
Short Redactable Signatures Using Random

Trees ⋆

Ee-Chien Chang Chee Liang Lim Jia Xu

Department of Computer Science
National University of Singapore
{changec, xujia}@comp.nus.edu.sg

Abstract. A redactable signature scheme for a string of objects sup-
ports verification even if multiple substrings are removed from the orig-
inal string. It is important that the redacted string and its signature
do not reveal anything about the content of the removed substrings.
Existing schemes completely or partially leak a piece of information:
the lengths of the removed substrings. Such length information could be
crucial for many applications, especially when the removed substring has
low entropy. We propose a scheme that can hide the length. Our scheme
consists of two components. The first component H, which is a “colli-
sion resistant” hash, maps a string to an unordered set, whereby existing
schemes on unordered sets can then be applied. However, a sequence of
random numbers has to be explicitly stored and thus it produces a large
signature of size at least (mk)-bits where m is the number of objects
and k is the size of a key sufficiently large for cryptographic operations.
The second component uses RGGM tree, a variant of GGM tree, to gen-
erate the pseudo random numbers from a short seed, expected to be of
size O(k + tk log m) where t is the number of removed substrings. Unlike
GGM tree, the structure of the proposed RGGM tree is random. By an
intriguing statistical property of the random tree, the redacted tree does
not reveal the lengths of the substrings removed. The hash function H
and the RGGM tree can be of independent interests.

Key words: Redactable Signature Scheme, Random Tree, Privacy

1 Introduction

We are interested in a signature scheme for strings of objects whereby the au-
thenticity of a string can be verified even if it is redacted, that is, some substrings
have been removed. Let x = x1x2 . . . xm be a string, for example a text docu-
ment where each object can be a character or a word, or an audio file where
each object is a sample. The string x is signed by the authority and both the
string and its signature (x, s) are passed to another party, say Alice. Alice wants
to show Bob x but Bob is not authorized to view certain parts of the string,

⋆ A short version [CLX09] of this paper is accepted by CT-RSA 09.

say x2x3x4 and x7. Thus, Alice shows Bob x̃ = x1 ⋄ x5x6 ⋄ x8 . . . xm where each
⋄ indicates the location of a removed substring. On the other hand, Bob may
want to verify the authenticity of x̃. A redactable signature scheme allows Alice
to produce a valid signature s̃ for the redacted string x̃, even if Alice does not
have the authority’s secret key. From the new signature s̃, Bob can then verify
that x̃ is indeed a redacted version of a string signed by the authority.

Unlike the usual signature schemes, redactable signature scheme has addi-
tional requirement on privacy: information of the removed strings should be
hidden. In this paper, we consider the stringent requirement that, Bob could not
obtain any information of any removed substring, except the fact that a non-
empty substring has been removed at each location ⋄. This simple requirement
turns out to be difficult to achieve. Existing schemes are unable to completely
hide a piece of usually important information: the length of each removed sub-
string. Note that information on length could be crucial if the substring has low
entropy. For example, if the substring is either “Approved” or “Not Approved”,
then its length reveals everything. There are scenarios and applications where
the lengths of the removed strings should not be hidden. As noted by Johnson et
al. [JMSW02], semantic attack could be possible in some scenarios if the length
information is hidden. On the other side, there are also applications where the
fact that a string has been redacted must be hidden. Our scheme can be modi-
fied to cater for the above scenarios. The redactable signature scheme proposed
by Johnson et al. [JMSW02] employs a Merkle tree [Mer80] and a GGM tree
[GGM86] to generate a short signature. However, it is easy to derive the length
from the structures of the redacted Merkle and GGM trees. A straightforward
modification by introducing randomness into the tree structure also does not hide
the length completely. Schemes by Johnson et al. [JMSW02] (set-homomorphic
signatures) and Miyazaki et al. [MHI06] are designed for unordered sets and are
not applicable for a string. A way to extend their schemes to strings is by assign-
ing a sequence of increasing random numbers to the objects [MHI06]. However,
this leads to large signatures since the random numbers have to be explicitly
stored, and more importantly, it is insecure since the gaps in the sequence reveal
some information about the number of removed objects.

In this paper, we propose a scheme that can hide the lengths of the removed
substrings. Our scheme incorporates two components: a hash, and a random tree
with a hiding property. We first give a scheme RSS using the first component,
and then another scheme SRSS with both components. The first component
hashes a string of objects to an unordered set. For the unordered set, existing
redactable schemes [MHI06,JMSW02] on unordered sets can be applied. The
scheme RSS satisfies the requirements on unforgeability and privacy preserving
under reasonable cryptographic assumptions. However, it produces a large sig-
nature. Essentially, the main portion of the signature is a sequence of random
numbers 〈r1, r2, . . . , rm〉, where each ri is associated with the i-th object in the
string.

The goal of the second component is to reduce the signature size by replacing
the ri’s with a sequence of pseudo random numbers, generated from a small

seed t. If a substring is removed, the corresponding random numbers have to be
removed accordingly. Thus, generating the random numbers iteratively starting
from the seed violates privacy, since the seed t reveals all the random numbers.

We employ a variant of GGM binary tree to generate the ri’s in a top-down
manner, where the ri’s are at the leaves, and the seed t is at the root. Unlike the
GGM tree which is balanced, we use a random binary tree where the structure
of the binary tree is random. After a substring is removed, the associated leaves
and all their ancestors are to be removed, resulting in a collection of subtrees
(Figure 1). The roots of the subtrees collectively form the new seed t̃ for the
redacted ri’s. Note that from the structures of the subtrees, an adversary might
still derive some information of the length of a removed substring. Our main
observation is that, by choosing an appropriate tree generation algorithm, the
structure of the subtrees reveals nothing about the size of the original tree.
Consider a game between Alice and Bob. Suppose Alice randomly picks a binary
tree and it is equal likely that the tree contains 1000 leaves or 9 leaves. Now Alice
redacts the tree by removing one substring and only 8 leaves are left. From the
structure of the remaining subtrees (for example Figure 1(b)), Bob tries to guess
the size of the original tree. Now, if Alice employs a tree generation algorithm
with the hiding property, Bob cannot succeed with probability more than 0.5.
This hiding property is rather counter-intuitive. Since the size of the tree is
involved in the tree generation and thus intuitively the information about the
size of the tree is spread throughout the tree. Thus it is quite surprising that the
global information on size can be completely removed by deleting some nodes.

(a) (b)

Ancestor nodes to be deleted

Leaf node to be removed

Random number to be removed

r1 r3 r4 r5 r7 r8 r1 r2 r3 r4 r5 r7 r8 r9r9r2 r6

Fig. 1. Redacting the tree in (a) by removing r6, gives rise to the redacted tree (b).

Contribution and Organization.
1. We propose a “collision resistant” hash H that maps strings to unordered sets.

