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Abstract

Currently, there are relatively few instances of “hash-and-sign” signatures in the standard
model. Moreover, most current instances rely on strong and less studied assumptions such as
the Strong RSA and q-Strong Diffie-Hellman assumptions.

In this paper, we present a new approach for realizing hash-and-sign signatures in the stan-
dard model. In our approach, a signer associates each signature with an index i that represents
how many signatures that signer has issued up to that point. Then, to make use of this associa-
tion, we create simple and efficient techniques that restrict an adversary which makes q signature
requests to forge on an index no greater than 2dlg(q)e < 2q. Finally, we develop methods for
dealing with this restricted adversary.

Our approach requires that the signer maintain a small amount of state — a counter of
the number of signatures issued. We achieve two new realizations for hash-and-sign signatures
respectively based on the RSA assumption and the Computational Diffie-Hellman assumption
in bilinear groups.

1 Introduction

Digital signatures are a fundamental cryptographic primitive and a key building block in many
larger systems. Typically, known constructions fall into one of two categories: the “tree”-based
approach or the “hash-and-sign” approach. This latter paradigm generally yields more efficient
constructions and shorter signatures, and represents what practitioners have come to expect. While
many realizations of hash-and-sign signatures exist in the random oracle model (e.g., [16, 32, 27,
4, 28, 7, 19, 18]), efficient schemes in the standard model are rare. Moreover, random oracle model
schemes can be based on well-studied assumptions such as the discrete logarithm problem, Compu-
tational Diffie-Hellman and RSA. However, known standard model schemes are often based on much
stronger assumptions, such as Strong RSA [17, 13], q-Strong Diffie-Hellman [6] and LRSW [10].1

These assumptions allow the adversary a significant amount of flexibility in his ability to win, such
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Grant No. W911NF-06-1-0316; and the U.S. Department of Homeland Security under Grant Award Number 2006-
CS-001-000001. The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of
Homeland Security. Portions of this work were done while this author was at SRI International.

1One recent exception is the signature scheme due to Waters [34], which is provably secure under the CDH
assumption in bilinear groups. However, this scheme suffers from a large public key size.
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as allowing him to choose a signing exponent (Strong RSA), compute a value relative to a chosen
constant (q-Strong Diffie Hellman), or choose a random base value (LRSW). In each case, there
are many possible correct answers to the adversary’s challenge; in fact, exponentially many. This
stands in high contrast to weaker, more studied assumptions, such as the discrete logarithm prob-
lem, Computational Diffie-Hellman and RSA, where there is only one correct answer for a given
challenge. These assumptions which restrict the adversary to a single correct response seem inher-
ently more reliable than their flexible counterparts. Thus, an important direction, in our opinion,
is to push forward to practical, standard model schemes under standard assumptions.

One challenging aspect is that the security definition of signatures [21] inherently allows the
adversary a great deal of flexibility; she wins if she outputs a forgery on any message not previously
signed. Likewise, most existing “hash-and-sign” standard model schemes inherently enable the
adversary a good deal of flexibility on which forgeries it can output and then the security is based
on the hardness of a problem where there are many possible solutions. For example, consider the
construction of Cramer and Shoup [17, 13]; since the legitimate signer chooses a random prime
from an exponentially large range, any proof must consider a forger that has the same flexibility
in choosing the exponent and therefore the reduction is to the Strong RSA assumption (i.e, given
(N, y), it is hard to produce any pair (e, x) such that e > 1 and xe ≡ y mod N).

In this work, we present a new avenue: design the scheme in such a way that enforces that
any adversary output forgeries in some small set of categories that roughly grows with the number
of signatures created so far. (E.g., A category could correspond to an RSA exponent used for
verification in a prior signature.) Once the forger is restricted to a small set of categories, the
simulator can guess where to program the challenge within this set. Alternatively, one can view
our approach as restricting the adversary to a small forgery set and then employing selectively-secure
techniques. The primary contribution of this work is the new method for restricting a forger.

Our Approach. Let us give the intuition behind our two constructions. At the core of our
method, we associate with each signature an index i representing the number of signatures pre-
viously issued by the signer. The actual signer will only issue one signature per index. Roughly,
the idea is to efficiently force the adversary to forge on a previously seen index value. To restrict
the adversary, each signature is comprised of two logical components: a “core” signature on the
message under index i and a second component that bounds the highest index number that the
adversary might use. The most naive method would be to create a separate signature that signs the
current index being used; however, this would itself demand a secure signature scheme and lead to a
circularity. To avoid this, the second component for a signature on index i will be a “signature” on
dlg(i)e. If we allow at most 2λ signatures, then there are at most λ possible values for this second
component and realizing it becomes simple. Moreover; the set of “allowable” indices is at most
a factor of 2 times the number of signatures given out so far. It follows that any adversary must
forge on a index set of roughly the same size as the number of signatures he has seen (or break the
second component). Once we apply these techniques to force the adversary into this small index
set, we are in a position to create a system based on weaker assumptions.

Let us illustrate this by describing a simplified version of our RSA-based construction. Let N
be the product of two safe primes. The signer publishes a modulus N , a random value v ∈ Z∗N and
a hash function that enumerates a sequence of primes, i.e., let H(i) = ei. To generate a signature
using index i on message m, the signer creates a “core” signature on m using the signing exponent
e−1
i and then also gives out i and the dlg(i)e-th square root of v. This ensures that an adversary
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that makes at most q queries must sign using one of the first 2dlg(q)e < 2q values of ei (i.e., the
output of H(j) on j = 1 to 2dlg(q)e); otherwise, the adversary can take square roots and thereby
factor N . Now that the adversary is restricted to forging using a small set of ei values, we can use
a combination of previous techniques and new ideas to reduce from the standard RSA assumption.

Outline. We realize two new hash-and-sign signatures under the RSA assumption and the Com-
putational Diffie-Hellman assumption in bilinear groups, in Sections 3 and 4 respectively. In Sec-
tion 5, we discuss how to manage the signer’s state in practice, including across multiple machines.

1.1 Related Work

The related work on designing secure signature schemes is vast and long standing. We provide only
a brief summary.

Tree-Based. Many of the earliest provably-secure constructions used the design paradigm of
a tree. Here a bound on the number of signatures to be issued is first established, and then the
efficiency of the signatures (i.e., their size and the size of the public key) is in some way proportional
to this bound. From general assumptions, a series of works including Bellare-Micali [2], Naor-
Yung [26], and Rompel [31] established that signatures can be based on one-way functions. From
general and concrete assumptions, another series of works sought more efficient solutions, such
as those of Goldwasser-Micali-Rivest [21], Goldreich [20], Merkle [23], Dwork-Naor [15], Cramer-
Damg̊ard [11, 12] and many more. While these works are fundamental to our understanding of
provably secure signatures, the tree-based constructions are often passed over in practice due to
the computation and memory requirements.

