
Anonymity in Shared Symmetric Key Primitives

Gregory M. Zaverucha and Douglas R. Stinson
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo ON, N2L 3G1, Canada

{gzaveruc, dstinson}@uwaterloo.ca

February 4, 2009

Abstract

We provide a stronger definition of anonymity in the context of shared
symmetric key primitives, and show that existing schemes do not provide
this level of anonymity. A new scheme is presented to share symmetric
key operations amongst a set of participants according to a (t, n)-threshold
access structure. We quantify the amount of information the output of
the shared operation provides about the group of participants which col-
laborated to produce it.

1 Introduction

In this paper, we consider the anonymity provided by schemes for sharing sym-
metric key operations such as block ciphers or message authentication codes
(MACs). We will focus on threshold access structures. Let P be a set of partic-
ipants. A (t, n)-threshold access structure on P is defined by Γ, which is the set
of all authorized sets, namely Γ = {A ⊆ P : |A| = t}. Put simply, any subset
of participants of size at least t is authorized. In this model, the keys are dis-
tributed by an entity called the receiver, who will later receive a message from
some A ∈ Γ.

One could simply distribute key shares according to a (t, n) secret sharing
scheme, however, the participants must actually learn the key in order to use it
for a symmetric operation. To avoid this requires an approach which uses the
shares directly.

Work on sharing block ciphers was initiated by Brickell et al. [4], using a vari-
ant of secret sharing called sequence sharing. Subsequently, improved schemes
for distributing block ciphers using cumulative arrays and perfect hash families
were studied by Martin et al. in [9]. They introduce generalized cumulative ar-
rays (GCAs) and give some efficient solutions (in the number of keys). A second
paper by Martin et al. extends [9] to consider distributing the computation of
MACs as well [10].

1



If a set of participants A ∈ Γ collaborates to encrypt a message, what infor-
mation does the receiver learn about A? Informally, anonymity is provided if
the identity of A is kept secret from the receiver. We will define anonymity for
groups of participants as well as individual participants in Section 2.

In addition to shared block ciphers and MACs, schemes using generalized
cumulative arrays have been used in secret sharing [8] and for sharing pseudo
random functions [18]. A GCA is defined below.

Definition 1.1. A generalized cumulative array (GCA) is a set Y = {y1, . . . , ym},
a partition of Y , say {K1, . . . ,Kv}, a set of subsets of Y , denoted by B =
{B1, . . . , Bn}, and an integer t, such that the following properties are satisfied.

(i) For any t-set A ⊆ B, Ki ∈
(⋃

B∈A B
)

for at least one i ∈ [1, . . . , v].

(ii) For any set A′ ⊆ B with |A′| < t, Kj 6∈
(⋃

B∈A′ B
)

for all j ∈ [1, . . . , v].

When |Bi| = ` for all Bi ∈ B, the GCA is `-uniform. In this paper we
consider only `-uniform GCAs for (t, n)-threshold access structures, and adopt
the notation GCA(t, n; `, v). In the schemes we consider, Y is a set of keys, and
each participant is given one of the sets in B.

Long et al. explore GCAs in the context of secret sharing and give upper
and lower bounds for existence of GCAs [8]. Martin and Ng [11] also give
constructions of GCAs and metrics to describe the efficiency of GCAs. The
best construction for threshold access structures in both papers uses perfect
hash families.

Definition 1.2. Let X be a set of size n, and Y be a set of size m. An (`;n, m)-
hash family is a collection F of ` functions from X to Y . F is called a perfect
hash family of strength t if for any distinct inputs c1, . . . , ct ∈ X, there exists
some f ∈ F such that f(ci) 6= f(cj) for all i 6= j, 1 ≤ i, j ≤ t. We use the
notation PHF(`;n, m, t).

We will usually depict a PHF(`;n, m, t) as an `× n array populated with m
symbols. Each column represents an element xj ∈ X, and each row is defined
by a function. The (i, j)-th entry is defined to be fi(xj). This array has the
property that within any ` × t subarray, there is a row containing t distinct
elements.

