Might not the following notion of strong reactive polynomial time be more suitable for
defining our security notion:

Definition 25 (Strong reactive polynomial time). A system S of ITMs runs in
strong reactive polynomial time if for any a priori polynomial time ITM Z the system S∪
{Z} runs in a priori polynomial time (i.e., S∪{Z} always terminates after a polynomial
number of steps).

For example, it is not difficult to see that strong reactive polynomial time has the follow-
ing simple characterisation: For any sequence of incoming messages such that the total
length is polynomially-bounded, the system S runs a polynomial number of steps.29

Based on the notion of strong reactive polynomial time, we can now define security
analogous to Definition 8:

Definition 26 (UC with respect to strong reactive polynomial time). We say
an ITM M is strongly valid for π (or ρ) if π∪{M} (or ρ∪{M}) runs in strong reactive
polynomial time.

Then π emulates ρ with respect to strong reactive polynomial time if for any ITM
A that is strongly valid for π, there is an ITM S that is strongly valid for ρ such that

29 To see this, consider a polynomial-time ITM Z that sends random messages. Any sequence of message
of polynomial-length is sent by this ITM with nonzero probability.
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for every a priori polynomial-time ITM Z the following families of random variables are
computationally indistinguishable:

{
EXECπ,A,Z(k, z)

}
k∈N,z∈{0,1}∗

and
{

EXECρ,S,Z(k, z)
}

k∈N,z∈{0,1}∗

Although this definition looks very similar to Definition 8, it turns out that it is not a
suitable security definition, since not even the Universal Composition Theorem 16 holds
(not even its restricted variant Theorem 15):

Theorem 27. There are protocols π, ρ and σ such that

– The protocol σ calls only one instance of its subprotocol.
– The protocols π, ρ, σ, σπ, and σρ are strongly reactively polynomial.
– The protocol π emulates ρ with respect to strong reactive polynomial time.
– But σπ does not emulate σρ with respect to strong reactive polynomial time.

Proof. In this proof, we say “emulate” for “emulate with respect to strong reactive poly-
nomial time”.

We first describe the protocols π and ρ. The protocol π expects a pair of the form
(1t, s, b) with t ∈ N, s ∈ N, and b ∈ {0, 1} from the environment (or the embedding
protocol). When b = 1, it sends s to the adversary. Otherwise, the message is ignored.

The protocol ρ also expects a pair of the form (1t, s, b). If b = 1, it sends s to the
adversary. If b = 0, it sends s to the adversary with probability γ(k) := 2−k where k is
the security parameter.

Both protocols accept only one message from the environment. Further messages are
ignored.

It is easy to see that π and ρ are both strongly reactively polynomial.

We will now show that π emulates ρ. Let a strongly valid adversary A be given.30

We set S := A. Since ρ deviates from the program of π with probability at most γ(k),
the ensembles EXECπ,A,Z and EXECρ,S,Z are statistically indistinguishable for any en-
vironment Z. To show that π emulates ρ we therefore only have to show that S = A
is strongly valid for ρ. Let an a priori polynomial-time ITM Z be given. Let Z ′ be the
ITM that simulates Z with the following modification: When Z would send a message
(1t, s, 0) to the protocol, Z ′ sends with probability γ(k) the message (1t, s, 1) and with
probability 1 − γ(k) the message (1t, s, 0). Then TIMEπ,A,Z′ and TIMEρ,S,Z have the
same distribution and Z ′ is a priori polynomial-time. Therefore if there is an a priori
polynomial-time ITM Z such that ρ∪ {S,Z} is not a priori polynomial-time then there
is an a priori polynomial-time ITM Z ′ such that π ∪ {A,Z} is not a priori polynomial-
time. The latter is a contradiction to the strong validity of A. Thus ρ∪{S,Z} is a priori
polynomial-time and S is strongly valid. Therefore π emulates ρ.

We now introduce the protocol σ. This protocol expects a message (1t, s) from the
environment. Then it sets b := 1 if and only if t = s and b := 0 otherwise. Finally, it

30 In the context of UC with respect to strong reactive polynomial time, by strongly valid we mean of
course that π ∪ {A} is strongly reactively polynomial. The same applies to strongly valid simulators.
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sends (1t, s, b) to its subprotocol. As did π and ρ, this protocol accepts only a single
message from the environment.

It is straightforward to check that σ, σπ and σρ are strongly reactively polynomial.