From H we obtain RSS , a redactable signature scheme for strings. Unlike previ-
ously known methods,RSS is able to hide the lengths of the removed substrings.
We show that RSS is secure against chosen message attack (Theorem 2) and
privacy preserving (Theorem 3) under resonable assumptions, which are weaker
than random oracle assumption. However, the signature size is large. It consists
of km + kt + κ bits, where κ is the size of the signature produced by a known
redactable signature scheme for unordered sets, m is the number of objects in
the redacted string, t is the number of substrings removed, and k is a security
parameter (e.g. k = 1024).
2. We observe a hiding property of a random tree (Theorem 4). Based on the
observation, we propose RGGM, a pseudo random number generator which can
be viewed as a randomized version of GGM [GGM86]. If multiple substrings of
pseudo random numbers are to be removed, we can efficiently find a new seed
that generates the retained numbers, and yet it is computationally difficult to
derive the content and length of each removed substring from the new seed,
except the locations of the removed substrings.
3. We propose SRSS by incorporating RGGM into RSS . The expected size of
the signature is in κ + O(k + kt log m). SRSS is secure against chosen message
attack (Corollary 5) and privacy preserving (Corollary 6).

2 Related Work

Johnson et al. [JMSW02] introduced redactable signature schemes which en-
able verification of a redacted signed document. Signature scheme with simi-
lar property has also been proposed for XML documents [SBZ01], where the
redaction operation is to remove XML nodes. Redactable signatures are exam-
ples of homomorphic signatures which are introduced by Rivest in his talks
on “Two New Signature Schemes” [Riv01] and formalized by Johnson et al.
[JMSW02]. Micali et al. [MR02] gave a transitive signature scheme as the first
construction of homomorphic signatures. They also asked for other possible “sig-
nature algebras”. The notions on homomorphic signatures can be traced back
to incremental cryptography, introduced by Bellare, Goldreich and Goldwasser
[BGG94,BGG95]. Recently, Ateniese et al. [ACMT05] introduced sanitizable sig-
nature scheme [KL06,IKTY05,STT06,MHI06,YSLM08] allowing a semi-trusted
censor modifies the signed documents in a limited and controlled way.

The redactable signature scheme on strings is closely related to directed tran-
sitive signature scheme [MR02,Yi07]. It is possible to convert a directed transitive
signature scheme to a redactable signature scheme on strings. However, existing
directed transitive signature schemes do not provide privacy in the sense that
the resulting signatures reveal some information about the removed substrings.

3 Formulation and Background

Johnson et al.[JMSW02] gave definitions on homomorphic signature schemes and
their security for binary operators. It can be easily adapted for binary relations.

A string is a sequence of objects from an object space (or alphabet) O. For
example, O can be the set of ASCII characters, collection of words, or audio sam-
ples, etc. After a few substrings are removed from x, the string x may break into
substrings, say x1,x2, . . . ,xu. The redacted string (x̃, e), which we call anno-
tated string1, is represented by the string x̃ = x1‖x2‖ . . . ‖xu and an annotation
e = 〈m, b1, b2, . . . , bv〉 where ‖ denotes concatenation, bi’s is a strictly increasing
sequence indicating the locations of the removed substrings, m is the number of
objects in x̃, and v ∈ {u− 1, u, u + 1}. For each i, bi indicates that a non-empty
substring has been removed in between the bi-th and (1 + bi)-th locations. If
b1 = 0 or bv = m, this indicates that a non-empty substring has been removed
at the beginning or end of the string respectively. For example, (abcda, 〈5, 0, 3〉)
is a redacted string of the original xxxabcyyyda. For convenient, we sometimes
use a sequence of objects like 〈x1, x2, x3, . . . , xm〉 and a string of objects like
x1x2x3 . . . xm interchangeably.

Let us define a binary relation ≻ between annotated strings. Given two an-
notated strings X1 = (x1, e1) and X2 = (x2, e2), we say X1 ≻ X2, if either x2

can be obtained from x1 by removing a non-empty substring in x1, and the e2

is updated from e1 accordingly, or there is a X s.t. X1 ≻ X and X ≻ X2.

Definition 1 (Redactable Signature Scheme [JMSW02]) A redactable sig-
nature scheme with respect to binary relation ⊢, is a tuple of probabilistic poly-
nomial time algorithms (KGen, Sign, Verify, Redact), such that

1. for any message x, σ = SignSK(x)⇒ VerifyPK(x, σ) = TRUE;
2. for any messages x and y, such that x ⊢ y,

VerifyPK(x, σ) = TRUE ∧ σ′ = RedactPK(x, σ, y)⇒ VerifyPK(y, σ′) = TRUE,

where (PK,SK)← KGen(1k) and k is the security parameter.

Both Johnson et al.[JMSW02] and Miyazaki et al.[MHI06] presented a redactable
signature scheme w.r.t superset relation. Johnson et al.[JMSW02] also gave se-
curity definition for homomorphic signature schemes. We adapt their definition
for redactable signature scheme. Let ⊢ denote a binary relation. For any set S,
let span⊢(S) denote the set {x : ∃y ∈ S, s.t. y ⊢ x}.

Definition 2 (Unforgeability of Redactable Signature Scheme [JMSW02])
A redactable signature scheme 〈KGen, Sign, Verify, Redact〉 is (t, q, ǫ)-unforgeable
against existential forgeries with respect to ⊢ under adaptive chosen message
attack, if any adversary A that makes at most q chosen-message queries adap-
tively and runs in time at most t, has advantage AdvA ≤ ǫ. The advantage
of an adversary A is defined as the probability that, after queries on ℓ (ℓ ≤ q)
messages x1, x2, . . . , xℓ, A outputs a valid signature σ for some message x 6∈
span⊢({x1, x2, . . . , xℓ}). Formally,

AdvA = Pr

[
(PK,SK)← KGen(1k); ASign

SK = (x, σ);
VerifyPK(x, σ) = TRUE and x 6∈ span⊢({x1, x2, . . . , xℓ})

]
,

1 A string with an annotation which specifies the locations of redactions.

where the probability is taken over the random coins used by KGen, Sign and A.

Redactable signature schemes have an additional security requirement on
privacy [ACMT05]: the adversary should not be able to derive any information
about the removed substrings from a redacted string and its signature.

Definition 3 (Privacy Preserving) A redactable signature scheme
〈KGen, Sign, Verify, Redact〉 is privacy preserving if, given the public key PK
and any annotated strings X1,X2,X , such that X1 ≻ X and X2 ≻ X , the follow-
ing distributions S1 and S2 are computationally indistinguishable:

S1 = {σ : σ = RedactPK(X1, SignSK(X1; r1),X ; r2)},

S2 = {σ : σ = RedactPK(X2, SignSK(X2; r1),X ; r2)},

where r1 and r2 are random coins used by Sign and Redact respectively, and
public/private key (PK,SK) is generated by KGen.