A PHF(`;n, t, t) naturally defines a GCA(t, n; `, t) as follows. Let Y =
{(i, j) : i ≤ `, j ≤ t}, and Ki = {(i, 1), . . . , (i, t)}. Each Bi ∈ B is a column
of the matrix representation of the PHF, along with row indices i.e., Bk =
{(i, fi(k)) : 1 ≤ i ≤ `}.

Property (i) is satisfied since for any A = {Bi1 , . . . , Bit}, there will be some
f such that f(i1) 6= . . . 6= f(it) and hence A will have t distinct values in one
row, and therefore contain some Ki. However, A′ =

{
Bi1 , . . . , Bit−1

}
has at

most t−1 distinct values at each row and therefore cannot cover any Ki. Hence
property (ii) is satisfied as well.

Long et al. [8] prove that the PHF construction gives asymptotically optimal
GCAs. Since practical and efficient constructions for GCAs are only known for

2



threshold access structures, our anonymity study will focus on threshold GCAs
constructed from PHFs as described above. We now give a small example of
this construction.

Example 1.3. Let f1, f2 be a PHF(2; 4, 2, 2):

1 2 1 2
1 1 2 2

.

The construction described above is used to construct a GCA(2, 4; 2, 2), where
Y = {(1, 1), (1, 2), (2, 1), (2, 2)}, K1 = {(1, 1), (1, 2)} ,K2 = {(2, 1), (2, 2)}.

B1 B2 B3 B4

(1, f1(1)) (1, f1(2)) (1, f1(3)) (1, f1(4))
(2, f2(1)) (2, f2(2)) (2, f2(3)) (2, f2(4))

Since the schemes we will present assign Bi from the GCA to Pi for all
Pi ∈ P, it makes sense to talk about a “column of keys” given to Pi and a “row
which separates A ∈ Γ”. If row r separates A ∈ Γ, then Kr can be used as a
key in a threshold operation.

1.1 Sharing Symmetric Operations

There are a few possible approaches to share a symmetric key primitive amongst
a group of participants with a (t, n)-threshold access structure. We briefly review
XOR-based approaches, examined in detail for block ciphers in [10] and for
MACs in [6, 9]. An alternative is to use sequences or cascade ciphers (as in [4, 5]);
for details on this approach, see [10]. Sharing using XOR has the advantage that
the steps in the inverse operation need not be performed in the same order as
the forward operation.

Our presentation is specialized to the (t, n)-threshold access structure, but
these techniques are also applicable to general access structures. The methods
are generic, in that they can be used with any secure block cipher or MAC, and
the resulting shared primitives are at least as secure as the underlying function.

Let K be a keyspace, let M be a message space, let T be the set of authenti-
cation tags and let F : K×M→ T be a secure MAC. Suppose Kr = (k1, . . . , kt)
is a set of keys held by some A ∈ Γ. The t-fold XOR MAC, F t : Kt ×M→ T
is defined as follows:

F t(k1, . . . , kt,m) =

(
t⊕

i=1

F (ki,m), r

)
.

The index r is also included for use during verification, in schemes with multiple
keys Ki. To verify the tag (σ, r) on the message m, the verifier computes
F (Kr,m) = (σ′, r) and accepts the tag if σ = σ′. When referring to a key of F t

we mean an element of Kt, and refer to elements of K as key components. The
following lemma proves that F t is at least as secure as F .

3



Lemma 1.4 (Lemma 1, [10]). If F is a secure MAC, then F t is a secure MAC
as well. Moreover, an adversary can generate a forged MAC for F t if and only
if they know all key components (k1, . . . , kt).

