
 1

NESHA-256, NEw 256-bit Secure Hash Algorithm
(Extended Abstract)

Yaser Esmaeili Salehani1, S. Amir Hossein A.E. Tabatabaei2,
Mohammad Reza Sohizadeh Abyaneh3, Mehdi Mohammad Hassanzadeh3

1 Sharif University of Technology, Tehran, Iran
2 Sadra University, Tehran, Iran

3 Selmer Center, University of Bergen, PB. 7803, N-5020 Bergen, Norway

 yaser.esmaeili@gmail.com, reza.sohizadeh@ii.uib.no, Mehdi.Hassanzadeh@ii.uib.no

Abstract. In this paper, we introduce a new dedicated 256-bit hash function:
NESHA-256. The recently contest for hash functions held by NIST, motivates
us to design the new hash function which has a parallel structure. Advantages of
parallel structures and also using some ideas from the designing procedure of
block-cipher-based hash functions strengthen our proposed hash function both
in security and in efficiency. NESHA-256 is designed not only to have higher
security but also to be faster than SHA-256: the performance of NESHA-256 is
at least 38% better than that of SHA-256 in software. We give security proofs
supporting our design, against existing known cryptographic attacks on hash
functions.

Keywords: Hash function, NIST, Diffusion layer, Differential attack

1 Introduction

A cryptographic hash function is a transformation that takes an arbitrary finite
length input and returns a fixed-size string called the hash value. The hash value is a
concise representation of the longer message or document from which it was
computed. Cryptographic hash functions are a group of cryptographic functions used
in message integrity check, digital signatures, e-cash and many other cryptographic
schemes and applications.

For a cryptographic hash function, the following general security requirements
considerations are needed according to Complexity Theory:
Pre-image resistance: It is infeasible to find any input message which hashes to any
pre-specified image.
Second pre-image resistance: It is infeasible to find any second input which has the
same output as pre-specified input message.
Collision resistance: It is infeasible to find two different messages which hash to one
message digest.

Assume that the output space of a hash function consists of n-bit strings i.e. {0,1}n.
For a well-designed hash function finding pre-image or second pre-image requires

 2

about 2n and finding collision requires about 2n/2 hashing operations because of the
Birthday Paradox.

Since hash functions are desired to be fast in performance, recent designing
methods of hash functions are based on sequentially iterating a simple and fast step
function. The most popular hash functions, which are called MD-like, have been
designed according to this method in an evolutional process. MD4 was the first type
of MD-like structure which proposed by Rivest in 1990 [20]. MD4 was a novel
design, oriented towards software implementation on 32-bit architectures. Several
hashing algorithms were derived from MD4 hash function called MDx-class hash
function. MD5 [21], SHA0/1 [17], HAVAL [27] and RIPEMD [1] are some
prominent instances (also see: [18,23]). These hash functions are the most popular
hash functions because of their performance and trust gained from cryptanalysis
techniques [18,23]. All of the mentioned hash functions are based on a serial method
except for RIPEMD. The RIPEMD family of hash functions was designed by
combining sequential structure and parallel framework. This method of designing is
still reliable due to no effective attack so far, except elementary versions of RIPEMD
[23,4]. Also, there are several methods to use a block cipher to build a cryptographic
hash function [19]. The methods resemble the block cipher modes of operation
usually used for encryption. In 2005, security flaws were identified in both algorithms
MD5 and SHA0/1 [24,25,26]. In 2007, the NIST announced a contest to design a hash
function which will be given the name SHA-3 and the subject of a FIPS standard.
This announcement, advantages of the structures of both parallel and block-cipher-
based hash functions, motivate us to design NESHA-256.

This paper is organized as follows: In Section 2 and Section 3, we describe the
structure of NESHA-256 along with its specifications. Our design rationales are given
in Section 4. This explanation is followed by security analysis, statistical tests, and,
performance evaluation in Section 5 and Section 6, respectively. Section 7 includes
the final results and some concluding remarks. The test vector is given in the
Appendix A .

2 Preprocessing

Preprocessing shall take place before hash computation begins. This preprocessing
consists of three steps: padding the message, M (Section 2.1), parsing the padded
message into message blocks (Section 2.2), and setting the initial hash value, (Section
2.3).