Hash-and-Sign. In the search for more efficient constructions, many schemes in the random
oracle model were proposed, such as those of El Gamal [16], Schnorr [32], Okamoto [27], Bellare-
Rogaway [4], Pointcheval-Stern [28] and more recent short signatures by Boneh-Lynn-Shacham [7],
signatures with tight-reductions to Diffie-Hellman by Goh-Jarecki-Katz-Wang [19], and the recent
lattice-based signatures of Gentry-Peikert-Vaikuntanathan [18]. Unfortunately, the schemes are
only known to be secure relative to the random oracle heuristic.

Drawing closer to our objective, some prior works have explored secure hash-and-sign signatures
in the standard model. In 1999, Gennaro, Halevi and Rabin [17] introduced the first hash-and-sign
construction secure in the standard model; its security depends on the Strong RSA assumption.
Subsequent works also based on Strong RSA of Cramer-Shoup [13] and Camenisch-Lysyanskaya [9]
improved the efficiency and added efficient protocols, respectively. (We will make use of a key
reduction technique used by Cramer and Shoup later on.)

More recent works pushed for shorter signatures in the standard model, moving away from
Strong RSA to more complex bilinear assumptions. Two such examples are the Boneh-Boyen [6]
signatures based on q-Strong Diffie-Hellman (i.e., given a generator g of prime order p and the
tuple (gx, gx

2
, . . . , gx

q
), it is hard to compute (c, g1/(x+c)) for any c ∈ Z∗p) and the Camenisch-

Lysyanskaya [10] signatures based on the interactive LRSW assumption.
While these standard model schemes are useful and efficient, their security depends on strong

assumptions. In Strong RSA, q-Strong Diffie-Hellman and LRSW, there are many correct answers
to any given challenge, allowing the adversary a significant amount of flexibility. This stands in
sharp contrast to mild and restricted assumptions such as RSA and CDH.
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To our knowledge, the only example prior to this work of a practical signature scheme secure in
the standard model and under a mild complexity assumption is due to Waters [34], whose scheme is
based on CDH in bilinear groups. The drawback of Waters’ scheme compared to our scheme under
the same assumption in Section 4 is that the public key requires O(λ) group elements, where λ is
the security parameter, whereas our public key requires O(1) group elements. There exist variants
of the Waters scheme (e.g., [25]) offering tradeoffs between the public key size and the concrete
security level, but the asymptotic behavior remains the same.

Interpretting our Results. In this work, we limit ourselves to the standard practice of polynomial-
time reductions. We note that if we allowed super-polynomial reductions it seems possible to
interpret the Gennaro-Halevi-Rabin [17] and Cramer-Shoup [13] solutions as provably secure un-
der ordinary RSA and the selectively-secure signatures of Boneh-Boyen [5] (as derived from their
selectively-secure identity-based encryption scheme) as provably secure under CDH. Indeed, one
alternative way of viewing our techniques is as a method for restricting a signature adversary so
that selectively-secure schemes become (fully) adaptively-secure.

One can also view our results as a step toward realizing practical, standard model signatures
under standard assumptions in a stateless manner. We remind the reader that many of the early
tree-based signatures, such as the GMR signatures [21], also required the signer to keep a counter
on the number of signatures issued. Subsequently, Goldreich [20] showed how to remove this
dependence on state. We believe that a parallel outcome is possible here.

2 Background

2.1 Signature Schemes

Since we consider stateful signers, we slightly alter the signature algorithm specifications as follows:

KeyGen(1λ) : the key generation algorithm outputs a keypair (PK, SK) and an initial state s.
Sign(SK, s,M) : the signing algorithm takes in a secret key SK, a state s, and a message M , and

produces a signature σ.
Verify(PK,M, σ): the verification algorithm takes in a public key PK, a message M , and a pur-

ported signature σ, and returns 1 if the signature is valid and 0 otherwise.

We use the standard security notion of existential unforgeability with respect to chosen-message
attacks as formalized by Goldwasser, Micali and Rivest [21]. Here the adversary is given the public
key and access to a signing oracle. The adversary is considered to be successful if she is able to
produce a valid signature on any message not queried to the oracle.

2.2 Chameleon Hash Functions

A chameleon hash function H(m, r) has the usual collision-resistant hash properties with the ad-
ditional feature that, given some special trapdoor information, any target y and any message m′,
it is possible to efficiently find a value r′ such that H(m′, r′) = y. Chameleon hash functions were
first formalized by Krawczyk and Rabin [22], who also presented a discrete-logarithm-based con-
struction, derived from the chameleon commitments of Boyar et al. [8]. We employ this hash in
Section 4 for our CDH-based signatures. In our RSA-based signatures in Section 3, we can employ
any chameleon hash function. We note that secure constructions exist in the standard model under
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the discrete-logarithm assumption [22], the hardness of factoring [22], and the RSA assumption [1].
See Appendix A for more on RSA-based chameleon hashes.

2.3 RSA Assumption and other Facts

We begin by recalling (one of the) standard versions of the RSA assumption [30].

Assumption 2.1 (RSA). Let k be the security parameter. Let positive integer N be the product
of two k-bit, distinct odd primes p, q. Let e be a randomly chosen positive integer less than and
relatively prime to φ(N) = (p−1)(q−1). Given (N, e) and a random y ∈ Z∗N , it is hard to compute
x such that xe ≡ y mod N .

We remind the reader that in the Strong RSA assumption the adversary is given (N, y) and
succeeds by producing any integer pair (e, x) such that e > 1 and xe ≡ y mod N . The standard
RSA version is much more restrictive on the adversary.

Later on, we will restrict ourselves to the RSA assumption where N = pq is the product of two
safe primes p = 2p′+ 1 and q = 2q′+ 1. Technically, we will want that the several prime exponents
used during signing do not divide φ(N). While safe primes will make this argument simpler, they
are not strictly necessary.

We will make use of the following additional facts.
In our RSA-based scheme, we will require a primality test. Fortunately, for our purposes, it

will be sufficient to use the efficient Miller-Rabin test [24, 29].

Lemma 2.2 ([33, 13]). Given x, y ∈ Zn together with a, b ∈ Z such that xa = yb and gcd(a, b) = 1,
there is an efficient algorithm for computing z ∈ Zn such that za = y.

Recall that the set of moduli chosen as the product of two safe primes are a subset of the Blum-
Williams integers, i.e., the product of two primes which are equivalent to 3 modulo 4. This will
be useful, since we will require that each square has a unique square root which is itself a square.
Formally, we will use:

Lemma 2.3 (Bellare-Miner [3]). Suppose n is a Blum-Williams integer. Suppose a, a1, . . . , at ∈ Z∗n
and a is a square modulo n. Suppose x, x1, . . . , xt are integers such that x1, . . . , xt > x ≥ 0. Suppose

a2x =
t∏

j=1

a2xj
j mod n , then a =

t∏
j=1

a2xj−x

j mod n.

Theorem 2.4 (Prime Number Theorem). Define π(x) as the number of primes ≤ x. For x > 1,

π(x) >
x

lg x
.

2.4 Bilinear Groups and the CDH Assumption

Let G and GT be groups of prime order p. A bilinear map is an efficient mapping e : G×G→ GT

which is both: (bilinear) for all g ∈ G and a, b ← Zp, e(ga, gb) = e(g, g)ab; and (non-degenerate) if
g generates G, then e(g, g) 6= 1.

