
How to Prove the Security of Practical Cryptosystems with
Merkle-Damg̊ard Hashing by Adopting Indifferentiability

Yusuke Naito1, Kazuki Yoneyama2, Lei Wang2, and Kazuo Ohta2

1 Mitsubishi Electric Corporation
Naito.Yusuke@ce.MitsubishiElectric.co.jp
2 The University of Electro Communications
{yoneyama,wanglei,ota}@ice.uec.ac.jp

Abstract. In this paper, we show that major cryptosystems such as FDH, OAEP, and RSA-KEM are
secure under a hash function MDh with Merkle-Damg̊ard (MD) construction that uses a random oracle
compression function h. First, we propose two new ideal primitives called Traceable Random Oracle
(T RO) and Extension Attack Simulatable Random Oracle (ERO) which are weaker than a random
oracle (RO). Second, we show that MDh is indifferentiable from LRO, T RO and ERO, where LRO
is Leaky Random Oracle proposed by Yoneyama et al. This result means that if a cryptosystem is
secure in these models, then the cryptosystem is secure under MDh following the indifferentiability
theory proposed by Maurer et al. Finally, we prove that OAEP is secure in the T RO model and RSA-
KEM is secure in the ERO model. Since it is also known that FDH is secure in the LRO model, as
a result, major cryptosystems, FDH, OAEP and RSA-KEM, are secure under MDh, though MDh is
not indifferentiable from RO.

Keywords: Indifferentiability theory, Merkle-Damg̊ard hash function, Random Oracle, Full Domain
Hash (FDH) signature, Optimal Asymmetric Encryption Padding (OAEP) encryption, RSA-based key en-
capsulation mechanism (RSA-KEM) scheme

1 Introduction

1.1 Indifferentiability Framework

Maurer et al. [11] introduced the indifferentiable framework as a stronger notion than indistinguishability.
This framework deals with the security of two systems C(V) and C(U): for cryptosystem C, C(V) retains at
least the same level of provable security of C(U) if primitive V is indifferentiable from primitive U , denoted
V < U . Using this framework, we can state the following fact: if C(U) is a secure cryptosystem and the
primitive V is indifferentiable from U , then C(V) is secure, and if the primitive V is not indifferentiable from
U , there is some cryptosystem which is secure in the U model but insecure in the V model.

1.2 Cryptosystems and Applications of Indifferentiability

While many cryptosystems have been proved secure in the random oracle (RO) model [2] (e.g. FDH [2],
OAEP[3], RSA-KEM[17] and so on) where RO is modeled as a monolithic entity (i.e. a black box working
in domain {0, 1}∗), in practice it is instantiated by a hash function that is usually constructed by iterating
a fixed input length primitive (e.g. a compression function). There are many architectures based on iterated
hash functions. The most well-known one is Merkle-Damg̊ard (MD) construction [7, 12]. A hash function
with MD construction iterates underlying compression function f : {0, 1}n × {0, 1}t → {0, 1}n is as follows.

MDf (m1, ...,ml) (|mi| = t, i = 1, ..., l):
let y0 = IV be some n bit fixed value.
for i = 1 to l do yi = f(yi−1,mi)

return yl

There is a significant gap between RO and hash functions, since hash functions are constructed from a small
primitive, f , and RO is the the monolithic random function.

Coron et al. [6] made important observations on these cryptosystems using the indifferentiable framework.
They introduced the new iterated hash function property of indifferentiability from RO. In this framework,
the underlying primitive, G, is compression function h of a random oracle or an ideal block cipher. We say
that hash function HG is indifferentiable from RO if there exists simulator S such that no distinguisher can
distinguish HG from RO (S mimics G). The distinguisher can access RO/HG and S/G; S can access RO.
A hash function, HG, satisfying this property behaves like RO. Therefore, the security of any cryptosystem
is preserved when RO is replaced by HG.

Coron et al. analyzed the indifferentiability of RO for several specific constructions. For example, they
have shown that MDh is not indifferentiable from RO due to the extension attack which uses the following
fact: The output value z′ = MDh(M ||m) can be calculated by c = h(z,m) where z = MDh(M), so
z′ = c. On the other hand, no S can return the output value z′ = RO(M ||m) from the query (z,m)
where z = RO(M), since no S can know z′ from z and m, and z′ is randomly chosen. Therefore no S
can simulate the extension attack. This result implies that MDh does not behave like RO and there exists
some cryptosystem that is secure in the RO model but insecure under MDh. Their counter action was the
proposal of several constructions such as Prefix-Free MD, chop MD, NMAC and HMAC. Hash functions
with these constructions under h are indifferentiable from RO but the work fails to prove the important
original MD cryptosystem is secure.

1.3 Is MD Construction Dead?

MD construction is among the most important blocks of modern cryptosystems [1, 6, 9]. There are two main
reasons:

– MD construction is employed by many popular hash functions such as SHA-1 and SHA-256, and
– MD construction is more efficient than other iterated hash function types such as Prefix-Free MD, and

chop MD.

Since MDh is not indifferentiable from RO, there is some cryptosystem C∗ that is secure in the RO model
but insecure under MDh:

MDh </ RO ⇒ ∃C∗ s.t. C∗(RO) is secure and C∗(MDh) is insecure.

Thus the important question is “can we confirm that a certain given cryptosystem is secure in the RO model
and secure under MDh?”:

For a set CRO of secure cryptosystems in the RO model, ∃C0 ∈ CRO s.t. C0(MDh) is secure?

There might be several cryptosystems that remain secure when RO is replaced by MDh. If we can confirm
this for major cryptosystems which are widely used, the MD construction is still alive in the indifferentiability
theory!

1.4 Our Contribution

We take following approaches to rescue cryptosystems under MDh.

1. Find an ideal primitive R̃O from which MDh is indifferentiable.
2. Prove that cryptosystem C0 is secure in the R̃O model.

2

If we can find R̃O for the hash function MDh (claim 1) and many cryptosystems are secure in the R̃O
model (claim 2), the MD construction is still alive in the indifferentiability theory, since these cryptosystems
are secure under MDh.

In order for S to be able to simulate the extension attack, it is necessary for S to know z′ = RO(M ||m)
from (z,m) where z = RO(M). However, no S can know z′ from (m, z) in the RO model. So we consider three
models, Leaky Random Oracle (LRO), Traceable Random Oracle (T RO) and Extension Attack Simulatable
Random Oracle (ERO) model as R̃O, where an additional oracle is assumed for S to obtain z′ = RO(M ||m).

Our results are summarised as follows:,

1. Introduce several RO variants, LRO, T RO and ERO for R̃O, and prove RO < ERO < T RO < LRO.
Moreover prove LRO </ T RO </ ERO.

2. Prove MDh < ERO. Therefore MDh < ERO < T RO < LRO holds (claim 1).
3. Prove that OAEP is secure in the T RO model and RSA-KEM is secure in the ERO model. (It is also

known that FDH is secure in the LRO model [18].) (claim 2)
4. Prove RSA-KEM is insecure in the T RO model. (It is also known that OAEP is insecure in the LRO

model [18].)

By combining the second and third results, we can obtain the result that FDH, OAEP, and RSA-KEM are
secure under MDh adopting the indifferentiability framework.

The latter part of the first result implies that there is some cryptosystem secure in the T RO model
but insecure in the LRO model, and some cryptosystem secure in the ERO model but insecure in the
T RO model. The forth result gives concrete examples of practical and major cryptosystems: that is, OAEP
is separating between LRO and T RO, and RSA-KEM is separating between T RO and ERO. Table 1
summarises the security of FDH, OAEP, and RSA-KEM in variant RO models.

FDH signature OAEP encryption RSA-KEM scheme

Leaky Random Oracle (LRO) secure insecure insecure

Traceable Random Oracle (T RO) secure secure insecure

Extension Attack Simulatable RO (ERO) secure secure secure

Table 1. Security of Major Cryptosystems in Variant RO Models

In this paper, we succeed in proving that major cryptosystems including FDH, OAEP, and RSA-KEM
are secure under MDh! We can say that the MD construction is still alive !!

1.5 Related Works

Several works have introduced variants of the random oracle as follows.
In [10, 15, 14], the oracle are modeled on breaking one-way of a hash function. Since the number of input

elements of a hash function is more than the number of output elements of a hash function, the probability
that the additional oracle returns a unique input value where S can simulate the extension attack is negligible.
Therefore MDh is not indifferentiable from the oracle consisting of both RO and this additional oracle.

These studies were made in corresponding to recent attacks on hash functions. The goal of these studies
is clearly different from our goal, because our goal is to analyse the security of cryptosystems under MDh by
“using the indifferentiability theory” while their goals are analyse cryptosystems reflecting concrete attacks
of hash functions.

Coron et al. [6] and Chang et al. [5] have proven that so-called Prefix-free MD is indifferentiable from
RO.

3

1.6 Road Map of the Paper

We start with some preliminaries (MD construction, definition of the indifferentiability, and the extension
attack) in section 2. In section 3, we introduce variants of RO model, i.e., the LRO, T RO, and ERO
models, and prove both RO < ERO < T RO < LRO and LRO 6< T RO 6< ERO. In section 4, we prove
MDh < ERO, which is the main result. Therefore we also obtain MDh < T RO and MDh < LRO from
ERO < T RO < LRO, which is an answer to claim 1. We will prove that OAEP is secure in the T RO
model in section 5, and that RSA-KEM is secure in the ERO model but insecure in the T RO model in
section 6, respectively, which is an answer to claim 2. In section 7, we discuss another approach to find
secure cryptosystems under MDh. As an example, the security of OAEP under MDh can be also proved by
adopting this approach.

The proofs that FDH/OAEP/RSA-KEM are secure in the variants RO models are also described in
Appendixes as well as that of the main theorem.

2 Preliminaries

2.1 Merkle-Damg̊ard Construction

We first give a short description of Merkle-Damg̊ard (MD) construction. The function MDf : {0, 1}∗ →
{0, 1}n is built by iterating a compression function f : {0, 1}n × {0, 1}t → {0, 1}n as follows.