We proceed to show that σπ does not emulate σρ. Consider the following adversary
A. When receiving a message s from the subprotocol π, it sends 1s to the environment.
We first check that A is strongly valid for σπ. The critical point is the fact that A
receives an s in binary representation and outputs 1s which takes time linear in s, i.e.,
exponential in the length of s. However, it turns out that σρ∪{A} is a priori polynomial-
time nevertheless. To see this, consider an a priori polynomial time ITM Z. Whenever
the ITM Z sends a message (1t, s) to σ with t 6= s, σ sends (1t, s, 0) to π. The message
(1t, s, 0) is ignored by π. So π only outputs s if Z sends a message (1t, s) with s = t. Since
Z is a priori polynomial, t is polynomially bounded in the security parameter. Therefore
the message s received by the adversary A is guaranteed to be polynomially bounded,
too, so the running time spent by A for outputting 1s is polynomially bounded in the
security parameter. Hence A is strongly valid for π.

Now assume a simulator S for A. Without loss of generality, we may assume that
S expects a message s from the subprotocol ρ and then either ignores that message or
sends a single message m to the environment. Let P (k, s) denote the probability that
the simulator S sends a message m = 1s upon receiving s when running with security
parameter k. Let L(k) be the largest nonnegative integer such that P (k, s) ≥ 1

2 for all
s ≤ L(k). (We set L(k) := ∞ if P (k, s) ≥ 1

2 for all s.)

We distinguish two cases. First, consider the case that L(k) is polynomially-bounded
in k for sufficiently large k. Then we construct an environment Z that upon security
parameter k sends (1t, s) to σ with t := s := L(k) + 1 and outputs 1 if it receives the
message 1s from the simulator.31 Obviously, Z is a priori polynomial. (In case L(k) is
not efficiently computable, we can assume that Z extracts L(k) from its auxiliary input.)
By construction of σ, π and A, we then have Pr

[
EXECσπ ,A,Z = 1

]
= 1 for sufficiently

large k. On the other hand, by definition of P (k, s) we have Pr
[
EXECσρ,S,Z = 1

]
=

P (k, s) = P (k, L(k)+ 1) < 1
2 for sufficiently large k (namely whenever L(k) 6= ∞). Thus

EXECσπ ,A,Z and EXECσρ,S,Z are computationally distinguishable.

In case that L(k) is not polynomially bounded, we construct an ITM Z that chooses
t := 0 and s := min{L(k), 2k} and sends (1t, s) to σ. Again, Z is a priori polyno-

mial. However, we have Pr
[
TIMEσρ,S,Z > min{L(k), 2k}

]
≥ Pr

[
S sends 1min{L(k),2k}

] (∗)

≥
γ(k)P (k,min{L(k), 2k}) ≥ γ(k)1

2 > 0. Here (∗) uses the fact that even in the case b = 0,
the subprotocol ρ sends s to the simulator with probability γ(k). Thus σρ ∪ {S,Z} does
not run in a priori polynomial time, so S is not strongly valid for ρ. So summarising, there
is no strongly valid simulator S such that EXECσπ ,A,Z and EXECσρ,S,Z are computa-
tionally indistinguishable for all a priori polynomial-time Z. Hence σπ does not emulate
σρ. ut

31 Strictly speaking, this definition does not make sense for L(k) = ∞. However, this only happens for
finitely many k, so we can assume that Z just aborts in these cases.
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An interesting question at this point is whether this counterexample still holds (pos-
sibly with a different choice for γ) if we allow S ∪ {Z} to run in expected polynomial
time in Definition 25. However, in this case consider the simulator S that accepts any s,
but aborts after 1/γ(k) steps. This simulator produces a good simulation: Since 1/γ(k)
is superpolynomial, the abort occurs only for t 6= s. In this case no output is expected
from the real adversary either, so the real and ideal views are indistinguishable. And this
simulator is strongly valid (w.r.t. expected polynomial time): In the case t 6= s, it runs
1/γ(k) steps with probability γ(k).

So at least this counterexample does not apply to a notion using expected polynomial
time. However, it demonstrates that the simulator may have to explicitly bound its run-
ning time by the inverse of some probability γ, where γ is—intuitively—the probability
that a naive simulator would run superpolynomial time. Since it is not clear whether
such a bound γ can always be explicitly constructed or efficiently computed, we might
expects that, even if it holds, the proof of even the simple composition theorem will
be much harder in the case of expected polynomial time. Nevertheless, it would be an
interesting question to see how a notion of reactive polynomial time based on expected
polynomial time behaves and what techniques would be used in the proofs.

9.2 Uniform reactive polynomial time

In Definition 7, we allow a reactively polynomial network S to run in time p(k + q)
where q is the runtime of the ITM Z and p is some polynomial that may depend on Z.
As mentioned on 23, we might also require that p does not depend on Z, leading to
a stricter notion of uniform reactive polynomial time. In this appendix, we define this
alternative notion and show that the properties we proved Sections 5–7 also hold for
this somewhat stricter notion. Thus the choice which notion to use is more a matter
of personal preference than of formal necessity. However, it should be noted that with
uniform reactive polynomial time, some arguments are a slightly more awkward since
one has to keep track that p is independent of Z. (This is somewhat reminiscent of the
difference between UC and specialised-simulator UC [Lin03].)