Assumption 2.5 (Computational Diffie-Hellman [14]). Let g generate a group G of prime order
p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability is negligible in λ:

Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].
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3 Our RSA Realization

In our later CDH construction, the signer’s state of i will directly correspond to the ith signature.
This will not be true here. In our simplified scheme in the introduction, we assumed the existence
of a function that maps states to different prime exponents. Our first challenge is to realize this
function in a way that allows us a means in the proof for embedding our RSA challenge exponent.
Our realization of this function, denoted H below, will require that we skip over some states.
Tantamount to our success will be the ability to maintain a correct distribution in our reduction.

To gain some intuition into the construction, let us begin by describing a publicly-computable
hash function H : Z→ {0, 1}k, which will be used to link exponents to states. Let F : Z→ {0, 1}k
be a pseudorandom function family. Next, let c be a random value in {0, 1}∗. For a random PRF
key K, we define our corresponding hash function as HK(x) := c⊕ FK(x).

While it is unusual to publicly release a PRF key, we do so because we only require some
weaker properties from our hash function for which this construction will be sufficient. Specifically,
we require that the hash function HK : (1) outputs large primes with sufficient probability, and (2)
on the first polynomial inputs to the hash, all prime outputs are distinct with high probability. We
will later show that if the function HK does not meet these requirements then F could not have
been a PRF family.

Let us now turn to how the hash function HK is used in the system. The signer keeps state
as before and when signing with state s, if HK(s) is not prime, the signer will skip over it and
increment its state until it reaches some s′ such that HK(s′) is prime. It will then sign using this
prime and state s′. Thus, it will be important to guarantee that the signer not have to skip over
too many indices when issuing signatures.

Now, we present our core construction and then remark on some different possible optimizations.
The construction here already reduces the public key and signature size by one element in Z∗N over
the simplified RSA construction described in the introduction.

3.1 RSA Construction

Setup(1λ) The setup algorithm chooses N , as the product of two large safe primes such that
2` < φ(N) < 2`+2, where ` is another security parameter derived from 1λ. We note that N must
be a Blum-Williams integer. It then chooses two random quadratic residues u, h ∈ QRN .

Next, it establishes a hash function H : Z→ {0, 1}` by choosing a random key K for the PRF
function F : Z→ {0, 1}`, a random c ∈ {0, 1}`, and defining HK(x) = c⊕ FK(x).

It then publishes the parameters L of some Chameleon Hash scheme ChamHash : {0, 1}`′ ×
{0, 1}`′′ → {0, 1}

2`
3 . (We note that such schemes in the standard model exist under the hardness

of factoring [22] and RSA [1]; see Appendix A.)
The public key consists of

N, u, h, c,K,L.

Note, anyone can compute HK() using these parameters. The setup algorithm sets its state counter
s = 0 and keeps the factorization of N as the secret key SK.

Sign(SK, s,M ∈ {0, 1}`′) The signer first increments its counter s by one as s = s + 1. The
algorithm then chooses a random r ∈ {0, 1}`′′ from the appropriate range dictated by the choice of
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ChamHash. It then computes x = ChamHash(M, r). Next, it checks if HK(s) is a prime. If not it
increments s = s+ 1 and tries again until es = HK(s) is a prime. Then the signer computes:

B = (uxh)(
1
2
)dlg(s)e

mod N

Note that we abuse notation here when taking square roots. When working modulo Blum-Williams
integers, let X

1
2 represent the unique square root of X which is itself also a square. (See Lemma 2.3.)

The signature is output as:
σ1 = B

1
es , r, s.

Conceptually, s is an index, but we will skip over many s values where HK(s) is not a prime.

Verify(PK,M, σ = (σ1, r, i)) The verification algorithm first makes sure that 0 < i < 2λ. If this
is false, then it rejects. Second, the verifier checks that HK(i) is a prime. If not, it rejects.

Next, it squares σ1 a total of dlg(s)e times yielding the value Y = (σ1)2
dlg(s)e

. Finally, it
computes x = ChamHash(M, r) and ei = HK(i), and rejects unless it verifies that

Y ei ≡ (uxh) mod N.

3.1.1 Comments

The above scheme is geared to showcase the main ideas, however, one might consider different
variants that allow for faster signature generation and faster verification. One area for improvement
is in the way that prime exponents are generated and linked to states.

As a first variant, instead of having the signer skip over an index i if HK(i) is not prime (and
thus, update and write to memory a state change), consider a scheme that allows the signer to
search for a prime in a small range around the value HK(i). This option would require a more
detailed analysis of the probability of a collision among the prime exponents used as well as a more
complicated method for plugging in the RSA challenge.

As a second variant, consider a scheme that uses the first q primes starting with 3 to sign
q messages. This variant would enable both faster generation (via a prime number seive to find
the primes) and faster verification since we’d be using small prime exponents. Unfortunately, this
appears to require a reduction from an assumption different than standard RSA; in particular, one
might consider reducing from an assumption that the adversary can’t take a root chosen randomly
from the first q odd prime roots. For any polynomial q, this assumption is weaker than Strong
RSA; however, we cannot reduce it to the standard RSA assumption.

A third avenue for optimization, focusing on the size of N and the chameleon hash parameters,
is to note that our setting of {0, 1}

2`
3 as the chameleon hash range is somewhat arbitrary. It can be

set to any constant fraction of ` bits or any range R such that for a random prime e ∈ {0, 1}` the
probability that e 6∈ R is non-negligible (we achieve e 6∈ {0, 1}

2`
3 with high probability). In other

words, there can be a tradeoff here between the size of the parameters and the concrete security.
We also remind the reader that one can enlarge the domain of a chameleon hash by first applying
a normal collision-resistant hash function [22].

A fourth avenue for optimization, this time focusing on the number of elements in the public
key, is to find a method for directly embedding the chameleon hash function into the signature
itself (as we do in our CDH scheme in Section 4).
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3.2 Proof of Security

Theorem 3.1. If the RSA assumption holds when N is the product of two safe primes, then the
above construction is a secure signature scheme.

Proof. Our reduction will only work on certain types of RSA challenges. We first describe this
challenge set and then describe the reduction.

Our reduction will “throw out” all RSA challenges (N, e∗, y) where e∗ is not an odd prime less
than 2`. Fortunately, good challenges will occur with polynomial probability. By construction,
φ(N) < 2`+2. We also know, by Theorem 2.4, that the number of primes ≤ 2` is ≥ 2`

` . Thus, a
loose bound on the probability of e∗ being a prime in the proper range is (2`

` )/2`+2 = 1
4` .

Now, we describe the reduction. Suppose we have an adversary that makes at most q(λ) queries
where q() is a polynomial. (We say q queries where it is clear from context.) We show that this
adversary breaks RSA, on challenges (N, e∗, y) where N is the product of two safe primes and e∗

is an odd prime < 2`. An adversary can have two types of forgeries. Let x be the highest index
on which the adversary obtains a signature from the signer (i.e., the index at which the qth prime
appears).