4 RSS: Redactable Signature Scheme for Strings

We propose RSS, a redactable signature scheme for strings that is able to hide
the lengths of the removed substrings. Our approach is as follows: we first propose
a hash function H that maps an annotated string x̃ and an auxiliary input y to
an unordered set. This hash is “collision resistant” and satisfies some properties
on substring removal. Using H and some known redactable signature schemes
for unordered sets, we have a redactable signature scheme for strings.

4.1 Hashing strings to unordered sets

LetH be a hash function that maps an annotated string X and an auxiliary input
y, which could be a sequence of numbers from a finite field, to a (unordered)
set of elements from some universe. In our construction (Table 1), H maps the
input to a set of 3-tuples from Zn×Zn×Zn, where n is some chosen parameter.

Definition 4 (Collision Resistant) H is (t, ǫ)-collision-resistant if, for any
algorithm A with running time at most t,

Pr [X1 6≻ X2 ∧ H(X2,y2) ⊂ H(X1,y1)] ≤ ǫ,

where (X1,X2,y2) is the output of A on input y1, and the probability is taken
over uniformly randomly chosen y1 and random coins used by A.

To be used in constructing a secure string redactable signature scheme, be-
sides collision resistance, the hash functionH is also required to be 1)“redactable”:
given X1, X2 and y1, such that X1 ≻ X2, it is easy to find y2 such that
H(X1,y1) ⊃ H(X2,y2); 2) privacy preserving: H(X2,y2) must not reveal any
information about the removed substring. The property on privacy preserving
is essential and used in the proof of Theorem 3. However, for simplicity, we will
not explicitly formulate the requirement here.

4.2 Construction of H

We present a hash function H(·, ·) in Table 1 based on some hash function h.

Let n be a RSA modulus, and h : Zn → Zn be a hash function. Given x = x1x2 . . . xm

associated with annotation e, r = r1r2r3 . . . rm, and w = w1w2w3 . . . wm, where for
each i, xi, ri, wi ∈ Zn (i.e. x, r and w are strings over alphabet Zn), we define H as

H((x, e), (r,w)) , {ti : ti = (xi, ri, (w
Qi

j=1 h(rj)

i mod n)), 1 ≤ i ≤ m}.

Table 1. Definition of H(·, ·).

Remarks on the construction of H.

1. The witness w should be consistent with the annotation e, because w is
supposed to implicitly describe the locations of the removed substrings. For any
1 < i ≤ m, wi−1 6= wi means a non-empty substring has been removed just
between xi−1 and xi. If2 w1 6= g, this indicates that a non-empty substring is
removed from the front of the string x. We assume that there are no substrings
removed from the end of a string. Because of this correspondence, we may omit
the explicit annotation e in the use of H for simplicity.
2. It is crucial that the value of ri is explicitly represented in ti for each i

(Table 1). If the ri’s are omitted, then it is easy to find collisions.

Lemma 1 The hash function H as defined in Table 1, is (poly1(k), 1
poly2(k))-

collision-resistant for any positive polynomials poly1(·) and poly2(·), where k

is the security parameter, i.e. the bit length of n, assuming that h is division
intractable3 and always outputs odd prime integers, and Strong RSA Problem is
hard.

Appendix A gives the proof sketch. Basically, the proof reduces Strong RSA
Problem or Division Problem [GHR99] to the collision finding problem.

4.3 Construction of RSS

We construct a redactable signature scheme RSS , which consists of four algo-
rithms TGen, Sign, Verify, and Redact, for strings with respect to binary rela-
tion ≻ based on the hash function H defined in Table 1 and some redactable
signature scheme SSS for sets with respect to superset relation ⊇.

2 Here g is an element of large order from Z
∗
n. If there are no redaction at the front of

x, w1 = g. See the use of H in Table 3.
3 Division intractability [GHR99] implies collision resistance.

The signer chooses a RSA modulus n and an element g of large order in
Z∗

n. Both n and g are public. Let the object space be Zn , that is, a string is a
sequence of integers from Zn. Let h : Zn → Zn be a collision resistant hash which
satisfies the division intractable property [GHR99] and always outputs odd prime
numbers4. In practice, hash function like h(x) = SHA1(x)‖1 may be sufficient. Let
SSS = (keygen, sig, vrf, rec) be a redactable signature scheme for unordered
sets w.r.t superset relation ⊇. The signer also needs to choose the public and
secret key pair (PK,SK), which is actually used by the underlying signature
scheme SSS. The details of KGen, Sign, Verify, and Redact are presented in
Table 2, Table 3, Table 4 and Table 5.

The final signature of a string x1x2 . . . xm consists of m random numbers
r1, r2, . . . , rm, the witnesses w1, w2, . . . , wm where ri, wi ∈ Zn for each i, and a
signature s constructed by SSS. Recall that witness wi’s imply the annotation
of string x1x2 . . . xm.

KGen. Given security parameter k.

1. Choose a RSA modulus n, and an element g of large order in Zn.
2. Run key generating algorithm keygen on input 1k to get key (PK,SK).
3. Output (n, g,PK) as public key and SK as private key.

Table 2. RSS: KGen.

Sign. Given x = x1x2 . . . xm and its associated annotation e = 〈m〉.

1. Let wi = g for each i. Choose m distinct random numbers r1, r2, . . . , rm. Let
r = r1r2r3 . . . rm and w = w1w2w3 . . . wm. Compute

t = H((x, e), (r,w)).

2. Sign the set t using SSS with the secret key SK to obtain s:

s = sig
SK

(t).

3. The final signature consists of the random numbers ri’s, witnesses wi’s, and the
signature s. That is,

(r,w, s) or (r1, r2, . . . , rm; w1, w2, . . . , wm; s)

Table 3. RSS: Sign.

4 Gennaro [GHR99] gave a way to construct a hash function that is division intractable
and always outputs odd prime numbers.

Verify. Given a string x = x1x2 . . . xm associated with annotation e, its signature
(r, w, s), the public information n, g, and the public key PK of SSS.

1. If e and w are not consistent, output FALSE.
2. Compute t = H(x, (r, w)).
3. (r, w, s) is a valid signature of x under RSS, if and only if s is a valid signature

of t under SSS, i.e.
vrfPK(t, s) = TRUE.

Table 4. RSS: Verify.

Redact. Given a string x = x1x2 . . . xm associated with annotation e, and its sig-
nature (r, w, s), where r = r1r2 . . . rm, w = w1w2 . . . wm, the public information n, g,
public key PK for SSS, and (i, j) the location of the string to be removed (that is
xixi+1 . . . xj is to be removed).

1. Update e to obtain new annotation ê. Compute u =
Qj

k=i h(rk), to update the
witnesses in the following way: for each ℓ > j, update wℓ

ŵℓ ← w
u
ℓ mod n.

2. Let x̂ = x1x2 . . . xi−1xj+1 . . . xm, r̂ = r1r2 . . . ri−1rj+1 . . . rm and ŵ =
w1w2 . . . wi−1ŵj+1ŵj+2 . . . ŵm. Compute

t̂ = H((x̂, ê), (r̂, ŵ)).

