
Adaptively Secure Two-Party Computation

with Erasures∗

Yehuda Lindell†

December 25, 2013

Abstract

In the setting of multiparty computation a set of parties with private inputs wish to compute
some joint function of their inputs, whilst preserving certain security properties (like privacy and
correctness). An adaptively secure protocol is one in which the security properties are preserved
even if an adversary can adaptively and dynamically corrupt parties during a computation. This
provides a high level of security, that is arguably necessary in today’s world of active computer
break-ins. Until now, the work on adaptively secure multiparty computation has focused almost
exclusively on the setting of an honest majority, and very few works have considered the honest
minority and two-party cases. In addition, significant computational and communication costs
are incurred by most protocols that achieve adaptive security.

In this work, we consider the two-party setting and assume that honest parties may erase
data. We show that in this model it is possible to securely compute any two-party functionality
in the presence of adaptive semi-honest adversaries. Furthermore, our protocol remains secure
under concurrent general composition (meaning that it remains secure irrespective of the other
protocols running together with it). Our protocol is based on Yao’s garbled-circuit construction
and, importantly, is as efficient as the analogous protocol for static corruptions. We argue that
the model of adaptive corruptions with erasures has been unjustifiably neglected and that it
deserves much more attention.

1 Introduction

In the setting of multiparty computation, a set of parties with private inputs wish to jointly compute
some function of those inputs. Loosely speaking, the security requirements are that even if some
of the participants are adversarial, nothing is learned from the protocol other than the output
(privacy), and the output is distributed according to the prescribed functionality (correctness). The
definition of security that has become standard today [18, 25, 1, 6] blends these two conditions (and
adds more). This setting models essentially any cryptographic task of interest, including problems
ranging from key exchange and authentication, to voting, elections and privacy-preserving data
mining. Due to its generality, understanding what can and cannot be computed in this model, and
at what complexity, has far reaching implications for the field of cryptography.

∗An extended abstract of this work appeared in CT-RSA, 2009. This research was supported by the israel
science foundation (grant No. 781/07). Previous versions of this work contained an error regarding the adaptive
security of garbled circuits [4]. This error is fixed here.
†Bar-Ilan University, Israel. Email: lindell@cs.biu.ac.il.

1

One important issue regarding secure computation is the environment in which it takes place.
In the basic setting, called the stand-alone model, the secure protocol is run only once and in
isolation (or equivalently, the adversary attacks only this execution). A more advanced setting is
that of composition, where the secure protocol may be run many times concurrently with itself and
arbitrary other protocols. This setting is called universal composability [7], or equivalently security
under concurrent general composition [21], and more accurately models the real-world security needs
than the stand-alone model.

A central question that needs to be addressed in this setting is the power of the adversary. An
adversary can be semi-honest (in which case it follows the protocol specification exactly but attempts
to learn more information than it should by analyzing the messages it receives) or malicious (in which
case it can take arbitrary actions). In addition, one can consider static corruptions (meaning that
the set of corrupted parties that are under the control of the adversary is fixed before the protocol
execution begins) or adaptive corruptions (in which case the adversary can choose to corrupt parties
during the computation based on its view). There are two main models that have been considered
for adaptive corruptions. In both models, upon corrupting an honest party the adversary receives
the internal state of that party. The difference lies in the question of what is included in that
state. In the non-erasure model, honest parties are not assumed to be able to reliably erase data.
Therefore, the internal state of a party includes its input, randomness and all of the messages that
it received in the past. In contrast, in the model with erasures, honest parties may erase data if so
instructed by the protocol and so the state includes all data as above except for data that has been
explicitly erased. (Of course, not all intermediate data can be erased because the party needs to
be able to run the protocol and compute the output.) In this paper, we consider the problem of
achieving security in the presence of adaptive semi-honest adversaries with erasures. We remark
that adaptive corruptions model the setting where hackers actively break in to computers during
secure computations. As such, it more accurately models real-world threats than the model of
static corruptions.

To erase or not to erase. In the cryptographic literature, the non-erasure model of adaptive
corruptions has received far more attention than the erasure model (see prior work below). The
argument has typically been that it is generally hard to ensure that parties fully erase data. After
all, this can depend on the operating system, and in real life passwords and other secret data can
often be found on swap files way after they were supposedly erased. We counter this argument by
commenting that non-swappable memory is provided by all modern operating systems today and
it is possible to use this type of memory for the data which is to be erased (as specified by the
protocol). Of course, it is more elegant to assume that there are no erasures. However, the price
of this assumption has been very great. That is, the complexity and communication of protocols
that are secure under adaptive corruptions without erasures are all much higher than the analogous
protocols that are secure under static corruptions (for example, we don’t even have a constant-round
protocol for general two-party computation that is secure under adaptive corruptions). We argue
that the result of this is that no protocol designer today would even consider adaptive corruptions
if the aim is to construct an efficient protocol that could possibly be used in practice.

Our results. We begin by studying the stand-alone model and note that the current situation
is actually very good, as long as erasures are considered. Specifically, by combining results from
Beaver and Haber [3], Canetti [6], and Canetti et al. [8], we show the following:

2

Theorem 1 Let f be any two-party functionality and let π be a protocol that securely computes
f in the presence of static malicious (resp., semi-honest) adversaries, in the stand-alone model.
Then, assuming the existence of one-way functions, there exists a highly efficient transformation of
π to π′ such that π′ securely computes f in the presence of adaptive malicious (resp., semi-honest)
adversaries with erasures, in the stand-alone model.

We have no technical contribution in deriving Theorem 1; rather our contribution here is to
observe that a combination of known results yields the theorem. To the best of our knowledge, the
fact that this theorem holds has previously gone unnoticed.

The only drawback of Theorem 1 is that it holds only for the stand-alone model (see Section 3 for
an explanation as to why). As we have mentioned, this is a relatively unrealistic model in today’s
world where many different protocols are run concurrently. Our main technical contribution is
therefore to show that it is possible to construct secure protocols for general two-party computation
in the presence of semi-honest adaptive adversaries (and with erasures) that are secure under
concurrent general composition [21] (equivalently, universally composable [7]). Importantly, the
complexity of our protocol is analogous to the complexity of the most efficient protocol known for
the case of semi-honest static adversaries (namely, Yao’s protocol [27]). We prove the following
theorem:

Theorem 2 Assume that there exist enhanced1 trapdoor permutations. Then, for every two-party
probabilistic polynomial-time functionality f there exists a constant-round protocol that securely
computes f under concurrent general composition, in the presence of adaptive, semi-honest adver-
saries with erasures.

The contributions of Theorem 2 are as follows:

1. Round complexity: Our protocol for adaptive two-party computation requires a constant
number of rounds. The only other protocols for general adaptive two-party computation that
are secure under concurrent composition follow the GMW paradigm [17] and the number of
rounds is therefore equal to the depth of the circuit that computes the function f ; see [11].
We stress that [11] does not assume erasures, whereas we do.