Type I The adversary forges for a message with index i greater than 2dlg(x)e.

Type II The adversary forges for a message with index i less than or equal to 2dlg(x)e.

In Lemma 3.2, we show that a type I adversary can be used to break factoring with a loss of a λ
factor in the reduction. In Lemma 3.3, we show that a type II adversary can be used to break RSA
with a loss of a t factor in the reduction, where t is a polynomial-size “bound on 2dlg(x)e” set to
4`[q+λ]. The value t is established to avoid a circularity. In the proof of Lemma 3.3, the simulator
would like to guess the index of the adversary’s forgery in the range 1 to 2dlg(x)e, so that it can set
the function HK accordingly. However, the simulator cannot compute x until it sets HK . To avoid
this circularity, we bound t ≥ 2dlg(x)e. We want that for a random function R, there are at least q
primes in the set of {R(i)}i∈[1,x] with high probability. Lemma B.1 in Appendix B guarantees that
this occurs for x = 2`[q+λ] with probability 1− e−[q+λ]( 1

2
)2 . Thus, we set t = 2x = 4`[q+λ], which

establishes that t ≥ 2dlg(x)e. This concludes the proof.

3.2.1 Type I Adversary

Lemma 3.2. If a type I adversary succeeds with probability ε, then it can be used to factor the
product of two safe primes with probability ε/(2λ)− negl(λ).

Proof. We provide a reduction showing how to turn a type I adversary into an simulated adversary
against factoring. Intuitively, in the simulation, the simulator takes a guess of k∗ = dlg(i)e, the
logarithm of the index i on which the type I adversary will forge. There are at most λ values of k∗

so the simulator has at least a 1/λ chance of guessing correctly.
We now describe the simulation. Given a factoring challenge N = p1p2, where the goal is to

produce either p1 or p2, proceed as follows.
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Setup The simulator begins by guessing a value k∗ in the range 1 to λ. Next, the simulator
selects a random PRF key K and random c ∈ {0, 1}`, which defines the hash function HK(). Next,
for i = 1 to t, the simulator computes ei = HK(i) and tests to see if it is prime. If ei is prime, the
simulator places i into a set E. If |E| < q, the simulator aborts. In Lemma B.1, we show that due
to our choice of t there will be at least q primes in E with high probability.

The simulator randomly chooses parameters L for a chameleon hash function, where {0, 1}
2`
3 is

the range of the hash. Finally, it chooses a random u′, h′ ∈ Z∗N and sets

û = (u′)
Q
j∈E ej and ĥ = (h′)

Q
j∈E ej

u = (û)2
k∗

and h = (ĥ)2
k∗
.

Since u′, h′ are independently chosen, this will have the correct distribution.
The simulator outputs the public key as (N, u, h, c,K,L), sets the internal signing state s = 0

and keeps secret the chameleon hash trapdoor.

Sign When the adversary asks for a signature on message M , the simulator first updates its
state value s = s + 1. Since the adversary is polynomial, we know that s < 2λ. If dlg(s)e ≥ k∗,
the simulator’s guess was incorrect and it aborts. Otherwise, the simulator selects a random r,
computes x = ChamHash(M, r) and outputs the signature as:

σ1 =
(

(u′xh′)
Qj 6=s
j∈E ej

)2(k∗−dlg(s)e)

, r, s.

Response Eventually, the type I adversary outputs a valid signature σ̃ = (σ̃1, r̃, ĩ) on a message
M̃ . If k∗ 6= dlg(̃i)e, the simulator aborts. Otherwise, the simulator computes x = ChamHash(M̃, r̃).
From the verification equation and simulation setup, we see that

(σ̃1
e∗)2

k∗
= uxh = (ûxĥ)2

k∗
.

Since N is a Blum-Williams integer, it follows that (σ̃e∗1 )2 = (ûxĥ)2. Futhermore, the fact that
h′ was chosen randomly in Z∗N and h′ is raised to a product of odd primes ei implies that with
probability 1

2 the value σ̃1
e∗ is congruent to ûxĥ modulo p1, but not congruent modulo p2 or vice

versa. In this case, the simulator can factor N in the standard way, i.e., by computing a factor as
gcd(σ̃1

e∗ − ûxĥ, N).

3.2.2 Type II Adversary

Lemma 3.3. If a type II adversary succeeds with probability ε after making q signing queries, then
it can be used to solve RSA where N is the product of two safe primes with probability ε/(4`[q +
λ])− negl(λ).

Proof. We provide a reduction showing how to turn a type II adversary into an adversary against
RSA. Our proof has two components. First, we’ll describe a simulator and show that any adversary
which is successful against the simulation can be used to break RSA. Second, we’ll show that
any adversary successful against the above signature scheme will also be successful against the
simulation.
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Intuitively, in the simulation, the simulator takes a guess of i∗, the index on which the type II
adversary will forge, within a small range of 1 to t. We’ll lose a factor of t here. The simulator
will choose public parameters such that it is straightforward to sign for any index except i∗. If the
simulator is asked to sign for index i∗, we program the Chameleon hash to allow this.

We now describe the simulation. Given an RSA challenge (N, e∗, y), where the goal is to produce
a value w ∈ Z∗N such that we

∗
= y, we proceed as follows. For notation, let N = p1p2.

Setup The simulator begins by guessing an index i∗ in the range 1 to t. Next, the simulator
selects a random PRF key K. It computes c = FK(i∗)⊕ e∗, which defines the hash function HK().
Recall that e∗ < 2` since we “threw out” any other RSA challenge. Next, for i = 1 to t, the
simulator computes ei = HK(i) and tests to see if it is prime. If ei is prime, the simulator places i
into a set E. If |E| < q, the simulator aborts. In Lemma B.1, we show that due to our choice of t
there will be at least q primes in E with high probability.

The simulator randomly chooses parameters L for a chameleon hash function, where {0, 1}
2`
3 is

the range of the hash. The simulator then selects a random value x∗ ∈ {0, 1}
2`
3 .

Finally, it chooses a random d ∈ Z∗N and sets

û = y
Qj 6=i∗
j∈E ej and ĥ = û−x

∗
d

Q
j∈E ej , and then

u = (û)2
λ

and h = (ĥ)2
λ
.

Since y, d are independently chosen, this will have the correct distribution.
The simulator outputs the public key as (N, u, h, c,K,L), sets the internal signing state s = 0

and keeps secret the chameleon hash trapdoor.

Sign When the adversary asks for a signature on message M , the simulator first updates its state
value s = s+ 1. Clearly, s < 2λ. Now, there are two cases for computing the signature.

If s = i∗, then the simulator will employ the chameleon hash trapdoor to find a value r such
that ChamHash(M, r) = x∗. The simulator then outputs the signature:

σ1 = (d
Qj 6=i∗
j∈E ej )2

(λ−dlg(i∗)e)
, r, i∗.