3. Compute
ŝ = recPK(t, s, t̂)

where t = H((x, e), (r,w)).
4. Output (r̂, ŵ, ŝ) as the signature of (x̂, ê).

Table 5. RSS: Redact.

Theorem 2 RSS is (t, q, ǫ1
1−ǫ2

)-unforgeable against existential forgeries with re-
spect to relation ≻, if SSS is (t + qt0, q, ǫ1)-unforgeable against existential forg-
eries with respect to superset relation ⊇, and H is (t+qt1, ǫ2)-collision-resistant,
where t0 is the running time of H and t1 is the time needed by RSS to sign a
document.

The proof sketch is given in Appendix B. Our construction of H (Table 1) is
collision resistant (Lemma 1). Johnson et al.[JMSW02] showed their redactable
signature scheme Sig (in Section 5 of [JMSW02]) is (t, q, ǫ)-unforgeable under
reasonable assumptions (see Theorem 1 in [JMSW02]), for some proper param-
eters t, q and ǫ. Miyazaki et al.[MHI06] also showed a similar result on the un-
forgeability of the redactable signature scheme they proposed. Hence, conditions
in Theorem 2 can be satisfied.

Theorem 3 The redactable signature scheme RSS is privacy preserving (as de-
fined in Definition 3), assuming that hash function h satisfies the property: the
two distributions X = gh(U1)h(U2) mod n and Y = gh(U ′

1) mod n are computa-
tionally indistinguishable, where n is a RSA modulus, g is an element of large
order in Z∗

n and Ui’s and U ′
j’s are all independent uniform random variables

over Zn.

The proof sketch of Theorem 3 is in Appendix C. Interestingly, RSS is
privacy preserving, without any assumptions on the privacy preserving property
of SSS. This is because the relevant information is already removed by H during
redaction.

4.4 Efficiency

The size of s depends on SSS, and let us assume it requires κ bits. The number
of distinct wi’s is about the same as the number of redactions occurred. So wi’s
can be represented in t(k + ⌈log m⌉) bits, where t is the number of substrings
removed, and k is the bit length of n. Thus the total number of bits required is
at most k(m + t) + t⌈log m⌉ + κ. One may ignore the term t⌈log m⌉ since it is
used to specify the locations of removed substrings, which could be treated as
part of the message. Hence, the size of signature is essentially km + kt + κ. The
dominant term is km, which is the total size of the random numbers ri’s.

Disregarding the time taken by the scheme SSS, and the time required to
compute the hash h(·), during signing, O(m) of k-bits exponentiation operations
are required. During redaction, if ℓ consecutive objects are to be removed between
position i and j, and t′ number of redactions have been made after position j,
then the number of k-bit exponentiation operations is at most ℓ(t′ +1), which is
in O(ℓm). During verification, O(tm) number of k-bits exponentiation operations
are required. Hence, our scheme is suitable for small t, which is reasonable in
practice. In sum, the main drawback of RSS is the size of its signature. In the
next section, we will reduce its size using a random tree.

5 RGGM: Random tree with Hiding property

We propose RGGM, a variant of GGM tree [GGM86] to generate a sequence
of pseudo random numbers, where the structure of the tree is randomized. This
generator provides us with the ability to remove multiple substrings5 of pseudo
random numbers, while still being able to generate the retained numbers from
a short seed. The expected size of the new seed is in O(k + tk log m) where t is
the number of removed substrings, m is the number of pseudo random numbers,
and k is a security parameter. More importantly, the new seed does not reveal
any information about the size nor the content of the removed substrings.

5 A substring is as a subsequence where all the elements are consecutive elements in
the full sequence.

Pseudo random number generation. To generate m pseudo random numbers
we employ a method similar to that in the redactable signature scheme proposed
by Johnson et al. [JMSW02], which is based on the GGM tree [GGM86]. Let
G : K → K × K be a length-doubling pseudo random number generator. First
pick an arbitrary binary tree T with m leaves, where all internal nodes of T

have exactly two children, the left and right child. Next, pick a seed t ∈ K uni-
formly at random, and associate it with the root. The pseudo random numbers
r1, r2, . . . , rm are then computed from t in the usual top-down manner along the
binary tree.

Hiding random numbers. If ri is to be removed, the associated leaf node and all
its ancestors will be removed, as illustrated by the example in Figure 1(b). The
values associated with the roots of the remaining subtrees, and a description
of the structure of the subtrees, form the new seed, whereby the remaining
random values rj ’s (j 6= i) can be re-computed. By the property of G, it is
computationally difficult to guess the removed value ri from the new seed.

TreeGen: Given m, output a binary tree T with m leaves:

1. Pick a p uniformly at random from {1, 2, . . . , m− 1}.
2. Recursively generate a tree T1 with p leaves.
3. Recursively generate a tree T2 with m− p leaves.
4. Output a binary tree with T1 as the left subtree and T2 as the right subtree.

Table 6. TreeGen: a random tree generation algorithm

Unlike the method proposed by Johnson et al. [JMSW02], our tree T is ran-
domly generated. If the tree is known to be balanced (or known to be of some
fixed structure), some information on the number of leaf nodes removed can be
derived from the redacted tree. Our random trees are generated by the proba-
bilistic algorithm TreeGen in Table 6. Note that descriptions of the structure of
the tree are required for the regeneration of the random values ri’s.

At the moment, for ease of presentation, the descriptions are stored together
with the seed. This increases the size of the seed. To reduce the size, we can
replace the description by another short random seed t̂, which is assigned to the
root. The random input required in Step 1 of the algorithm can be generated from
t̂ using G. A difference between the two methods of storing the (redacted) tree
structure information is that in the former, we will have a information theoretic
security result, whereas in the later, the security depends on the security of G.

Our main observation is as follows: after a substring of leaves is removed from
the random tree, the remaining subtrees do not reveal (information theoretically)
anything about the number of leaves removed, except the fact that at least one
leaf has been removed at that location.

Notations. Given a binary tree T , its leaf nodes can be listed from left to
right to obtain a sequence. We call a subsequence of consecutive leaves a sub-
string of leaves. After multiple substrings of leaves and all of their ancestor nodes
are deleted, the remaining structures form a redacted tree6 represented by two
sequences, T = 〈T1, T2, . . . , Tv〉 and b = 〈m, b1, b2, . . . , bu〉. where Ti’s are the
subtrees retained, and each bi indicates that a substring was removed between
the bi-th and (bi + 1)-th locations in the remaining sequence of leaf nodes. Let
qi be the number of leaves that were removed in this substring. We call the se-
quence 〈m, (b1, q1), (b2, q2), . . . , (bu, qu)〉 the original annotation of b. Thus, the
total number of leaf nodes removed is

∑u

i=1 qi.