A similar construction is possible for block ciphers. Let E : K ×M → C
be a secure encryption function where C is the set of ciphertexts. A group of
participants A ∈ Γ can encrypt a message using Kr = (k1, . . . , kt) with

Et(k1, . . . , kt,m, n0) =

(
m

t⊕
i=1

E(ki, n0), n0, r

)
,

where n0 is a random nonce. Further details of these constructions and security
proofs are given in [9, 10]. In this paper we will present schemes and give
examples using a shared MAC; however, our results can also be applied to
shared block ciphers.

1.2 The GCA-MAC Authentication Scheme

The following scheme is presented in [10]. We specialize our discussion to the
case of a GCA(t, n; `, t) constructed from a PHF(`;n, t, t).

Setup Let (Y, K1, . . . ,Kt,B) be a GCA(t, n; `, t), constructed from a PHF(`;n, t, t).
Let F t be the MAC defined in §1.1, and let P = {P1, . . . , Pn} be the set
of participants.

Key Distribution The receiver chooses a set of `t key components and la-
bels them with the elements of Y , then distributes the key components
corresponding to Bi to Pi. In other words, the receiver gives the key
components indexed by column i to Pi.

Tag Creation The participants Pi1 , . . . , Pit create a tag for a message m as
follows. First they determine j such that Kj ⊆ (Bi1 ∪ . . . ∪ Bit). This is
done by finding a row in the `× t subarray of columns i1, . . . , it which has
t distinct entries. If multiple rows have distinct entries, then j is set to
the first such row. Then the tag is computed as

(σ, j) = F t(Kj ,m),

and m and (σ, j) are sent to the receiver.

Verification The receiver uses Kj to check if (σ, j) ?= F t(Kj ,m) and accepts
if they are equal.

1.3 GCA-MAC Example

We reproduce an example of a (2, 8) GCA-MAC from [10], which will be used
while discussing anonymity in Section 2. This GCA(8, 2; 3, 2) is based on a

4



PHF(3; 8, 2, 2).
P1 P2 P3 P4 P5 P6 P7 P8

1 1 1 1 2 2 2 2
1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2

The three possible keys corresponding to the three rows are K1,K2,K3, respec-
tively, each constructed by participants having both a 1 and 2 in that row. This
example is small enough to inspect all

(
8
2

)
= 28 possible cases. Note that pairs of

participants can reconstruct one key (for example P1, P2), two keys (e.g. P2, P3)
or all three keys (e.g. P1, P8). There are `t = 6 distinct key components.

2 Anonymity

Anonymity for shared symmetric key operations was first considered for the
shared MAC schemes in [10]. There are two types of anonymity to consider.
The first is group anonymity, which asks whether the receiver can learn which
authorized subset collaborated to create the tag. The second type is participant
anonymity (which we introduce in this paper), which asks whether the receiver
can learn if a particular participant was involved in creating the tag. In both
cases the receiver is given only the message and the tag output by the threshold
scheme. In this section, we provide a general description of our new measures
of anonymity, independent of any particular schemes, We use the GCA-MAC
example given in Section 1.3 to illustrate the various concepts we discuss.

2.1 Threat Model

The goal is to prevent the adversary from learning which set of participants
A ∈ Γ performed a particular operation such as encryption or authentication.
The adversary may be the receiver, who distributes key components and receives
a ciphertext or authentication tag created by a group of participants. It may also
be anyone knowing how keys were assigned to participants, who later observes
the output of a shared primitive.

We assume that the message does not leak the identity of the participants in
A and that communication of the tag to the receiver is done using an anonymous
channel. All details of communications between members of P are assumed to
be hidden from the adversary. The knowledge of the adversary is limited to
the output of the shared primitive, which includes all information required to
perform the associated operation (decryption or verification). We also assume
that all authorized sets are equally likely to use the primitive.

The anonymity provided is unconditional. Since multiple sets of participants
can reconstruct the key used to perform the operation, they are all equally likely
to have performed the operation in question, and no amount of computation on
the part of the attacker will give additional information.

5



2.2 Group Anonymity

In this section we consider anonymity of a single group A ∈ Γ and then define
anonymity for a whole scheme S.