To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = (ûx
∗/e∗ · û−x∗/e∗ · d

Qj 6=i∗
j∈E ej )2

(λ−dlg(i∗)e)

= (ûx
∗/e∗ · ĥ1/e∗)2

(λ−dlg(i∗)e)

=
(

(ûx
∗
ĥ)1/e

∗
)2(λ−dlg(i∗)e)

= ((ux
∗
h)1/e∗)(

1
2
)dlg(i∗)e

If s 6= i∗, then the simulator chooses a random r and computes x = ChamHash(M, r). The
simulator then outputs the signature:

σ1 =
(

(yx
Qj 6=s,j 6=i∗
j∈E ej ) · (y−x

∗Qj 6=s,j 6=i∗
j∈E ej ) · (d

Qj 6=s
j∈E ej )

)2(λ−dlg(s)e)

, r, s.

To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = ((ûxĥ)1/es)2
(λ−dlg(s)e)

= ((uxh)1/es)(
1
2
)dlg(s)e

10



Response Eventually, the type II adversary outputs a valid signature σ̃ = (σ̃1, r̃, ĩ) on a message
M̃ such that ĩ ≤ t. If ĩ 6= i∗, the simulator’s guess was incorrect and it aborts.

Otherwise, the simulator computes x = ChamHash(M̃, r̃). If x = x∗, the simulator aborts.
Otherwise, from the verification equation and simulation setup, we see that

(σ̃1
e∗)2

dlg(̃i)e
= uxh = (ûxĥ)2

λ

We can see that (σ̃1
e∗)2 = (ûxĥ)2

λ−dlg(̃i)e+1
via Lemma 2.3 since λ > dlg(̃i)e and N is a Blum-

Williams integer. Thus, we have two cases to consider regarding the underlying square roots.

• Case A: σ̃1
e∗ or −σ̃1

e∗ is equal to (ûxĥ)2
λ−dlg(̃i)e

mod N .
• Case B: σ̃1

e∗ is congruent to (ûxĥ)2
λ−dlg(̃i)e

mod p1, but not congruent mod p2 or vice versa.

Case A: Suppose v = σ̃1
e∗ is congruent to (ûxĥ)2

λ−dlg(̃i)e
mod N . (The case for −v is analogous.)

Clearly, v is a square modulo N . Since λ > dlg(̃i)e, we can apply Lemma 2.3 to obtain

σ̃1
e∗ = (ûxĥ)2

λ−dlg(̃i)e
.

Let v = σ1/(d
Qj 6=i∗
j∈E ej )2

λ−dlg(̃i)e
. Then substituting into the above equation we have:

ve
∗

= y2λ−dlg(̃i)e(x−x∗)
Qj 6=i∗
j∈E ej .

The simulator now runs the algorithm from Lemma 2.2 to obtain a value w such that we
∗

= y,
and outputs w as the solution to the RSA challenge. We may apply Lemma 2.2 since (1)
w, y ∈ ZN , (2) e∗ and 2λ−dlg(̃i)e(x − x∗)

∏j 6=i∗
j∈E ej are in Z, and (3) e∗ is relatively prime to

2λ−dlg(̃i)e(x− x∗)
∏j 6=i∗
j∈E ej with high probability as shown in Claim B.2 of Appendix B.

Case B: The simulator computes gcd(σ̃1
e∗ − (ûxĥ)2

λ−dlg(̃i)e
, N) to obtain a factor of N .

This ends our description of the simulator.

We now argue that any successful type II adversary against our scheme will have success in the
game presented by the simulator. To do this, we first define a sequence of games, where the first
game models the real world and the final game is exactly the view of the adversary when interacting
with our simulator. We then show via a series of claims that if a type II adversary is successful
against Game j, then it will also be successful against Game j + 1.

Game 1: This game is defined to be the same as the security game of the scheme.

Game 2: The challenger chooses a random value i∗ between 1 and t, and y∗ ∈ {0, 1}`. It chooses K
randomly, but sets c = y∗⊕FK(i∗). Furthermore, the adversary is only considered successful
if she produces a forgery on index i∗ (i.e., all forgeries not on i∗ are not considered successful
in this game.)

Game 3: The same as Game 2, with the following exception. Consider the i∗-th signature (σ1, r, i
∗)

on message M . Let x∗ = ChamHash(M, r). In addition to the constraints above, the adver-
sary will also not be considered successful if she produces a forgery (σ̃1, r̃, ĩ) on message M̃
such that x∗ = ChamHash(M̃, r̃).

11



Game 4: The same as Game 3, with the exception that y∗ is chosen to be a random odd prime
in the range {0, 1}`.

Notice that Game 4 is exactly the view of the adversary when interacting with our simulator.
We now establish a series of claims that show that if a type II adversary is successful against the
real security game (Game 1) then it will be successful against our RSA simulation (Game 4).

Define AdvA[Game x] as the advantage of a type II adversary A in Game x.

Claim 3.4. If F is a secure pseudorandom function, then

AdvA[Game 2] =
AdvA[Game 1]

t
− negl(λ).

Proof. By our definition of y∗, c is chosen with the same distribution as in Game 1. What we now
want to establish is that the highest index x of a signature that A sees is less than or equal to t.
Consider a truly random function R. The probability for any given i that R(i) ⊕ c is a prime is
greater than or equal to 1

lg(2`)
= 1

` due to Theorem 2.4 and is independent. It follows from our
definition of t and Chernoff bounds that the number of 1 ≤ i ≤ t such that R(i) ⊕ c is prime is
less than q (actually q+λ) happens with negligible probability e−[q−λ]( 1

2
)2 . If, for a random key K,

the PRF FK produced less than q primes with non-negligible probability, then this would admit a
distinguishing attack (which again does not depend on the adversary’s possession of K.)

Claim 3.5. If ChamHash is a secure chameleon hash function, then

AdvA[Game 3] = AdvA[Game 2]− negl(λ).

Proof. An adversary A succeeds in Game 3 whenever it succeeds in Game 2, except the case where
A manages to find a collision in the chameleon hash. That is, whenever the simulator provided
values (M, r) such that ChamHash(M, r) = x∗ and then A was able to produce values (M̃, r̃),
where M 6= M̃ , and yet ChamHash(M̃, r̃) = x∗. By definition, no polynomial-time adversary can
find collisions in a secure chameleon hash with better than negligible probability.

Claim 3.6. It holds that AdvA[Game 4] ≥ AdvA[Game 3].

Proof. For any adversary to be successful in Game 3, it is necessary that HK(i∗) = y∗ is a prime;
this follows simply from the fact that any verifier will reject a signature on any index that does not
evaluate to a prime. Let WinA denote the event that adversary A is successful in a forgery.

Pr[WinA in Game 3] =
∑

1≤z≤2`

Pr[WinA|y∗ = z]
2`

=
∑

1≤z≤2`

Pr[WinA|y∗ = z ∧ z is prime]
2`

Pr[WinA in Game 4] =
∑

1≤z≤2`,z is prime

Pr[WinA|y∗ = z]
`

And thus, we see that Pr[WinA in Game 3] ≤ Pr[WinA in Game 4].
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4 Our CDH Realization

Our CDH construction is both simplier and more efficient than its RSA counterpart. This is partly
due to the fact that here will not need to search for primes and can instead directly associate the
ith state with the ith signature. Here we will also directly embed the chameleon hash function.