2. Hardness assumptions: Our protocol requires the minimal assumption for secure computation
in the static model of enhanced trapdoor permutations. In contrast, all known protocols for
adaptive oblivious transfer (and thus adaptive secure computation) without erasures assume
seemingly stronger assumptions, like a public-key cryptosystem with the ability to sample a
public-key without knowing the corresponding secret key. In fact, in a recent paper, it was
shown that adaptively secure computation cannot be achieved in a black-box way from en-
hanced trapdoor permutations alone [24]. Thus, without assuming erasures, it is not possible
to construct secure protocols for the adaptive model under this minimal assumption (at least,
not in a black-box way).

In addition to the above, our protocol has the same complexity as Yao’s protocol for static adver-
saries in all respects. We view this as highly important and as a sign that it is well worth considering
this model when constructing efficient secure protocols. In particular, if it is possible to achieve

1See [16, Appendix C.1].

3

security in the presence of adaptive corruptions with erasures “for free”, then this provides a signif-
icant advantage over protocols that are only secure for static corruptions (of course, as long as such
erasures can really be carried out). In addition, the typical argument against considering security
under composition is that the resulting protocols are far less efficient. Our results demonstrate that
this is not the case for the setting of semi-honest adaptive adversaries with erasures. Indeed our
protocol is no less efficient than the basic protocol for the semi-honest stand-alone setting.

We remark that our protocol is very similar to the protocol of Yao and we only need to slightly
change the order of some operations and include some erase instructions (i.e., in some sense, the
original protocol is “almost” adaptively secure).

Related work. The vast majority of work on adaptive corruptions for secure computation has
considered the setting of multiparty computation with an honest majority [3, 9, 2] and thus is
not applicable to the two-party setting. To the best of our knowledge, the only two works that
considered the basic question of adaptive corruptions for general secure computation in the setting
of no honest majority are [11] and [8]. Canetti et al. [8] study the relation between adaptive
and static security and present a series of results that greatly clarifies the definitions and their
differences. However, this work only relates to the stand-alone setting. In the setting of composition,
Canetti et al. [11] presented a protocol that is universally composable (equivalently, secure under
concurrent general composition). The construction presented there considers a model with no
erasures. As such, it is far less efficient (e.g., it is not constant-round), far more complicated, and
relies on seemingly stronger cryptographic hardness assumptions. Regarding secure computation
of functions of specific interest, there has also been little work on achieving adaptive security, with
the notable exception of threshold cryptosystems [10, 14, 20] and oblivious transfer [15].

2 Definitions

2.1 Definitions of Security

We denote the security parameter by n. A function µ(·) is negligible in n (or just negligible) if for
every polynomial p(·) there exists a value N such that for all n > N it holds that µ(n) < 1/p(n).
A machine is said to run in polynomial-time if its number of steps is polynomial in the security
parameter, irrespective of the length of its input. Formally, each machine has a security-parameter
tape upon which 1n is written. The machine is then polynomial in the contents of this tape.

Let X = {X(n, a)}n∈N,a∈{0,1}∗ and Y = {Y (n, a)}n∈N,a∈{0,1}∗ be distribution ensembles. Then,

we say that X and Y are computationally indistinguishable, denoted X
c≡ Y , if for every non-uniform

polynomial-time distinguisher D there exists a function µ(·) that is negligible in n, such that for
every a ∈ {0, 1}∗,

|Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]| < µ(n)

Typically, the distributions X and Y will denote the output vectors of the parties in real and ideal
executions, respectively. In this case, a denotes the parties’ inputs.

2.2 Stand-Alone versus Composition

The definitions for security in the stand-alone model are significantly simpler than those for security
under concurrent general composition (or the equivalent definition of universal composability).
Kushilevitz et al. [19] showed that any protocol that has been proven secure in the stand-alone

4

model, using a simulator that is black-box and straight-line and so doesn’t rewind the adversary,
is secure under concurrent-general composition. In actuality, an additional requirement for this to
be true is something called initial synchronization. In the two-party setting, this just means that
the parties send each other an init message before actually running the protocol.

Due to the above, we will present the definitions for the stand-alone model only and will derive
security under concurrent general composition via the fact that all of our simulators are black-
box and straight-line. (In fact, most known simulators for the semi-honest model are black-box
and straight-line, with one notable exception being the simulators of [8]. See Section 3 for more
discussion on this.)

2.3 Secure Two-Party Protocols for Semi-Honest Adversaries

The model that we consider here is that of two-party computation in the presence of adaptive
semi-honest adversaries with erasures. An adaptive adversary can choose to corrupt parties at any
time throughout the computation (including before it begins and after it terminates), where upon
corruption the adversary receives the entire internal state of the party. (This is like breaking into
the honest party’s machine during the execution.) The fact that the adversary is semi-honest means
that even the corrupted parties follow the protocol specification exactly. However, the adversary
may try to learn more information than allowed by looking at the transcript of the messages
received by the corrupted parties. We consider a model with erasures, meaning that the protocol
may contain instructions to honest parties to erase data; it is assumed that if such an instruction is
executed, the erased data is not available to the adversary if it corrupts the party at a later time.
The definitions presented here are according to Canetti in [6], with the appropriate changes needed
for considering erasures. Specifically, no post-execution phase is needed, and there is no need to
include the external environment Z; see [6, Remark 5].

Two-party computation. A two-party protocol problem is cast by specifying a random process
that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a
functionality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for
every pair of inputs x, y ∈ {0, 1}n, the output-pair is a random variable (f1(x, y), f2(x, y)) ranging
over pairs of strings. The first party (with input x) wishes to obtain f1(x, y) and the second party
(with input y) wishes to obtain f2(x, y).

Security – informal. Intuitively, a protocol is secure if whatever can be computed by a party
participating in the protocol can be computed based on its input and output only. This is formalized
according to the ideal/real model paradigm. Loosely speaking, we require that the output of a
real protocol execution be indistinguishable from the output of an ideal computation involving
an incorruptible trusted third party. This trusted party receives the parties’ inputs, computes the
functionality on these inputs and returns to each their respective output. In addition, the adversary
can issue “corrupt” commands upon which it receives the input and output of the newly corrupted
party. Loosely speaking, a protocol is secure if any real-model adversary can be converted into
an ideal-model adversary such that the output distributions of the real and ideal executions are
computationally indistinguishable.

Definition of security. In order to define security, we first need to define the ideal and real
models. We begin with an ideal execution between two parties P1 and P2, an adaptive semi-honest
adversary A and a trusted third party:

5

Inputs: Each party (P1, P2 and A) has the security parameter written in unary form on its security
parameter tape. Parties P1 and P2 obtain respective inputs x and y, and the adversary A
receives an auxiliary input z.

First corruption phase: The adversary A can issue any corrupt Pi commands it wishes (for
i ∈ {1, 2}). Upon issuing such a command it receives the appropriate party’s input. We
stress that A can issue any number of these commands in any order, and its decision can
depend on the values it has already seen.

Computation stage: Each party Pi sends its input to the trusted party. The trusted party then
computes (w1, w2) = f(x, y) and hands each Pi the value wi. The adversary A receives this
output for any party that is already corrupted.

Second corruption phase: After receiving the outputs of the corrupted parties (if there are any),
the adversary proceeds to another corruption phase which is the same as the first.

Output: Each uncorrupted party Pi outputs wi as received from the trusted party and corrupted
parties output ⊥. The adversary A outputs an arbitrary function of its view in the execution.