– MDf (M):
1. calculate M ′ = pad(M) where pad is a padding function such that pad : {0, 1}∗ → ({0, 1}t)∗.
2. calculate ci = f(ci−1,mi) for i = 1, ..., l where for i = 1, ..., l, |mi| = t, M ′ = m1||...||ml and c0 is an

initial value (s.t. |c0| = n).
3. return cn

In this paper we ignore the above padding function but this implies no loss of generality, so hereafter
we discuss MDf : ({0, 1}t)∗ → {0, 1}n. And we use a random oracle compression function h as f where
h : {0, 1}n ×{0, 1}t → {0, 1}n and h is a random function. So we discuss about the hash function MDh with
MD construction using h.

2.2 Indifferentiability Framework for Hash Functions

The indifferentiability framework generalizes the fundamental concept of the indistinguishability of two
crypto systems C(U) and C(V) where C(U) is the cryptosystem C invoking the underlying primitive U and
C(V) is the cryptosystem C invoking the underlying primitive V. U and V have two interfaces: public and
private interfaces. Adversaries can only access the public interface and honest parties (e.g. the cryptosystem
C) can only access the private interface. Hereafter, U is recognized as RO and V is recognized as MDh.

We denote the private interface of the system X by X 1 and the public interface of the system X by X 2.
The definition of the indifferentiability is as follows.

Definition 1. V is indifferentiable from U , denote V < U , if for any distinguisher D with binary output (0
or 1) there is a simulator S such that the advantage |Pr[DV1,V2 ⇒ 1] − Pr[DU1,S(U2) ⇒ 1]| is negligible in
the security parameter k.

This definition will allow us to use the construction MDh instead of RO in any cryptosystem which is
secure in the RO model and retains the same level of provable security due to the indifferentiability theory
of Maurer et al. [11].

There exist a private interface of MDh and a public interface of h in the MDh model, while there exist
both private and public interfaces of RO in the RO model.

4

2.3 Extension Attack

Coron et al. showed that MDh is not indifferentiable from RO using the extension attack. The extension
attack is the attack for MDh where we can calculate a new hash value from some hash value. Namely
z′ = MDh(M ||m) can be calculated from only z and m by z′ = h(z,m) where z = MDh(M). Note that z′

can be calculated without using M . The distinguishing attack using the extension attack is as follows. Let
O1 be MDh or RO and let O2 be h or S. First, a distinguisher poses M to O1 and gets z from O1. Second,
he poses (z,m) to O2 and gets c from O2. Finally, he poses M ||m to O1 and gets z′ from O1.

If O1 = MDh and O2 = h, then z′ = c, however, if O1 = RO and O2 = S, then z′ 6= c. This is because
no simulator can obtain the output value of RO(M ||m) from just (z,m) and the output value of RO(M ||m)
is independently and randomly defined from c. Therefore, MDh is not indifferentiable from RO.

3 Variants of Random Oracles

In this section, we will introduce several variants of random oracles in order for S to simulate the extension
attack described above, and show relationships among these oracles within the indifferentiability framework.

3.1 Motivation of New Primitives

In order for S to simulate the extension attack, it is helpful for S to obtain z′ = RO(M ||m) from (z,m)
where z = RO(M). However, no S can know z′ from (m, z) in the RO model. So we consider variants of
random oracles by adding a new primitive which S can use in order to simulate the extension attack.

Random Oracle with additional Primitive(R̃O) We can model R̃O by combining both RO and an
additional primitive I which outputs some information with which S can simulate the extension attack. Note
that if I = null then R̃O is RO.

There exist a private interface with RO and two public interfaces of RO and I in the R̃O model, while
there exist both private and public interfaces of RO in the RO model. We can prove that RO < R̃O, where
S just forwards queries to the public interface of RO and responds with RO’s output.

Leaky Random Oracle (LRO) The first model is Leaky Random Oracle (LRO) model which was
proposed by Yoneyama et al. [18]. LRO consists of RO and Leaky Oracle (LO) which has the functions of
leaking of all input-output pairs in the list of RO. By using LRO as R̃O, we can construct S which can
simulate the extension attack, since S can know M from z by calling LO and can know z′ by querying M ||m to
RO. Thought they proved that FDH is secure in the LRO model, they did not discuss the indifferentiability
for MDh in [18].

Traceable Random Oracle (T RO) Unfortunately, there are several practical cryptosystems which are
secure in the RO model but insecure in LRO model. It was proved that OAEP is insecure in the LRO
model in [18]. So we will introduce more suitable variant of RO than LRO where OAEP becomes secure.

LRO leaks too much information for simulating the extension attack. The important information for S
in order to simulate the extension attack is the pair (M, z) in the list of RO. As the second variant of RO,
we will propose a new primitive Traceable Random Oracle (T RO) which consists of RO and Trace Oracle
(T O) as an additional oracle. For query z, T O returns M if the pair (M, z) exists in the list of RO where
z = RO(M), and returns ⊥ otherwise.

By using T RO as R̃O, we will construct S which can simulate the extension attack, since S obtains M
by using T O and can know z′ by querying M ||m to RO. We will prove that OAEP is secure in the T RO
model in Section 5.

5

We also prove that T RO < LRO and LRO 6< T RO. This means that any secure cryptosystem in the
LRO model is also secure in the T RO model and there exists some cryptosystem secure in the T RO model
but insecure in the LRO model. Since it was proved that OAEP is insecure in the LRO model [18], OAEP
is an evidence of the separation between T RO and LRO models. Note that FDH is secure in the T RO
model since it is secure in the LRO model (see Appendix D).

Extension Attack Simulatable Random Oracle (ERO) Again, there are however several practical
cryptosystems which are secure in the RO model but insecure T RO model. We will show an concrete attack
against RSA-KEM in the T RO model, that is, RSA-KEM is insecure there. Therefore we will introduce
more suitable RO variant than T RO where RSA-KEM becomes secure.

T RO leaks too much information for simulating the extension attack yet. The important information
for S is only the value z′ such that z′ = RO(M ||m). Note that the value of the pair (M, z) is unnecessary
for S. As the third variant of RO, we will propose a new primitive Extension Attack Simulatable Random
Oracle (ERO) which consists of RO and Extension Attack Simulatable Oracle (EO) as an additional oracle.
For query (m, z), if the pair (M, z) is in the list of RO where z = RO(M), then EO queries M ||m to RO,
receives z′ and returns z′, and otherwise EO returns ⊥.

By using ERO as R̃O, we will construct S which can simulate the extension attack, since S obtains
z′ = RO(M ||m) by using EO without (M ||m). We can prove that RSA-KEM is secure in the ERO model
in Section 6.

We also prove that ERO < T RO and T RO 6< ERO. Therefore, RSA-KEM is an evidence of the
separation between ERO and T RO. Note that FDH and OAEP are secure in the ERO model because of
the transitivity of the indifferentiability.

3.2 Definition of Variants of Random Oracles

The definition of RO : {0, 1}∗ → {0, 1}n is as follows. RO has initially the empty hash list LRO. On a query
M , if ∃(M, z) ∈ LRO, it returns z. Otherwise it chooses z ∈ {0, 1}n at random, LRO ← (M, z) and returns
z.

LRO was proposed by Yoneyama et al. [18]. The definition of LRO is as follows. LRO consists of RO
and LO. On a leak query to LO, LO outputs all contents of LRO. We can define S that can simulate the
extension attack by using LRO, since S can know M from z by using LO and can know z′ by querying
M ||m to RO.

LRO leaks too much information for simulating the extension attack. The important information is the
value M such that z = RO(M). So we define T RO as follows.

T RO consists of RO and T O.
– T O can look into LRO
– On a trace query z,

• If there exist pairs such that (Mi, z) ∈ LRO (i = 1, ..., n), it returns (M1, ...,Mn).
• Otherwise it returns ⊥.

We can define S that can simulate the extension attack by using T RO, since S can know M from z by using
T O and can know z′ by querying M ||m to RO.

T RO leaks too much information for simulating the extension attack yet. The important information is
only the value z′ such that z′ = RO(M ||m). Therefore we define ERO as follows.

ERO consists of RO and EO. EO has initially the empty list LEO and can look into LRO. On a simulate
query (m, z) to EO,
– If (m, z, z′) ∈ LEO, it returns z′.
– Else if there exists only one pair (M, z) ∈ LRO, EO makes the query M ||m to RO, receives z′, LEO ←

(m, z, z′) and returns z′.
– Else EO chooses z′ ∈ {0, 1}n at random, LEO ← (m, z, z′) and returns z′.

We can construct S that can simulate the extension attack by using ERO, since S can obtain z′ from (m, z)
where z′ = RO(M ||m) by using EO.

6

3.3 Relationships among LRO, T RO, and ERO models within the Indifferentiability
Framework

LRO leaks more information of LRO than T RO, and T RO leaks more information of LRO than LRO.
Therefore, it seems reasonable to suppose that any cryptosystem secure in the LRO model is also secure
in the T RO model, and any cryptosystem secure in the T RO model is also secure in the ERO model. We
prove validity of these intuitions by using the indifferentiability framework.

First we will clarify the relationship between T RO and LRO

Theorem 1. T RO < LRO and LRO </ T RO.

Proof. We construct S which simulates T O by using LRO as follows. On query z, S makes a leak query to
LO and receives LRO. If there exists pairs such that (Mi, z) ∈ LRO (i = 1, ..., n), it returns (M1, ...,Mn).
Otherwise it returns ⊥.

It is easy to see that |Pr[DRO,T O ⇒ 1] − Pr[DRO,S(LRO) ⇒ 1]| = 0, since the output from each step of
S is equal to that of each step of T O.

LRO </ T RO is trivial, since no S cannot know all values in LRO by using T RO. ut

Since T RO < LRO, any cryptosystem secure in the LRO model is also secure in the T RO model by the
indifferentiability framework. Since LRO </ T RO, there exists some cryptosystem which is secure in the
T RO model but insecure in the LRO model. For example, Yoneyama et al. proved that OAEP is insecure in
the LRO model [18]. We will prove that OAEP is secure in the T RO model in section 5. Therefore, OAEP
is an evidence of the separation between LRO and T RO.

Next we will clarify the relationship between ERO and T RO.

Theorem 2. ERO < T RO and T RO </ ERO.

Proof. We construct S which simulates EO by using T RO as follows. S has initially the empty list LS On
query (m, z), If ∃(m, z, z′) ∈ LS , it returns z′. Otherwise S makes a query z to T O, and receives strings
X. If X consists of one value, it makes a query X||m to RO, receives z′, LS ← (m, z, z′) and returns z′.
Otherwise it chooses z′ ∈ {0, 1}n at random, LS ← (m, z, z′) and returns z′.