As before, each signature is associated with an index i and a category k = dlg(i)e. We force the
adversary to forge on a previously seen category, which restricts her to a polynomial-size set from
which to choose her forgery index. Since this remaining set is polynomial in size, we can employ
selectively-secure techniques to obtain an adaptively-secure scheme. Specifically, we make use of
the selectively-secure signatures due to Boneh and Boyen [5] with a twist. Here our index is like
the message in their scheme and our message impacts their “master key”.

4.1 CDH Construction

Setup(1λ) The setup algorithm selects a bilinear group G of prime order p > 2λ. It chooses a
random exponent a ∈ Zp. It chooses random group elements g, u, v, d, w, z, h ∈ G. The public key
is output as:

g, ga, u, v, d, w, z, h.

The setup algorithm sets its state counter s = 0 and keeps a as the secret key SK.

Sign(SK, s,M ∈ Zp) The message space is treated as Zp; to sign arbitrarily long messages one
could first apply a collision-resistant hash function. The signer first increments its counter s by one
as s = s + 1. If s > 2λ, then abort. Otherwise, the algorithm chooses random r, t ∈ Zp and then
outputs the signature as:

σ1 = (uMvrd)a(wdlg(s)ezsh)t, σ2 = gt, r, s.

Conceptually, we can think of t as being the randomness from the Boneh-Boyen selectively-
secure signature [5] and r as being the randomness for a Chameleon hash function uMvr.

Verify(PK,M, σ = (σ1, σ2, r, i)) The verification algorithm first makes sure that 0 < i < 2λ. If
this is false, then it rejects. Then it uses the bilinear map to verify the signature by checking that

e(σ1, g) = e(uMvrd, ga)e(σ2, w
dlg(i)ezih).

4.2 Comments

We first note that the verification cost can be reduced to only two pairings by publishing or having
each verifier do a one-time precomputation of the values e(u, ga), e(v, ga) and e(d, ga). This is
competitive with the most efficient bilinear schemes in the random oracle model, e.g., [7].

Second, we assume the adversary never makes more than 2λ signature requests and that we
choose p > 2λ. If somehow the adversary did make more that 2λ signature requests, then we could
simply give the adversary the secret key. This holds for both the CDH and RSA schemes.

Finally, we embedded a specific Chameleon hash function into our CDH scheme, because this
appears to be the most efficient construction. We could, however, have set the signature as:

σ1 = (uxd)a(wdlg(s)ezsh)t, σ2 = gt, r, s.
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where x = ChamHash(M, r) for any chameleon hash function mapping into Zp. However, the public
parameters necessary for the chameleon hash would likely eclipse the gains of removing element v.

4.3 Proof of Security

Theorem 4.1. If the CDH assumption holds in G, then the above construction is a secure signature
scheme.

Proof. Suppose we have an adversary that makes at most q(λ) queries where q() is a polynomial.
(We say q queries where it is clear from context.) We show that this adversary breaks CDH. We
do so by noting an adversary can have two types of forgeries.

Type I The adversary forges for a message with index i greater than 2dlg(q)e.

Type II The adversary forges for a message with index i less than or equal to 2dlg(q)e.

In Lemma 4.2, we show that a type I adversary can be used to break CDH with a loss of a
λ factor in the reduction. In Lemma 4.3, we show that a type II adversary can be used to break
CDH with a loss of a q factor in the reduction, where q is the number of signing queries made by
the adversary. This concludes the proof.

4.3.1 Type I Adversary

Lemma 4.2. If a type I adversary succeeds with probability ε, then it can be used to solve CDH
with probability ε/λ.

Proof. A type I adversary is caught by taking a guess of k∗ = dlg(i)e, the logarithm of the index i
on which he will forge. There are at most λ values of k∗ so the simulator has at least a 1/λ chance
of guessing correctly. It then uses the selective Boneh-Boyen simulation [5] to answer all other
queries. Let us now explain the details. Given a CDH challenge (g, ga, gb), proceed as follows.

Setup The simulator begins by guessing a value k∗ in the range 1 to λ. This represents a guess
that the adversary will forge on index i such that k∗ = dlg(i)e. For type I adversaries, recall that
if the adversary forges using value k∗, it will not ask enough signing queries to see an original
signature using k∗. Recall that the verification algorithm rejects on all indexes greater than 2λ.

Next, choose random yu, yv, yz ∈ Zp and set u = gyu , v = gyv , z = gyz . (These values will play
no significant role outside of realizing the proper distribution.) Then set d = gb, w = gbgxw , and
h = g−bk

∗
gxh , for random xw, xh ∈ Zp.

The simulator outputs the public key as (g, ga, u, v, d, w, z, h), sets the internal signing state
s = 0, and implicitly designates the secret key as a.

Sign When the adversary asks for a signature on message M ∈ Zp, the simulator first updates its
state value s = s+ 1. If s > 2λ, the simulator would need to abort. Fortunately, this never occurs
since, by definition, a polynomial-time adversary would make less than 2λ. If k∗ = dlg(s)e, the
simulator aborts. Otherwise, it computes the signature by choosing random r, t′ ∈ Zp, computing
k = dlg(s)e and T = gt

′
/(ga)1/(k−k

∗) = gt
′−a/(k−k∗), and outputting:

σ1 = (ga)yuM · (ga)yvr · T xwk+yzs+xh · (gb)t′(k−k∗) , σ2 = T , r , s.
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Let us implicitly set the randomness t = t′−a/(k−k∗) (here t′ gives t the proper distribution) and
we have T = gt and

σ1 = (uMvr)a · (gxwkzsgxh)t · gbt′(k−k∗) , σ2 = gt , r , s.

To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = (uMvr)a · gab · (gxwkzsgxh)t · gbt′(k−k∗) · g−ab

= (uMvr)a · gab · (gxwkzsgxh)t · gbt′(k−k∗) · g−ab(k−k∗)/(k−k∗)

= (uMvr)a · gab · (gxwkzsgxh)t · gbk(t′−a/(k−k∗)) · g−bk∗(t′−a/(k−k∗))

= (uMvr)a · gab · (gxwkzsgxh)t · gbkt · g−bk∗t

= (uMvrgb)a((gbgxw)kzs(g−bk
∗
gxh))t

= (uMvrh)a(wkzsh)t

Response Eventually, the type I adversary outputs a valid signature σ̃ = (σ̃1, σ̃2, r̃, ĩ) on a
message M̃ ∈ Zp such that ĩ ≥ 2q. From the verification equation, we see that

e(σ̃1, g) = e(uM̃vr̃d, ga)e(σ̃2, w
dlg(̃i)ez ĩh).

Interpreting σ̃2 as gt, for some t ∈ Zp, it follows from the above equation that

σ̃1 = (uM̃vr̃d)a(wdlg(̃i)ez ĩh)t.