2.1 Padding the message

The message, M, shall be padded before hash computation begins. The purpose of
this padding is to ensure that the padded message is a multiple of 512 bits. The
padding mechanism is the same as SHA-1 algorithm [17] as follows: Suppose that the
length of the message, M, is l bits. Append the bit “1” to the end of the message,
followed by k zero bits, where k is the smallest, non-negative solution to the equation
l+1+k = 448 mod 512. Then append the 64-bit block that is equal to the number l

 3

expressed using a binary representation. The length of the padded message should
now be a multiple of 512 bits.

2.2 Parsing the padded message

For NESHA-256, the padded message is parsed into N 512-bit blocks, M0,
M1,…,MN-1. Since the 512 bits of the input block may be expressed as sixteen 32-bit
words, the first 32 bits of message block i are denoted M0

(i), the next 32 bits M1
(i) ,

and so on up to M15
(i).

2.3 Setting the initial hash value

Before hash computation begins for each of the NESHA-256 hash algorithms, the
initial hash value, IV0= CV0=(A,B,C,D,E,F,G,H) must be set as follows:
A = 0x6a09e667, B = 0xbb67ae85, C = 0x3c6ef372, D = 0xa54ff53a,
 E = 0x510e527f, F = 0x9b05688c,G = 0x1f83d9ab, H = 0x5be0cd19.

3 NESHA-256 Algorithm

In this section, we describe the structure of our proposed hash function: NESHA-
256. The compression function of NESHA-256 hashes a 512-bit string to a 256-bit
string as shown in Fig.1. When each message block is compressed by compression
function, it uses previous compression output as its chaining variable. According to
Fig. 1 four parallel branch functions are called BRANCH 1 to BRANCH 4. The
chaining variable for ith block (ith compression function) is CVi=(A,B,C,D,E,F,G,H)
initialized by IV0, as mentioned in Section 2.3.

3.1 NESHA-256 preprocessing

1. Pad the message, M, according to Section 2.1.
2. Parse the padded message into N 512-bit message blocks, M0, M1, …, MN-1,

according to Section 2.2.
3. Set the initial hash value, IV0, as specified in Section 2.3.

3.2 NESHA-256 computations

Each message block M is divided to sixteen 32-bit words M0,…,M15 and
compressed according to Fig. 1, where 4,3,2,1),,...,()()15()0(jMMM

jjj
 is

the permutation for message words, selected from Table 1 (Section 3.2.2). The
chaining variable CVi is updated according to the following relation.

 4

Figure 1. NESHA-256 compression

]}))(,(4

))(,(3[

))](,(2

))(,(1{[

4

3

2

11

MCVBRANCH

MCVBRANCH

MCVBRANCH

MCVBRANCHCVCV

i

i

i

iii

(1)

3.2.1 BRANCH FUNCTIONS of NESHA-256
Each branch function (BRANCH j, j=1,…,4) of NESHA-256 contains four step

functions which compresses an input message block according to the following
instructions.

 Initial variables Vj,0 are allocated by chaining variables CVi .
 For k = 0 to 3 step function k+1 (shown in Figure. 2) computes Vj,k+1 as

follows:

 5

),,,,

,,,,

,,,,(

34,24,14,4,

)34()24()14()4(

)34()24()14()4(,,1,

kjkjkjkj

kkkk

kkkkkjkjkj

jjjj

jjjj

MMMM

MMMMVSTEPV

(2)

where 34,24,14,4, ,,, kjkjkjkj are constant values. In which

)34()24()14()4(,,, kkkk jjjj
MMMM

 are constructed by other message block words

for each branch according to (3) and functions f and g are word-oriented defined by
relation 4.

XXXg

XXXf

j

t

M

M

M

MM

t
t

t
t

t
t

t
t

t

j

j

j

j
j

3)(

)7()(

Number)(Branch4,3,2,1

15,...,1,0

)

(

2

2

4mod)6
4

.83(

16mod)5
4

.83(

16mod)4
4

.83(

4
.44mod)1(

)(

(3)

(4)

Where β is a 32-bit constant word assigned to 0xbf597fc7.

3.2.2 Permutations of message words
The permutation of message words in NESHA-256 is designed based on Latin

square matrices. Table 1 represents the order of message words 150 ,..., MM applied to

each four branches.