Let us consider this process. Given an original annotation b1 = 〈m, (b1, q1),
(b2, q2), . . . , (bu, qu)〉, for a string of size m, a random tree T of size m +

∑u

i=1 qi

is generated using TreeGen, and then redacted according to b1. Let RED(b1) be
the redacted tree.

From an adversary’s point of view, he has RED(b1), represented as (T,b),
and wants to guess the qi’s in the original annotation b1, or the original total
number of leaf nodes. We want to show that the additional knowledge of T does
not improve his chances, compared to another adversary who only has b. It is
suffice to show that, given any b and any two possible original annotations b1

and b2, the conditional probabilities of obtaining (T,b) are the same. That is,

Theorem 4 For any redacted tree (T,b), any distribution B on the original an-
notation, and b1 = 〈m, (b1, q1), (b2, q2), . . . , (bu, qu)〉, b2 = 〈m, (b1, q

′
1), (b2, q

′
2),

. . . , (bu, q′u)〉,

Prob(RED(B) = (T,b) | B = b1) = Prob(RED(B) = (T,b) | B = b2)

The proof is given in Appendix D.

6 SRSS: A Short Redactable Signature Scheme for

Strings

RSS produces a large signature, whose main portion is a sequence of true ran-
dom numbers ri’s. We can combine RGGM with RSS to produce a short sig-
nature by replacing the ri’s with pseudo random numbers generated by RGGM.
Let us call this combined scheme SRSS , short redactable signature scheme for
strings.

It is easy to show that SRSS is unforgeable and privacy preserving from
Lemma 1, Theorem 2, Theorem 3, Theorem 4, and the fact that RGGM is a
pseudo random number generator.

6 Although strictly speaking it is a forest.

Unforgeability. From the definition of cryptographic secure pseudo random
number generator and Theorem 2, we conclude that SRSS is unforgeable.

Corollary 5 For any positive polynomials (in κ) t and q, SRSS is (t, q, ǫ1
1−ǫ2

)-
unforgeable against existential forgeries with respect to ≻, if SSS is (t+qt0, q, ǫ1)-
unforgeable against existential forgeries with respect to ⊇, H is (t + qt1, ǫ2)-
collision-resistant, and G is a cryptographic secure pseudo random number gen-
erator, where t0 is the running time of H, t1 is the time needed by SRSS to sign
a document, and κ is the security parameter.

Privacy. From the definition of cryptographic secure pseudo random num-
ber generator, Theorem 3 and Theorem 4, we conclude that SRSS is privacy
preserving.

Corollary 6 The redactable signature scheme SRSS is privacy preserving (as
defined in Definition 3), assuming that the hash function h satisfies the property:
the two distributions X = gh(U1)h(U2) mod n and Y = gh(U ′

1) mod n are com-
putationally indistinguishable, and G is a cryptographic secure pseudo random
number generator, where n is a RSA modulus, g is an element of large order in
Z∗

n and Ui’s and U ′
j’s are all independent uniform random variables over Zn,

and h(·) is used to define H in Table 1.

Efficiency. The improvement of SRSS is in signature size. Given the unredacted
string, the size of the signature is κ + 2k, where κ is the signature size of SSS,
and k is the length of each seed. Recall that we need two seeds in RGGM, one
for the generation of the numbers, and the other for the tree structure.

If t substrings are removed, the signature size is κ + tk + O(kt log m), where
the term tk is for the witness, and O(kt log m) is required for the RGGM.

7 Other variants

7.1 Allowing removal of empty substring

Both RSS and SRSS do not allow removal of empty substrings. In fact, it is
considered to be a forgery if a censor declares that a substring has been removed
but actually he/she doesnot remove anything.

It is desirable to allow removal of empty substrings in some application sce-
narios. This can be achieved by slight modifications to our schemes. To sign a
string x1x2 . . . xm, special symbol ♮ is inserted to obtain the expanded string
x̃ = ♮x1♮x2♮ . . . ♮xm♮ which will be signed directly using RSS or SRSS . To re-
move a substring x0, the expanded substring of x0 is actually removed. In the
case where a substring has already being removed in front or at the end of x0,
the ♮ is not included at the front or the end accordingly. To remove an empty
substring, simply remove the ♮ at intended location.

7.2 Hiding the fact that the string is redacted

There is a question on whether one should hide the location of a removed sub-
string or even the occurrence of redaction. This requirement is also known as
invisibility or transparency [ACMT05,MHI06]. For a small object space, if invisi-
bility is satisfied, a censor may take a long signed string, remove some substrings
to form an arbitrary “authentic” short string. Nevertheless, some applications
may need invisibility.

Here is a simple variation of RSS that achieves this. To sign a string, sim-
ply add a special symbols ♯ in-between any two consecutative objects. Sign the
expanded string and then immediately redact it by removing all ♯’s. Redaction
and verification is the same as before.

However, this variant produces a large signature even if we use SRSS . Fur-
thermore, the computation during verification is high. At least Ω(m2) exponen-
tiation operations are required.

To reduce the size of signature, there is an alternative: sign all the pairs of
objects. To sign the string x = x1x2x3 . . . xm, first generate random numbers
r1, r2, . . . , rm such that ri‖xi’s are distinct. Next, let t be the set of all pairs
{(ri‖xi, rj‖xj)}i<j and employ SSS to sign t. When an object xi is to be removed,
simply remove all the pairs that involve xi from t.

Since the role of ri is to ensure that all elements are distinct, the size of each
ri can be smaller than the random numbers required by RSS.

8 Discussion and Conclusion

We considered a simple but difficult requirement in redactable signature scheme:
hiding the lengths of the removed substrings. We exploited an intriguing statis-
tical property of random trees, and employed a hash from strings to unordered
sets to achieve the requirement. Although the signature is short, its size still
depends on the number of substrings removed and the length of the string. In
contrast, there are known schemes for unordered sets, whose signature size is
a constant. Intuitively, the larger signature size is the price that we need pay
for the ordering information. To keep the same ratio of message space size to
the signature space size, the signature size of string with length m should be
about m log m times larger than that for corresponding unordered set. The com-
putation time required during verification is high for long strings when many
substrings are removed. It is interesting to find a practical way to organize the
string hierarchically, so as to achieve speedup.

The two main components, the hash H and the RGGM tree, proposed in
this paper, could be of independent interests. The hash function may play a
role in the design of transitive signature with additional property on privacy
preservation. Many secure outsourced database applications involve Merkel tree
or GGM tree. The hiding property of the RGGM tree may be useful in those
applications.

References

[ACMT05] Giuseppe Ateniese, Daniel Chou, Breno Medeiros, and Gene Tsudik. San-
itizable signatures. In ESORICS, pages 159–177, 2005.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryp-
tography: The case of hashing and signing. In CRYPTO, pages 216–233,
1994.

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryp-
tography and application to virus protection. In STOC, pages 45–56, 1995.

