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Abstract. Let IF be a finite field and suppose that a single element of IF is used as an authenticator
(or tag). Further, suppose that any message consists of at most L elements of IF. For this setting, usual
polynomial based universal hashing achieves a collision bound of (L− 1)/|IF| using a single element of
IF as the key. The well-known multi-linear hashing achieves a collision bound of 1/|IF| using L elements
of IF as the key. In this work, we present a new universal hash function which achieves a collision bound
of mdlogm Le/|IF|, m ≥ 2, using 1 + dlogm Le elements of IF as the key. This provides a new trade-off
between key size and collision probability for universal hash functions.
Keywords: universal hash function, polynomial based hashing.

1 Introduction

Universal hash functions are of fundamental importance in cryptography and computer science [13,
5]. Being of practical importance, there have been efforts [7, 11, 4, 1] to design hash functions which
are very fast.

Polynomial based universal hashing over a finite field IF has a collision bound of (L−1)/|IF| for
hashing messages consisting of L elements of IF. Both the authenticator (or tag) and the key are
single elements of IF and computing the digest requires L− 1 multiplications over IF. Bernstein [2]
defined a new class of polynomials for which the number of multiplications can be halved at the
negligible cost of increasing the collision bound to (2L − 1)/|IF|. The authenticator and the key
are still single elements of IF. In contrast, for the well-known multi-linear hash function [6, 5], the
collision bound is 1/|IF| at the cost of making the key length equal to that of the message. The
question that we ask is whether there is some intermediate trade-off?

To this end, we first propose a general construction of universal hash function. This construction
builds a hash function working on arbitrary length strings from hash functions working on fixed
size domains. In this sense, the new construction can be considered to be a domain extender for
universal hash function. The basic idea is to take mutually independent hash functions f1, . . . , f`
and combine them using a multi-level construction which uses one hash function at each level.
Hashing messages with variable lengths requires an additional subtlety which is taken care of by
using another XOR universal random function ψ.

Instantiating the functions fi using usual polynomial hashing gives rise to a multi-variate poly-
nomial. The collision bound is mdlogm Le/|IF|, where L is as before the maximum number of
elements of IF in any message and m can be any value ≥ 2. The number of multiplications required
to compute the tag remains the same as that required for polynomial hashing. The trade-off is that
the key consists of 1 + dlogm Le elements of IF. For 128-bit tags corresponding to IF = GF (2n),



Table 1 compares the collision probabilities and key sizes of the above mentioned hashing methods.
For a collision bound of 2−96, polynomial hashing is better since it requires a smaller key. On the
other hand, with the new hashing method, using keys consisting of 3, 5, 9 and 17 elements, it is
possible to progressively reduce the collision probabilities. This underlines the new trade-offs that
are made possible by the new method.

Table 1. Comparative study of collision bounds and key sizes of different hashing methods for 128-bit tags and
L = 232. The key size is given in terms of the number of elements of GF (2128) that is required.

method coll. bnd. key sz.

poly hash 2−96 1

multi-linear hash 2−128 232

new hash with m = 22 2−122 17

new hash with m = 24 2−121 9

new hash with m = 28 2−108 5

new hash with m = 216 2−111 3

new hash with m = 232 2−96 2

The basic multi-level construction can also be combined with the class of polynomials due
to Bernstein [2] based on earlier work due to Rabin and Winograd [8], which we call the BRW
polynomials. More interestingly, it is possible to instantiate some of the fi’s using BRW polynomials
and the others using usual polynomials.

Prior and related works. Universal hash functions were introduced in [5] and have been exten-
sively studied since then. See for example [13, 3, 12, 9].

Using results from Stinson [12], it can be shown that if f1 and f2 have collision bounds ε1 and
ε2 respectively, then the function f2(f1(x1, . . . ,xk)) has a collision bound ε1 + ε2. We develop this
idea further into a multi-level hashing algorithm which can handle variable and arbitrary length
messages.

The basic idea of our construction is to format the message into elements of IF and then
arrange the elements themselves into groups. Applying f1 to each group again provides a sequence
of elements of IF which are again arranged into groups and f2 is applied to each group. The process
is continued until we end with a single element of IF. Analysis is relatively straightforward when
messages consists of a fixed number of elements of IF. Difficulty occurs when we are interested in
hashing variable length bit strings. For one thing, we need to consider conversion from elements
of IF to bit strings and vice versa. More subtle, however, is the requirement of handling length
variability and partial blocks. We believe that the new construction of the complete hash function
is a non-trivial extension of some basic results from [12].