Table 1. Message words permutation for all branches.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1(t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2(t) 13 12 14 15 1 2 3 0 5 6 7 4 9 10 11 8

3(t) 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

4(t) 7 4 5 6 11 8 9 10 15 12 13 14 3 0 1 2

).4(kj
M kj .4,

).4(

ˆ
kj

M

)1.4(kj
M 1.4, kj

)1.4(
ˆ

kj
M

)2.4(kj
M 2.4, kj

)2.4(

ˆ
kj

M

)3.4(kj
M 3.4, kj

)3.4(
ˆ

kj
M

 Figure 2. Step function of NESHA-256

3.2.3 Additive constants
The compression function of NESHA 256 uses sixteen additive constants which

are given by Table 2.

Table 2. Additive constants in NESHA-256.

0=0x428a2f98 1=0x71374491 2=0xb5c0fbcf 3=0xe9b5dba5

4=0x3956c25b 5= 0x59f111f1 6=0x923f82a4 7=0xab1c5ed5
8=0xd807aa98 9=0x12835b01 10=0x243185be 11=0x550c7dc3

12=0x72be5d74 13=0x80deb1fe 14=0x9bdc06a7 15=0xc19bf174

The constant values of Table 2 are utilized in each branch as additive constants for
the compression functions, according to the following permutation table (Table 3).

Table 3. Permutation table for using additive constants.

Step
No.

(α1,k) (α2,k) (α3,k) (α4,k)

0 0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15
1 4,5,6,7 8,9,10,11 12,13,14,15 0,1,2,3

2 8,9,10,11 12,13,14,15 0,1,2,3 4,5,6,7

3 12,13,14,15 0,1,2,3 4,5,6,7 8,9,10,11

3.2.4 Diffusion layer
The diffusion layer of NESHA-256 consists of a three layer Pseudo Hadamard

Transformation (PHT) which implements on eight 32-bit words, four times in each
step function. Each 2-PHT box indicates a function which maps two 32-bit words to
other two 32-bit words according to the formula 2-PHT(b1, b2) = (2a1+a2, a1+a2). In
which summation operation '+' denotes summation mod 232. The diffusion layer of
NESHA-256 is shown in Fig. 3.

4 Design principles

In this section, we describe the security criteria for designing NESHA-256 and
the design process based upon these criteria. The design rationales include all
building blocks of NESHA-256 completely.

4.1 The basic structure design philosophy

NESHA-256 consists of four branches with parallel structure. This kind of
structure refers to RIPEMD family hash function [1]. In this family, the functions
with the same message ordering in each chaining variable words are resistant
against collision attacks so, using message words with different permutation causes
algorithm to be more secure [5, 25]. Recently designed hash function which uses
parallel structure is: FORK-256 [4,5]. In FORK-256, each branch uses message

 8

words with different ordering. Some weaknesses are reported against FORK-256
compression function [11, 12, 16, 14].

In NESHA-256, interaction between non-linear part and diffusion layer of each
step function causes algorithm to be more resistant against attacks which are based
on partitioning two parts of each step. Moreover, this structure strengthens the
algorithm against known attacks based on different message-ordering in branch
functions.

Figure 3. Diffusion Layer

4.2 Selection of Additive Constants

According to the description of NESHA-256 in Section 3, every step function
uses four additive constants; so 16 additive constants are entered in each branch with
different ordering. Using constant values makes the hashing algorithm more resistant
against micro-collision finding attacks. The main criteria of selecting these constants
are their independency; therefore, these constants represent the first 32 bits of the
fractional parts of the cubic roots of the first 16 prime numbers, which have no
interrelationship.

4.3 Inserting of message words

Since NESHA-256 has parallel structure, it should necessarily tolerate
simultaneous collision finding attacks in parallel branches. Getting this case,
insertion includes of two parts: re-ordering of messages for four branches and
inserting of mixed message in each branch.

In the first case, if an attacker constructs an intended differential characteristic for
one branch function, the ordering of message words will cause unintended
differential patterns in the other branch functions; thus, finding specific differences
for patterns would not be straightforward. There are some important criteria for
designing this message permutation such as: balance of upper and lower part,
balance of left and right part and balance of sums in input indices [5].

 9

Also four words involving the whole message block are added to each step
function prior to entering diffusion layer. In each step function of Branch j, four
mixed message words (

)34()24()14()4(,,, kkkk jjjj
MMMM
) are depended on all 16 input

message words as mentioned in relation 3. Any changes in any 32-bit message word
causes at least one mixed inserted word to be altered so, three out of eight 32-bit
positions will be activated due to branch number of the diffusion layer.
Subsequently, tracking two different message words which lead to inner collisions
are difficult.