Definition 28 (Uniform reactive polynomial time). A system S of ITMs runs
in uniform reactive polynomial time if there exists a polynomial p such that for any a
priori polynomial time ITM Z and any polynomial q bounding the running time of Z
(cf. Definition 5), there is a negligible function µ such that for all k ∈ N and z ∈ {0, 1}∗

we have that TIMES∪{Z}(k, z) > p(k + q(k)) with probability at most µ(k).

We abbreviate “uniformly reactively polynomial” as u.r.p. and “uniform reactive polyno-
mial time” as u.r.p. time.

Definition 29 (UC with respect to u.r.p. time). We say an ITM M is uniformly
valid for π (or ρ) if π ∪ {M} (or ρ ∪ {M}) runs in u.r.p. time.

Then π emulates ρ (with respect to u.r.p. time) if for any ITM A that is uniformly
valid for π, there is an ITM S that is uniformly valid for ρ such that for every a priori
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polynomial-time ITM Z the following families of random variables are computationally
indistinguishable:

{
EXECπ,A,Z(k, z)

}
k∈N,z∈{0,1}∗

and
{

EXECρ,S,Z(k, z)
}

k∈N,z∈{0,1}∗

In the following sections, we show that the properties we proved in Sections 5–7 still
hold for the alternative notion in Definitions 28 and 29.

Basic properties. Lemma 9 still holds because u.r.p. time implies reactively polyno-
mial time, so the conditions of Lemma 9 also hold the present setting. Lemmas 10 and 11
holds with identical proofs since these proofs do not use the definition of validity at all.
Thus all results from Section 5 still hold for u.r.p. time.

Dummy-Adversary. All our results concerning the dummy adversary carry over to
the case of uniform reactively polynomial time.

Lemma 30 (Uniform validity of the dummy adversary). If π is a u.r.p. protocol,
the dummy adversary is uniformly valid for π.

Proof. Let Z be an ITM with runtime polynomial q and consider the system {Z, Ã} ∪
π. Since Ã only forwards messages between Z and π, we can construct an a priori
polynomial ITM Z ′ that directly sends and receives those messages to and from π.
Then, given assuming the same random tapes in both networks, TIME{Z,Ã}∪π(k, z) ≤

c · TIME{Z′}∪π(k, z) for some fixed c > 0 (independent of Z). Since π is u.r.p., we
have that TIME{Z′}∪π(k, z) ≤ p(k + q(k)) with overwhelming probability in k for some
polynomial p which is independent of Z ′. Thus TIME{Z,Ã}∪π(k, z) ≤ c · p(k + q(k)) with

overwhelming probability. Since this holds for all Z (and the polynomial c · p does not
depend on Z), it follows that {Ã} ∪ π is u.r.p. and thus Ã uniformly valid for π. ut

Theorem 31 (Completeness of the dummy adversary). We say π emulates ρ with
respect to the dummy adversary and u.r.p. time if for the dummy adversary Ã there is
an ITM S̃ that is uniformly valid for ρ such that for every a priori polynomial-time ITM
Z the ensembles EXECπ,Ã,Z and EXECρ,S̃,Z are computationally indistinguishable.

Assume that π is u.r.p. Then π emulates ρ with respect to u.r.p. time if and only if
π emulates ρ with respect to the dummy adversary and u.r.p. time.

Proof. We describe the changes that must be applied to the proof of Theorem 14. First,
consider the construction of the polynomial p that bounds TIMEπ,A,Z(k, z) with over-
whelming probability. In the present case we can achieve a stronger condition: We can
choose p such that p(k) ≤ p̃(k+q(k)) for any polynomial q bounding the running time of
Z where p̃ is a fixed polynomial independent of Z and q. Then, the construction of the
simulator S and the proof that EXECπ,A,Z and EXECρ,S,Z are computationally indis-
tinguishable is unchanged. (It does not use the definition of validity, only the property
that p bounds TIMEπ,A,Z(k, z) with overwhelming probability.) Thus it is only left to
show that S is uniformly valid.
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Since Z ′
p simulates Z and A, but A for at most p steps, we have that the running

time of Z ′
p is bounded by q′(k) := c1 · (q(k) + p(k)) for some constant c1 (in the sense of