2 Preliminaries

Let Λ be a positive integer such that all messages that we consider are of length at most Λ bits.
(Note that we used L to denote the maximum number of elements of IF that a message can consist
of, so that, Λ ≥ Ldlog2 IFe.)
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A random (but, not necessarily uniform random) function f : {0, 1}Λ → {0, 1}t is said to have
a collision bound of ε, if for distinct x, x′ ∈ {0, 1}Λ, Pr[f(x) = f(x′)] ≤ ε. Such a function is said
to be ε-almost universal (ε-AU). The function f is said to be ε-almost XOR universal (ε-AXU) if
for distinct x, x′ ∈ {0, 1}Λ and any α ∈ {0, 1}t, Pr[f(x) ⊕ f(x′) = α] ≤ ε. A weaker notion of AU
is to require that the collision bound holds only if the distinct strings x, x′ have equal lengths. Let
IF be a finite field. Then a random function f : ∪Li=1IFi → IF is defined to be ε-AU or ε-AXU in a
manner similar to above.

Elements in the domain of f are called messages and the value f(x) is called the digest (or
authenticator) of x obtained using f . A random function f can be realised from a function family
{fK}K∈K, where K is called the key space. A key K is chosen uniformly at random from K and
then f is set to fK . The randomness in f comes from the random choice of K and hence, the
probabilities mentioned above are over the random choice of K.

For (x1, . . . , xr) ∈ IFr define polyα(x1, . . . , xr) = xr + xr−1α + · · · + x1α
r−1. Using Horner’s

rule polyα(xr, . . . , x1) can be evaluated using (r− 1) multiplications (over IF) and can be shown to
be (r − 1)/|IF|-AU for equal length messages. Further, αpolyα(x1, . . . , xr) is r/|IF|-AXU for equal
length messages and can be evaluated using r multiplications.

Bernstein [2] has introduced a class of polynomials which builds upon previous work due to
Rabin and Winograd [8]. We call these the BRW polynomials. For n ≥ 2, BRWα(x1, . . . , xr) is
(2r − 1)/|IF|-AU and can be evaluated using br/2c multiplications and lg r squarings (to compute
the powers α2, α4, . . .). Further, αBRWα(x1, . . . , xr) is 2r/|IF|-AXU.

We will need another kind of AXU function. A random function ψ : {1, . . . , r} → GF (2t) is said
to be 1/2t-AXU if for distinct i, j with 1 ≤ i, j ≤ r and any α ∈ GF (2t), Pr[ψ(i)⊕ψ(j) = α] = 1/2t.

Let τ(x) be a primitive polynomial of degree t over GF (2) and suppose that this τ(x) is used
to define GF (2t). Let κ be a uniform random element of GF (2t) and define ψ : i 7→ xiκ mod τ(x).
The element κ is the key to the function ψ. It is not difficult to show that such a ψ satisfies 1

2t -AXU
property if r ≤ 2t − 2. A general definition of ψ and a more efficient instantiation using word
oriented LFSRs can be found in [10].

3 The New Construction

Let IF be a finite field and s and t be integers such that 2s ≤ #IF ≤ 2t. Any s-bit element can be
encoded into an element of IF and any element of IF can be encoded into a t-bit string. The values
of s and t would depend on the choice of IF and the representation of the elements of IF. If IF is a
binary extension field, then we can also have s = t and IF = GF (2t). Given an s-bit string str, an
injective function toElem encodes str into an element of IF; similarly, given an element z ∈ IF, an
injective function toStr encodes z into a t-bit string.

Messages to be hashed are bit strings of lengths greater than or equal to zero (and of maximum
length Λ bits). Given a message msg of length n bits, an injective function pad maps msg 7→
msg||0k||bins(n), where k is the minimum non-negative integer such that n + k is a multiple of
s and bins(n) is the s-bit binary representation of n. Suppose pad(msg) = str1|| · · · ||strr for some
r ≥ 1 and each stri is a string of length s. The function parse(msg) encodes each stri into an element
of IF, i.e., parse(msg) = (toElem(str1), . . . , toElem(strr)). For x ∈ IFr, let #x = r.

Let m ≥ 2 be a fixed positive integer and let ` be an integer such that for any message msg,
#parse(msg) ≤ m` ∆= L. Let f1, . . . , f` be mutually independent random functions where each
fi : Dm → IF with Dm = ∪mi=1IFi having collision bound εi for equal length messages. Here εi could
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Fig. 1. Definition of the function reduce(f,x).

reduce(f,x):
1. parse x as x = (x1, . . . ,xk−1,xk),

where #xi = m for 1 ≤ i ≤ k − 1 and 1 ≤ #xk ≤ m;
2. return (f(x1), . . . , f(xk−1), . . . , f(xk)).