Moreover, according to the massage inserting rule passing the same differential
pattern through two different branches has become hard. Further details are
explained in Section 5.

4.4 Word-oriented functions

Almost all dedicated hash functions use Boolean functions with three or more
variables. Therefore, the weaknesses of these bit oriented functions could be
exploited by attackers [5]. Some of the most well-known examples of these hash
functions are MD4 [20], MD5 [21], HAVAL [27], RIMEMD [1] and, SHA0/1 [17]
which are presented in [18, 23].

Also, some new hash functions such as FORK-256 [4,5] uses two nonlinear
word-oriented functions, f and g, which work on a single 32-bit variable. Designers
of this algorithm claim that these functions affect all of the chaining variable words
during each step so, the attacker cannot divide each step to isolated left and right
parts; this point causes resistance to the existing attacks on two branches [16].

NESHA-256 uses two T-function based word-oriented functions which work on a
single 32-bit variable word. New applications of T-functions in hash functions [8]
have been analyzed in [7,13,15]. According to that, the main weakness of T-function
based hash function is reported in case of using truncated T-functions. So, we use T-
functions in NESHA-256 in a different way (T-function in NESHA-256 are just 32-
bit to 32-bit mapping). As far as we know, there is no any reported attack on this
using mode of T-functions.

4.5 The diffusion layer design criteria

The diffusion layer is one of the most important building blocks of our hash
function. It plays an important role in elevation of total security in hashing
algorithm. Constructing an efficient diffusion layer for a hashing algorithm is
important due to software and hardware performance reasons. The diffusion layer in
NESHA-256 consists of a three layer Pseudo Hadamard Transformation (PHT)
which implements on eight 32-bit words, four times in each step function. PHT has
its own advantages according to performance cost. Initially PHT can be
characterized by a recursive linear transformation defined by the following
relationship [22].

 10

1
.2

,1
11

11
0

 nfor
HH

HH
HH

nn

nn
n

Using PHT as a diffusion layer has been observed in SAFER family block ciphers
[10]. Applying PHT as the diffusion layer of NESHA-256 is a novel idea. Compared
to other hash functions which have parallel structure, using PHT achieves more
diffusion. The parameter specifying diffusion value of a transformation is its branch
number. Reaching the highest branch number can be gained by using transformation
whose matrix is an MDS code generator matrix. Although, this technique increases
the security against differential and linear cryptanalysis, it may impose a high cost
software implementation. Asymptotically a PHT of dimension nn has a branch

number of)(nO whereas by comparison an MDS code would have a branch

number of exactly 1n [10].
It has been proved that PHT has an efficient implementation for various platforms

compared to an equal dimension MDS code [10]. So we prefer to use PHT as
NESHA-256 diffusion layer where more efficiency is gained as well as diffusion.

5 Security considerations of NESHA-256

In this section, security analysis of NESHA-256 hash function is given. Besides,
statistical evaluations of NESHA-256 are presented. Our analysis on NESHA-256
hashing algorithm concerns its resistance against relevant attacks on hash functions.
NESHA-256 algorithm such as FORK-256 hash function has parallel structure. So, its
security considerations are like those in FORK hash function and its updated version
[4]. Also the security of the algorithm against the most recently attacks [6] on hash
functions will be considered. Due to these similarities, we investigate the following
considerations:

1- Security analysis for a single branch of NESHA-256 against collision
attacks.

2- Security analysis for more than one branch of NESHA-256 against collision
attacks.

3- Security considerations for whole structure of NESHA-256 algorithm
against attacks, using inner collision patterns.

4- Security considerations for NESHA-256 against pre-image attacks.
5- Security considerations for NESHA-256 against second pre-image attacks.
6- Statistical evaluations of NESHA-256.

5.1 Security analysis for a single branch of NESHA-256 against collision attacks

Collision finding attacks on single branch of NESHA-256 can be considered in
two individual scenarios. The first one is a chosen IV collision attack and the second
one is an ordinary collision attack. Chosen IV collision finding attack is an attack
which is worth considering on each single branch of NESHA-256. In this attack,
finding compatible IVs together with appropriate massage differences can be led to
collision.