2.2.1 Counting-Based Metrics

The counting-based metrics in this section extend the approach of Martin et al.
[10]. The idea is to count the number of authorized sets which can reconstruct
a key, and determine how likely each is to use it. Then, given that a particular
key was used, determine which authorized sets were most likely to use it.

Definition 2.1. Let S be a (t, n)-threshold MAC over n participants P, with `
keys. The (t, n) access structure is Γ = {A : A ⊆ P, |A| = t} and |Γ| =

(
n
t

)
. Let

A ∈ Γ. For any message m and valid tag (σ, r) generated by A we write Pr[A|r]
to denote the conditional probability that A created the given tag (σ, r). The
degree of anonymity of A ∈ Γ with respect to S is defined d(A, r) = 1−Pr[A|r].

The following definition of group anonymity is from [10], where it was orig-
inally called anonymity. We rename it average degree of anonymity.

Definition 2.2. In the notation of Definition 2.1, the average degree of anonymity
for S is defined by

dav(S) =
∑
{d(A, r) : A ∈ Γ}

|Γ|
.

In the best case, upon seeing m and (σ, r), the adversary will see all sets in
Γ as being equally likely creators of σ. Therefore, at best, d(A, r) = 1− 1/

(
n
t

)
.

The average degree of anonymity of GCA-MAC was given in [10].

Theorem 2.3. The GCA-MAC scheme has average degree of anonymity

dav ≥ 1− `(
n
t

) .

Since a PHF(`;n, t, t) can be constructed when ` ≥ dtet log ne (see [12]), the
following result holds.

Theorem 2.4. There exists a (t, n)-threshold GCA-MAC scheme implemented
with a PHF(`;n, t, t) that has average degree of anonymity dav ≥ 1−dtet log ne /

(
n
t

)
.

As with security, anonymity should arguably be evaluated in the worst
case, not the average case. We now present a new, stronger, counting-based
anonymity metric.

Definition 2.5. Let S and d(A) be as defined in Definition 2.1. The anonymity
of S is defined

µ = min {d(A, r) : A ∈ Γ, r ∈ [1, . . . , `]} .

6



Of course, average case anonymity is still a useful measure. If a scheme does
not provide anonymity on average, anonymity in the worst case (and for all
participants) will not be possible.

We now use the example of Section 1.3 to illustrate difference between dav

and µ. We also show how the GCA-MAC protocol reduces group anonymity by
specifying that a t-set of participants A will always choose the key corresponding
to the first row separating A. Therefore, those sets of participants separated by
rows one and two will never use key K2. In the example above, keys K1,K2

and K3 can each be reconstructed by 16 pairs of participants. However, since
the GCA-MAC protocol selects the first separating row, we have the following:

• for (σ, 1) there are 16 possible choices for A, hence d(A, 1) = 1− 1/16,

• for (σ, 2) there are 8 possible choices for A, hence d(A, 2) = 1− 1/8, and

• for (σ, 3) there are 4 possible choices for A, hence d(A, 3) = 1− 1/4.

It can also be seen directly from the PHF that 16 inputs are separated first by
row 1, eight are separated first by row 2 and four are separated first by row 3.
Those A ∈ Γ which use K3 have an anonymity set one quarter the size of those
which use K1. While dav = 1− `/

(
8
2

)
= 1− 3/28 ≈ 0.89 (by Th. 2.3), the worst

case anonymity is µ = 0.75.

2.2.2 Entropy-Based Metrics

By computing the entropy of the conditional probability distributions of the
previous section, we can measure the number of bits of uncertainty the adversary
has about the creator of a given tag. This provides a more accurate measure.

Definition 2.6. Let S be as defined in Definition 2.1. Let A be a random
variable defined on Γ, and let r be the index of a key in S. The anonymity of
key r is the entropy of the probability distribution Pr[A|r]:

hr = H(A|r) = −
∑
A∈Γ

Pr[A|r] log2 Pr[A|r] .