Fig. 2. Definition of multi-level hashing.
hash((f , ψ),msg):
1. let parse(msg) equal x ∈ IFr;
2. i = 1; z = x;
3. while #z > m do
4. z = reduce(fi, z); i = i+ 1;
5. end do;
6. return toStr(fi(z))⊕ ψ(r).

depend on m and for polynomial hashing it indeed does. Note that 1/2t ≤ 1/#IF ≤ εi for 1 ≤ i ≤ `.
We also need a random function ψ : {1, . . . , `} → GF (2t) such that for 1 ≤ i, j ≤ ` with i 6= j,
Pr[ψ(i) ⊕ ψ(j) = α] = 1/2t for any α ∈ GF (2t). This ψ is to be independent of f1, . . . , f`. The
functions f1, . . . , f` and ψ can be instantiated as mentioned in Section 2 and we provide further
discussion later.

Given a function f : Dm → IF, the function reduce(f,x) with x ∈ IFi for some i, is defined in
Figure 1. Using reduce and a sequence of functions f = (f1, . . . , f`) as mentioned above, we define a
hash function hash((f , ψ),msg) as given in Figure 2. The message msg to be hashed is a bit string
of length greater than or equal to zero.

Note that reduce does not actually need to count the number of blocks in x; the requirement is
to divide x into m-element groups with the last group possibly having less than m elements. Online
processing is possible using the following strategy. Start the computation at the lowest level. After
m elements have been processed, one element of the next level is available for processing. Each
group of m elements at the bottom level gives rise to one element at the next level and hence,
the processing at the next level can proceed in a synchronised manner with that of the bottom
level. The rate at which this level processes will be 1/m times the rate at which the bottom level
processes. This is not particular to the bottom and the last-but-one level. The same strategy can
be applied to higher levels, i.e., the processing at level i proceeds at a rate of 1/m of the processing
at level i− 1.

The requirement will be at most ` variables to store the intermediate values at the ` levels and
additionally ` counters, one for each level, to keep track of the fact that a group of m elements
have been processed at that level. The counter for each level would have to be reset to 0 after every
group of m elements have been processed at that level. The memory requirement for processing a
message having r = #parse(msg) is proportional to 2dlogm re.

Theorem 1. Let msg,msg′ be messages of lengths n, n′ ≥ 0 such that

1. msg 6= msg′,
2. 1 ≤ #parse(msg),#parse(msg′) ≤ m`, and
3. y = hash((f , ψ),msg), y′ = hash((f , ψ),msg).

Then Pr[y = y′] ≤ ε1 + · · ·+ ε` where εi is the collision probability of fi.
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Note. The requirement on fi is that they are AU for equal length messages, whereas the theorem
states that hash is AU even for variable length messages.
Proof. Let x = parse(msg), r = #x and j be such that mj−1 ≤ r ≤ mj . Then the functions
f1, . . . , fj are used by hash on input msg. In the algorithm to compute hash, let z0 = x and denote
the output of reduce in the ith iteration by zi, i.e.,

x = z0, z1 = reduce(f1,m, z0), . . . , zj = reduce(fj ,m, zj−1).

The primed variables denote the similar quantities for msg′.

Case r 6= r′. In this case,

Pr[y = y′] = Pr[toStr(zj)⊕ ψ(r) = toStr(z′j′)⊕ ψ(r′)]
= Pr[ψ(r)⊕ ψ(r′) = toStr(zj)⊕ toStr(z′j′)]
(a)
=

1
2t

≤ 1
|IF|
≤ ε1 + · · ·+ ε`.

The step (a) follows form the XOR universal property of ψ.

Case r = r′. This implies that j = j′ and from the definition of hash, y = y′ if and only if zj = z′j .
The lengths of pad(msg) and pad(msg′) are equal; if n 6= n′, then the last s bits of pad(msg)

and pad(msg′) are not equal; if n = n′, then the equal length messages msg and msg′ themselves
are not equal. In both cases, we have x 6= x′.

For 0 ≤ i ≤ j, let Eqi be the event zi = z′i. We are interested in the event Eqj and since z0 =
x 6= x′ = z′0, the probability of Eq0 is 0. Write zi = (zi,1, . . . , zi,li) with #zi,k = m for 1 ≤ k ≤ li−1
and 1 ≤ #zi,li ≤ m. Then we can write zi+1 = (yi+1,1, . . . , yi+1,li) where yi+1,k = fi+1(zi,k). Since
r = r′, we have li = l′i for 1 ≤ i ≤ `. Now the event Eqi+1 can be written as

∧li
k=1

(
yi+1,k = y′i+1,k

)
.