 11

Here, we claim that this type of attack is not applicable on one branch of
NESHA-256 algorithm. Gaining collision in one branch is possible by finding a non-
zero XOR difference for some message words and preserving the other message
word differences zero. This attack has a complexity not less than what it is in
birthday attack. Considering the first branch assume that we select two message
words M0 and M'0 with nonzero difference ∆M0, it is easy to find appropriate initial
values which cause zero input to the first 2-PHT layer due to forced nonzero
differences ∆M1, ∆M2 and ∆M3. Pushing forward the zero outputs to the second step,
in the second step all of the message word pairs (M4 , M'4), (M5 , M'5), (M6 , M'6) and
(M7 , M'7) must have non-zero appropriate differences to maintain zero differences..
Finding proper differences is possible by solving a set of simultaneously semi linear
equations of f1 and f2 with the complexity of order 2128.

Ordinary collision attack on single branch of NESHA-256 can be successful if
someone can insert a differential characteristic through one branch leading to zero
differences in the last step. To this aim, the attacker should follow one of the
following strategies:

1. The attacker inserts one or more non-zero difference message words in the
first step and expects to meet zero difference words at the end of the last step
of one branch.

2. The attacker constructs two individual characteristics for two semi-branches,
using meet in the middle technique. In this scenario, the attacker wishes that
constructed characteristics for the first two steps and the last two steps (with
zero value starting) in opposite direction meet each others at the end of
second step.

Let us consider the strategies. Suppose that the attacker inserts one or more non-
zero-difference message words as input to the first step. Looking at the structure of
each step reveals that the entire message words are involved in each step and
changing in a message word at the beginning of the step causes at least three inputs
in the PHT-layer to be altered. This property compensates for the natural diffusion
weaknesses of PHT-layer and makes the attackers decision for altering messages
gaining to collision too complex. By the way, in this case all of the message words
must be changed to frustrate the effects of assigned non-zero message words
differences at the output of the branch. This makes the career of the attacker too hard
due to arisen complexity in simultaneously equations. This complexity is not less
than what it is in birthday attack due to existence of some good properties of
functions f1 and f2, according to 3.4.

The second scenario is more complex than the first. In this strategy, he should
find two individual and depended characteristics which collide with another in the
middle of the branch. So, forced conditions resulted in more simultaneously
equations than the first strategy will grow.

5.2 Security analysis for more than one branch of NESHA-256 against collision
attacks

Assume that, the attacker wants to find a collision for NESHA-256 consisting of
only two branches: Branch 1 & Branch 2. He must find two output differences ∆1

 12

and ∆2 so that ∆1= -∆2. Considering the structure of a branch of NESHA-256, it can
be easily seen that using functions with good properties, high diffusion structure, and
different permutation of input message words for each branch causes the outputs of a
branch to be randomized. So it can be expected that finding a collision costs at least
2128 operations of NESHA-256 according to the birthday problem. In [MRD02] a
new approach of k-dimensional birthday attack on hash functions was proposed. In
that approach, k (k>2) sets of messages (instead of two sets in the usual birthday
attack) are generated for a hashing algorithm having a specific property. According
to [MRD02], Liskov et al. show that if the hash function can be formulated as k-term
summation (e.g. H(M)=h(m1)+ h(m2)+ …+ h(mk)) then the complexity of the attack
will be reduced to O(2n/3). The operation + can be modular summation.

It is notable that neither the compress function h nor the hash function of
NESHA-256 is in the form of the mentioned structure. So, it is not needed to be
concerned for NESHA-256 in this matter. Also, parallel structure of NESHA-256
will prevent the algorithm from being vulnerable against amplified boomerang attack
on hash functions proposed by Joux and Peyrin at CRYPTO 2007 [6].

Regarding the above considerations, it is believed that the attacker can not
organize any attack applicable to more than one branch.

5.3 Security considerations for whole structure of NESHA-256 algorithm against
attacks, using inner collision patterns

Idea of using inner collision patterns for finding collision is the main idea of
attacks done on some well known hash functions like SHA0/1. Somehow the above
scenarios are using the concept of inner collision pattern. Let us first define the
concept of inner collision pattern.

Definition: Any differential characteristic ending to zero difference is called
inner collision pattern.