If the adversary observes a tag created with key r, then hr can be interpreted
as the number of bits of uncertainty the adversary has about the group which
created the tag. It measures the effect on group anonymity caused by using
different keys. In our GCA-MAC example, h1 = 4, h2 = 3 and h3 = 2, which
is consistent with the adversary’s knowledge (e.g. given that K3 was used,
he can be certain that it was created by one of four groups). More generally,
µ ≈ 1− 2−min{hr:r∈S} since this represents the worst case for anonymity. Note
that an upper bound on hr is the log of the number of groups separated by row
r, in this case four bits. The sets separated by row 1 are provided best possible
anonymity under this metric. In general, if Tr groups are separated by row
r, then Tr is size of the largest anonymity set possible given that r was used.
Therefore, key entropy close to log2(Tr) bits is desirable.

Averaging over the possible keys that A may use gives the average anonymity
provided to A.

7



Definition 2.7. Let S be as defined in Definition 2.1. The average anonymity
provided to A ∈ Γ is

µav(A) =
∑̀
r=1

(Pr[r|A]× hr) . (1)

The average anonymity of the scheme S is defined to be the average of µav(A)
for all groups A ∈ Γ,

µav(S) =
1
|Γ|
∑
A∈Γ

µav(A) .

Since in GCA-MAC groups only use one key, the average anonymity of A
coincides with the key anonymity for the first row which separates A. The
average anonymity of the scheme is 1

28 (16 · 4 + 8 · 3 + 4 · 2) = 3.4 bits. There
is also a natural relation, as we saw between hr and µ, to the average degree of
anonymity, namely dav(S) ≈ 1− 2µav(S).

Remark 2.8. If all rows have the same value for hr, then µav(A) = hr, since∑N
r=1 Pr[A|r] = 1. In this case the average anonymity is the same for all A ∈ Γ.

This is desirable so that no “weak keys” exist with respect to anonymity, i.e.
keys with extremely low entropy (such as K3 in our GCA-MAC example). When
hr is the same for all keys, we have µav(S) = µav(A) = hr, for all A ∈ Γ. The
improved scheme we will present in Section 3 has this property.

2.3 Participant Anonymity

The issue of participant anonymity has not been considered in previous work.
Participant anonymity is more challenging to provide than group anonymity,
since there are only n participants, while there are

(
n
t

)
groups.

Let m be a message and (σ, r) be a valid tag created by an unknown group
A ∈ Γ, observed by the receiver. For Pi ∈ P, let Pr[Pi|r] be the probability that
Pi ∈ A (the group that created the tag), given that r was used. Suppose S has
` keys. We define the participant anonymity of Pi ∈ P to be

ρ(Pi) = 1−max {Pr[Pi|r] : r ∈ [1, . . . , `]} ,

and the participant anonymity of the scheme S to be

ρ(S) = min {ρ(Pi) : Pi ∈ P} .

With respect to ρ, it is desirable for S to have two properties. First,
ρ(S) = 1 − t/n is best possible, since if all participants are equally likely, and
t are required for an operation, then a participant has probability t/n of being
involved. Therefore, it is desirable that ρ(S) be close to 1− t/n. Also, partici-
pant anonymity should be equitable, that is ρ(Pi) should not differ significantly
from ρ(Pj) (for all Pi, Pj ∈ P). Unfortunately, in any scheme constructed from
a PHF, since ` = Ω(log n), there is a trade-off between efficiency and participant
anonymity.

8



2.4 Malicious Setup Attack on Anonymity

In this attack, the scheme is set up so that anonymity is reduced for certain
participants. The attack works by adding a row to the PHF that separates a
small number of A ∈ Γ. Suppose we use the following PHF(4; 9, 3, 3) to create
a GCA(3, 9; 4, 3) (source: PHFtables [13]).