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality, where f = (f1, f2), and let A be a
non-uniform probabilistic polynomial-time machine (representing the adversary). The execution of
f in the ideal model (on input (x, y) for the parties and auxiliary input z for the adversary), denoted
idealf,A(z)(n, x, y), is defined as the output of the adversary A and the parties P1 and P2 from the
above ideal execution.

Execution in the real model (with erasures). We next consider the real model in which a
real two-party protocol is executed (and there exists no trusted third party). Each party (P1, P2

and A) is invoked with the security parameter n written in unary on its security parameter tape
and with its designated input (x for P1, y for P2, and z for A). The parties then run the protocol
according to its specification, including erase commands. The adversary may corrupt honest parties
at any time before, during or after the computation. Upon corruption, the adversary receives the
internal state of the party that includes the entire history of the execution, except for data that
has been explicitly erased. Furthermore, the adversary continues to view all messages that the
corrupted party receives. We stress that we consider the semi-honest adversary model here and so
the corrupted parties continue to follow the protocol specification. At the end of the execution,
the honest parties output whatever the protocol instructs them to output, the corrupted parties
output ⊥, and the adversary A outputs an arbitrary function of its view in the execution.

Let f be as above and let π be a two-party protocol for computing f . The execution of π in
the real model (on input (x, y) for the parties, and auxiliary input z for the adversary), denoted
realπ,A(z)(n, x, y), is defined as the output of the adversary A and the parties P1 and P2 from the
above real execution.

Security as emulation of a real execution in the ideal model. Having defined the ideal
and real models, we can now define security of protocols. Loosely speaking, the definition asserts
that a secure two-party protocol in the real model emulates the ideal model in which a trusted
party exists. This is formulated by saying an adversary in the ideal model is able to simulate an
execution of a secure real-model protocol.

6

Definition 3 Let f and π be as above. Protocol π is said to securely compute f in the adaptive
semi-honest model with erasures if for every non-uniform probabilistic polynomial-time adversary
A for the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the
ideal model, such that:{

idealf,S(z)(n, x, y)
}
x,y,z∈{0,1}∗;n∈N

c≡
{
realπ,A(z)(n, x, y)

}
x,y,z∈{0,1}∗;n∈N

where |x| = |y|.

We note that the above definition assumes that the parties know the input lengths (this can be
seen from the requirement that |x| = |y|). Some restriction on the input lengths is unavoidable,
see [16] for discussion.

2.4 Sequential Composition

Our protocol uses a secure oblivious transfer protocol as a subprotocol. A composition theorem has
been proven in [6], stating that it suffices to analyze the security of such a protocol in a hybrid model
in which the parties interact with each other and have access to a trusted party that computes the
oblivious transfer protocol for them. This model is a hybrid of the real and ideal models: on the
one hand, the parties send regular messages to each other like in the real model; on the other hand,
the parties have access to a trusted party like in the ideal model. We remark that the composition
theorem of [6] holds for the case that the subprotocol executions are all run sequentially (and
the messages of the protocol calling the subprotocol do not overlap with any execution). We also
remark that if it has been shown that the oblivious transfer subprotocol is secure under parallel
composition, then it is straightforward to extend [6] so that the subprotocols may be run in parallel
(again, as long as the messages of the protocol calling the subprotocol do not overlap with any
execution).

We note that the definition of security that appears in [6] for the case of adaptive corruptions –
and for which the composition theorem is proved – is significantly more complex than our definition
above (specifically, it includes a post-execution corruption phase and a separate environmental
entity). Nevertheless, as pointed out by [6], this additional complication is not needed in the case
that honest parties can erase data. Rather, it suffices to adopt the convention that at the end of
every execution of a secure protocol the parties erase all the data that was internal to the execution
except for the output.

3 Stand-Alone Two-Party Computation for Malicious Adversaries

In this section, we observe that in the stand-alone model, any two-party protocol that is secure in
the presence of static adversaries can be efficiently converted into a protocol that is secure in the
presence of adaptive adversaries, as long as erasures are allowed. This powerful result is another
good reason why it is worth considering erasures – indeed, adaptive security is obtained almost for
free. In order to see why this is true, we combine three different results:

1. First, Beaver and Haber [3] proved that any protocol that is adaptively secure in a model
with ideally secure communication channels can be efficiently converted into a protocol that is
adaptively secure in a model with regular (authenticated) communication channels, assuming

7

erasures. The transformation of [3] requires public-key encryption and thus assumes the
existence of trapdoor permutations. We stress that under specific assumptions, it can be
implemented at very low cost.

2. Next, Canetti et al. [8] consider a modification of the standard definition of security for
adaptive adversaries. The standard definition includes a post-execution corruption phase
(known as PEC for short); this phase is necessary for obtaining sequential composition as
described in [6].2 Nevertheless, most of the results in [8] consider a modified definition where
there is no PEC phase. Amongst many other results, it is proven in [8] that in a model with
ideally secure channels and no PEC, any two-party protocol that is secure in the presence of
static malicious adversaries is also secure in the presence of adaptive malicious adversaries.
(The same holds also for semi-honest adversaries.)

A combination of the results of [3] and [8] yields the result that any two-party protocol that
is secure in the presence of static malicious adversaries can be efficiently transformed into a
protocol that is secure in the presence of adaptive malicious adversaries under a definition
without PEC. (The requirement of [8] for ideally secure channels is removed by [3].) This
result is still somewhat lacking because PEC is in general a necessary definitional requirement.

3. The post-execution corruption phase is not needed in the adaptive model where erasures are
allowed [6, Remark 5]. In particular, modular sequential composition holds in this model even
without this phase. (There is one requirement: the honest parties must erase the internal
data they used at the end of the secure protocol execution, and can store only the input and
output. There is no problem doing this because the input and output is all that they need.)
Thus, in a model allowing erasures, the results of [8] guarantee adaptive security under a
definition of security that is sufficient (and in particular implies sequential composition).

Combining the above three observations, we obtain the following theorem:

Theorem 4 Consider the stand-alone model of computation. Let f be a two-party functionality
and let π be a protocol that securely computes f in the presence of malicious static adversaries.
Then, assuming the existence of trapdoor permutations, there exists a protocol π′ that securely
computes f in the presence of malicious adaptive adversaries, with erasures.

The theorem statement hides the fact that the transformation of π to π′ is highly efficient and
thus the boosting of the security guarantee from static to adaptive adversaries is obtained at almost
no cost. Before concluding, we stress again that this result only holds in a model assuming that
honest parties can safely erase data. This is due to the fact that in the non-erasure model the PEC
requirement is needed, and so the combination of the results of [3] and [8] yields a protocol that
is not useful. (In particular, it is not necessarily secure with PEC and so may not be secure under
sequential composition.)

Concurrent composition. The above relates to the stand-alone model (and so, of course, also to
sequential composition). What happens when considering concurrent composition? An analogous
result cannot be achieved because the proof of [8] relies inherently on the fact that the simulator can
rewind the adversary. Specifically, [8] prove the equivalence of adaptive and static security in the
following way. The adaptive simulator begins by running the static simulator for the case that no

2We remark that there is no PEC requirement for the definition of security in the presence of static adversaries.