One of the most important criteria for a hash function to be resistant against
collision attacks is not to be existent of inner collision patterns with high probability.
So, if we find NESHA-256 as a hash function with no high weighted inner collision
patterns, our claim about NESHA-256 will be verified. Finding inner collision
pattern for one independent step is not difficult for the attacker, but its application
for collision finding attack, is not straight forward in this case. Such attacks use inner
collision patterns by repeating those patterns which goes back to the second strategy
in section 5.1, discussed before. Moreover, assume that someone wants to find inner
collision patterns for two or more steps; in this case, the attacker must solve a set of
simultaneously equations because all message words in each step are involved. The
complexity of solving this set of equations is at least equal to the complexity of
birthday attack on NESHA-256 i.e. 2128.

5.4 Security considerations for NESHA-256 against pre-image attacks

Resistance against pre-image attack can be gained by constructing one way
structure. There are many methods for building such structures applied in hash

 13

functions ranging from basic hash functions to their advanced ones. Using one way
functions and one way transformations or mixing them is one of the most common
methods in construction hashing algorithm. When it comes to pre-image resistance,
we want to compute the difficulties of finding a pre-image of randomly chosen
message digest of output set. Since we have a noninvertible function in each step and
due to the composition of building blocks in a branch, each branch is not invertible.
The complexity of finding pre-image for a randomly chosen output for each step is
about 2256 NESHA-256 because of involving all message words in each step.
Considering the similar case for each branch gives complexity around 21024 which is
greater than the complexity of exhaustive search 2512. So, if we see whole algorithm
NESHA-256 with its four branches this result is held.

Due to the complexity cost, using meet in the middle technique is also unlikely
for pre-image attack on NESHA-256. This is because, if we can bypass the
operations after the branches in reverse mode to access to their output, finding their
pre-image is not possible due to its complexity. Existing word-oriented balanced
functions within the hashing algorithm structure strengthens NESHA-256 against
pre-image attack which uses the weakness of some bit-oriented Boolean functions
for building the attack scenario [9].

5.5 Security considerations for NESHA-56 against second pre-image attacks

In general, collision resistance property provides second pre-image resistance for
a hashing algorithm except for scenarios which are dedicated for finding second pre-
image of an output digest. Security considerations against collision attacks have been
discussed in subsection 5.1. On the other hand, at the time being, there is no any
scenario concerning pre-image attack for such parallel structures like NESHA-256.
So there does not exist any second pre-image attack with complexity lower than 2256.

5.6 Statistical evaluations of NESHA-256

In this section, the results of 3 statistical tests based on the distribution of
coefficients in Algebraic Normal Form of a Random Boolean Function (ANFRBF)
are presented. The basic idea is to select a subset of input bits (consisting of key and
IV) as variables, denoted iv0, . . . , ivn−1, while the other values of input are fixed.
Any output bit can be considered as a Boolean function of the selected input
variables. By running through all possible values of these bits and creating an output
keystream of each, the truth table of this Boolean function is determined. By using
the truth table, the ANF of this Boolean function can be computed. Now, hope that
the distribution of this Boolean function’s coefficients is similar to the distribution of
coefficients in random Boolean function.

According to this idea, three different tests are proposed by Filiol [3] and Englund
et al. [2]. The first one is called the d-Monomial test which proposed by Filiol in
2001. The others are called the monomial distribution test and the maximal degree

 14

monomial test which presented in 2007 by Englund et al. The output of NESHA-256
is examined by them. The results are illustrated in Table 4.

Table 4. The results of 3 statistical tests.

6 Performance analysis of NESHA-256

In this section, we compare the performance of NESHA-256 in software with
those of other of hash functions, SHA-256 and FORK-256. The performance
comparison is accomplished using Pentium IV, 2.8 GHz, 512MB RAM/ Microsoft
Windows XP Professional v. 2002/ Microsoft Visual C++ Ver. 6.0. Table 5 indicates
the results of this software performance testing.

Table 5. Comparison of NESHA-256 performance with the other hash functions, implemented
on P4/WinXP/VC.

Algorithm FORK-256 SHA-256 NESHA-256
Performance (in Mbps) 488.28 393.23 542.53

The software implementation of NESHA-256 in this evaluation is not well-
optimized, thus we expect some improvement in performance of any prospective
optimized version of this algorithm. However, the simulation results in Table 5
implies that NESHA-256 is about 38% faster than SHA-256 and 11% faster than
FORK-256 on a Pentium PC.