Definition 5). The constant c1 reflects a possible simulation overhead and is independent
of Z and q. Since S̃ is uniformly valid for ρ, it follows that TIMEρ,S̃,Z′

p
≤ p1(k + q′(k))

w.o.p. Again, p1 is independent of Z and q. Then, since the network ρ∪{Z ′
p, S̃} behaves

differently from ρ∪{Z ′, S̃} only if Z ′
p outputs beep which happens with negligible prob-

ability, it follows that TIMEρ,S̃,Z′ ≤ c2 · p1(k + q′(k)) w.o.p. Here c2 again represents
some simulation overhead independent of Z and q. Then we also have TIMEρ,S,Z ≤
c3c2 · p1(k + q′(k)) w.o.p. with some overhead c3 independent of Z and q. Substituting
the definitions of q′ and p, we get that TIMEρ,S,Z ≤ c3c2 · p1(k + c1 · (q(k)+ p̃(k + q(k))))
where c1, c2, c3, p1, p̃ are independent of Z and q. Thus we can choose some polynomial
p∗ independent of Z and q such that TIMEρ,S,Z ≤ p∗(k + q(k)). Since this holds for
every a priori polynomial Z and any q bounding the running time of Z, it follows that
ρ ∪ {S} is u.r.p. time and thus S uniformly valid for ρ. ut

Universal Composition Theorem. Since the Simple Composition Theorem is a
direct consequence of the Universal Composition Theorem, it is sufficient to show that
the Universal Composition Theorem 16 holds for u.r.p. time.

Theorem 32 (Universal Composition Theorem for u.r.p. time). Let π, ρ and σ
be protocols, such that π and σπ are u.r.p. The protocol σ may call an arbitrary number
of subprotocol instances. Assume that π emulates ρ. Then σπ emulates σρ.

We will now sketch the modifications that need to be applied to the proof of Theorem 16
in order to prove Theorem 32. We assume the notation used in the proof of Theorem 16.
Similar to that proof, we here let A denote the dummy adversary and choose a fixed
simulator S such that ρ∪{S} is u.r.p., and that for every a priori polynomial Z we have
that EXECπ,A,Z and EXECρ,S,Z are computationally indistinguishable. Additionally, by
rZ we denote a polynomial bounding the running time of Z (in the sense of Definition 5).

Then, for the new proof Definitions 17, 18 and 19 and Lemmas 20, 22, 23, and 24
remain unchanged. These lemmas were shown to hold under the assumption that π, σπ,
and {S} ∪ ρ are reactively polynomial, that EXECπ,A,Z ≈ EXECρ,S,Z for all a priori
polynomial Z, and that Z is an a priori polynomial environment. Then the lemmas in
particular hold under the stronger condition of the present proof that π, σπ, and {S}∪ρ
are u.r.p., that EXECπ,A,Z ≈ EXECρ,S,Z for all a priori polynomial Z, and that Z
is an a priori polynomial environment. The same holds for Lemma 21, but we need to
somewhat strengthen Lemma 21:

Lemma 33. In the situation of Definition 17, there exist polynomials p = p(k) and
q = q(k), and a negligible function µ = µ(k) such that for all k ∈ N and all auxiliary
inputs z ∈ {0, 1}∗ for Z, the following holds. We have that Pr[Bp,q] ≤ µ(k), both in
π ∪ {A,Z∗

1,p} and in ρ ∪ {S,Z∗
1,p}.

Moreover, we can write p and q as p(k) = p̃(k + rZ(k)) and q(k) = q̃(k + rZ(k))
where p̃ and q̃ do not depends on Z and rZ .
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(Note that only the part after moreover is changed with respect to Lemma 21.)

Proof. To show Lemma 33, we have to show that in the proof of Lemma 21 we can
choose p and q such that they additionally satisfy the conditions p(k) = p̃(k + rZ(k))
and q(k) = q̃(k + rZ(k)).

For p this is straightforward: p was chosen as a polynomial such that TIMEσπ ,A,Z ≤
p(k) with overwhelming probability. Since in our setting, σπ ∪ {A} is u.r.p., and since
rZ bounds the running time of Z, we can therefore choose p with p(k) = p̃(k + rZ(k))
where p̃ is independent of rZ and Z.