8

party is corrupted. Then, if the adversary corrupts a party (say party P1), the adaptive simulator
rewinds the adversary and begins the simulation from scratch running the static simulator for the
case that P1 is corrupted. The adaptive simulator runs the static simulator multiple times until the
adversary asks to corrupt P1 in the same place as the first time. Since the static simulator assumes
that P1 is corrupted, it can complete the simulation. This is the general idea of the simulation
strategy; for more details and the actual proof, see [8]. In any case, since rewinding is an inherent
part of the strategy, their proof cannot be used in the setting of concurrent composition (where
rewinding simulation strategies do not work).

4 Two-Party Computation for Semi-Honest Adversaries

4.1 Adaptively-Secure Oblivious Transfer

We start by observing that in the setting of concurrent composition, the oblivious transfer protocol
of [13] is not adaptively secure (at least, it is not simulatable without rewinding). In order to see
this, recall that this protocol works by the sender P1 choosing an enhanced trapdoor permutation f
with its trapdoor t and sending f to the receiver P2. Upon input σ, party P2 then sends P1 values
y0, y1 so that it knows the preimage of yσ but not of y1−σ. Party P1 then masks its input bit z0
with the hard-core bit of f−1(y0) and masks its input bit z1 with the hard-core bit of f−1(y1). The
protocol concludes by P2 extracting zσ; it can do this because it knows the preimage of yσ and so
can compute the hard-core bit used to mask zσ. Now, consider an adversarial strategy that waits
until P1 sends its second message and then corrupts the receiver. Following this corruption, the
adversary should be able to obtain P2’s state and compute zσ from P1’s message (the adversary
must be able to do this because P2 must be able to do this). However, when the messages from P1

are generated by the simulator and no party is corrupted, the simulator cannot know what values
of z to place in the message. The simulation will therefore often fail. A similar (and in fact worse)
problem appears in the known oblivious transfer protocols that rely on homomorphic encryption.

Our approach to solving this problem is novel and has great advantages. We show that any
oblivious transfer protocol that is secure for static corruptions can be modified so that with a minor
addition adaptive security (with erasures) is obtained. The idea is to run any secure oblivious
transfer upon random inputs and then use the random values obtained to exchange the actual bit.
This method was presented in [26] in order to show a reduction from standard OT to OT with
random inputs. Here we use it to obtain adaptive security. We remark that our protocol is exactly
that of [26]; our contribution is in observing and proving that it is adaptively secure.

Protocol 1 (oblivious transfer):

• Inputs: P1 has two strings x0, x1 ∈ {0, 1}n, and P2 has a bit σ ∈ {0, 1}.

• The protocol:

1. P1 chooses random strings r0, r1 ∈R {0, 1}n and P2 chooses a random bit b ∈R {0, 1}.
P1 and P2 run an oblivious transfer protocol, using the chosen random inputs. (Note
that P2’s output is rb.) At the conclusion of the protocol, P1 and P2 erase all of the
randomness that they used, and remain only with their inputs and outputs from the
subprotocol (i.e., P1 remains with (r0, r1) and P2 remains with (b, rb)).

2. P2 sends P1 the bit β = b⊕ σ.

9

3. P1 sends P2 the pair y0 = x0 ⊕ rβ and y1 = x1 ⊕ r1−β.

4. P2 outputs yσ ⊕ rb.

Before proving security, we first show that the protocol is correct. If σ = 0 then β = b and so
y0 = x0 ⊕ rb, implying that P2 outputs y0 ⊕ rb = x0 as required. Likewise, if σ = 1 then β = b⊕ 1
and so y1 = x1 ⊕ rb, implying that P2 outputs y1 ⊕ rb = x1 as required. We have the following
theorem.

Theorem 5 If the oblivious transfer used in Step 1 of Protocol 1 is secure in the presence of
semi-honest static adversaries in the stand-alone model, then Protocol 1 is secure under concurrent
general composition in the presence of semi-honest adaptive adversaries with erasures.

Proof: Before beginning the proof, we remark that we cannot analyze the security of the protocol
in a hybrid model where the oblivious transfer of Step 1 is run by a trusted party. This is because
the oblivious transfer protocol of Step 1 is only secure in the presence of static adversaries, and
we are working in the adaptive model. We now proceed with the proof. Intuitively, the protocol
is adaptively secure because any corruptions that occur before Step 1 are easily dealt with due to
the fact that even the honest parties use random inputs in this stage (and thus inputs that are
independent of their real input). Furthermore, any corruptions that take place after Step 1 can
be dealt with because the oblivious transfer protocol used in Step 1 is statically secure, and so
hides the actual inputs used. Given that the parties erase their internal state after this step, the
simulator is able to lie about what “random” inputs the parties actually used.

Let A be a probabilistic polynomial-time real adversary. We construct a simulator S for Pro-
tocol 1, separately describing its actions for every corruption case (of course, S doesn’t know when
corruptions occur so its actions are the same until corruptions happen). Upon auxiliary input z,
simulator S invokes A upon input z and works as follows:

1. No corruption, or corruption at the end: S begins by choosing random r0, r1 and b and playing
the honest parties in the oblivious transfer protocol of Step 1. Then, S simulates P2 sending
a random β to P1, and P1 replying with two random strings (y0, y1).

If A carries out corruptions following the execution, then S acts as follows, according to the
case:

(a) Corruption of P1 first: S corrupts P1 and obtains its input pair (x0, x1). Then, S sets
rβ = x0 ⊕ y0 and r1−β = x1 ⊕ y1, where β, y0, y1 are as above (and the values r0, r1
chosen in the simulation of the oblivious transfer subprotocol are ignored). S generates
the view of P1 based on this (r0, r1).

If A corrupts P2 following this, then S corrupts P2 and obtains its input bit σ. Then,
S sets the value b (that P2 supposedly used in its input to the OT subprotocol) to be
β ⊕ σ. S generates the view of P2 based on it using input b to the OT and receiving
output rb, where the value of rb is as fixed after the corruption of P1.

(b) Corruption of P2 first: S corrupts P2 and obtains its input bit σ together with its output
string xσ. Then, S sets b = σ ⊕ β and rb = xσ ⊕ yσ, where β is the value set above and
likewise yσ is from the pair (y0, y1) above. S then generates the view of P2 based on its
input to the OT being b and its output being rb.

10

If A corrupts P1 follows this, then S corrupts P1 and obtains its input pair (x0, x1) (note
that xσ was already obtained). Then, S sets r1−b = x1−σ ⊕ y1−σ and generates the
view of P1 such that its input to the OT subprotocol was (r0, r1) as generated upon the
corruption of P2 and the later corruption of P1.

2. Corruption of both P1 and P2 at any point until Step 1 concludes: S begins by emulating the
OT subprotocol with random (r0, r1) and b as described above. Then, upon corruption of
party Pi, simulator S corrupts Pi and obtains its input. It can then just hand A the input of
Pi together with its view in the emulated subprotocol using the inputs (r0, r1) and b.