P1 P2 P3 P4 P5 P6 P7 P8 P9

1 3 2 2 3 2 3 1 1
1 3 1 3 1 2 2 2 3
1 2 2 1 3 3 1 2 3
3 3 2 1 1 3 2 1 2

(2)

Using the GCA-MAC protocol,

• given (σ, 1), there are 27 possible choices for A,

• given (σ, 2), there are 21 possible choices for A,

• given (σ, 3), there are 18 possible choices for A,

• given (σ, 4), there are 18 possible choices for A.

If the attacker adds a “dummy” row to the PHF,

P1 P2 P3 P4 P5 P6 P7 P8 P9

1 1 1 1 1 1 1 2 3
1 3 2 2 3 2 3 1 1
1 3 1 3 1 2 2 2 3
1 2 2 1 3 3 1 2 3
3 3 2 1 1 3 2 1 2

,

then any message authenticated using K1 must have A = {P8, P9, Pi} (where
Pi is any of the other participants). This reduces the number of possible groups
to 7, 27, 18, 16, 16 for keys 1, 2, 3, 4, 5, respectively. Using the measures defined
above, µ = 1− 1/18 = 0.94 before the attack and µ = 1− 1/7 = 0.86 after the
attack. The effect on participant anonymity is that ρ(P8) = ρ(P9) = 0 since
the receiver can say for sure that P8 and P9 participated whenever K1 is used.
The key associated with the “dummy row” has much lower key entropy than
the others, reducing uncertainty about which groups use this key.

This attack may be especially effective when combined with other informa-
tion about the participants. If the attacker knows which participants are most
likely to initiate a message, they will be frequent senders, and the attack will
be more effective when they are targeted during setup.

2.5 Verifiable Setup

More generally, the setup should be verified by the participants to ensure con-
sistency of the key components distributed by the dealer. For example, in (2),

9



suppose the key component given to P1, call it k′1,1, in the first row differs from
k1,1 given to P8 and P9 (who also have a 1 in row 1). Since P1 is the only partic-
ipant who holds k′1,1, upon receiving (σ, 1) the receiver may check whether k′1,1

was used to create (σ, 1) and learn whether P1 belongs to the set which created
it.

A simple approach to verifying consistency is to have each pair of participants
engage in a key confirmation protocol to ensure they hold the same keys (when
they should, based on the PHF). If a trusted bulletin board is available, the
dealer might alternately publish a cryptographic hash of the key component
and the associated PHF to allow participants to check the validity of their key
components. In this work we simply assume the setup has been verified for
consistency, and leave the problem of efficient verification to future work.

3 An Improved Scheme: BPHF-MAC

The new scheme given below, BPHF-MAC, makes two changes to GCA-MAC
to improve anonymity. First, when multiple rows separate A ∈ Γ, i.e. when
A can reconstruct multiple keys Ki, a row/key is chosen at random from all of
those possible. This recovers the anonymity lost when only the first row which
separates A is used.

The second change is to counter the malicious setup attack, and prevent
keys which provide weak anonymity. A special type of hash family, introduced
by Stinson [15], will be used in BPHF-MAC instead of an arbitrary PHF.

Definition 3.1. A PHF(`;n, m, t) is balanced if in every row, each symbol
occurs exactly n/m times. The notation BPHF(`;n, m, t) is used to denote a
balanced PHF.

The balance property will maximize the possible key entropy, and simplify
our analysis of group and participant anonymity of BPHF-MAC. Fortunately,
many good explicit constructions of PHFs are balanced. A PHF is said to be
linear if the code formed by taking the columns as codewords is linear. Since
any linear PHF is balanced, constructions from Reed-Solomon codes [14] or AG-
codes [17] give BPHF. The examples given in Section 1.3 and 2.4 are balanced.

BPHF-MAC:

Setup Construct a BPHF(`;n, t, t), where fi : X → Y . Let F t be the MAC
defined in §1.1, and let P = {P1, . . . , Pn} be the set of participants. The
authorized sets are Γ = {A ∈ P : |A| = t}. The BPHF should be verified
by the participants if it is constructed by a party untrusted with respect
to anonymity.