[CLX09] Ee-Chien Chang, Chee Liang Lim, and Jia Xu. Short redactable signatures
using random trees. In CT-RSA, pages 133–147, 2009.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signa-
tures without the random oracle. In EUROCRYPT, pages 123++, 1999.

[IKTY05] Tetsuya Izu, Nobuyuki Kanaya, Masahiko Takenaka, and Takashi Yoshioka.
Piats: A partially sanitizable signature scheme. In ICICS, pages 72–83,
2005.

[JMSW02] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homo-
morphic signature schemes. In CT-RSA, pages 244–262, 2002.

[KL06] Marek Klonowski and Anna Lauks. Extended sanitizable signatures. In
ICISC, pages 343–355, 2006.

[Mer80] Ralph Merkle. Protocols for public key cryptosystems. In SP, page 122,
1980.

[MHI06] Kunihiko Miyazaki, Goichiro Hanaoka, and Hideki Imai. Digitally signed
document sanitizing scheme based on bilinear maps. In ASIACCS, pages
343–354, 2006.

[MR02] Silvio Micali and Ronald Rivest. Transitive signature schemes. In CT-RSA,
pages 236–243, 2002.

[Riv01] Ronald Rivest. Two new signature schemes.
Presented at Cambridge seminar, 2001.
http://www.cl.cam.ac.uk/Research/Security/seminars/2000/rivest-tss.pdf.

[SBZ01] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction sig-
natures. In ICISC, pages 163–205, 2001.

[STT06] Manabu Suzuki, Isshiki Toshiyuki, and Keisuke Tanaka. Sanitizable signa-
ture with secret information. Technical report, Dept. of Mathematical and
Computing Sciences, Tokyo Institute of Technology, 2006.

[Yi07] Xun Yi. Directed transitive signature scheme. In CT-RSA, pages 129–144,
2007.

[YSLM08] Tsz Hon Yuen, Willy Susilo, Joseph K. Liu, and Yi Mu. Sanitizable signa-
tures revisited. In CANS ’08: Proceedings of the 7th International Confer-

ence on Cryptology and Network Security, pages 80–97, 2008.

A Proof of Lemma 1

Lemma 1. The hash function H as defined in Table 1, is (poly1(k), 1
poly2(k))-

collision-resistant for any positive polynomials poly1(·) and poly2(·), where k

is the security parameter, i.e. the bit length of n, assuming that h is division

intractable7 and always outputs odd prime integers, and Strong RSA Problem
is hard.

Proof. (Sketch) Suppose there exists a probabilistic polynomial time algorithm
A, which takes as input (r1,w1), and outputs (x1, e1), (x2, e2), and (r2,w2),
such that ((x2, e2), (r2,w2)) is a collision with ((x1, e1), (r1,w1)) with noticeable
probability.

We first consider the special case where w1 = 〈g, g, . . . , g︸ ︷︷ ︸
m g’s

〉 and e1 = 〈m〉.

Let x1 = x1,1x1,2 . . . x1,m,x2 = x2,1x2,2 . . . x2,m′ , r1 = 〈r1,1, r1,2, . . . , r1,m〉, r2 =
〈r2,1, r2,2, . . . , r2,m′〉,w2 = 〈w1, w2, . . . , wm′〉 for some m′ < m. By the definition
of collision, we have

(x1, e1) 6≻ (x2, e2) ∧

H((x2, e2), (r2,w2)) = {t2,1, . . . , t2,m′} ⊂

H((x1, e1), (r1,w1)) = {t1,1, . . . , t1,m},

where for each i, t1,i = (x1,i, r1,i, (g
Qi

j=1
h(r1,j) mod n)) and

t2,i = (x2,i, r2,i, (wi

Q

i
j=1

h(r2,j) mod n)).
There are two different cases of collisions: 1) x2 is not a substring of x1, e.g.

x1 = abc,x2 = cb; 2) x2 is a substring of x1 but their annotations e1 and e2 are
incompatible, e.g. x1 = abc, w1 = ggg, e1 = 〈3〉, and x2 = ac, w2 = gg, e2 = 〈2〉.

Case 1: x2 is not a substring of x1. the sequence 〈t2,1, t2,2, · · · , t2,m′〉 must
be a re-permutation of some subsequence of the sequence 〈t1,1, t1,2, · · · , t1,m〉.
Thus, there must be a swap of positions, i.e. there are indices a, b, c and d such
that a < b, c < d, and t1,a = t2,d and t1,b = t2,c. That means,

(x1,a, r1,a, gA) = (x2,d, r2,d, wEF
d), and (x1,b, r1,b, gAB) = (x2,c, r2,c, wE

c),

where A =
∏a

i=1 h(r1,i), B =
∏b

i=a+1 h(r1,i), E =
∏c

i=1 h(r2,i), F =
∏d

i=c+1 h(r2,i).
Next we can conduct a case analysis based on whether EF divides A, to find

a contradiction with our assumptions. If EF does not divide A (with noticeable
probability), we could solve the Strong RSA Problem based on algorithm A
using similar techniques in the proof of Theorem 5 in [GHR99]; otherwise we
could solve the Division Problem [GHR99].

Case 2: x2 is a substring of x1 but they have incompatible annotations. Let
e3 be the annotation such that (x1, e1) ≻ (x2, e3). Let w3 = w3,1 . . . w3,m′ be
the witness obtained from step 1 of Table 5 when redacting ((x1, e1), (r1,w1))
to produce a signature for the annotated substring (x2, e3). We know

H((x2, e3), (r2,w3)) ⊂ H((x1, e1), (r1,w1))

7 Division intractability [GHR99] implies collision resistance.

and
H((x2, e2), (r2,w2)) ⊂ H((x1, e1), (r1,w1)).

Because distinct random numbers r1,i’s and r2,j ’s are involved in the output of
H, we conclude that H((x2, e3), (r2,w3)) = H((x2, e2), (r2,w2)). We also know
w2 and w3 implies different annotations e2 and e3, so w2 6= w3. That means
there exists an index i, 1 ≤ i ≤ m′, such that

w2,i 6= w3,i and w
Q
2,i = w

Q
3,i mod n, (1)

where Q =
∏i

j=1 h(r2,j) is an odd number. Recall that n = pq, p = 2p′ + 1, q =
2q′+1 and p, q, p′, q′ are all prime numbers. Let λ(n) = lcm(p−1, q−1) = 2p′q′.

Suppose Q is coprime with λ(n). Then w
Q
2,i = w

Q
3,i mod n implies w2,i = w3,i,

which is a contradiction with Eq 1. So we conclude that the odd number Q and
λ(n) = 2p′q′ have common factors, i.e., p′ or q′ divides Q. W.L.O.G., we assume
p′|Q.