3. Corruption of P1 up until Step 1 concludes and P2 after it concludes: The corruption of
P1 is dealt with exactly as in the previous case. We remark that once P1 is corrupted, S
continues to play P2 while interacting with A controlling P1 as if in a real execution (and
using the random input b that was chosen). After the OT subprotocol concludes, S simulates
P2 sending a random β to P1, and obtains back a pair (y0, y1) from A who controls P1.

3

If A corrupts P2 at this point, then S corrupts P2 and obtains σ. S sets P2’s input in the OT
subprotocol to be b = σ ⊕ β and generates the view accordingly.

4. Corruption of P2 up until Step 1 concludes and P1 after it concludes: The corruption of
P2 is dealt with exactly as in the corruption case in item 2 above. As previously, once
P2 is corrupted S continues to play P1 while interacting with A controlling P2 as if in a
real execution (and using the random input (r0, r1) that was chosen). Let σ be P1’s input
and let xσ be its output. After the OT subprotocol concludes, S obtains a random bit β
from A controlling P2 and sets yσ = xσ ⊕ rb where b is the input used by P2 in the OT
subprotocol (whether corrupted or not) and rb is from above. Furthermore, S chooses a
random y1−σ ∈R {0, 1}n, and simulates P1 sending (y0, y1) to P2.

If A corrupts P1 at this point (or before (y0, y1) were sent – but it makes no difference), then
S corrupts P1 and obtains (x0, x1). It then redefines the value of r1−b to be y1−σ ⊕x1−σ, and
generates the view based on these values.

This covers all corruption cases. We now proceed to prove that{
idealOT,S(z)(n, x0, x1, σ)

}
x0,x1,σ,z;n∈N

c≡
{
realπ,A(z)(n, x0, x1, σ)

}
x0,x1,σ,z;n∈N

We present our analysis following the case-by-case description of the simulator:

1. No corruption, or corruption at the end: In order to prove this corruption case, we begin
by showing that when no parties are corrupted, every oblivious transfer protocol (that is
secure for the static corruption model) has the following property. Let A be a probabilistic
polynomial-time adversary that corrupts no parties, and only eavesdrops on the communi-
cation in the protocol. Then, for all strings r0, r1, r

′
0, r
′
1 ∈ {0, 1}n and every probabilistic

polynomial-time distinguisher D:

|Pr[D(realπ,A(z)(n, r0, r1, 0)) = 1]− Pr[D(realπ,A(z)(n, r
′
0, r
′
1, 1)) = 1]| ≤ negl(n) (1)

3Note that if A was malicious and not semi-honest, then the simulation at this point would not work because S
cannot know which inputs A used in the oblivious transfer (this is due to the fact that the corruption occurred in
the middle of the oblivious transfer and the static simulator may not necessarily be able to deal with this). For this
reason, we have only been able to prove our transformation for the semi-honest model.

11

for some negligible function negl. The above follows from the following three equations (all
equations relate to the same quantification as above over all strings and all distinguishers):

|Pr[D(realπ,A(z)(n, r0, r1, 0)) = 1]− Pr[D(realπ,A(z)(n, r0, r
′
1, 0)) = 1]| ≤ negl(n)

This holds because otherwise an adversary corrupting the receiver P2 could learn something
about the second string of P1’s input, even though it used input 0 and so received r0. (This
would contradict the security of the protocol in the ideal model; the formal statement of this
is straightforward and so omitted.) Next,

|Pr[D(realπ,A(z)(n, r0, r
′
1, 0)) = 1]− Pr[D(realπ,A(z)(n, r0, r

′
1, 1)) = 1]| ≤ negl(n)

This second equation holds because otherwise an adversary corrupting the sender P1 could
distinguish the case that the receiver P2 has input 0 or 1. Finally,

|Pr[D(realπ,A(z)(n, r0, r
′
1, 1)) = 1]− Pr[D(realπ,A(z)(n, r

′
0, r
′
1, 1)) = 1]| ≤ negl(n)

As with the first equation, this holds because otherwise an adversary corrupting P2 can learn
something about the first string of P1’s input even though it used input 1. Combining the
above three together, Eq. (1) follows.

Now, let r′0, r
′
1, b
′ be the values used by S to simulate the oblivious transfer in Step 1 of the

protocol, and let y0, y1, β be the random values sent by S in the later steps. In addition, let
x0, x1, σ be the real parties’ inputs that are received by S upon corruption of both P1 and P2.
As in the simulation description, we separately analyze the case that no parties are corrupted,
the case that P1 was corrupted first and the case that P2 was corrupted first.

(a) No corruptions: In the case of no corruptions, all the adversary sees is the oblivious
transfer transcript, a random bit β and two random strings y0, y1. Let x0, x1, σ be the
real inputs of the honest parties. Then, the values y0, y1, β seen by the adversary are
“correct” if the inputs used in the oblivious transfer are r′β = x0⊕y0 and r′1−β = x1⊕y1
and b′ = β ⊕ σ. However, S used inputs r0, r1, b and not these r′0, r

′
1, b
′. Nevertheless,

Eq. (1) guarantees that the distribution over the transcript generated using r0, r1, b (as
in the simulation) is computationally indistinguishable from the distribution over the
transcript generated using r′0, r

′
1, b
′ (as in a real execution). Thus, indistinguishability

holds for this case.

(b) Corruption of P1 first: As described in the simulation, S sets rβ = x0 ⊕ y0 and r1−β =
x1⊕ y1. Then, S sets b = β ⊕ σ. If S had used r0, r1, b as defined here in the simulation
of Step 1 of the protocol, then the simulation would be perfect (because all of the
values are constructed exactly as the honest parties would construct them upon inputs
x0, x1, σ). Thus, using Eq. (1), we have that the distributions are computationally
indistinguishable. (Recall that Eq. (1) refers to the transcript generated when no parties
are corrupted. However, this is exactly the case here because the corruptions occur after
the subprotocol has concluded. Furthermore, because the parties erase their internal
state, the only information about the subprotocol that A receives is the transcript of
messages sent, as required.)

(c) Corruption of P2 first: The proof of this is almost identical to the case where P1 is
corrupted first.

12

2. Corruption of both P1 and P2 at any point until Step 1 concludes: This case is trivial because
in Step 1 both S and the honest parties use random inputs that are independent of the inputs.
Thus the distribution generated by S is identical as in a real execution.

3. Corruption of P1 until Step 1 concludes and P2 after it concludes: The distribution of the
view of P1 generated by S is identical to a real execution, because as in the previous case, the
inputs used until the end of Step 1 are random and independent of the party’s actual input.
Regarding P2’s view, indistinguishability follows from the fact that for any oblivious transfer
protocol (that is secure for static corruptions), it holds that when A has corrupted P1 only,
we have that for all r0, r1 ∈ {0, 1}n{

realπ,A(z)(n, r0, r1, 0)
}
n∈N

c≡
{
realπ,A(z)(n, r0, r1, 1)

}
n∈N

This follows similarly to Eq. (1) because in the ideal model, a corrupted P1 cannot know if
P2 has input 0 or 1.

4. Corruption of P2 until Step 1 concludes and P1 after it concludes: The proof of this case is
almost identical to the previous case.

This completes the proof of the theorem.