It is easy to see that |Pr[DRO,EO ⇒ 1] − Pr[DRO,S(T RO) ⇒ 1]| = 0, since the output from each step of
S is equal to that of each step of EO.

T RO </ ERO is trivial, since no S cannot decide whether there exists (M, z) in LRO or not by using
T RO. ut

Since ERO < T RO, any cryptosystem secure in the T RO model is also secure in the ERO model by the
indifferentiability framework. Since T RO </ ERO, there exists some cryptosystem which is secure in the
ERO model but insecure in the T RO model. We will prove that RSA-KEM is secure in the ERO model
but insecure in the T RO model in section 6. Therefore, RSA-KEM is an evidence of the separation between
T RO and ERO.

From above discussions, the following corollary is obtained.

Corollary 1. RO < ERO < T RO < LRO, and LRO </ T RO </ ERO.

4 Indifferentiability from ERO for MDh

In this section we prove MDh < ERO as the main theorem.

Theorem 3. MDh is (tD, tS , q, ε) indifferentiable from ERO, for any tD, with tS = O(lq) and ε = O(l2q2)/2n,
where l is the maximum length of a query made by D where tD is run time of D, tS is run time of S and ε
is the advantage of D.

We only give a rough proof based on previous work in this section. The complete proof from scratch will
be described in appendix A.

7

4.1 Previous related result

Coron et al. [6] and Chang et al. [5] have proven that so-called Prefix-free MD is indifferentiable from RO.
The definition of prefix-free MD is as follows:

Prefix-free MD is MD with a prefix-free padding, where for any two messages M1 and M2, Pad(M1) is not
prefix of Pad(M2).

In the indifferentiability for prefix-free MD case, there are two types of message extension properties: type
1 and type 2. But in the indifferentiability for general MD case, there are four types of message extension
properties: type 1, type 2, type 3 and type 4. Namely, the difference between prefix-free MD and MD is just
eliminating the message extension properties of type 3 and type 4. Hereafter we will denote the message
extension properties of all types as MEP for simplicity. So for any distinguisher, whose strategy is not related
to MEP of MD denoted as D¬MEP , the advantage on distinguishing MD from RO should be the same as
that on distinguishing prefix-free MD from RO. As a result, the advantage of D¬MEP on distinguishing MD
from RO is negligible.

4.2 Our contributions based on previous result

In this section, we will give the rough proof based on previous result that the prefix-free MD is indifferentiable
from RO [6] [5]. First We will focus on the differences between previous result and our expected result.

1. Previous result shows that the distinguishers D¬MEP have negligible success probability on distinguishing
MD from RO. In our proof, the RO is replaced by ERO. We have to extend the previous result to ERO.
Thanks to the indifferentiability of RO from ERO and the transitive property of indifferentiability, we
can automatically get that D¬MEP can not succeed in distinguishing MD from ERO.

2. Previous result does not cover the distinguishers based on MEP, which will be denoted as DMEP . In our
proof, we have to prove that DMEP have negligible success probability on distinguishing MD from ERO.
This is the essential contributions of our work.

The advantages of DMEP

We will categorize all queries into trivial and non-trivial queries. Trivial queries might be helpful for arbitrary
distinguisher (that is, DMEP and D¬MEP) to decide (MDh, h) or ERO = (RO,EO), since a trivial query
can provide some relation (as a collision) between queries on the private interface and ones no the public
interface.

Trivial queries: Four types of trivial queries can be considered. In prefix-free MD case, type 3 and type 4
are only considered. However, in general MD case, there are not protection property by prefix-free padding.
Therefore, we have to consider type 3 and type 4 in addition to type 1 and type 2. Trivial queries are defied
as follows:

Type 1: ri is the trivial query if there are ri1 , ..., rij , and ri such that ri1 = (0, IV,mi1 , yi1), ri2 =
(0, yi1 ,mi2 , yi2), ..., rij = (0, yij−1 ,mij , yjj) and ri = (1, IV,M,H) where M = mi1 ||...||mij such that
i1 < ... < ij < i.

Type 2: ri is the trivial query if there are ri1 , ..., rij , rs, and ri such that ri1 = (0, IV,mi1 , yi1), ri2 =
(0, yi1 ,mi2 , yi2), ..., rij = (0, yij−1 , mij , yjj), rs = (1, IV,M,H) and ri = (0, yij ,mi, yi) where M =
mi1 ||...||mij ||mi such that i1 < ... < ij < i and s < i.

Type 3: ri is the trivial query if there are ri1 , ..., rij , and ri such that ri1 = (1, IV,Mi1 , zi1), ri2 =
(0, zi1 ,mi2 , yi2), ..., rij = (0, yij−1 ,mij , yij) and ri = (1, IV,M,H) where M = Mi1 ||...||mij such that
i1 < ... < ij < i.

Type 4: ri is the trivial query if there are ri1 , ..., rij , rs, and ri such that ri1 = (1, IV,Mi1 , zi1), ri2 =
(0, zi1 ,mi2 , yi2), ..., rij

= (0, yij−1 ,mij
, yij

), rs = (1, IV,M,H) and ri = (0, yij
,mi, yi) where M =

Mi1 ||mi1 ||...||mij ||mi such that i1 < ... < ij < i and s < i.

8

Thanks to the existence of the additional oracle EO in ERO, the simulator S can simulate MEP for the
trivial queries, which guarantees the consistence between ERO and S. Pick Type 3 as an example, on the
query (0, zi1 ,mi2 , yi2), S will send the (zi1 , mi2) to EO. Then EO will check the existence of the pre-image
of zi1 and get the message Mi1 . Then EO will send Mi1 ||mi2 to RO to get output yi2 . Then EO responds
to S with yi2 . Finally S responds to DMEP with the value yi2 . From the above interaction between S and
ERO, we can get that the value yi2 = RO(Mi1 ||mi2). As a result, for Type 3 of trivial queries, S can make
H be equal to yij . So Type 3 of trivial queries can not help DMEP . Similarly, it is convinced we can get that
Type 4 of trivial queries can not help DMEP .

Non-trivial query We can show by the same proof as [5] that the probability of collision for non-trivial
queries is negligible, because all the responses are randomly generated here. Therefore, advantage of DMEP

using non-trivial queries must be negligible as well as that of D¬MEP in [5].
To summarize, for any distinguisher D (D¬MEP and DMEP), the advantage is negligible, so MDh < ERO

has been proven. For more details, refer to Appendix A.

5 Security Analysis of OAEP in T RO Model

Optimal Asymmetric Encryption Padding (OAEP) encryption scheme [3] is a secure padding scheme for
asymmetric encryptions in the RO model. In this section, we consider the security of OAEP encryption
scheme in the T RO model.

5.1 Security Notion of Asymmetric Encryption Schemes

First, we briefly review the model and the security notion of asymmetric encryption schemes.

Definition 2 (Model for Asymmetric Encryption Schemes). An asymmetric encryption scheme con-
sists of the following 3-tuple (EGen,Enc,Dec):

EGen : a key generation algorithm which on input 1k, where k is the security parameter, outputs a pair
of keys (ek, dk). ek and dk are called encryption key and decryption key, respectively.

Enc : an encryption algorithm which takes as input encryption key ek and message m, outputs ciphertext
c.

Dec : a decryption algorithm which takes as input decryption key dk and ciphertext c, output message m.

The security of asymmetric encryption schemes is defined by several notions like one-wayness and indistin-
guishability. Generally, indistinguishability under chosen ciphertext attacks (IND-CCA) is recognized as the
strongest security notion. Here, we recall the definition of IND-CCA as follows.

Definition 3 (IND-CCA). An asymmetric encryption scheme is (t, ε)-IND-CCA if the following property
holds for security parameter k; For any adversary A = (A1,A2), |Pr[(ek, dk) ← EGen(1k); (m0,m1, state) ←
ADO(dk,·)

1 (ek); b
R← {0, 1}; c∗ ← Enc(ek,mb); b′ ← ADO(dk,·)

2 (ek, c∗, state); b′ = b] − 1/2| ≤ ε, where DO
is the decryption oracle, state is state information (possibly including ek, m0 and m1) which A wants to
preserve, and A runs in at most t steps. A cannot submit the ciphertext c = c∗ to DO.

5.2 OAEP

OAEP encryption scheme is based on trapdoor partial-domain one-way permutations.

Definition 4 (Trapdoor partial-domain one-way permutation). Let G be a trapdoor permutation
generator. We say that a trapdoor permutation f is (t, ε)-partial-domain one-way if

– for input 1k, G outputs (f, f−1, Dom) where Dom is a subset of {0, 1}k0 × {0, 1}k1 (k0 + k1 < k) and
f, f−1 are permutations on Dom which are inverses of each other,

9

– there exist a polynomial p such that f, f−1 and Dom are computable in time p(k), and
– for any adversary Alg, Pr[(f, f−1, Dom) ← G(1k); (x0, x1)

R← Dom; Alg(f, Dom, f(x0, x1)) = x0] ≤ ε,
where Alg runs in at most t steps.

The description of OAEP encryption scheme is as follows:

Key generation : For input k, outputs encryption key (ek = f) and decryption key (dk = f−1) such
that (f, f−1, Dom = {0, 1}n+k1 × {0, 1}k0) ← G(1k) where G is a trapdoor permutation generator and
n = k − k0 − k1.

Encryption : Upon input of message m ∈ {0, 1}n, generates randomness r
R← {0, 1}k0 , computes x =

(m||0k1)⊕G(r) and y = r⊕H(x), and outputs ciphertext c = f(x, y) where “ || ” means concatenation,
H : {0, 1}n+k1 → {0, 1}k0 and G : {0, 1}k0 → {0, 1}n+k1 are hash functions.

Decryption : Upon inputs of ciphertext c, computes z = f−1(c), parses z as (x, y) and reconstructs
r = y ⊕ H(x) where |x| = n + k1 and |y| = k0. If [x ⊕ G(r)]k1

?= 0k1 holds, outputs m = [x ⊕ G(r)]n as
the plaintext corresponding to c where [a]b denotes the b least significant bits of a and [a]b denotes the
b most significant bits of a. Otherwise, rejects the input as an invalid ciphertext.