For q the situation is slightly more complicated. The polynomial q was chosen such
that TIMEρ,S,[Z∗

1,p]p ≤ q(k) w.o.p. To show that q can fulfill the additional constraint, we

first have to analyze the runtime bound of [Z∗
1,p]p. By construction, [Z∗

1,p]p simulates Z, σ
and at most p instances of the dummy adversary and π. Furthermore, σ and each instance
of π is executed for at most p steps. Therefore the running time of [Z∗

1,p]p is bounded by
s1(k) := s2(k + rZ(k) + p(k)) for some polynomial s2 that does not depend on Z and
rZ . Since ρ ∪ {S} is u.r.p. by assumption, it follows that TIMEρ,S,[Z∗

1,p]p ≤ s3(k + s1(k))
w.o.p. where the polynomial s3 does not depend on Z and rZ . We can therefore choose
a polynomial q̃ with q̃(k + rZ(k)) ≥ s3(k + s2(k + rZ(k) + p̃(k + rZ(k)))) = s3(k + s1(k))
such that q̃ does not depend on Z and rZ . Then TIMEρ,S,[Z∗

1,p]p ≤ q̃(k + rZ(k)) =: q(k)

w.o.p., so we have shown that we can choose q satisfying the additional constraint q(k) =
q̃(k + rZ(k)). ut

We are now ready to prove Theorem 32. The construction of the simulator S∞ and
the proof that EXECσπ ,A,Z ≈ EXECσρ,S∞,Z are as in the proof of Theorem 16. However,
to prove Theorem 32, we need to additional show that σρ∪{S∞} is u.r.p.. To achieve this,
we first show as for Theorem 16 that Pr[B] is negligible in σρ ∪ {S∞,Z}. Furthermore,
note that by construction of S∞ there is a fixed polynomial s (not depending on Z or
rZ) such that TIMEσρ,S∞,Z(k, z) ≤ s(k + Rk,z + P 1

k,z + P 2
k,z + Qk,z) where the random

variable Rk,z denotes the number of steps Z runs, P 1
k,z denotes the number of steps the

machines from σ run, P 2
k,z denotes the number of sessions of π invoked, and Qk,z the

maximum number of steps any of the instances of π runs. By definition of rZ we have
Rk,z ≤ rZ(k) with probability 1, and by definition of B = Bp,q, the fact that Pr[B] is
negligible implies that P 1

k,z ≤ p(k), P 2
k,z ≤ p(k), and Qk,z ≤ p(k) holds with overwhelming

probability. Thus w.o.p. we have TIMEσρ,S∞,Z(k, z) ≤ s(k + rZ(k) + 2p(k) + q(k))
(∗)
=

s(k + rZ(k) + 2p̃(k + rZ(k)) + q̃(k + rZ(k))) ≤ s̃(k + rZ(k)) for a suitable polynomial s̃
that does not depend on Z or rZ . (Here (∗) uses Lemma 33.) Since this holds for any a
priori polynomial Z, we have that σρ ∪ {S∞} is u.r.p. and Theorem 32 follows. ut

10 Relation to classical notions

In this section we investigate in what relation our notion stands to the classical UC
definitions. Since the classical definitions are not meaningful for protocols that are not
a priori polynomial, we are interested in the case that π and ρ are a priori polynomial
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protocols. In this case, it turns out that UC with respect to reactive polynomial time lies
strictly between two common classical definitions: UC and specialized-simulator UC32. To
show the strictness of these implications, we need the following complexity assumption:

Definition 34 (Time-lock puzzle). A time-lock puzzle consists of an ITM V (the
verifier) and an ITM P (the prover) such that

– Given arguments (1k, s), the ITM V runs in polynomial time in k. Given arguments
(1k, s), the ITM P runs in polynomial time in k + s.

– Easiness. For any polynomial p we have that

min
s≤p(k)

P
(
〈P(1k, s),V(1k, s)〉 = 1

)

is overwhelming in k. (We call s the hardness of the puzzle.)
– Hardness. For any ITM B running in polynomial time in the length of its first argu-

ment there exists a polynomial p, such that

sup
s≥p(k)

z∈{0,1}∗

P
(
〈B(1k, s, z),V(1k , s)〉 = 1

)

is negligible in k.

In this definition 〈P,V〉 denotes the distribution of the output of V after an interaction
with P.

Note the following differences between our definition and that of [HU05, HU06]: First,
following [Unr06], we allow interactive time-lock puzzles, while [HU05] used the stronger
assumption of non-interactive ones. However, all results of [HU06] were shown to hold
also for interactive time-lock puzzles [Unr06]. Further, [HU05, HU06, Unr06] allow the
prover to depend of the polynomial p in the easiness condition while we require the
same prover for any p, i.e., we impose a uniformity requirement on honest prover. All
constructions known to the authors (in particular those from [RSW96, Unr06]) fulfil this
additional requirement.

We can now state the relations between our model and classical notions for the case of
a priori polynomial protocols. Note that we have included another notion besides classi-
cal UC and classical specialized-simulator UC, namely general composability. Intuitively,
general composability is the weakest security notion that still fulfils the Universal Com-
position Theorem 16. Although no workable characterisation for this notion is known, it
is insofar an important notion that is specifies the minimum properties we might expect
from a UC-like security notion.