The event Eqi means that (zi,1, . . . , zi,li) 6= (z′i,1, . . . , z
′
i,li

) so that for at least one k, zi,k 6= z′i,k and
then for this k, Pr[fi+1(zi,k) = fi+1(z′i,k)] ≤ εi+1 by the collision bound on fi+1. So,

Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi

 = Pr

 li∧
k=1

(fi+1(zi,k) = fi+1(z′i,k))|Eqi


≤ min

1≤k≤li
Pr[fi+1(zi,k) = fi+1(z′i,k)|Eqi]

≤ εi+1. (1)

For 0 ≤ i ≤ j − 1,

Pr[Eqi+1] = Pr[zi+1 = z′i+1] = Pr

 li∧
k=1

(yi+1,k = y′i+1,k)


= Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi

Pr[Eqi]
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+ Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi

Pr[Eqi]

= Pr[Eqi] + Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi

Pr[Eqi]

≤ Pr[Eqi] + Pr

 li∧
k=1

(yi+1,k = y′i+1,k)|Eqi


≤ Pr[Eqi] + εi+1.

The last step follows from (1). Extending this we obtain

Pr[Eqj ] ≤ Pr[Eqj−1] + εj ≤ · · · ≤ Pr[Eq0] + εj + · · ·+ ε1 ≤ εj + · · ·+ ε1.

ut

XOR Universal. The hash function defined in Figure 2 provides almost universality. For certain
applications, the requirement is to obtain XOR universality. It is possible to modify the algorithm
to obtain XOR universality. Suppose each f is instantiated using either poly or BRW. As mentioned
earlier, both αpolyα and αBRWα are XOR universal. We refer to these variants by fXOR.

Suppose in algorithm hash, mj−1 < r ≤ mj . To obtain XOR universality, in Figure 2, the last
line is changed to

return toStr(fXOR
i (z))⊕ ψ(r).

This means that the message is processed with f1, . . . , fj−1, f
XOR
j instead of being processed with

f1, . . . , fj−1, fj . In other words, for the first (j−1) layers the usual functions are used, while for the
last layer we use the variant which is XOR universal. It is not difficult to show that this achieves
XOR universality of the entire construction.

3.1 Instantiating ψ and f = (f1, . . . , f`)

Let α1, . . . , α` be independent and uniform random elements of IF. Further, let α be a uniform
random element of GF (2t) which is independent of α1, . . . , α`.

The key for the function ψ is α and fi is instantiated as either polyαi
or as BRWαi . The collision

bound and the number of multiplications required depend on the instantiations of fi.

Case f as poly. In this case, each fi has collision bound (m − 1)/|IF| and from Theorem 1, the
collision bound for hash((f , ψ),msg) is `(m− 1)/|IF| ≤ mdlogm Le/|IF| where any message consists
of at most L elements of IF. The key consists of 1 + dlogm Le elements of IF. The number of
multiplications required by hash to process msg with #parse(msg) = r equals r − 1.

Case f as BRW. Using Theorem 1, the collision bound is `(2m − 1)/|IF| and the key size is the
same as for poly. The number of multiplications required to process msg with parse(msg) = r is at
most equal to

n

2
×
(
mj+1 − 1
mj(m− 1)

)
=
n

2
×
(

1 +
1

m− 1

(
mj − 1
mj

))
.
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Here j is the unique positive integer such that mj−1 < r ≤ mj .
Let n0 = n and ni = dni−1/me for 0 < i ≤ s with ns = 1. The number of multiplications equals

⌊
m

2

⌋ j∑
i=1

(ni − 1) +
⌊
r1
2

⌋
+ · · ·+

⌊
rs
2

⌋
≤
⌊
n0

2

⌋
+
⌊
n1

2

⌋
+ · · ·+

⌊
ns−1

2

⌋
.

If n0 = mj for some j, then the number of multiplications required is m
2

(
mj−1
m−1

)
.

Combination of poly and BRW. It is possible to combine the two options, i.e., instantiate some
of the f ’s using poly and the other f ’s using BRW. One reason for doing this could be the issue of
pre-computation. The computation of polyα can be speeded up using a pre-computed table based on
α and this cannot be done for BRWα. So, one option is to use poly to instantiate f1 while f2, . . . , f`
are instantiated using BRW. Since most of the multiplications are done at the lowest level, the
pre-computed table can be used to speed-up these multiplications. Further, keeping multiplication
tables for each αi can be costly in terms of storage and so one can use BRW hashing for the higher
levels since this requires lesser number of multiplications.
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