4.2 The Two-Party Protocol for Semi-Honest Adversaries

We present a protocol for securely computing any functionality f that maps two n-bit inputs into
an n-bit output. It is possible to generalize the construction to functions for which the input and
output lengths vary. Our description assumes familiarity with Yao’s garbled circuit construction;
see Appendix A for a full description. Observe that we consider only a “same-output functionality”,
meaning that both P1 and P2 receive the same output value f(x, y). In [22], this was shown to
be without loss of generality: given any protocol as we describe here it is possible to construct a
protocol where the parties have different outputs with very little additional overhead.

Protocol 2

• Inputs: P1 has x ∈ {0, 1}n and P2 has y ∈ {0, 1}n

• Auxiliary input: A boolean circuit C such that for every x, y ∈ {0, 1}n it holds that
C(x, y) = f(x, y), where f :{0, 1}n × {0, 1}n → {0, 1}n.4

• The protocol:

1. P1 constructs a garbled circuit G(C), as described in Appendix A, but does not send it
to P2 yet.

2. P1 and P2 share a one-time pad P of the length of the garbled circuit, with security in
the presence of adaptive adversaries (with erasures), as described in [3].

4As in [22], we require that C is such that if a circuit-output wire leaves some gate g, then gate g has no other
wires leading from it into other gates (i.e., no circuit-output wire is also a gate-input wire). Likewise, a circuit-input
wire that is also a circuit-output wire enters no gates.

13

3. Let w1, . . . , wn be the circuit-input wires corresponding to x, and let wn+1, . . . , w2n be
the circuit-input wires corresponding to y. Then,

(a) P1 sends P2 the strings kx11 , . . . , k
xn
n .

(b) For every i, P1 and P2 execute a 1-out-of-2 oblivious transfer protocol that is adap-
tively secure for semi-honest adversaries, in which P1’s input equals (k0n+i, k

1
n+i) and

P2’s input equals yi.

The above oblivious transfers can all be run in parallel.

4. After the previous step is completed, P1 erases all of the randomness it used to construct
the garbled circuit (and in particular, erases all of the secret keys), and it erases the one-
time pad P . Following this erasure, P1 sends P2 the “one-time pad encrypted” garbled
circuit G(C)⊕ P .

5. After the above, P2 has obtained P , G(C)⊕P and 2n keys corresponding to the 2n input
wires to C. Party P2 derives G(C) (by XORing the one-time pad encrypted garbled circuit
G(C)⊕P with the exchanged pad P), computes the circuit, as described in Appendix A,
obtaining f(x, y). P2 then sends f(x, y) to P1 and they both output this value.

The only differences between Protocol 2 and Yao’s protocol as it appears in [22] are:

1. P1 and P2 exchange a one-time pad using a key-exchange protocol that is adaptively secure
with erasures.

2. P1 does not send G(C) to P2 until the oblivious transfers have concluded.

3. P1 erases all of its internal state before it actually sends G(C), and then it sends G(C)⊕ P .

4. The oblivious transfers must be secure in the presence of adaptive semi-honest adversaries.

We now explain why the one-time pad P is needed. Observe that the simulator provided in [22]
does not work in the case of adaptive corruptions. In order to see this, recall that the simulator
there works by constructing a special fake circuit that outputs a predetermined value. In the setting
of static security this suffices because the simulator is given the output value before it begins the
simulation; it can therefore set the predetermined output value of the fake circuit to the party’s
output. However, in the setting of adaptive corruptions, the simulator may need to generate a fake
garbled circuit before it knows any of the party’s outputs (in particular, this happens if corruptions
occur only at the end of the execution). It therefore does not know the circuit’s output when it
generates it. One way to overcome this problem is to use an equivocal encryption scheme that
can be opened to any value. However, this raises a whole other set of problems, and would also
be far less efficient. Alternatively, and far more simply, we can simply have P1 send G(C) ⊕ P .
The important point is that if P1 and P2 are not yet corrupted when this message is sent, then
by the erasures corrupting P1 yields nothing. Then, it is only necessary to present G(C) after P2

is corrupted. At this point the simulator already knows the output, and so can use the statically-
secure simulation strategy. This is essentially the transformation from a statically secure garbled
circuit to an adaptively secure one, as described in [4] (where the prv1 level of security is needed).
We prove the following theorem:

14

Theorem 6 Let f be a deterministic same-output functionality. Furthermore, assume that the
oblivious transfer protocol is secure in the presence of adaptive semi-honest adversaries (with era-
sures), and that the encryption scheme has indistinguishable encryptions under chosen plaintext
attacks, and has an elusive and efficiently verifiable range. Then, Protocol 2 securely computes f
in the presence of adaptive semi-honest adversaries (with erasures).

Proof: Our proof is presented in the OT-hybrid model. Recall that this means that the oblivious
transfers in the protocol are performed by the parties through an incorruptible trusted third party;
the parties send their inputs to the trusted party via ideally secure channels and receive back their
appropriate outputs. Thus, when no parties are corrupted, the adversary sees absolutely nothing
in the oblivious transfer (apart from the fact that it takes place). Furthermore, when one of the
parties is corrupted, the adversary playing the corrupted party must send its input explicitly to the
trusted party.

Let A denote the real adversary. We now describe the simulator S. We begin by describing
its actions from the beginning to the end when no corruptions take place. We then explain how it
behaves when corruptions occur.

1. S simulates an execution of the key-exchange protocol used to exchange the one-time pad.

2. S chooses 4n random keys k01, k
1
1, . . . , k

0
2n, k

1
2n as P1 would when constructing G(C). S simu-

lates P1 sending P2 the keys k01, . . . , k
0
n.

3. S simulates P1 and P2 running the oblivious transfers via the trusted party. (When neither
party is corrupted, this merely involves notifying A that the transfers are taking place.)

4. S simulates P1 sending a random string R of the length of G(C) (this simulates the trans-
mission of G(C)⊕ P).

This concludes the simulation for the case of no corruptions. We proceed to describe S’s actions
upon corruptions by A. Note that we must describe the simulation for all possible corruption
points. There are three corruption points for each party: (1) at the onset, (2) after the keys have
been sent and the oblivious transfers run, and (3) after the garbled circuit has been sent. Since
there are two parties, this defines 9 corruption cases. (Actually there are more cases because it may
be that only one party is corrupted. Our description will deal only with the case that eventually
both parties are corrupted. This is due to the fact that if the simulation works when a party is
corrupted at the end, then it certainly works if that party is not corrupted at all.) We describe
these cases now:

1. If A corrupts both P1 and P2 at the onset, the simulation is trivial (when both parties are
corrupted at the onset, all inputs are known and there is nothing to simulate).

2. If A corrupts party P1 at the onset, then S corrupts P1 in the ideal model and receives its
input x. S sends x to the trusted party and receives back z = f(x, y). Then, S simply runs
the honest P2 in the protocol (interacting with the corrupted P1 with input x); note that
since the oblivious transfers are ideal, this involves just receiving messages from A. For this
reason, if A corrupts P2 at any time after the corruption of P1, simulator S can just corrupt
P2 in the ideal model, obtain its input y and that is all. (In fact, P2 does not even have to be
probabilistic when the oblivious transfer is ideal and so its view consists merely of its input
and the messages it received.)