Key Distribution The receiver chooses a set of `t key components and labels
them with the elements of Y , creates B using the construction of §1, and
distributes the key components corresponding to Bi to Pi. In other words,
the receiver gives key components indexed by column i to Pi.

10



Tag Creation The participants Pi1 , . . . , Pit create a tag for a message m as
follows. First they determine the set J such that Kj ⊆ (Bi1 ∪ . . . ∪ Bit)
for all j ∈ J . This is done by finding the rows in the ` × t subarray of
columns i1, . . . , it which have distinct entries. Since we are using a PHF
of strength t we are guaranteed |J | ≥ 1. An index j is chosen uniformly
at random from J , and the tag is computed to be

(σ, j) = F t(Kj ,m) = F t(k1, . . . , kt,m) ,

and (σ, j) is sent to the receiver as the tag for m.

Verification The receiver uses Kj to check if (σ, j) ?= F t(Kj ,m) and accepts
if they are equal.

We remark that the performance of the tag creation step may be improved
by repeatedly selecting a row at random and checking whether it separates the
participants, until a separating row is found. There is no need for the set J to
be computed explicitly.

The security of BPHF-MAC follows from the security of F t (Lemma 1.4)
and the properties of a GCA.

3.1 Anonymity of BPHF-MAC

To evaluate the anonymity of BPHF-MAC we first prove a key property of
BPHF.

Lemma 3.2. In a BPHF(`;n, m, t), with functions fi : X → Y , the size of the
set {A ⊂ X : |A| = t, |fi(A)| = t} is(

m

t

)( n

m

)t

,

for all fi, 1 ≤ i ≤ `.

Proof. From the definition of a BPHF, each of the m symbols occurs n/m times
in each row. We ask how many t-sets of columns are distinct when restricted to
row i. The t symbols can be chosen in

(
m
t

)
ways, and for each of these t symbols

we must choose one of the n/m positions. Therefore in a BPHF(`;n, m, t) each
row separates

(
m
t

)
(n/m)t sets of t columns.

The following definition will also be used to analyze the anonymity of BPHF-
MAC.

Definition 3.3. Let C be a code, and A be a t-set of codewords of C. The
t-separating distance, denoted sA,t, is the number of coordinates in which all t
codewords in A differ.

11



The t-separating distance first appears in the work of Bassalygo et al. [2]
(where it was originally called the t-th hash distance). The t-separating distance
may be seen as a generalization of the classic Hamming distance, which is the
same as the 2-separating distance. A PHF(`;n, m, t) guarantees sA,t ≥ 1 while
a λ-PHF(`;n, m, t) guarantees sA,t ≥ λ ([7, 16]). In the (t, n) BPHF-MAC
scheme, t is the threshold size, so we will simply write sA in what follows.

To compute the anonymity of the BPHF-MAC scheme we require knowledge
of Pr[A|r], the probability that A created a tag using key r (row r of the PHF).
Let us first consider Pr[r|A]. If A is not separated by row r, it cannot use key
r, therefore

Pr[r|A] =
{

0 when r does not separate A
1

sA
when r does separate A .

The probability that row r is used is 1/sA since A will choose r at random from
one of the sA separating rows.

We have assumed that Pr[A] = 1/
(
n
t

)
, i.e., all sets of participants are equally

likely to create a tag. The probability Pr[r], i.e. the probability that row r is
used for a tag, is given by

Pr[r] =
∑
A∈Γ

(Pr[r|A]× Pr[A])

=
1(
n
t

) ∑
A∈Γ

r separates A

1
sA

(3)

Since sA is at most ` and the sum in (3) has nt/tt terms by Lemma 3.2,

Pr[r] ≥ 1(
n
t

) (nt

tt

)
1
`

=
nt

`tt
(
n
t

) .