Let k̃ = dlg(̃i)e. If k∗ = k̃, then the simulator guessed correctly and we know that

σ̃1 = (uM̃vr̃d)a((gb+xw)k̃(gyz)ĩ(g−bk
∗+xh))t

= (uM̃vr̃d)a(gxwk̃gyz ĩgxh)t

= (gM̃yugr̃yvgb)a(gxwk̃gyz ĩgxh)t

= gab(gM̃yugr̃yv)a(gxwk̃gyz ĩgxh)t

= gab(ga)M̃yu+r̃yv(gt)xwk̃+yz ĩ+xh

Thus, the simulator outputs σ̃1/((ga)M̃yu+r̃yv(gt)xwk̃+yz ĩ+xh) = gab. If k∗ 6= k̃, the simulator aborts.

4.3.2 Type II Adversary

Lemma 4.3. If a type II adversary succeeds with probability ε after making q signing queries, then
it can be used to solve CDH with probability ε/O(q).

Proof. A type II adversary is caught by taking a guess of i∗, the index on which he will forge, within
a small range of 1 to 2dlg(q)e, where q is the number of signing queries made by the adversary. Note
we loose a q factor in our reduction with this guess. At a high-level, we will again use the selective
Boneh-Boyen simulation [5] to sign for all indexes i 6= i∗. When signing for the i∗-th signature, we
program the Chameleon hash to allow us to do this. Let us now explain the details. Given a CDH
challenge (g, ga, gb), proceed as follows.
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Setup The simulator begins by guessing an index i∗ in the range 1 to 2dlg(q)e. This represents a
guess that the adversary will choose to forge on index i∗.

Next, choose random yv, yd, xv, xd ∈ Zp and set u = gb, v = gbxvgyv and d = g−bxdgyd . Then
choose random yw, xz, xh ∈ Zp and set w = gyw , z = gbgxz and h = g−bi

∗
gxh .

The simulator outputs the public key as (g, ga, u, v, d, w, z, h), sets the internal signing state
s = 0, and implicitly designates the secret key as a.

Sign When the adversary asks for a signature on message M ∈ Zp, the simulator first updates
its state value s = s+ 1. There are now two ways the simulator will proceed.

If s = i∗, then program the chameleon hash function by first computing r = (xd−M)/xv. Then
choose random t ∈ Zp and set

σ1 = (ga)yvr+yd · (wdlg(s)ezsh)t , σ2 = gt , r , s.

To verify correctness, observe that we can rewrite σ1 as follows given that M + rxv − xd = 0:

σ1 = (gab)M+rxv−xd(ga)yvr+yd · (wdlg(s)ezsh)t

= (gbMg(bxv+yv)rg−bxd+yd)a · (wdlg(s)ezsh)t

= (uMvrd)a · (wdlg(s)ezsh)t

If s 6= i∗, then we follow the Boneh-Boyen simulation by choosing random r, t′ ∈ Zp, computing
T = gt

′
/(ga)(M+xvr−xd)/(s−i∗) = gt

′−a(M+xvr−xd)/(s−i∗), and outputting:

σ1 = (ga)yvr+yd · T ywdlg(s)e+xzs+xh · (gb)t′(s−i∗) , σ2 = T , r , s.

Let us implicitly set the randomness t = t′ − a(M + xvr − xd)/(s − i∗) (here t′ gives t the proper
distribution) and we have T = gt and

σ1 = (gyvrgyd)a · (wdlg(s)egxzsgxh)t · (gb)t′(s−i∗) , σ2 = gt , r , s.

To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = (gab)(M+xvr−xd)(gyvrgyd)a · (wdlg(s)egxzsgxh)t · (gb)t′(s−i∗)(g−ab)(M+xvr−xd)

= ((gb)M (gbxv+yv)r(g−bxd+yd))a · (wdlg(s)egxzsgxh)t · (gb)t′(s−i∗)(g−ab)(M+xvr−xd)

= (uMvrd)a · (wdlg(s)egxzsgxh)t · (gb)t′(s−i∗)(g−ab)(M+xvr−xd)

= (uMvrd)a · (wdlg(s)egxzsgxh)t · (gb(s−i∗))t

= (uMvrd)a · (wdlg(s)e(gb+xz)sg−bi
∗+xh)t

= (uMvrd)a · (wdlg(s)ezsh)t

Response Eventually, the type II adversary outputs a valid signature σ̃ = (σ̃1, σ̃2, r̃, ĩ) on a
message M̃ ∈ Zp such that ĩ < 2dlg(q)e. Let σ̃2 = gt for some t ∈ Zp. Now, from the verification
equation, we see that

σ̃1 = (uM̃vr̃d)a(wdlg(̃i)ez ĩh)t.
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If i∗ = ĩ, then the simulator guessed correctly and we know that

σ̃1 = ((gb)M̃ (gbxv+yv)r̃(g−bxd+yd))a((gyw)dlg(̃i)e(gb+xz)ĩ(g−bi
∗+xh))t

= gab(M̃+xv r̃−xd)ga(yv r̃+yd)((gyw)dlg(̃i)e(gb+xz)ĩ(g−bi
∗+xh))t

= gab(M̃+xv r̃−xd)ga(yv r̃+yd)(gywdlg(̃i)egxz ĩgxh)t

= gab(M̃+xv r̃−xd)ga(yv r̃+yd)gt(ywdlg(̃i)e+xz ĩ+xh)

If (M̃+xv r̃−xd) 6= 0, the simulator outputs (σ̃1/(ga(yv r̃+yd)σ̃2
(ywdlg(̃i)e+xz ĩ+xh)))1/(M̃+xv r̃−xd) = gab.

Otherwise, the simulator aborts. The probability that (M̃ + xv r̃ − xd) = 0 is 1/p. To see this,
observe that the values xv and xd are initially hidden by blinding factors yv and yd, respectively. For
all i 6= i∗, signatures are produced without regard to these values and contain no information about
either xv or xd. For the one signature where i = i∗, the adversary could obtain the information that
Mi + xvri − xd = 0. However, there are exactly p possible (xv, xd) pairs that satisfy this equation
and each of them are equally likely. Thus, information-theoretically, the adversary can output a
pair (M̃, r̃) satisfying M̃ + xv r̃ − xd = 0 with probability at most 1/p.

5 Handling State in Practice

One of the challenging issues when using our signature scheme in practice is that a signer must
maintain state. Issues that may arise in practice include multiple (autonomous) machines sharing
the same signing key and machine crashes, among other problems. Fortunately, in our scheme,
since the state is a simple counter, most of these issues can be readily addressed.

Multiple Signers. For a variety of reasons, administrators often set up multiple machines with
the same signing key (e.g., parallelizing SSL connections at a highly visited site). In most cases, it is
impractical to assume that all of the machines can coordinate to maintain a shared state. However,
in our system, there is a simple solution to deal with this problem. If n different machines are using
the same signing key, then machine i can give its jth signature with index n · j + i.

Handling Machine Crashes. On an actual implementation, it is important to commit the
counter increment (to persistent memory) before giving out the signature. Otherwise, a crash
might cause two signatures to be given out for the same counter and thereby compromise security.
We observe that it is perfectly fine to skip over a small (i.e., polynomial) number of counters and
recommend erring on the side of safety.