In [8], security of OAEP encryption scheme in the RO model is proved as follows;

Lemma 1 (Security of OAEP encryption scheme in the RO model [8]). If the trapdoor permutation
f is partial-domain one-way, then OAEP encryption scheme satisfies IND-CCA where H and G are modeled
as ROs.

5.3 Insecurity of OAEP encryption scheme in LRO Model

Though OAEP encryption scheme is secure in the RO model, it is insecure in the LRO model. More
specifically, it was shown that OAEP encryption scheme does not even satisfy OW-CPA in the LRO model.

Lemma 2 (Insecurity of OAEP in LRO model[18]). Even if the trapdoor permutation f is partial-
domain one-way, OAEP does not satisfy OW-CPA where H and G are modeled as LROs.

5.4 Security of OAEP encryption scheme in T RO Model

We can also prove the security of OAEP encryption scheme in the T RO model as well as in the RO model.

Theorem 4 (Security of OAEP encryption scheme in the T RO model). If a trapdoor permutation
f is (t′, ε′)-partial-domain one-way, then OAEP encryption scheme satisfies (t, ε)-IND-CCA as follows:

t′ = t + qRG · qRH · perm,

ε′ ≥ 1
qRH

·
(ε

2
− 2qDqRG + qD + qRG

2k0
− 2qD

2k1
− qTG

2n+k1

)
− qTH

2k0
,

where H and G are modeled as the T RO, qRH is the number of hash query to the RO of H, qTH is the
number of trace queries to the T O of H, qRG is the number of hash queries to the RO of G, qTG is the
number of trace queries to the T O of G, qD is the number of queries to the decryption oracle DO and perm
is the computational cost of f .

We only explain the sketch of the proof in this section. The full proof will be described in appendix B.

Proof (Sketch).
In the T RO model, we have to estimate the influence of T O as follows:

10

– By trace queries, the adversary may obtain some information about the plaintext corresponding to the
challenge,

– Trace queries may be useful to obtain additional information from DO than the RO model.

To win IND game, the adversary has two strategies. One is to pose the trace query H(x∗) to T O of H
and the trace query x∗ ⊕m′

b||0k1 to T O of G for a guessed bit b′ where x∗ is used to generate the challenge
ciphertext. If T O of G returns ⊥, then the adversary can know b′ 6= b, thus, the adversary can win the
game. The probability that the adversary poses the trace query H(x∗) to T O of H is bounded by qTH · 2−k0

because r∗ is randomly chosen and G is RO. The other is to pose the hash query r∗ to RO of G or the
trace query G(r∗) to T O of G where r∗ is used to generate the challenge ciphertext. We have to estimate the
probability of both case that r∗ is posed to RO of G and the case that G(r∗) is posed to T O of G because
these events may occur separately. The probability that the adversary poses the hash query r∗ to RO of G
is bounded by qRG · 2−k0 and the probability that the adversary poses the trace query G(r∗) to T O of G is
bounded by qTG · 2−(n+k1) because r∗ is unknown and G is RO.

Furthermore, we have to consider whether information from T O gives the advantage to the CCA adversary
or not. Though the CCA adversary can obtain some tuples in the hash lists of ROs by trace queries, the hash
lists themselves are not updated by these queries. Thus, the number of valid ciphertexts does not increase
by trace queries. Hence, even if the adversary can use T O, it is not useful to obtain additional information
from DO.

Therefore, we can show the security of OAEP encryption scheme satisfies IND-CCA by the similar proof
as that in [8].

6 Security Analysis of RSA-KEM in T RO and ERO Models

RSA-based key encapsulation mechanism (RSA-KEM) scheme [17] is secure KEM scheme in the RO model.
In this section, we consider the security of RSA-KEM in the T RO and ERO models.

6.1 Security Notion of KEM

First, we briefly review the model and the security notion of KEM schemes.

Definition 5 (Model for KEM Schemes).
A KEM scheme consists of the following 3-tuple (KEM.Gen,KEM.Enc,KEM.Dec):

KEM.Gen : a key generation algorithm which on input 1k, where k is the security parameter, outputs a
pair of keys (ek, dk). ek and dk are called encryption key and decryption key respectively.

KEM.Enc : an encryption algorithm which takes as input encryption key ek, outputs key K and ciphertext
c.

KEM.Dec : a decryption algorithm which takes as input decryption key dk and ciphertext c, output key
K.

The security of KEM schemes is also defined by IND-CCA. Here, we recall the definition of IND-CCA for
KEM.

Definition 6 (IND-CCA for KEM). A KEM scheme is (t, ε)-IND-CCA for KEM if the following property
holds for security parameter k; For any adversary A = (A1,A2), |Pr[(ek, dk) ← KEM.Gen(1k); (state) ←
ADO(dk,·)

1 (ek); b
R← {0, 1}; (K∗

0 , c∗0) ← KEM.Enc(ek); (K∗
1 , c∗1) ← KEM.Enc(ek); b′ ← ADO(dk,·)

2 (ek,
(K∗

b , c∗0), state); b′ = b] − 1/2| ≤ ε, where DO is the decryption oracle, state is state information which A
wants to preserve from A1 to A2 and A runs in at most t steps. A cannot submit the ciphertext c = c∗0 to
DO.

11

6.2 RSA-KEM

The security of RSA-KEM is based on the RSA assumption.

Definition 7 (RSA assumption). Let n be an RSA modulus that is the product of two large primes (p, q)
for security parameter k and e be an exponent such that gcd(e, φ(n)) = 1. We say that RSA problem is
(t, ε)-hard if for any adversary Alg, Pr[y ← Zn; Alg(n, e, y) = x; y ≡ xe (mod n)] ≤ ε, where Alg runs in
at most t steps.

The description of RSA-KEM is as follows:

Key generation : For input k, outputs encryption key (ek = (n, e)) and decryption key (dk = d) such
that n is an RSA modulus that is the product of two large primes (p, q) for security parameter k, gcd(e,
φ(n)) = 1 and ed ≡ 1 (mod φ(n)).

Encryption : Generates randomness r
R← Zn, computes c = re mod n and K = H(r), and outputs

ciphertext c and key K where H : Zn → {0, 1}k is a hash function.

Decryption : Upon inputs of ciphertext c, computes r = cd mod n and outputs K = H(r).

In [17], security of RSA-KEM in the RO model is proved as follows;

Lemma 3 (Security of RSA-KEM in the RO model [17]). If RSA problem is hard, then RSA-KEM
satisfies IND-CCA for KEM where H is modeled as the RO.

6.3 Insecurity of RSA-KEM in T RO Model

Though RSA-KEM is secure in the RO model, it is insecure in the T RO model. More specifically, we can
show RSA-KEM does not even satisfy IND-CPA for KEM in the T RO model. Note that, IND-CPA means
IND-CCA without DO.

Theorem 5 (Insecurity of RSA-KEM in the T RO model). Even if RSA problem is hard, RSA-KEM
does not satisfy IND-CPA for KEM where H is modeled as the T RO.

Proof. We construct an adversary A which successfully plays IND-CPA game by using the T RO H. The
construction of A is as follows;

Input : (n, e) as the public key

Output : b′

Step 1 : Return state and receive (K∗
b , c∗0) as the challenge. Ask the trace query K∗

b to H, obtain {r}.

Step 2 : For all r in {r}, check whether re ?≡ c∗0 (mod n). If there is r∗ satisfying the relation, output
b′ = 0. Otherwise, output b′ = 1.

We estimate the success probability of A. When the challenge ciphertext c∗0 is generated, r∗ such that
K∗

0 = H(r∗) is certainly asked to H because c∗0 is generated obeying the protocol description. Thus, LH

contains (r∗, c∗0,K
∗
0). If (r∗, c∗0,K

∗
b) is not in LH , b = 1. Therefore, A can successfully plays the IND-CPA

game.
ut

12

6.4 Security of RSA-KEM in ERO Model

We can also prove the security of RSA-KEM in the ERO model as well as in the RO model.

Theorem 6 (Security of RSA-KEM in the ERO model). If RSA problem is (t′, ε′)-hard, then RSA-
KEM satisfies (t, ε)-IND-CCA for KEM as follows:

t′ = t + (qRH + qEH) · expo,

ε′ ≥ ε − qD

n
,

where H is modeled as the ERO, qRH is the number of hash query to the RO of H, qEH is the number
of hash queries to the EO of H, qD is the number of queries to the decryption oracle DO and expo is the
computational cost of exponentiation modulo n.

We only explain the sketch of the proof in this section. The full proof will be described in appendix C.

Proof (Sketch).
Firstly, we show that the transformation of the experiment of IND-CCA for RSA-KEM from Exp0 to

Exp4 in Appendix C. By the step of the transformation, we can show that the extension attack query (x, y) of
the hash value of the randomness r∗ or r∗||x corresponding to the challenge ciphertext to EO of H only gives
negligible advantage to the adversary as Lemma 6 in Appendix C. Information the adversary can obtain by
the query is not useful without information of r∗ itself and the adversary can succeeds if the randomness is
leaked. Next, we construct a reduction from RSA assumption to the transformed experiment of IND-CCA
for RSA-KEM. For the reduction part, we need to describe the simulation of EO. However, we construct the
perfect simulation of EO. Thus, we can show that RSA-KEM is secure by the similar proof as that in [17].

7 Another Approach to Rescue Merkle-Damg̊ard

7.1 Picking OAEP as an Example to Warm Up

Among the cryptosystems OAEP, RSA-KEM, and FDH, we found that there exists one different point in
the design of OAEP comparing with the other two cryptosystems: the bit-length of the queries to the
random oracle has been fixed. We can get that the bit-length of the queries to G and H has been fixed
to be k0 and (n + k1) respectively. When G and H are instantiated to be Merkle-Damg̊ard hash functions,
the input messages of the hash functions are also restricted to be with fixed-length. So we can get that the
Merkle-Damg̊ard hash functions under the application of OAEP are in fact Pre-Fix-Free Merkle-Damg̊ard.
At the same time, Pre-Fix-Free Merkle-Damg̊ard hash functions have been proven to be indifferentiable from
Random Oracle [5, 6]. Consequently, the security of OAEP will be preserved when the underlying random
oracle is replaced by Merkle-Damg̊ard hash functions. The high-level overview is described as follows.