Theorem 35. By classical UC we denote UC as defined in Definition 1, where poly-
nomial time means a priori polynomial time. By classical specialized-simulator UC we

32 Specialized-simulator UC is defined like UC, with the difference that the simulator may depend on
the environment [Lin03]. We stress that we consider the specialized-simulator UC notion as defined
in [Lin03], which is not equivalent to the UC notion from [Can05a]. There also exists a specialized-
simulator UC variant in [Can05a] that is equivalent to standard UC (see [Can05a, Claim 12]).
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denote the notion from [Lin03] which is defined like classical UC, except that the simu-
lator may depend on the environment.

A protocol π is said to emulate ρ with respect to (polynomially-bounded) general
composability if for every a priori polynomial protocol σ we have that σπ emulates σρ in
the stand-alone model (see [Lin03] for a detailed definition of general composability).

Then for a priori polynomial protocols π and ρ, consider the following statements.

(i) π emulates ρ with respect to classical UC.
(ii) π emulates ρ with respect to reactive polynomial time.
(iii) π emulates ρ with respect to general composability.
(iv) π emulates ρ with respect to classical specialized-simulator UC.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

If time-lock puzzles exist, all implications are strict in the sense that there is a pair
of protocols π, ρ such that the implication does not hold.

Proof. First we show (i) ⇒ (ii), i.e., that if π emulates ρ with respect to classical UC,
then π emulates ρ with respect to reactive polynomial time.

Let p a polynomial such that the running time of π upon security parameter k is
bounded by p(k).

Let Ãp be defined like the dummy adversary, except that upon security parameter
k, no message of length greater than is sent or received to/from the protocol or environ-
ment, and at most p(k) messages are sent to/from the environment and the protocol,
respectively.

Then π emulates ρ with respect to reactive polynomial time if and only if π emulates
ρ with respect to reactive polynomial time and the dummy adversary Ãp. This is shown
analogous to Theorem 14, except that we additionally use that we can w.l.o.g. assume
the environment not to sent more than p(k) messages or messages of length greater
than p(k) through the dummy adversary since the protocol (having runtime bound p(k))
would not be able to read these superfluous messages.

Assume that π emulates ρ with respect to classical UC. Since Ãp is a priori polyno-
mial, by definition of classical UC there is a a priori polynomial simulator S̃p such that
for all a priori polynomial environments Z the ensembles EXECπ,Ãp,Z and EXECρ,S̃p,Z

are computationally indistinguishable. Since S̃p and π are a priori polynomial, the net-
work π ∪ {S̃p} is a priori polynomial and therefore in particular reactively polynomial.
So S̃p is valid for ρ. Thus π emulates ρ with respect to reactive polynomial time and
the dummy adversary Ãp. As seen above, this implies that π emulates ρ with respect to
reactive polynomial time. This shows (i) ⇒ (ii).

Now we are going to show (ii) ⇒ (iv), i.e., that if π emulates ρ with respect to
reactive polynomial time, then π emulates ρ with respect to classical specialised-simulator
UC. To prove this, let an adversary A and an environment Z be given, both a priori
polynomial, and we have to show that there is an a priori polynomial simulator S such
that EXECπ,A,Z and EXECρ,S,Z are computationally indistinguishable.

Since A and π are a priori polynomial, A is valid for π. By assumption, π emulates
ρ with respect to reactive polynomial time, so there is a valid simulator S ′ for ρ such
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that the ensembles EXECπ,A,Z and EXECρ,S′,Z are computationally indistinguishable.
However, S ′ is not necessarily a priori polynomial. Since S ′ is valid, and Z is a priori
polynomial, the network ρ∪{S ′,Z} is polynomial w.o.p., so there is a polynomial p such
that TIMEρ,S′,Z(k, z) ≤ p(k) with overwhelming probability. So in particular S ′ runs at
most p(k) steps with overwhelming probability. Let S be as S ′, except that when running
more than p(k) steps S aborts. Since this happens only with negligible probability in an
execution of ρ ∪ {S,Z}, we have that EXECρ,S′,Z and EXECρ,S,Z are computationally
indistinguishable (in fact even statistically indistinguishable). Summarising, EXECπ,A,Z

and EXECπ,S,Z are computationally indistinguishable, and S is a priori polynomial, thus
π emulates ρ with respect to classical specialised-simulator UC.