15

This covers two corruption cases (P1 at the onset; P2 after the keys have been sent or after
the garbled circuit has been sent).

3. If A corrupts P1 after the keys have been sent and the oblivious transfers have been run, but
before the “one-time pad encrypted” garbled circuit G(C) was sent by S in the simulation,
then the simulation continues as in the case that the corruption of P1 was at the onset. The
only difference is that P1 has supposedly already constructed G(C) and the keys k01, . . . , k

0
n

are supposedly associated with P1’s input. However, given x after the corruption of P1,
the simulator S can construct a correct G(C) and can reassign the keys so that for every
i = 1, . . . , n it holds that kxii ← k0i and k1−xii ← k1i .

5 (This is identical to A’s view upon
corrupting the real P1 at this point of the protocol execution.) A corruption of P2 following
P1 proceeds as in the previous case.

Once again, this covers two corruption cases (P1 after the keys; P2 at the same time or after
the garbled circuit has been sent).

4. If A corrupts P1 after the “one-time pad encrypted” garbled circuit G(C) has been sent by S
in the simulation, then P1 has already erased all of its internal randomness. Therefore, S just
corrupts P1 in the ideal model in order to obtain x and hands x to A. If P2 is corrupted also
at this point, then S corrupts P2 in the ideal model and obtains y. It then reassigns the input
keys for both x and y, as described in the previous simulation case. Now, since only a random
string R was sent the simulator S can construct a correct G(C) with the appropriate keys on
the input wires (observe that S knows both x and y already) and then set P = G(C) ⊕ R.
Then, S hands A the view of P2 containing the one-time pad P , the keys kx11 , . . . , k

xn
n and

ky1n+1, . . . , k
yn
2n, and the garbled circuit G(C).

This covers the corruption case of P1 and P2 being corrupted after R = P ⊕G(C) has been
sent.

5. If A corrupts P2 at the onset of the execution, then S corrupts P2 in the ideal model and
obtains y. S sends y to the trusted party and obtains back z = f(x, y). Simulator S then
simulates P1 sending the keys k01, . . . , k

0
n as above, and hands A the keys ky1n+1, . . . , k

yn
2n as its

output from the oblivious transfers.

If A corrupts P1 at this point, then S corrupts P1 and obtains x. It then “explains” the keys
k01, . . . , k

0
n as above in item 3 (i.e., for every 1 ≤ i ≤ n it defines kxii ← k0i and k1−xii ← k1i).

At this point, both parties are corrupted and nothing further needs to be simulated.

If A does not corrupt P1 at this point, then S constructs a simulated garbled circuit G̃z(C)
that outputs z always (as described in [22]) and sends R = P ⊕ G̃z(C) to A (who controls
P2). If A corrupts P1 after R has been sent, then it has already erased its internal state so
nothing but x has to be given to A.

This covers two corruption cases (P2 at the onset; P1 either after the keys have been sent or
after the garbled circuit has been sent).

6. If A corrupts P2 after the keys have been sent but before R has been sent in the simulation,
then S acts exactly as in the previous case. The only difference is that A has not yet seen

5This may look confusing. However, what we mean is that the association of the key k = k0
i to the zero value on

the wire wi is modified to the value xi on the wire wi.

16

P2’s output keys from the oblivious transfer. In this case, after obtaining y and z, S just
defines the keys that P2 received in the oblivious transfer to be ky1n+1, . . . , k

yn
2n as above.

The case that A corrupts P1 also after the keys have been sent is covered in item 3 above.

If A does not corrupt P1 after the keys have been sent, then S constructs G̃z(C) exactly as
above. Again, if P1 is corrupted after R was sent, then only x needs to be given to A.

This covers the corruption case that P2 was corrupted after the keys and P1 after the garbled
circuit was sent.

This completes all the corruption cases. In order to prove that{
idealf,S(z)(n, x, y)

}
x,y,z;n∈N

c≡
{
realπ,A(z)(n, x, y)

}
x,y,z;n∈N

we first construct an alternative simulator S ′ that works in exactly the same way as S, except that it
is given x and y at the onset and always constructs the correct garbled circuit G(C). Furthermore,
the keys sent by P1 to P2 are kx11 , . . . , k

xn
1 and the keys received by P2 in the oblivious transfers are

ky1n+1, . . . , k
yn
2n. (Thus, in the corruption cases, S ′ does not need to “explain” the keys in any way;

it just reveals the keys used.) It is clear that{
idealf,S′(z)(n, x, y)

}
x,y,z;n∈N

≡
{
realπ,A(z)(n, x, y)

}
x,y,z;n∈N

It thus remains to prove that{
idealf,S(z)(n, x, y)

}
x,y,z;n∈N

c≡
{
idealf,S′(z)(n, x, y)

}
x,y,z;n∈N

(2)

Now, the only difference between the simulation with S and with S ′ is that in some cases S uses
the fake garbled circuit G̃z(C) whereas S ′ uses the real one G(C). Intuitively, this cannot be
distinguished because the randomness used to generated the garbled circuit is erased before the
circuit is sent. Furthermore, the garbled circuit itself reveals nothing but the output. More formally,
the following claim was proven in [23] (based on the proof in [22]):

Claim 7 Given a circuit C and an output value z (of the same length as the output of C) it is
possible to construct a garbled circuit G̃z(C) such that:

1. The output of G̃z(C) is always z, regardless of the garbled values that are provided for P1 and
P2’s input wires, and

2. If z = f(x, y), then no non-uniform probabilistic polynomial-time adversary A can distinguish
between the distribution ensemble consisting of G̃z(C) and a single arbitrary garbled value for
every input wire, and the distribution ensemble consisting of a real garbled version of C,
together with garbled values that correspond to x for P1’s input wires, and to y for P2’s input
wires.

In order to complete the proof of Eq. (2), it suffices to note that the entire simulation (of S
or S ′) can be carried out when the garbled circuit and one key for each input wire is received
externally (and not constructed by the simulator). If the garbled circuit received is G(C) then the
result is exactly the same as the simulation with S ′ and if the garbled circuit received is G̃z(C),

17

then the result is exactly the same as in the simulation with S. Eq. (2) therefore follows from the
indistinguishability of G(C) and G̃z(C). This completes the proof.

Since, as we have shown, adaptively secure oblivious transfer (in the erasure model) can be
achieved assuming only the existence of enhanced trapdoor permutations, Theorem 6 implies The-
orem 2 as stated in the introduction.

References

[1] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377–391, 1991.

[2] D. Beaver. Plug and play encryption. In CRYPTO’97, Springer-Verlag (LNCS 1294), pages
75–89, 1997.

[3] D. Beaver and S. Haber. Cryptographic Protocols Provably Secure Against Dynamic Ad-
versaries. In EUROCRYPT’92, Springer-Verlag (LNCS 658), pages 307–323, 1992.

[4] M. Bellare, V.T. Hoang, P. Rogaway. Adaptively Secure Garbling with Applications to One-
Time Programs and Secure Outsourcing. In ASIACRYPT 2012, Springer (LNCS 7658),
pages 134–153, 2012.

[5] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10, 1988.