- Specification of OAEP transforms Merkle-Damg̊ard hash functions to be Pre-fix-free Merkle-Damg̊ard
hash functions.

- Pre-fix-free Merkle-Damg̊ard hash functions have been proven indifferentiable from Random Oracle.
- OAEP has been proven secure in the Random Oracle Model.

Based on the above three points, we can get that OAEP is secure in the Merkle-Damg̊ard hash function
model. More detail discussion will be shown in the next subsection.

7.2 New Approach: Utilizing the Specification of the Cryptosystems

Suppose we are dealing with the instantiation for a cryptosystem C following the Random Oracle Method-
ology. Moreover, based on the specification of C, we luckily can derive some restriction, denoted as α, on
the queries to the random oracle. For example, in OAEP, α is that the input length of G and H is the fixed
length. We will try rescuing Merkle-Damg̊ard hash functions utilizing the α. We modify the indifferentiability
framework as follows.

13

Definition 8. V is indifferentiable from U under the restriction α, denote V <α U , if for any distinguisher
D which queries to RO under the restriction α with binary output (0 or 1) there is a simulator S such that
the advantage |Pr[DV1,V2 ⇒ 1] − Pr[DU1,S(U2) ⇒ 1]| is negligible in the security parameter k.

The following theorem holds.

Theorem 7. MDh <α RO ⇒ for any cryptosystem C holding the restriction α, C(MDh) retains the same
level of provable security for C(RO).

From above theorem, any secure cryptosystem (e.g., OAEP) in which input length of the hash function
is fixed is also secure under MDh.

The proof is detailed in Appendix E.

8 Conclusion

In this paper, we have succeeded in proving that major cryptosystems including FDH, OAEP, and RSA-KEM
are secure under MDh adopting the indifferentiability framework.

Since MDh 6< RO was shown by Coron et al. due to the extension attack, which implies there exists at
least one cryptosystem C∗ such that C∗(RO) is secure but C∗(MDh) is insecure. Thus our concern is whether
major cryptosystem C0 satisfies that C0(RO) is secure and C0(MDh) is insecure, or C0(RO) is secure and
C0(MDh) is still secure.

In this paper, we proposed two approaches to prove the positive result. The first one is

1. Find an ideal primitive R̃O and MDh < R̃O holds, and
2. Prove that cryptosystem C0 is secure in the R̃O model.

The second one is

1. Derive restrictions on the queries to the private interface of RO/MDh according to the specification of
the protocol, and

2. Analyze the indifferentiability of MDh from RO under the restriction on the queries to the private
interface of RO/MDh.

Our results following the former approach are summarised as follows:,

1. RO variants such as LRO, T RO and ERO are introduced for R̃O. RO < ERO < T RO < LRO holds.
2. MDh < ERO. Therefore MDh < ERO < T RO < LRO holds, which is an answer to claim 1.
3. OAEP is secure in the T RO model and RSA-KEM is secure in the ERO model. It is also known that

FDH is secure in the LRO model, which is an answer to claim 2.

By combining the second and third results, we can obtain the result that FDH, OAEP, and RSA-KEM
are secure under the MDh model adopting the indifferentiability framework. We can say that the MD
construction is still alive!

Moreover LRO 6< T RO 6< ERO is proven, which implies that there is some cryptosystem secure in the
T RO model but insecure in the LRO model, and some cryptosystem secure in the ERO model but insecure
in the T RO model. It is also proven that OAEP is separating between LRO and T RO, and RSA-KEM is
separating between T RO and ERO, which is interesting result regardless of indifferentiability from MDh.

Acknowledgements

Thanks to reviewers of CT-RSA 2009 who provided useful comments on a previous version of this paper.

14

References

1. Mihir Bellare and Thomas Ristenpart: Multi-Property-Preserving Hash Domain Extension and the EMD Trans-
form. ASIACRYPT 2006: 299-314.

2. Mihir Bellare and Phillip Rogaway: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.
ACM Conference on Computer and Communications Security 1993: 62-73.

3. Mihir Bellare and Phillip Rogaway: Optimal Asymmetric Encryption. EUROCRYPT 1994: 92-111.
4. Mihir Bellare and Phillip Rogaway: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin.

EUROCRYPT 1996: 399-416.
5. Donghoon Chang, Sangjin Lee, Mridul Nandi and Moti Yung: Indifferentiable Security Analysis of Popular Hash

Functions with Prefix-Free Padding. ASIACRYPT 2006: 283-298.
6. Jean-Sebastien Coron, Yevgeniy Dodis, Cecile Malinaud and Prashant Puniya: Merkle-Damgard Revisited: How

to Construct a Hash Function. CRYPTO 2005: 430-448.
7. Ivan Damg̊ard: A Design Principle for Hash Functions. CRYPTO 1989: 416-427.
8. Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval and Jacques Stern: RSA-OAEP Is Secure under the RSA

Assumption. CRYPTO 2001: 260-274
9. Shoichi Hirose, Je Hong Park and Aaram Yun: A Simple Variant of the Merkle-Damgard Scheme with a Permu-

tation. ASIACRYPT 2007: 113-129.
10. Moses Liskov: Constructing an Ideal Hash Function from Weak Ideal Compression Functions. Selected Areas in

Cryptography 2006: 358-375.
11. Ueli M. Maurer, Renato Renner, Clemens Holenstein: Indifferentiability, Impossibility Results on Reductions,

and Applications to the Random Oracle Methodology. TCC 2004: 21-39.
12. Ralph C. Merkle: One Way Hash Functions and DES. CRYPTO 1989: 428-446.
13. Yusuke Naito, Kazuki Yoneyama, Lei Wang, and Kazuo Ohta: Indifferentiability of Hash Functions Revisited:

Merkle-Damg̊ard Is Still Alive. SCIS 2009, Japan.
14. Akira Numayama, Toshiyuki Isshiki and Keisuke Tanaka: Security of Digital Signature Schemes in Weakened

Random Oracle Models. Public Key Cryptography 2008: 268-287.
15. Sylvain Pasini and Serge Vaudenay: Hash-and-Sign with Weak Hashing Made Secure. ACISP 2007: 338-354.
16. Bart Preneel, Rene Govaerts and Joos Vandewalle: Hash Functions Based on Block Ciphers: A Synthetic Ap-

proach. CRYPTO 1993: 368-378
17. Victor Shoup: A Proposal for an ISO Standard for Public Key Encryption.
18. Kazuki Yoneyama, Satoshi Miyagawa and Kazuo Ohta: Leaky Random Oracle: Provsec 2008: 226-240.

A Proof of Theorem 3

We will prove Theorem 3 using the same technique as that of [5] by extending the treatment of message
extension of types 3 and 4.

We assume that no query of D is a repeated query in order to simplify the proof.
Let Ri be a binary relation of query-response pairs of a simulator after the i-th query;

Ri = {(x,m, y)|(0, x,m, y) ∈ Li
0}. Let R∗

i be a closure relation on {0, 1}n × {0, 1}t × {0, 1}n such that the
following relations holds:

– Ri ⊂ R∗
i

– (a, b, c), (c, d, e) ∈ R∗
i ⇒ (a, b||d, e) ∈ R∗

i

– (a, b||d, e), (a, b, c) ∈ R∗
i ⇒ (c, d, e) ∈ R∗

i

Note that no simulator S can simulate the extension attack by using only RO, because no S can obtain
z′(= RO(M ||m)) on query (z,m) where z = RO(M).

We will construct simulator S that can simulate the extension attack using the Extension Attack Simu-
latable Oracle (EO) at Step 3. As a result, the distinguishing based on the extension attack will fail (see the
first case of Coll1, Coll2, Coll3 and Coll4 on Lemma 4).

Simulator. Initially, R0 = φ. The simulator keeps the relation Ri−1 and the closure relation R∗
i−1 before

i-th query. On the i-th query (x, m), the response of S is as follows.

15

1. If ∃(IV,M, x) ∈ R∗
i−1, then run RO(M ||m), obtain response y and return y.

2. Else, if x = IV , then run RO(m), obtain response y and return y.
3. Else, it runs EO(m,x), obtains response y, and returns y.

In the worst case of the simulator’s running time, the simulator executes step 3 for every query and this
requires at most O(ql) time.

In the following proof, we use the following fact [5]: if Pr[DMDh,h ⇒ 1|¬E1] = Pr[DRO,S(ERO) ⇒ 1|¬E2]
holds, then |Pr[DMDh,h ⇒ 1] − Pr[DRO,S(ERO) ⇒ 1]| ≤ 2 × max{Pr[E1], P r[E2]} where E1 and E2 are
certain events defined in Second stage.

We will evaluate |Pr[DMDh,h ⇒ 1] − Pr[DRO,S(ERO) ⇒ 1]| in three stages.

– In the first stage, we will define BadColl where D may distinguish (MDh, h) from (RO,S).
– In the second stage, we will shows that no D can distinguish (MDh, h) from (RO,S) when ¬BadColl

occurs, that is, let E1 be an event BadColl when D interacts with (MDh, h), and let E2 be an event
BadColl when D interacts with (RO,S). Then Pr[DMDh,h ⇒ 1|¬E1] = Pr[DRO,S(ERO) ⇒ 1|¬E2] holds.

– Finally, we will analyze the probabilities of Pr[E1] and Pr[E2].

First Stage: We define an event BadColl.
In order to define this event, we will define a new set IO(i) by IO(i) = {IV } ∪ {x|(0, x,m, y) ∈ Li

0} ∪
{y|(0, x,m, y) ∈ Li

0}∪{H|(1, IV,M,H) ∈ Li
1}. Coll covers all possibilities of collisions, that is, Coll is an event

where there exists ri = (j, a, b, c) such that c ∈ IO(i)∪{a}. We will also define several events Coll1, Coll2,Coll3
and Coll4 corresponding to following types of trivial queries. Trivial queries satisfy the message extension
property, that is, D knows an input-output pair of h/S without making the query to h/S during the attack
procedures but with only making the query to MDh/RO.

We introduce four types of trivial queries as follows:

– Type 1: ri is the trivial query if there are ri1 , ..., rij , and ri such that ri1 = (0, IV,mi1 , yi1), ri2 =
(0, yi1 ,mi2 , yi2), ..., rij = (0, yij−1 ,mij , yjj) and ri = (1, IV,M,H) where M = mi1 ||...||mij such that
i1 < ... < ij < i.