Using the Machine Clock as a State. Instead of having a signer maintain a state counter, one
interesting alternative is to use the machine clock time as the signer’s state. This can theoretically
work in our system since the clock time monotonically increases at a polynomial rate. One concern,
however, is that the signer should not issue more than one signature per clock period. Two potential
circumstances where this could arise are either if somehow the clock time was set backwards or the
signing algorithm in two different invocations read the same clock value. This is especially relevant
in the age of dual-core processors, where mechanisms are in place for managing access to shared
memory, but there are not necessarily guarantees that two cores on the same chip would not read
out the same clock value. Overall, using the clock as the state could be a risky design choice and
a detailed analysis of the system implementation should be made before applying it.
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6 Conclusion and Open Problems

We presented two practical hash-and-sign signatures based on RSA and CDH in bilinear groups in
the standard model. We employed a new technique for restricting any adversary’s ability to forge,
which can be alternatively viewed as a mechanism for transforming selectively-secure techniques
into adaptively-secure constructions.

We view our stateful constructions here as a step toward realizing similar stateless signatures.
Recall that early tree-based signatures (e.g., the GMR signatures [21]) had a stateful signer, until
Goldreich [20] showed how to remove the state. Goldreich’s techniques do not appear to apply
directly here, but we are optimistic that similar progress can be made.

While we focused on RSA and CDH based constructions, it would also be interesting to realize
constructions under CDH in a non-bilinear group, lattices, or general assumptions.

Finally, we note that hash-and-sign signatures and their extensions with efficient protocols
(e.g., [9, 10]) have been useful for integrating into larger systems, such as anonymous credentials
and e-cash. With this new building block and some additional work, one might be able to base
these larger systems on more standard assumptions.
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A Chameleon Hash Function based on RSA

While the chameleon hash function based on the hardness of factoring due to Krawczyk and Ra-
bin [22] would be sufficient to rest our Section 3 construction entirely on the difficulty of RSA, we
now present a more efficient option.

This construction is due to Ateniese and de Mederios [1]. Their work actually presents an
identity-based chameleon hash, which we simplify, since we will not require the identity-based
property. To obtain the identity-based feature, the authors employed a signature scheme secure
in the random oracle model and proved the security of their scheme within this context. For
completeness, we provide a proof of the basic hash function under RSA in the standard model, but
the credit here should go to the prior work.

Let ` be a security parameter. Let N be an RSA modulus such that 2` < φ(N) < 2`+2. Choose
a random, positive e ∈ {0, 1}` which is relatively prime to φ(N) and a random value J ∈ ZN . Set
the public key as (N, e, J) and keep as the trapdoor the factorization of N as well as a value d such
that ed ≡ 1 mod φ(N).

The hash H : {0, 1}
2`
3 × ZN → ZN takes two inputs and produces one output. The hash is

computed as H(m, r) = Jmre mod N . The holder of the trapdoor can compute a collision for any
message m′ by solving the following equation for r′:
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Jmre = Jm
′
r′
e as r′ = r(Jd)m−m

′
mod N.

We note that the choice of {0, 1}
2`
3 is somewhat arbitrary. It could be optimized to any constant

fraction of ` bits or any range {0, 1}`′ such that the probability that e 6∈ {0, 1}`′ is non-negligible.

Theorem A.1. The above chameleon hash function is secure under the RSA assumption in the
standard model.

Proof. We provide a reduction showing how to turn any adversary against the above chameleon
hash into a simulated adversary that breaks RSA. Let (N, e, J) be the challenge RSA instance.
If e ≥ 2`, abort. This happens with probability at most (2`+2 − 2`)/2`+2 = 3/4. Otherwise, the
simulator sets the chameleon hash public key as (N, e, J). Suppose the adversary can find a collision
pair (m, r), (m′, r′) such that m 6= m′ and yet Jmre = Jm

′
r′e. We rewrite this as (r′/r)e = Jm−m

′
.

The simulator now wants to apply Lemma 2.2 to obtain a value z such that ze ≡ J mod N and
output z. However, this lemma only applies if e and (m−m′) are relatively prime. We now argue
that this is the case with non-negligible probability. Recall that e ∈ {0, 1}` and (m−m′) ∈ {0, 1}

2`
3 .

We first observe that e = (m−m′) with negligible probability < 2
2`
3 /2` = 2

−`
3 . Second, we observe

that the only other avenue for these values to be prime is if e is a multiple of (m − m′), which
cannot be the case if e is prime. The probability that e is prime via Theorem 2.4 is at least 1

` .

B Completing the RSA Proof of Security

B.1 Proof of Lemma B.1

Lemma B.1. The probability that there are less than q prime numbers in a set of 2`[q + λ] inde-
pendent, randomly chosen `-bit numbers is ≤ e−[q+λ]( 1

2
)2.

Proof. Let p be the probability that a random `-bit number is a prime. Let Xi be a random variable
representing whether an `-bit number is prime, where Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p. Let
X be the sum of n Xi and µ = E[X] =

∑n
i=1Xi (i.e., the expected number of primes in a set of n

randomly chosen `-bit numbers.)
To ensure that there are not too few primes, we bound this probability using Chernoff bounds

(lower tail) where 0 < δ ≤ 1

Pr[X < (1− δ)µ] < e
−µδ2

2 .

Set δ = 1
2 and n = 2`[q + λ], which implies that µ =

∑n
i=1Xi = 2`p[q + λ]. Plugging this into the

formula, we have
Pr[X < `p[q + λ]] < e−`p[q+λ]( 1

2
)2 .

By the Prime Number Theorem (Theorem 2.4), we know that p ≥ 1
` and thus `p ≥ 1. Note that

by substituting 1 for `p, we get a looser bound of

Pr[X < q + λ] < e−[q+λ]( 1
2
)2

which guarantees that less than q+λ primes are seen after n trials with only negligible probability.
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B.2 Proof of Claim B.2

Claim B.2. Assuming that F is a PRF family, then in the proof of Lemma 3.3, the challenge
exponent e∗ and the simulator-produced value of 2λ−dlg(̃i)e(x−x∗)

∏j 6=i∗
j∈E ej are relatively prime with

high probability.

Proof. Recall that e∗ is a random odd prime and thus is relatively prime to 2λ−dlg(̃i)e. Based on
the range of the chameleon hash function, we know that (x− x∗) ∈ {0, 1}

2`
3 . We know that e∗ was

chosen randomly from {0, 1}`. Thus, the chance that e∗ falls into the small range of {0, 1}
2`
3 (let

alone collides with (x − x∗)) is negligible, specifically 2
2`
3 /2` = 2

−`
3 . Finally, we argue that for all

j, we have e∗ 6= ej with high probability. Recall that each ej is prime and ej = c ⊕ FK(j), for
some value c ∈ {0, 1}` and random PRF key K. If e∗ = ej , then this implies that FK(i∗) = FK(j)
for j 6= i∗ and i∗, j ≤ t. For a truly random function, this would happen with probability at most
t2/2`, which is negligible in the security parameter. Thus, if this event occurs with non-neglibile
probability using F then this admits a distinguishing attack against the PRF. We emphasize that
while we give out the PRF key K, this distinguishing attack does not require K in any way.
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