Now we show (ii) ⇒ (iii), i.e., that if π emulates ρ with respect to reactive polynomial
time, then π emulates ρ with respect to general composability. For any a priori polynomial
protocol σ, both σπ and σρ are a priori polynomial and thus in particular reactively
polynomial. Thus by Theorem 16 σπ emulates σρ with respect to reactive polynomial
time. Above we showed that for a priori polynomial protocols, reactive polynomial time
UC implies classical specialised-simulator UC, so σπ emulates σρ with respect to classical
specialised-simulator UC. This again implies that σπ emulates σρ in the stand-alone
model (see [Lin03]). Since this holds for any a priori polynomial protocol σ, we have that
π emulates ρ with respect to general composability.

In [Lin03] it was shown that (iii) ⇒ (iv), so summarising we have (i) ⇒ (ii) ⇒ (iii) ⇒
(iv). So all implications are proven.

We are left to show that the implications are strict if time-lock puzzles exist.

First, we show that there are protocols π1 and ρ1 such that π1 emulates ρ1 with
respect to general composability, but π1 does not emulate ρ1 with respect to reactive
polynomial time. For this purpose, we use a pair of protocols proposed in [HU05] to sep-
arate the notions of UC and specialised-simulator UC.33 We give a short sketch of their
construction. For this, we first review the definition of a time-lock puzzle. A time-lock
puzzle is an interactive protocol where one party (the prover) tries to convince another
party (the verifier) that he has a given amount of computational power. More exactly, the
verifier gets a parameter s ∈ N (the strength of the puzzle) as input. The ensuing inter-
action we call the time-lock puzzle. If the verifier output 1 after that interaction, we say
the prover solved the puzzle. For any polynomial p, there is an a priori polynomial-time
prover P such that P solves time-lock puzzles with strength s ≤ p(k) with overwhelming
probability. On the other hand, for any a priori polynomial-time prover B, there is a
polynomial q such that B solves puzzles of strength s ≥ q(k) only with negligible prob-
ability. For a formal definition, see [HU05] (who only investigate the case of one-round
time-lock puzzles) or [Unr06] (which generalises the results of [HU05]).

The protocols proposed in [HU05] are the following (called M0 and M1 there). Let
k denote the security parameter. The protocol π1 first randomly chooses a strength
s ∈ {20, . . . , 2k}. Then it performs a time-lock puzzle of strength s with the environment

33 Actually, [HU05] separated the corresponding notions in the Reactive Simulatability framework [PW01,
BPW04b]. However, all their proof carry easily over to the UC framework. The same holds for [HU06].
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as prover. After this, it performs a time-lock puzzle of strength s with the adversary as
prover. After this, π1 sends the message b = 0 to the environment.

The protocol ρ1 behaves identically to π1, with the following difference: When the
environment solves the time-lock puzzle and the simulator does not solve it, then ρ1

sends the message b = 1 to the environment. Otherwise b = 0 is sent to the environment
as would have done π1.

Then π1 does not emulate ρ1 with respect to classical UC due to the following reason:
For any a priori polynomial simulator S, there is a polynomial p such that S solves puzzles
with strength s ≥ p(k) only with negligible probability. Furthermore there is an a priori
polynomial environment that can solve puzzles of strength s ≤ 2p(k) with overwhelming
probability. Since a puzzle of strength p(k) ≤ s ≤ 2p(k) is asked by ρ1 with probability
1
k , with noticeable probability the environment solves the puzzle while the simulator
does not. Thus the environment gets message b = 1 with noticeable probability when
running with ρ1 and S, but gets only b = 0 when running with π1 and some adversary;
the environment can hence distinguish. Since for any simulator such a distinguishing
simulator exists, π1 does not emulate ρ1 with respect to classical UC.

On the other hand, if the simulator may depend on the environment, as in the case of
classical specialised-simulator UC, let p be a polynomial such that the a priori polynomial
environment Z solves puzzles of strength s ≥ p(k) only with negligible probability. Then
we can construct an a priori polynomial simulator that solves all puzzles of strength
s ≤ p(k). With overwhelming probability it then holds that if the environment solves
the puzzle, the simulator does so, too. Thus the message sent by ρ1 will be b = 0
with overwhelming probability, so that the environment cannot distinguish ρ1 from π1.
Therefore π1 emulates ρ1 with respect to classical specialised-simulator UC.

For detailed constructions and proofs we refer to [HU05]. The result can somewhat
be strengthened: It is easy to see that the proof that π1 emulates ρ1 with respect to
classical specialised-simulator UC generalises to the case where a polynomial number of
copies of π1 and ρ1, respectively, run concurrently. From this it follows that π1 emulates
ρ1 with respect to general composability [Lin03]. This is detailed in [Unr06].

We now show that π1 does not emulate ρ1 with respect to reactive polynomial time.
From this it follows that the implication (ii) ⇒ (iii) is strict.