– Type 2: ri is the trivial query if there are ri1 , ..., rij , rs, and ri such that ri1 = (0, IV,mi1 , yi1),
ri2 = (0, yi1 ,mi2 , yi2), ..., rij = (0, yij−1 ,mij , yjj), rs = (1, IV,M,H) and ri = (0, yij ,mi, yi) where
M = mi1 ||...||mij ||mi such that i1 < ... < ij < i and s < i.

– Type 3: ri is the trivial query if there are ri1 , ..., rij , and ri such that ri1 = (1, IV,Mi1 , zi1), ri2 =
(0, zi1 ,mi2 , yi2), ..., rij = (0, yij−1 , mij , yjj) and ri = (1, IV,M,H) where M = Mi1 ||...||mij such that
i1 < ... < ij < i.

– Type 4: ri is the trivial query if there are ri1 , ..., rij , rs, and ri such that ri1 = (1, IV,Mi1 , zi1),
ri2 = (0, zi1 ,mi2 , yi2), ..., rij = (0, yij−1 , mij , yjj), rs = (1, IV,M,H) and ri = (0, yij ,mi, yi) where
M = Mi1 ||mi1 ||...||mij ||mi such that i1 < ... < ij < i and s < i.

Coll1, Coll2, Coll3, and Coll4 are events where Coll occurs by trivial queries as follows:

– Coll1: yij = H holds if ri is the trivial query of type 1.
– Coll2: yi = H holds if ri is the trivial query of type 2.
– Coll3: yij = H holds if ri is the trivial query of type 3.
– Coll4: yi = H holds if ri is the trivial query of type 4.

Type 3 and type 4 are extension attacks shown in Section 2.3. Note that if Coll1∨Coll2∨Coll3∨Coll4 occurs
then Coll occurs. BadColl is defined by BadColl = Coll∧¬Coll1∧¬Coll2∧¬Coll3∧¬Coll4, since S takes care
of trivial queries.

Second Stage: We will show that no D can distinguish (MDh, h) from (ERO,S) when ¬BadColl occurs.

16

Lemma 4. When ¬BadColl (= ¬Coll ∨ Coll1 ∨ Coll2 ∨ Coll3 ∨ Coll4) occurs, no D can distinguish (MDh, h)
from (ERO,S).

Proof. We prove that no D can distinguish (MDh, h) from (ERO,S) when ¬BadColl occurs.

– Coll1 ∨ Coll2 ∨ Coll3 ∨ Coll4:
• When D interacts with (MDh, h) and sends trivial queries of type 1, type 2, type 3, or type 4, then

Coll1 ∨ Coll2 ∨ Coll3 ∨ Coll4 always occurs due to MD construction.
• When D interacts with (RO,S) and sends trivial queries of type 1, type 2, type 3, or type 4, then

Coll1 ∨ Coll2 ∨ Coll3 ∨ Coll4 always occurs due to EO and S.This is because, for all trivial queries,
EO returns the value to S so that Coll1,Coll2, Coll3 and Coll4 are true by looking into the list of RO
and making an query to RO (see Section 4.2).

Therefore no D can distinguish (MDh, h) from (ERO,S) when Coll1 ∨ Coll2 ∨ Coll3 ∨ Coll4 occurs.
– ¬Coll:

The transcript with (MDh, h) and that with (ERO,S) are uniformly conditioned distributed on {0, 1}n\
IO(i), because of ¬Coll. The following proof is the same as the proof of lemma 1 of [5].
• When distinguisher D interacts with (ERO,S), and ¬Coll occurs, all responses are different, since
¬Coll is the event where any response is different from other responses. Therefore, all response
values are fresh values for the view of D. Namely any i-th response value is randomly chosen from
{0, 1}n \ IO(i), since h is a random oracle compression function and ¬Coll occurs. Therefore any i-th
response value is randomly chosen from {0, 1}n \ IO(i).

• When distinguisher D interacts with (MDh, h), and ¬Coll occurs, any i-th response is is randomly
chosen from {0, 1}n\IO(i). First we prove it for MDh. We prove it by proving ∀z, z′ ∈ {0, 1}n\IO(i):
Pr[MDh(M) = z|¬Coll] = Pr[MDh(M) = z′|¬Coll] where M is i-th query. Let X = {h | h :
{0, 1}n × {0, 1}t → {0, 1}n s.t. MDh(M) = z ∧ h satisfies IO(i)} for z. Similarly define X ′ for z′.
Now we can define a bijection φ between X and X ′ in the following way.
∗ φ(h)(x,m) = h(x,m) if {x, h(x, m)} ∩ {z, z′} = φ.
∗ φ(h)(z,m) = h(z′, m) if h(z′,m) /∈ {z, z′}. Similarly, φ(f)(z′,m) = h(z,m) if h(z,m) /∈ {z, z′}.
∗ φ(h)(x,m) = z′ if x /∈ {z, z′} and h(x, m) = z. Similarly, φ(h)(x,m) = z if x /∈ {z, z′} and

h(x, m) = z′.
∗ φ(h)(z,m) = z if h(z′,m) = z′.
∗ φ(h)(z,m) = z′ if h(z′, m) = z.
∗ φ(h)(z′,m) = z if h(z,m) = z′.
∗ φ(h)(z′,m) = z′ if h(z,m) = z.

Now it is easy to check that φ(h) is well defined and it belong to X ′. Here, we mainly interchange the
role of z and z′ in all possible cases of input and output keeping other values the same. Thus, given
MDh(M) = z, we should have MDφ(h)(M) = z′ keeping all other equalities fixed. Now it is also
easy to check that this is a bijection as we can define the inverse function similarly. Thus, |X| = |X ′|
and hence the probabilities are equal. We can prove similarly for the distribution of h. So skip the
proof of this.

Therefore no D can distinguish (MDh, h) from (ERO,S) when ¬Coll occurs.

Therefore, when ¬BadColl occurs, no D can distinguish (MDh, h) from (ERO,S). ut

Final Stage: We calculate Pr[E1] and Pr[E2].

Lemma 5. Pr[E1] = O(l2q2

2n) and Pr[E2] = O(q2

2n).

Proof. We assume that there is no trivial query. If a trivial query exists, then we decrease the probability
since the trivial query does not help for D to find the collision due to Lemma 4.

First we estimate Pr[E1] by deriving the lower bound of Pr[¬E1] by using a new event E1 such that the
implication of E1 ⇒ ¬E1 holds (namely Pr[E1] = 1 − P [¬E1] ≤ 1 − Pr[E1]).

17

We will define an event E1 wherein no collision occurs for h, that is, for any fresh input (x,m) of h, its
output value y = h(x,m) satisfies the following relations: ∀(x′,m′, y′) ∈ Listh: y 6= x, y 6= x′, and y 6= y′.
Note that the input (x,m) is from MDh or D. Since MDh is the iterated hash function of h, E1 ⇒ ¬E1.
Therefore, Pr[¬E1] ≥ Pr[E1] holds.

Since h is a random oracle compression function, Pr[E1] = (2n−1
2n)(2n−3

2n) · · · (2n−2q′−1
2n) ≥ 1 − q′2

2n where
q′ is the total number of calls of h. When all queries are queries for MDh and the message block length for
all queries is l, q′ ≤ l× q. Therefore, Pr[¬E1] ≥ Pr[E1] ≥ 1− l2q2

2n . Therefore Pr[E1] ≤ 1−Pr[E1] = O(l2q2

2n).
Finally we calculate Pr[E2]. When D interacts with (RO,S), all outputs of RO and S are chosen at

random. This is because from assumptions D does not make trivial query and repeated query. Therefore,
Pr[E2] = O(q2

2n).
This completes the proof of Lemma 5. ut

Therefore, |Pr[DMDh,h ⇒ 1] − Pr[DRO,S(ERO) ⇒ 1]| ≤ 2 × max{Pr[E1], P r[E2]} = O(l2q2

2n). This
completes the proof of Theorem 3.

B Proof of Theorem 4

Proof. Let r∗ be the random tape which is implicitly defined by c∗ and mb as follows;

r∗ = H(x∗) ⊕ y∗ and G(r∗) = x∗ ⊕ (mb||0k1).

Firstly, we transform the experiment of IND-CCA for OAEP with respect to the trace query to T O of H.
Though in the initial experiment, Exp0, an adversary A may pose the trace query r∗⊕y∗ to T O of H, in the
transformed experiment, Exp1, A does not pose the trace query r∗ ⊕ y∗ to T O of H. Let Succ0 and Succ1
be probabilities that A succeeds to guess the bit b in Exp0 and Exp0, respectively. We consider the difference
between advantages of A in two experiments.

In Exp0, A has two scenarios: One is to pose the trace query r∗ ⊕ y∗ to T O of H to obtain x∗ and the
trace query x∗ ⊕ mb′ ||0k1 to T O of G for a guessed bit b′. If T O of G returns ⊥, then the adversary can
know b′ 6= b, and finally wins the game. Note that, in this scenario, A does not pose the hash query r∗ to
RO of G or the trace query G(r∗) to T O of G. The other is to pose the hash query r∗ to RO of G or the
trace query G(r∗) to T O of G. A can obtain no advantage in others than the above scenarios because G(r∗)
is uniformly distributed in {0, 1}n+k1 because G is RO and thus is independent from mb.

The probability that the first scenario occurs is bounded by qTH · 2−k0 because G is RO. On the other
hand, in Exp1, A has only the second scenario, i.e., to pose the hash query r∗ to RO of G or the trace
query G(r∗) to T O of G, because Exp1 aborts when A poses the trace query r∗ ⊕ y∗ to T O of H. Thus,
the difference between advantages in Exp0 and Exp1 only consists of the event that A poses the trace query
r∗ ⊕ y∗ to T O of H. Therefore, we obtain that |Succ1 − Succ0| ≤ qTH · 2−k0 .

Let A = (A1,A2) be an adversary which breaks IND-CCA of OAEP in the sense of Exp1. We construct
an inverter I which breaks the (t′, ε′)-partial-domain one-wayness of the trapdoor permutation f , i.e., for
given (f,Dom, y) I outputs s such that y = f(s, t). We assume that A does not repeat previous hash queries
to the T RO H and G or previous decryption queries to the DO. Let LH and LG be the local hash lists
of H and G, respectively. LH consists of tuples (δi, hi) (0 ≤ i ≤ qRH) and LG consists of tuples (γi, gi)
(0 ≤ i ≤ qG). The concrete construction of I is as follows.