Because h(·) outputs odd prime number only, there must exist ξ, 1 ≤ ξ ≤
m′, h(r2,ξ) = p′. Consequently, 2h(r2,ξ) + 1 divides n, and we can factorize n

efficiently by trying every h(r2,i), 1 ≤ i ≤ m′.
In the beginning of the proof, we assume that w1 = 〈g, . . . , g〉. For case 1,

it is easy to generalize the proof for general w1 = 〈w1,1, w1,2, . . . , w1,m〉 using
similar techniques in the proof of Theorem 5 in [GHR99], by randomly guessing
the index a and setting w1,a = s; for case 2, there is no need of changes in the
proof.

B Proof of Theorem 2

Theorem 2. The scheme RSS as constructed in Table 3, Table 4 and Table 5,
is (t, q, ǫ1

1−ǫ2
)-secure against existential forgeries with respect to ≻, if SSS is (t +

qt0, q, ǫ1)-secure against existential forgeries with respect to ⊇, and H is (t +
qt1, ǫ2)-collision-resistant, where t0 is the running time of H and t1 is the time
needed by RSS to sign a document.

Proof: We prove this theorem using proof by contradiction. Let ORSS and OSSS

denote the oracles for Sign algorithms of RSS and SSS respectively, and both
use the same public/private key (PK,SK). Suppose there exists an adversary A
againstRSS , such thatA runs in time at most t, makes at most q chosen-message
queries to ORSS , and has advantage AdvA > ǫ3 = ǫ1

1−ǫ2
. Let x1,x2, . . . ,xℓ

denote the ℓ(≤ q) messages (annotated strings of objects) chosen by A, and
(σi, ri) be the reply from ORSS for query xi. Let (x, (σ, r)) denote the output
of A.

AdvA = Pr (VerifyPK(x, (r, σ)) = TRUE ∧ x 6∈ span≻(x1,x2, . . . ,xℓ)) > ǫ3.

Now we construct an adversary B against SSS invoking A as a subroutine
and simulating ORSS with OSSS:

1. Run algorithm A.
2. Receive query xi from A.
3. Choose a random coin ri, and compute H(xi, ri). Make query H(xi, ri) to
OSSS and get reply σi.

4. Reply (σi, ri) to A corresponding to the query xi.
5. If receiving another query from A, go to Step 2.
6. Receive output (x, (σ, r)) from A.
7. Output (H(x, r), σ).

The number of queries made to OSSS by B equals to the number of queries
made to (simulated) ORSS by A. The running time of B is at most t + qt0.

With probability larger than ǫ3, (x, (σ, r)) is an existential forgery w.r.t to
RSS, formally

Pr (VerifyPK(x, (r, σ)) = TRUE ∧ x 6∈ span≻(x1,x2, . . . ,xℓ)) > ǫ3.

Suppose xi 6≻ x for any i. Because H is (t+qt1, ǫ2)-collision-resistant and real
running time (taking the time for signing into account) of A is at most t + qt1,
we have

Pr
(
∨ℓ

i=1 (H(x, r) ⊆ H(xi, ri))
)
≤ ǫ2.

Hence,

Pr

(
vrfPK(H(x, r), σ) = TRUE ∧

H(x, r) 6∈ span⊇(H(x1, r1),H(x2, r2), . . . ,H(xℓ, rℓ))

)
> ǫ3(1− ǫ2) = ǫ1.

That means B is an existential forger against SSS: B runs in time at most
t + qt0, makes at most q queries to OSSS, and has advantage larger than ǫ1. This
is a contradiction with our assumption that SSS is (t + qt0, q, ǫ1)-secure against
existential forgeries.

Hence, our hypothesis that there exists such adversary A is wrong. In other
words, RSS is (t, q, ǫ1

1−ǫ2
)-secure against existential forgeries with respect to ≻.

C Proof of Theorem 3

Lemma 1. If the distributions of X1 and X2 are computationally indistinguish-
able, then for any constant integers ℓ, m > 1, the distributions of Xℓ and Xm are
computationally indistinguishable, where for any integer N > 1, XN represents
the random variable gh(U1)h(U2)h(U3)...h(UN) mod n, n is a RSA modulus, g is
an element of large order in Z∗

n and Ui’s are all independent uniform random
variables over Zn.

Proof: (Sketch) Let X ∼ Y denote that the two distributions X and Y are
computationally indistinguishable. For any ℓ ≥ 2, X1 ∼ X2 implies Xℓ ∼ Xℓ+1.
As a consequence, for any constant ℓ < m, using the hybrid technique, we have

Xℓ ∼ Xℓ+1 ∼ Xℓ+2 . . . ∼ Xm−1 ∼ Xm.

Hence,

Xℓ ∼ Xm.

Theorem 3. The redactable signature scheme RSS is privacy preserving
(as defined in Definition 3), assuming that hash function h satisfies the property:
the two distributions X = gh(U1)h(U2) mod n and Y = gh(U ′

1) mod n are compu-
tationally indistinguishable, where n is a RSA modulus, g is an element of large
order in Z∗

n and Ui’s and U ′
j’s are all independent uniform random variables over

Zn.

Proof: W.L.O.G, we represent the three strings x1, x2 and x as stated in Defi-
nition 3 in following way:

x1 = x1x2x3 . . . xa1
y1xa1+1 . . . xa2

y2xa2+1 . . . xaℓ
yℓxaℓ+1 . . . xm

x2 = x1x2x3 . . . xa1
z1xa1+1 . . . xa2

z2xa2+1 . . . xaℓ
zℓxaℓ+1 . . . xm

x = x1x2x3 . . . xa1
⋄ xa1+1 . . . xa2

⋄ xa2+1 . . . xaℓ
⋄ xaℓ+1 . . . xm

x is a string of size m with ℓ substrings being redacted at locations a1, a2, a3, . . . , aℓ.
x can be obtained from x1 by removing non-empty substrings y1,y2, . . . ,yℓ, or
from x2 by removing non-empty substrings z1, z2, . . . , zℓ.

For any sequence b = 〈b1, b2, . . . , bm〉, define h(b) as

h(b) =

m∏

i=1

h(bi).

Denote with ry,i (or rz,i) the sequence of random numbers associated with sub-
string yi (or zi) respectively. Denote with r1 = 〈r1,1, r1,2, . . . , r1,m〉 the sequence
of random numbers, which are associated with xi’s and chosen when signing x1.
Denote with r2 = 〈r2,1, r2,2, . . . , r2,m〉 the sequence of random numbers, which
are associated with xi’s and chosen when signing x2. All r1,i and r2,i are inde-
pendent uniform random numbers over the set of odd numbers in Zn.

The signature of x under RSS by redacting x1 is

σ1 = RedactPK(x1, SignSK(x1),x)

= (δ1, r1 = 〈r1,1, r1,2, r1,3, . . . , r1,m〉,w1 = 〈w1,1, w1,2, w1,3, . . . , w1,m〉)

where for each 0 ≤ i ≤ ℓ, assuming a0 = 0, aℓ+1 = m + 1, h(ry,0) = 1,

w1,ai+1 = w1,ai+2 = . . . = w1,ai+1
= g

Q

i
j=0

h(ry,j) mod n (2)

and δ1 is the signature under SSS of the following set H1

H1 = H(x, (r1,w1)) =

{
s : s =

(
xi, r1,i,

(
w

Q

i
j=1

h(r1,j)

1,i mod n

))}
.