Let A be the a priori polynomial-time adversary that solves time-lock puzzles given by
π up to an (arbitrarily chosen) strength of s = 1. Since π1 and A are a priori polynomial,
A is valid for π1. For a polynomial p, let Zp be the a priori polynomial environment that
solves time-lock puzzles given by π1 or ρ1 of a strength of s ≤ p(k) with overwhelming
probability. Let S be any simulator that is valid for ρ1. Then ρ1 ∪ {S,Z0} is polynomial
w.o.p., so there is a polynomial q bounding TIMEρ1,S,Z0. Let Sq be the simulator that
behaves as does S, but aborts when running more than q(k) steps. Then Sq is a priori
polynomial, so there is a polynomial r such that in an execution of ρ1 ∪ {Sq,Z0} the
simulator Sq solves time-lock puzzles of strength s ≥ r(k) only with negligible probability.
Since Sq simulates S faithfully up to a negligible probability in an execution of ρ1 ∪
{Sq,Z0}, it follows that also S solves time-lock puzzles of strength s ≥ r(k) only with
negligible probability in an execution of ρ1∪{S,Z0}. Since the messages sent by ρ1 to S
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do not depend on whether the environment solves its puzzle or not, the probability that S
solves time-lock puzzles of strength s ≥ r(k) in an execution of ρ1∪{S,Z2p} is negligible,
too. On the other hand, Z2p solves puzzles with strength s ≤ 2p(k) with overwhelming
probability. Since ρ1 chooses p(k) ≤ s ≤ 2p(k) with probability 1

k , it follows that with
noticeable probability the environment Zp solves its puzzle while the simulator S does
not. Then the message b = 1 is send to the environment by ρ1 so that the environment
Zp can distinguish between π1 and ρ1. Therefore π1 does not emulate ρ1 with respect to
reactive polynomial time. Since π1 does emulate ρ1 with respect to general composability
(see above), the implication (ii) ⇒ (iii) is strict.

We will now show that the implication (i) ⇒ (ii) is strict. For this, we use a slight
modification of the protocols given by [HU05]. We modify π1 and ρ1 insofar that the
time-lock puzzle is only given to the adversary/simulator if the environment beforehand
solves its time-lock puzzle. We call the resulting protocols π2 and ρ2. For these modified
protocols the results from [HU05] still hold (with almost unmodified proofs), in particular
π2 does not emulate ρ2 with respect to classical UC. However, we will show that π2

does emulate ρ2 with respect to reactive polynomial time. From this it follows that the
implication (i) ⇒ (ii) is strict.

By Theorem 14 it is sufficient to construct a simulator S̃ for the dummy adversary Ã.
This simulator S̃ behaves like the dummy adversary: It follows the instructions given by
the environment (since the dummy adversary would do so, too) and forwards all messages
from the protocol ρ2 to the environment. But whenever the environment instructs the
simulator to send a given solution a for the time-lock puzzle to ρ2, the simulator runs
the algorithm for solving the puzzle (which runs in polynomial-time in s and outputs a
correct solution a′ with overwhelming probability) and then sends that correct solution
a′ instead of a.34 Since the simulator solves all puzzles with overwhelming probability,
the message sent by ρ2 to the environment will be b = 1 with overwhelming probability,
and therefore the environment cannot distinguish. It is left to show that S is valid for
ρ. The only critical point is the running time of the algorithm for solving the time-
lock puzzle. Let an a priori polynomial environment Z be given. Then there exists a
polynomial p such that the probability is negligible that Z solves puzzles with strength
s ≥ p(k). Since by construction ρ2 give a puzzle of strength s to the simulator only if the
environment previously solved a puzzle of that strength. Therefore ρ2 gives puzzles of
strength s ≥ p(k) to S only with negligible probability. Since the running time needed by
S for solving the puzzle is bounded by q(s) for some polynomial s, it follows that when
interacting with Z the running time needed by S for solving the puzzle is bounded by
q(p(k)) with overwhelming probability. Thus π ∪ {S,Z} is polynomial w.o.p., and since
this holds for all a priori polynomial environments Z, it follows that S is valid for ρ2.
Thus π2 emulates ρ2 with respect to reactive polynomial time. Since π2 does not emulate
ρ2 with respect to classical UC, the implication (i) ⇒ (ii) is strict.

34 This assume that the solution to the time-lock puzzle is a single message as in [HU05]. If the solution
is an interaction as in [Unr06], the simulator will first solve (interactively) the puzzle given by ρ2 and
then (interactively) give a new puzzle of the same strength to the environment.
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We have shown that the implications (i) ⇒ (ii) ⇒ (iii) are strict. In [HU06] it was
shown that the implication (iii) ⇒ (iv) is strict, too, given the existence of time-lock
puzzles. So all implications given in the theorem are strict. ut
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