Input : (f,Dom, c∗) s.t. (f, f−1, Dom) ← G(1k) and c∗ = f(x∗, y∗) for (x∗, y∗) R← {0, 1}n+k1 × {0, 1}k0

Output : x∗ s.t. (x∗, y∗) = f−1(c∗)

Input public key : Send f to A as the input public key.

18

RO H simulation : When A poses a query δi to RO of H, then behave as follows:
For any (γj , gj) ∈ LG, I computes y = γj ⊕ hi and checks whether c∗ = f(δi, y). If for some γj the
relation holds, then I can obtain δi = x∗ s.t. (x∗, y∗) = f−1(c∗).
<If (δi, ∗) /∈ LH >

Generate hi ∈ {0, 1}k0 . Add (δi, hi) to LH and return hi to A as the answer.
<If (δi, ∗) ∈ LH >

Find h′ corresponding to δi from LH and return h′ to A as the answer.

RO G simulation : When A poses a query γi to RO of G, then behave as follows:
For any (δj , hj) ∈ LH , I computes y = γi ⊕ hj and checks whether c∗ = f(δj , y). If for some γj the
relation holds, then I can obtain δj = x∗ s.t. (x∗, y∗) = f−1(c∗).
<If (γi, ∗) /∈ LG >

Generate gi ∈ {0, 1}n+k1 . Add (γi, gi) to LG and return gi to A as the answer.
<If (γi, ∗) ∈ LG >

Find g′ corresponding to γi from LG and return g′ to A as the answer.

DO simulation : When A poses a decryption query ci to DO, then behave as follows:
Find (δ, h) from LH and (γ, g) from LG such that ci = f(δ, γ ⊕ h) and [g ⊕ δ]k1 = 0k1 . If there is a pair
satisfying the condition, then output [g ⊕ δ]n as the answer. Otherwise, return reject as the answer.

T O H simulation : When A poses a query h′ to T O of H, then find h′ from LH . If there are {(δ, h′)}
for h′, then return all inputs {δ} to A. Otherwise, return ⊥.

T O G simulation : When A poses a query g′ to T O of G, then find g′ from LG. If there are {(γ, g′)} for
g′, then return all inputs {γ} to A. Otherwise, return ⊥.

Challenge ciphertext : When A outputs (m0,m1), then choose random bit b and return c∗ as the
ciphertext of mb.

Finalization : When A outputs b′, if I obtained x∗ by the simulation of ROs, then output x∗. Otherwise,
choose content δ from LH and output δ.

We analyze the success probability of I. In Finalization, if x∗ has been asked by A to RO of H, I can
obtain x∗. However, A can distinguish the simulation environment from the real environment in the following
cases:

1. By replacing the challenge ciphertext with c∗, A notices that it is not valid challenge ciphertext.
2. I return reject for a decryption query in the simulation environment while the queried ciphertext is

known to be valid and real DO returns the plaintext in the real environment.

In the former case, A has to pose r∗ to RO of G or x∗⊕ (mb||0k1) to T O of G because, if A does not ask
either of these queries, G(r∗) is uniformly distributed in {0, 1}n+k1 and thus is independent from both m0

and m1. In the latter case, I fails to simulate DO for a ciphertext c such that c = f(x, y), x = (m||0k1)⊕G(r)
and y = r ⊕ H(x) only if either of events that r is asked to RO of G and x is asked to RO of H does not
occur and c is valid.

We use the following events in order to analyze the success probability of I:

– AskH : the event that query x∗ has been asked to RO of H
– AskRG : the event that query r∗ has been asked to RO of G
– AskTG : the event that query x∗ ⊕ (mb||0k1) has been asked to T O of G
– RGBad : the event that query r∗ has been asked to RO of G but the answer is different from x∗⊕(mb||0k1)
– TGBad : the event that query x∗⊕ (mb||0k1) has been asked to T O of G but the answer does not contain

r∗

19

– DBad : the event that I fails to simulate DO
– Bad = RGBad ∨ TGBad ∨ DBad

Note that RGBad implies AskRG and TGBad implies AskTG.
The success probability of I is obtained by the probability of AskH occurring that ε′ ≥ Pr[AskH] · qRH

−1.
Thus, we evaluate Pr[AskH] by splitting AskH for the event Bad as follows:

Pr[AskH] = Pr[AskH ∧ Bad] + Pr[AskH ∧ ¬Bad].

First, we evaluate the first term. Note that, Bad = RGBad∨TGBad∨DBad, Pr[RGBad] ≤ Pr[AskRG] and
Pr[TGBad] ≤ Pr[AskTG] hold.

Pr[AskH ∧ Bad] = Pr[Bad] − Pr[Bad ∧ ¬AskH]
≥ Pr[Bad] − Pr[RGBad ∧ ¬AskH] − Pr[TGBad ∧ ¬AskH] − Pr[DBad ∧ ¬AskH]
≥ Pr[Bad] − Pr[AskRG ∧ ¬AskH] − Pr[AskTG ∧ ¬AskH] − Pr[DBad ∧ ¬AskH].

Since r∗ = H(x∗)⊕ y∗ is unknown for A by ¬AskH in Exp1, Pr[AskRG∧¬AskH] ≤ qRG ·2−k0 holds. Because
of the same reason, Pr[AskTG ∧ ¬AskH] ≤ qTG · 2−(n+k1) holds. The evaluation of Pr[DBad ∧ ¬AskH] is the
same as the evaluation in [8] because T O does not update the hash lists LH and LG with any query to T O.
Thus, Pr[DBad ∧ ¬AskH] ≤ qD(2 · 2−k1 + (2qRG + 1) · 2−k0) holds. Therefore, we obtain

Pr[AskH ∧ Bad] ≥ Pr[Bad] − 2qDqRG + qD + qRG

2k0
− 2qD

2k1
− qTG

2n+k1
.

Next, we evaluate the second term. This evaluation is the same as the evaluation in [8] because we can
evaluate it without splitting the event Bad as well as [8]. Therefore, we obtain

Pr[AskH ∧ ¬Bad] ≥
(ε

2
+

1
2
− Pr[Bad]

)
− Pr[¬Bad]

2
=

ε − Pr[Bad]
2

.

From the first and second terms, and the fact that Pr[Bad] ≥ 0, we obtain

Pr[AskH] ≥ ε

2
− 2qDqRG + qD + qRG

2k0
− 2qD

2k1
− qTG

2n+k1
.

The time complexity of I is equal to the complexity of the inverter in [8]. Thus, t′ = t+ qRG · qRH ·perm.
ut

C Proof of Theorem 6

Proof. Firstly, we transform the experiment of IND-CCA for RSA-KEM to the experiment where queries to
DO and EO does not give any advantage to the adversary.

Let Exp0 be the initial experiment and Succ0 be the probability that an adversary A succeeds to guess
the bit b in Exp0. A receives (K∗

b , c∗0) as the challenge such that c∗0 = r∗e for r∗.
Let Exp1 be the same experiment as Exp0 except when A queried c∗0 to DO before receiving c∗0 as the

challenge ciphertext. Exp1 aborts in the above case. Let Succ1 be the probability that A succeeds to guess
the bit b in Exp1 and E1 be the event that the experiment aborts. Then, the probability that the event E1

occurs is equal or lower than qD/n because A has no information about the challenge. Thus, we obtain that
|Succ1 − Succ0| ≤ qD/n.

Let Exp2 be the same experiment as Exp1 except that the challenge (K∗
b , c∗0) is generated in the beginning

of the experiment. Let Succ2 be the probability that A succeeds to guess the bit b in Exp2. Then, we trivially
obtain that |Succ2 − Succ1| = 0 because the challenge is determined independently from the behavior of A.

Let Exp3 be the same experiment as Exp2 except that EO returns randomly chosen value z′ ∈ {0, 1}k

and adds (x,K∗
b , z′) to the EO list LEO when A poses query (x,K∗

b) for some x to EO. Then, we consider a
distinguisher D which tries to distinguish Exp2 from Exp3.

20

Lemma 6. If the output of RO H is independently chosen from the input, D cannot distinguish Exp2 from
Exp3.

Proof. We show that we can construct an algorithm ALG which can distinguish an output of RO H from a
random value if there exists D which can distinguish Exp2 from Exp3. The concrete construction of ALG is
as follows.

Step 1 : Simulate Exp3 for D, as the adversary, except when D poses query (x, K∗
b) for some x to EO.

Step 2 : On receiving query (x,K∗
b) for some x to EO, forward r∗||x to RO H, receive z as the output

where z is H(r∗||x) or a random value rand, and return z to D.

Step 3 : If D decides that he interacts with Exp2, decide that z is H(r∗||x). Otherwise, decide that z is
rand.

The interface of D is identical with Exp2 when z is H(r∗||x). Also, the interface of D is identical with Exp3
when z is rand. Therefore, if D succeeds, then ALG also succeeds.

ut

Thus, Exp2 and Exp3 is indistinguishable for the adversary A. Then, we obtain that |Succ3 − Succ2| = 0.
Let Exp4 be the same experiment as Exp3 except when A queried r∗ to RO. Exp4 aborts in the above

case. Let Succ4 be the probability that A succeeds to guess the bit b in Exp4 and E4 be the event that the
experiment aborts by this case. Then, to evaluate the probability that the event E4 occurs, Pr[E4], we show
that Pr[E4] is equal or lower than the probability that RSA problem is broken as follows.

Lemma 7. If the event E4 occurs with the probability ε′′ in time t′′, we can construct an inverter I that
breaks RSA problem with the probability ε′ in time t′ as follows:

t′ = t′′ + (qRH + qEH) · expo,

ε′ = ε′′.

Proof. We assume that A does not repeat previous hash queries to the ERO H or previous decryption queries
to the DO. Let LH be the local hash list of H. LH consists of tuples (δi, yi, hi) (0 ≤ i ≤ qRH +qD +qEH). Let
LEO be the local EO list of H. LEO consists of tuples (δi, hi, zi) (0 ≤ i ≤ qEH). The concrete construction
of I is as follows.