7 Conclusions

This paper deals with designing a new dedicated hash function with 256-bit
output length called NESHA-256. Our designing scheme has been based on parallel
structure and is inspired from some ideas from block-cipher-based hash functions.

The security analysis and performance simulation results indicate that our
introduced hash function is not only more secure but also more efficient in software
performance in comparison with the standard hashing algorithm, SHA-256 and other
functions such as FORK-256 [4].

It is believed that NESHA-256 is secure against currently known attacks on hash
functions especially Wang et al.’s attack [24,25,26] and recently proposed attacks

Test
N (input

variables)

P (Number of
Generated

Polynomials)

 (Level of
significant)

Result

d-Monomial Test 14 1 0.05 Pass

Monomial Distribution
Test

14 26 0.05 Pass

Maximal Degree
Monomial Test

14 26 0.05 Pass

 15

[6,9]. However, the extensive analysis of our new hash function is required. We
encourage the readers to give any further analysis on the security of NESHA-256.

References

1. H. Dobbertin, A. Bosselaers and B. Preneel, “RIPEMD-160, a strengthened version of
RIPEMD”, FSE’96, LNCS 1039, Springer-Heidelberg, pp. 71–82, 1996.

2. H. Englund, T. Johansson, and M. S. Turan, “A Framework for Chosen IV Statistical
Analysis of Stream Ciphers”, INDOCRYPT'07, LNCS 4859, Springer-Heidelberg, pp.
268–281, 2007.

3. E. Filiol, “A new statistical testing for symmetric ciphers and hash functions”, International
Conference on Information, Communications and Signal Processing, LNCS 2119,
Springer-Heidelberg, pp. 21–35, 2001.

4. D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon, and S. Chee, “New FORK-
256”, 2007. http://eprint.iacr.org/2007/185.

5. D. Hong, J. Sung, S. Lee, and D. Moon, “A new dedicated 256-bit hash function: FORK-
256”, FSE’06, LNCS 4047, Springer-Heidelberg, pp. 195–209, 2006.

6. A. Joux , T. Peyrin, “Hash Function and the (amplified) Boomerang Attack”, CRYPTO'07,
LNCS 4622, Springer-Heidelberg, pp. 244-263, 2007.

7. S. Künzli, P. Junod, W. Meier, “Distinguishing Attacks on T-Functions”, Mycrypt'05, LNCS
3715, Springer-Heidelberg, pp. 2–15, 2005.

8. A. Klimov, A. Shamir, “New Applications of T-functions in Block Ciphers and Hash
Functions”, FSE'05, LNCS 3557, Springer-Heidelberg, pp. 18–31, 2005.

9. G. Leurent, “ MD5 Is Not One-Way”, FSE'08, Springer-Heidelberg, 2008.
10. H. Lipmaa, “On differential Properties of Pseudo-Hadamard Transform and related

Mappings”, Indocrypt'02, LNCS 2551, Springer-Heidelberg, pp.48-61, 2002.
11. K. Matusiewicz, S. Contini, J. Pieprzyk, “Collisions for Two Branches of FORK-256”,

Cryptology ePrint Archive 2006/317 (First version), Sep. 2006.
12. K. Matusiewicz, S. Contini, J. Pieprzyk, “Weaknesses of the FORK-256 Compression

Function”, Cryptology ePrint Archive 2006/317 (Second version), Nov. 2006.
13. H. Molland, T. Helleseth, “A linear weakness in the Klimov-Shamir T-function”, ISIT

2005, IEEE International Symposium on Information Theory, pp. 1106 – 1110, 2005.
14. F. Mendel, J. Lano, B. Preneel, “Cryptanalysis of Reduced Variants of the FORK-256 Hash

Function”, CT-RSA'07, LNCS 4377, Springer-Heidelberg, pp. 85–100, 2007.
15. F. Muller, T. Peyrin, “Cryptanalysis of T-function-Based Hash functions”, ICISC'06, LNCS

4296, Springer-Heidelberg, pp. 267-285, 2006.
16. K. Matusiewicz, T. Peyrin, O. Billet, S. Contini, J. Pieprzyk, “Cryptanalysis of FORK-

256”, FSE'07, LNCS 4593, Springer-Heidelberg, pp. 19-38, 2007.
17. NIST/NSA, “FIPS 180-2: Secure Hash Standard (SHS)”, Aug. 2002 (change notice:

February 2004).
18. B. Preneel, “Analysis and design of cryptographic hash functions”, PhD thesis, Katholieke

University Leuven, 1993.
19. J. Pieprzyk and B. Sadeghian, “Design of Hashing Algorithms”, LNCS, Springer-

Heidelberg, ISBN-10: 0387575006, 1993.
20. R.L. Rivest, “The MD4 Message Digest Algorithm”, Crypto’90,LNCS 537, Springer-

Heidelberg, pp. 303–311, 1991.
21. R L. Rivest, “The MD5 Message-Digest Algorithm”, IETF Request for Comments, April

1992.
22. T. St Denis, “Fast Pseudo-Hadamard Transformations”, 2004.

www.eprint.iacr.org/2004/010.pdf.

 16

23. B. Van Rompay, “Analysis and design of cryptographic hash functions, MAC algorithms
and block ciphers”, PhD thesis, K. U. Leuven, Januvary 2004.

24. X. Wang, H. Yu and Y. L. Yin, “Efficient Collision Search Attacks on SHA-0”,
CRYPTO'05, LNCS 3621, Springer-Heidelberg, pp. 1–16, 2005.

25. X. Wang, Y.L. Yin, H. Yu, “Finding Collisions in the Full SHA-1”, CRYPTO'05, LNCS
3621, Springer-Heidelberg, pp. 17–36, 2005.

26. X. Wang , H. Yu, “How to Break MD5 and Other Hash Functions”, EUROCRYPT'05,
LNCS 3494, Springer-Heidelberg, pp. 19–35, 2005.

27. Y. Zheng, J. Pieprzyk and J. Seberry, “HAVAL – A One-Way Hashing Algorithm with
Variable Length of Output”, AUSCRYPT’92, LNCS 718, Springer-Verlag, pp. 83–104,
1993.

Appendix A: Test vector

//INITIALIZATION
CV[0] = 0x6a09e667;CV[1] = 0xbb67ae85;
CV[2] = 0x3c6ef372;CV[3] = 0xa54ff53a;
CV[4] = 0x510e527f;CV[5] = 0x9b05688c;
CV[6] = 0x1f83d9ab;CV[7] = 0x5be0cd19;
//MESSAGE 1
M[0]=0x4105ba8c;M[1]=0xd8423ce8;M[2]=0xac484680;
M[3]=0x07ee1d40;M[4]=0xbc18d07a;M[5]=0x89fc027c;
M[6]=0x5ee37091;M[7]=0xcd1824f0M[8]=0x878de230;
M[9]=0xdbbaf0fc;M[10]=0xda7e4408;M[11]=0xc6c05bc0;
M[12]=0x33065020;M[13]=0x7367cfc5;M[14]=0xf4aa5c78;
M[15]=0xe1cbc780;
//MESSAGE' 1
Mp[0]=0x7cba7f6f;Mp[1]=0x9c28be9c;Mp[2]=0xd3aaf2a8;
Mp[3]=0x08d84931;Mp[4]=0xb43b1548;Mp[5]=0x33cd0b34;
Mp[6]=0xda63fa74;Mp[7]=0x306070d2;Mp[8]=0x40a28ca1;
Mp[9]=0x216dfafc;Mp[10]=0xb68f6ffa;Mp[11]=0x327a75cd;
Mp[12]=0xb6f7f231;Mp[13]=0xbaa8ac4e;Mp[14]=0x5242b031;
Mp[15]=0x4fffc0e4;
//OUTPUT 1
CV[0] = 0x1f44d356;CV[1] = 0x12c1aa81;
CV[2] = 0xd442f582;CV[3] = 0xd50f34b0;
CV[4] = 0xb21ea455;CV[5] = 0x12854997;
CV[6] = 0xcd067ddc;CV[7] = 0x8fdd5ea7;
//MESSAGE 2
memset(M,0,16*4);//M[0~15]=0
//MESSAGE' 1
memset(MP,0,16*4);//MP[0~15]=0
//OUTPUT 2
CV[0]=0xca2dd4f8;CV[1]=0x1a0d6f9d;CV[2]=0x7712c014;
CV[3]=0x0645874a;CV[4]=0x19f8073c;CV[5]=0xf343ab81;
CV[6]=0x30012a91;CV[7]=0x13b069b1;