Similarly, the signature of x under RSS by redacting x2 is

σ2 = RedactPK(x2, SignSK(x2),x)

= (δ2, r2 = 〈r2,1, r2,2, r2,3, . . . , r2,m〉,w2 = 〈w2,1, w2,2, w2,3, . . . , w2,m〉)

where for each 0 ≤ i ≤ ℓ, assuming a0 = 0, aℓ+1 = m + 1, h(rz,0) = 1,

w2,ai+1 = w2,ai+2 = . . . = w2,ai+1
= g

Qi
j=0

h(rz,j) mod n (3)

and δ2 is the signature under SSS of the following set H2

H2 = H(x, (r2,w2)) =

{
s : s =

(
xi, r2,i,

(
w

Q

i
j=1

h(r2,j)

2,i mod n

))}
.

Note w1,i’s and w2,i’s can be written in form of g
Q

h(·) mod n as in Equa-

tion 2 and 3. So w1 and w2 are indistinguishable. Furthermore, w

Q

i
j=1

h(r1,j)

1,i

mod n and w

Qi
j=1

h(r2,j)

2,i mod n are indistinguishable for each i. As a result H1

is indistinguishable from H2, and δ1 is indistinguishable from δ2.
Hence, σ1 and σ2 are computationally indistinguishable.

D Proof of Theorem 4

.
Theorem 4. For any redacted tree (T,b), any distribution B on the original

annotation, and b1 = 〈m, (b1, q1), (b2, q2), . . . , (bu, qu)〉,
b2 = 〈m, (b1, q

′
1), (b2, q

′
2), . . . , (bu, q′u)〉,

Prob(RED(B) = (T,b) | B = b1) = Prob(RED(B) = (T,b) | B = b2)

Proof: (Sketch)

1. Consider the random tree generation algorithm TreePermGen in Table 7,
which takes in random permutations as the source of randomness. The distribu-
tion of the random trees generated by TreePermGen is the same as the distribu-
tion by TreeGen (Table 6). To see that, consider the root and its left subtree.
The distribution of the size of the left subtree is the same for both algorithms.
This observation can be generalized to the distribution of the whole tree.

Given a permutation π and an original annotation b′, let us write A(π) as
the tree generated by TreePermGen. Recall that the tree is to be redacted by
removing some leaves and all their ancestors, and the leaves to be removed are
specified by an original annotation b′. Let us write A(π,b′) as the redacted tree.

2. We now analyze original annotations of these special forms:

b1 = 〈M, (b1, q1), (b2, q2), . . . , (bi0−1, qi0−1), (bi0 , k), (bi0+1, qi0+1) . . . , (bu, qu)〉

b2 = 〈M, (b1, q1), (b2, q2), . . . , (bi0−1, qi0−1), (bi0 , k + 1), (bi0+1, qi0+1) . . . , (bu, qu)〉

TreePermGen: Given m, output a binary tree T with m leaves. During the execution of
this algorithm, each node in T is associated with a subset of {1, 2, . . . , m}. Denote by
πm a permutation on m elements {1, 2, . . . , m}.

1. Randomly pick a πm−1.
2. Let S be a collection of sets, which is initially empty. Let T be an empty tree.
3. Let A = {1, 2, 3, . . . , m} and associate it to a new node p. Add A into S , and insert

p into T as the root node.
4. For i = 1 to m− 1,

(a) Find the set A ∈ S s.t. πm−1(i) ∈ A. Let p be the node that is associated with
A. Remove A from S .

(b) Divide A into two sets Aleft and Aright, where

Aleft = A ∩ {1, 2, . . . , πm−1(i)}, and

Aright = A ∩ {πm−1(i) + 1, . . . , m}.

(c) Create two children for p and insert them into T . Associate Aleft and Aright

to the left and right children respectively. Add Aleft and Aright into S .
5. Output the final tree T , without the sets associated to its nodes.

Table 7. TreePermGen, a tree generation algorithm using random permutation.

for some i0 and u. Under annotation b1, the i0-th substring that is being removed
has k items. Let the last item in this i0-th removed substring be the v-th item in
the original string, that is, v = bi0 + k +

∑i0−1
j=1 qj . In contrast, under annotation

b2 the i0-th substring that is removed has k + 1 items. Note that the tree on
which b1 is applied has m leaf nodes, and the tree on which b2 is applied has
m + 1 leaf nodes, where m = M +

∑u

j=1 qj and qi0 = k.
We want to show that, for any redacted tree, represented as (T,b), and any

b1 and b2 as defined above, we have

m |{πm−1 : A(πm−1,b1) = (T,b)}| = |{πm : A(πm,b2) = (T,b)}| (4)

Since a permutation is uniformly chosen in Step 1 of TreePermGen, the con-
ditional probability of obtaining (T,b) given b1 is

1

(m− 1)!
|{πm−1 : A(πm−1,b1) = (T,b)}| (5)

and the conditional probability given b2 is

1

m!
|{πm : A(πm,b2) = (T,b)}| (6)

From (4), we have (5)=(6), which is the result of this theorem for b1 and b2.

3. Given a πm−1, we associate it with m permutations of m elements. For each
1 ≤ j ≤ m, let:

πm,j(i) =

incr(πm−1(i)) if i < j,

v if i = j,

incr(πm−1(i− 1)) otherwise,

(7)

where incr(x) =

{
x if x < v,

x + 1 otherwise.
(8)

In other words, we can associate πm−1 to m permutations of m elements by
inserting v into m possible places in πm−1, and incrementing items larger than
v by one. For example, given the permutation 〈3, 2, 1, 4〉 which generates a tree
with the 2nd and 3rd leaf nodes removed, v = 3. Upon inserting v in between 2
and 1 in the permutation, the resultant permutation is 〈4, 2, 3, 1, 5〉.

4. We claim that πm−1 and πm,j , for each j, all lead to the same redacted tree.
That is, for any j

A(πm−1,b1) = A(πm,j ,b2) (9)

5. There are m ways to insert v into πm−1. Thus, for any πm−1, there are m

permutation πm that leads to the same redacted tree. For a fixed 1 ≤ v ≤ m, (5)
and (6) together maps a (πm, v, j) for any 1 ≤ j ≤ m, to exactly one πm−1, and
every πm−1 is mapped to one (πm, v, j) for some j. Thus (5) and (6) together
is a bijective mapping and this process will generate all possible πm from all
possible πm−1, and we have the equality (4) and the result for b1 and b2. We
can generalize the claim to any b1 and b2 that differs in more than one removed
substrings and by more than one item each, by repeatedly applying the argument
here on just one removed substring and holding the other removed substrings
constant.