Input : (n, e, y∗) s.t. n is RSA modulus, e is the exponent where gcd(e, φ(n)) = 1 and y∗ R← Zn

Output : x∗ s.t. x∗ ≡ y∗d (mod n)

Input public key : Send (n, e) to A in Exp4 as the input public key.

DO simulation : When A poses a decryption query yi to DO, then behave as follows:
Find (δi, yi, hi) from LH such that yi = δe

i . If there is a tuple (δi, yi, hi) satisfying the condition, then
return hi as the answer. Otherwise, generate hi ∈ {0, 1}k, add (∅, yi, hi) to LH and return hi as the
answer.

RO simulation : When A poses a query δi to RO, then behave as follows:
<If yi = y∗ s.t. yi = δe

i mod n >
Output δi as x∗ and halt.

<If (δi, ∗, hi) ∈ LH >
Return hi to A as the answer.

<If (δi, ∗, ∗) /∈ LH and (∅, yi, hi) ∈ LH s.t. yi = δe
i mod n >

21

Replace (∅, yi, hi) to (δi, yi, hi) in LH and return hi to A as the answer.
<If (δi, ∗, ∗) /∈ LH and (∅, y, h) /∈ LH s.t. y = δe

i mod n >
Compute yi = δe

i mod n, generate hi ∈ {0, 1}k, add (δi, yi, hi) and return hi to A as the answer.

EO simulation : When A poses an extension attack query (δi, hi) to EO, then behave as follows:
Find (δi, hi, ∗) from LEO. If there is a tuple (δi, hi, zi) satisfying the condition, then return zi. Else if
there is only one tuple (δ′, ∗, hi) in LH , then generate zi ∈ {0, 1}k, compute yi = (δ′||δi)e mod n, add
(δ′||δi, yi, zi) to LH and (δi, hi, zi) to LEO, and return zi. Otherwise, generate zi ∈ {0, 1}k add (δi, hi, zi)
to LEO, and return zi.

Challenge ciphertext : When A outputs (state), then compute (K∗, y′) by the encryption procedure
and return (K∗, y∗) as the challenge.

We determine the success probability of I. In RO simulation, if yi = y∗ such that yi = δe
i mod n holds,

I successfully breaks RSA problem. This event is same as E4 in Exp4. Also, it is clear that I perfectly
simulates Exp4 for A. Therefore, we obtain

ε′ = ε′′.

I computes at most qRH + qEH exponentiations modulo n. Thus, we obtain

t′ = t′′ + (qRH + qEH) · expo.
ut

Exp3 and Exp4 are identical until E4 occurs. Thus, |Succ4 − Succ3| = ε′.
A can obtain no information about the random bit b because the key K∗

b is independent from information
which A can obtain in Exp4. Therefore, Succ4 = 1/2. Since Succ0 ≤ |Succ1 − Succ0| +|Succ2 − Succ1|
+|Succ3 − Succ2| +|Succ4 − Succ3| +Succ4, Succ0 ≤ ε′ + qD

n + 1/2. Hence, ε′ ≥ ε − qD

n .
ut

D Security Analysis of FDH in LRO Model

Full Domain Hash (FDH) [2] is secure signature scheme in the RO model. In this section, we recall the
security of FDH in the LRO model.

D.1 Security Notion of Signature Schemes

First, we briefly review the model and the security notion of signature schemes.

Definition 9 (Model for Signature Schemes).
A signature scheme consists of following 3-tuple (SGen, Sign, Ver):

SGen : a key generation algorithm which on input 1k, where k is the security parameter, outputs a pair
of keys (vk, sk). vk and sk are called verification key and signing key respectively.

Sign : a signature generation algorithm which takes as input the signing key sk from a message m, outputs
a signature σ.

Ver : a verification algorithm which takes as input the verification key vk, a message m and a signature
σ, output a bit 1 or 0.

Generally, we say that a signature scheme is secure if the scheme satisfies existentially unforgeability
under adaptively chosen message attacks (EUF-ACMA). The definition of EUF-ACMA is as follows.

22

Definition 10 (EUF-ACMA).
A signature scheme is (t, ε)-EUF-ACMA if the following property holds for a security parameter k;
For any forger F , Pr[(vk, sk) ← SGen(1k); (m,σ) ← FSO(sk,·)(vk); 1 ← Ver(vk,m, σ)] < ε, where F

never posed the message m from SO and runs in at most t steps. (F can obtains signatures σ1, . . . , σn of a
F ’s own chosen messages m1, . . . ,mn from a signing oracle SO and F cannot output a new pair of message
m and its signature σ, where m 6∈ {m1 . . . ,mn}.)

D.2 FDH

FDH is based on trapdoor one-way permutations. The description of FDH is as follows:

Key generation : For input k, output a signing key (sk = f−1) and a verification key (vk = f) such that
(f, f−1, Dom) ← G(1k) where Dom is the domain of f and G is a trapdoor permutation generator.

Signature generation : For input a message m ∈ {0, 1}∗, compute y = H(m) and output a signature
σ = f−1(y) where H : {0, 1}∗ → Dom is a hash function.

Signature verification : For inputs a message m and a signature σ, compute y′ = f(σ), verify y′ ?= H(m).
If the verification is valid, output 1, otherwise, output 0.

In [2], security of FDH in the RO model is proved as follows;

Lemma 8 (Security of FDH in the RO model [2]). If a trapdoor permutation f is one-way, then FDH
satisfies EUF-ACMA where H is modeled as the RO.

D.3 Security of FDH in the LRO model

We can also obtain the security of FDH in the LRO model like in the RO model.

Lemma 9 (Security of FDH in the LRO model [18]). If a trapdoor permutation f is one-way, then
FDH satisfies EUF-ACMA where H is modeled as the LRO.

Proof. Let F be a forger which breaks EUF-ACMA of FDH. We construct an inverter I which breaks one-
way security of the trapdoor permutation f , i.e., given (f,Dom, y) I outputs f−1(y). We suppose that F
does not repeat the same query as previous hash queries to the leaky random oracle H or as previous signing
queries to the signing oracle SO. Let LH be the local hash list of the leaky random oracle H. LH consists
of tuples (xi,H(xi), zi) (0 ≤ i ≤ qH + qS) where zi is an intermediate value.3 The concrete construction of
I is as follows. Note that, “ ∗ ” in a tuple (x, ∗, ∗) means wildcard.

Input : (f,Dom, y) s.t. (f, f−1, Dom) ← G(1k) and y
R← Dom

Output : f−1(y)

Initialization : i∗
R← {0, qH − 1}, LH ←⊥ (⊥ is null string), i ← 0.

Input public key : Send f to F as the input.

RO simulation : When F asks a hash query xi to H, then behave as follows:
<If ((xi, ∗, ∗) /∈ LH) ∧ (i∗ 6= i) >

Generate zi ∈ Dom and compute wi = f(zi). Add (xi, wi, zi) to LH and return wi to F as the answer.
i ← i + 1.
<If ((xi, ∗, ∗) /∈ LH) ∧ (i∗ = i) >

3 The hash list which F can access has the different form (i.e., the hash list consists of (xi, H(xi))) than LH because
zi is only used for the proof and does not appear in the real protocol.

23

Add (xi, y, error) to LH and return y to F as the answer. i ← i + 1.
<If (xi, ∗, ∗) ∈ LH >

Find w′ corresponding to xi from LH and return w′ to F as the answer. i ← i + 1.

SO simulation : When F asks a signing query xi to SO, then behave as follows:
<If (xi, ∗, ∗) ∈ LH >

Find z′ corresponding to xi from LH . If z′ = error, then abort. Otherwise, return z′ to F as the
answer. i ← i + 1.
<If (xi, ∗, ∗) /∈ LH >

Generate zi ∈ Dom and compute wi = f(zi). Add (xi, wi, zi) to LH and return zi to F as the answer.
i ← i + 1.

LO simulation : When F asks a leak query to H, then hand all pairs of input and output {(x,w)} to
F .4

Finalization : When F outputs (x∗, σ∗), then check y
?= f(σ∗). If y = f(σ∗), then output σ∗ as f−1(y).

Otherwise, abort.

We show the success probability of I.
In LO simulation, I has to return the hash list to F as this simulation is indistinguishable from the

output of the leaky random oracle. Then, each output value w is uniformly distributing on Dom because z
is uniformly chosen from Dom and f is a permutation. Thus, this simulation is perfect.

Abort1 denote the event which I aborts for any query in SO simulation, Abort2 denote the event which
I aborts in Finalization and let Abort = Abort1 ∨ Abort2. Then, we estimate the probability which I does
not abort (Pr[¬Abort1] and Pr[¬Abort2]).

By the simulation, the event which I aborts in SO simulation occurs with 1
qH+qS

per every query to the
signing oracle. Therefore, the probability that the event which I does not abort in SO simulation occurs for
all queries to the signing oracle (Pr[¬Abort1]) is (1 − 1

qH+qS
)qS .

By the simulation, the event which I does not abort in Finalization when I does not abort in SO
simulation occurs with 1

qH+qS+1 because the event occurs only in the case of that y = f(σ∗) holds.
Thus, we obtain

ε′ = Pr[VerFDH(x∗, σ∗, f) = 1 ∧ ¬Abort]
= Pr[VerFDH(x∗, σ∗, f) = 1|¬Abort] · Pr[¬Abort]
= ε · Pr[¬Abort]
= ε · Pr[¬Abort1 ∧ ¬Abort2]
= ε · Pr[¬Abort1] Pr[¬Abort2|¬Abort1]

= ε ·
(
1 − 1

qH + qS

)qS · 1
qH + qS + 1

where VerFDH is the verification algorithm of FDH, ε′ is the success probability of I and ε is the success
probability of F .

ut

E Proof of Theorem 7

Proof. For any attacker A on the MDh model, we will construct an attacker A′(= S(A)) on the RO model,
where the simulator S can guarantee that MDh <α ROS . Based on MDh <α ROS , we can get that the
4 Note that, do not hand intermediate value z.

24

difference between the advantage of the attacker A′ and that of A is negligible. If the cryptosystem C is
secure in the RO model, the advantage of the attacker A is negligible. Then the advantage of the attacker
A on MDh model is also negligible. So the cryptosystem C is at least as secure in the MDh model as in the
RO model.

In fact the above proof is similar with the proof of Theorem 2.1 in [6] for the general framework.
ut

25