[6] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[7] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145, 2001. Full version available at
http://eprint.iacr.org/2000/067.

[8] R. Canetti, I. Damg̊ard, S. Dziembowski, Y. Ishai and T. Malkin. Adaptive versus Non-
Adaptive Security of Multi-Party Protocols. Journal of Cryptology, 17(3):153–207, 2004.

[9] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-Party Computa-
tion. In 28th STOC, pages 639–648, 1996.

[10] R. Canetti, R. Gennaro, S. Jarecki H. Krawczyk and T. Rabin. Adaptive Security for Thresh-
old Cryptosystems. In CRYPTO 1999, Springer-Verlag (LNCS 1666), pages 98–115, 1999.

[11] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and
Multi-Party Computation. In 34th STOC, pages 494–503, 2002. Full version available at
http://eprint.iacr.org/2002/140.

[12] D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party Unconditionally Secure Protocols. In
20th STOC, pages 11–19, 1988.

[13] S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing Contracts. In
Communications of the ACM, 28(6):637–647, 1985.

18

[14] Y. Frankel, P.D. MacKenzie and M. Yung. Adaptively-Secure Optimal-Resilience Proactive
RSA. In ASIACRYPT 1999, Springer-Verlag (LNCS 1716), pages 180–194, 1999.

[15] J.A. Garay, P.D. MacKenzie and K. Yang. Efficient and Universally Composable Committed
Oblivious Transfer and Applications. In TCC 2004, Springer-Verlag (LNCS 2951), pages
297–316, 2004.

[16] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[17] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987. For
details see [16].

[18] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–93, 1990.

[19] E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Protocols and
Security Under Composition. In the em 38th STOC, pages 109–118, 2006.

[20] S. Jarecki and A. Lysyanskaya. Adaptively Secure Threshold Cryptography: Introducing
Concurrency, Removing Erasures. In EUROCRYPT 2000, Springer-Verlag (LNCS 1807),
pages 221–242, 2000.

[21] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Com-
putation. In 44th FOCS, pages 394–403, 2003.

[22] Y. Lindell and B. Pinkas. A Proof of Security of Yao’s Protocol for Two-Party Computation.
To appear in the Journal of Cryptology.

[23] Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Computation in the
Presence of Malicious Adversaries. In EUROCRYPT 2007, Springer-Verlag (LNCS 4515),
pages 52-78, 2007.

[24] Y. Lindell and H. Zarosim. Adaptive Zero-Knowledge Proofs and Adaptively Secure Obliv-
ious Transfer. To appear in the 6th TCC, 2009.

[25] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary
version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[26] S. Wolf and J. Wullschleger. Oblivious Transfer Is Symmetric. In EUROCRYPT 2006,
Springer-Verlag (LNCS 4004), pages 222–232, 2006.

[27] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

A Yao’s Garbled Circuit Construction

In this section, we describe Yao’s protocol for secure two-party computation in the presence of
semi-honest adversaries [27]. The specific construction described here is from [22], where a full
proof of security is also provided.

19

Let C be a Boolean circuit that receives two inputs x, y ∈ {0, 1}n and outputs C(x, y) ∈ {0, 1}n
(for simplicity, we assume that the input length, output length and the security parameter are all
of the same length n). We also assume that C has the property that if a circuit-output wire comes
from a gate g, then gate g has no wires that are input to other gates.6 (Likewise, if a circuit-input
wire is itself also a circuit-output, then it is not input into any gate.)

We begin by describing the construction of a single garbled gate g in C. The circuit C is
Boolean, and therefore any gate is represented by a function g : {0, 1} × {0, 1} → {0, 1}. Now,
let the two input wires to g be labelled w1 and w2, and let the output wire from g be labelled
w3. Furthermore, let k01, k

1
1, k

0
2, k

1
2, k

0
3, k

1
3 be six keys obtained by independently invoking the key-

generation algorithm G(1n); for simplicity, assume that these keys are also of length n. Intuitively,

we wish to be able to compute k
g(α,β)
3 from kα1 and kβ2 , without revealing any of the other three

values k
g(1−α,β)
3 , k

g(α,1−β)
3 , k

g(1−α,1−β)
3 . The gate g is defined by the following four values

c0,0 = Ek01
(Ek02

(k
g(0,0)
3))

c0,1 = Ek01
(Ek12

(k
g(0,1)
3))

c1,0 = Ek11
(Ek02

(k
g(1,0)
3))

c1,1 = Ek11
(Ek12

(k
g(1,1)
3))

where E is from a private key encryption scheme (G,E,D) that has indistinguishable encryptions
for multiple messages, and has an elusive efficiently verifiable range; see [22]. The actual gate is
defined by a random permutation of the above values, denoted as c0, c1, c2, c3; from here on we call
them the garbled table of gate g. Notice that given kα1 and kβ2 , and the values c0, c1, c2, c3, it is

possible to compute the output of the gate k
g(α,β)
3 as follows. For every i, compute D

kβ2
(Dkα1

(ci)).

If more than one decryption returns a non-⊥ value, then output abort. Otherwise, define kγ3 to be
the only non-⊥ value that is obtained. (Notice that if only a single non-⊥ value is obtained, then

this will be k
g(α,β)
3 because it is encrypted under the given keys kα1 and kβ2 . Later we will show that

except with negligible probability, only one non-⊥ value is indeed obtained.)
We are now ready to show how to construct the entire garbled circuit. Let m be the number

of wires in the circuit C, and let w1, . . . , wm be labels of these wires. These labels are all chosen
uniquely with the following exception: if wi and wj are both output wires from the same gate g,
then wi = wj (this occurs if the fan-out of g is greater than one). Likewise, if an input bit enters
more than one gate, then all circuit-input wires associated with this bit will have the same label.
Next, for every label wi, choose two independent keys k0i , k

1
i ← G(1n); we stress that all of these

keys are chosen independently of the others. Now, given these keys, the four garbled values of
each gate are computed as described above and the results are permuted randomly. Finally, the
output or decryption tables of the garbled circuit are computed. These tables simply consist of the
values (0, k0i) and (1, k1i) where wi is a circuit-output wire. (Alternatively, output gates can just
compute 0 or 1 directly. That is, in an output gate, one can define cα,β = Ekα1 (E

kβ2
(g(α, β))) for

every α, β ∈ {0, 1}.)
The entire garbled circuit of C, denoted G(C), consists of the garbled table for each gate and

the output tables. We note that the structure of C is given, and the garbled version of C is simply

6This requirement is due to our labelling of gates described below, that does not provide a unique label to each
wire (see [22] for more discussion). We note that this assumption on C increases the number of gates by at most n.

20

defined by specifying the output tables and the garbled table that belongs to each gate. This
completes the description of the garbled circuit.

Let x = x1 · · ·xn and y = y1 · · · yn be two n-bit inputs for C. Furthermore, let w1, . . . , wn be
the input labels corresponding to x, and let wn+1, . . . , w2n be the input labels corresponding to y.
It is shown in [22] that given the garbled circuit G(C) and the strings kx11 , . . . , k

xn
n , ky1n+1, . . . , k

yn
2n,

it is possible to compute C(x, y), except with negligible probability.

21