From Bayes’ theorem,

Pr[A|r] =
Pr[r|A] Pr[A]

Pr[r]

=
(1/sA)

(
1/
(
n
t

))
Pr[r]

=
1

sA

(
n
t

)
Pr[r] .

(4)

Now recall that µ = 1 − max{Pr[A|r] : A ∈ Γ, r = 1, . . . , `}. The probability
Pr[A|r] is maximized when the denominator of (4) is smallest, i.e. when sA = 1

12



and Pr[r] = nt

`tt(n
t)

. Therefore

µ = 1− 1(
n
t

)
nt

`tt(n
t)

= 1−
`tt
(
n
t

)(
n
t

)
nt

= 1− `tt

nt
. (5)

Recall that for GCA-MAC, dav = 1 − `/
(
n
t

)
. Since (`t!)/(nt) ≤ `/

(
n
t

)
≤

(`tt)/nt, the worst-case anonymity of BPHF-MAC is comparable to the average
case anonymity of GCA-MAC. If t is fixed, they are asymptotically equal.

Example 3.4. As an example, we compute µ for the (2, 8) BPHF-MAC scheme
implemented with the PHF(3; 8, 2, 2) given in Section 1.3, which has ` = 3,
n = 2, t = 2:

µ = 1− 3(22)
82

= 1− 12
64

= 0.8125 .

The average anonymity of GCA-MAC, which we computed in Section 2.2.1, was
0.89.

3.1.1 Key Anonymity and Cyclic BPHF

We now consider the key anonymity of BPHF-MAC. n the following, we will
require knowledge of sA values for each A separated by r. This motivates the
following definition. Let ~Sr be the length ` vector defined as

~Sr(i) = | {A ∈ Γ : A is separated by row r and sA = i} | .

~Sr is the distribution of separating distances for t-sets separated by row r. Ig-
noring the values in ~Sr, we prove that a large class of BPHF have ~Sri = ~Srj

for all rows ri, rj . This implies hri = hrj , which is a desirable property for
anonymity (recall Remark 2.8). The class in question are BPHF constructed
from cyclic codes, which we briefly review here.

Definition 3.5. Let C be a code of length ` with symbols from an alphabet Σ,
and let (c1, c2, . . . , c`−1, c`) ∈ Σ`. C is cyclic if

c = (c1, c2, . . . , c`−1, c`) ∈ C

implies
c′ = (c`, c1, . . . , c`−2, c`−1) ∈ C .

The transformation of a codeword from c to c′ is called a cyclic shift. If a PHF
is constructed from a cyclic code, we say it is a cyclic PHF.

13



Important classes of cyclic codes are BCH codes (which include Reed-Solomon
codes) and quadratic residue codes. Reed-Solomon codes with large distance are
an easily constructed class of cyclic BPHF (see Stinson et al. [14]). The example
of Section 1.3 is a cyclic BPHF.

Theorem 3.6. In a cyclic BPHF(`;n, m, t), ~Si = ~Sj for all i, j ∈ {1, . . . `}.

Proof. The case i = j is trivial. Without loss of generality, choose a pair (i, j)
where j > i, j = i + g. Define the following two sets of t-sets of columns
separated by rows i, and j,

Xi = {A1, . . . , AT }
Xj = {A′

1, . . . , A
′
T }

where T = (n/t)t. The balance property of the PHF (see Lemma 3.2) provides
the value of T and proves T is the same for all rows.

Consider φ : Xi → Xj and define φ(A) as the set of columns obtained by
cyclically shifting each column in A by g positions. This mapping is well defined,
i.e. φ(A) is a set of columns in the BPHF by the cyclic property, and φ(A) is
separated by row j, since j = i + g and A is separated by row i. We now show
that

(i) φ preserves sA values, i.e., sA = sφ(A), and

(ii) φ is one-to-one.

Property (i) holds since the rows are shifted but not modified, so a row
separating (or not separating) A is intact with a different index in φ(A). Since
the separating distance is the same, sA = sφ(A). It is clear that φ(An) 6= φ(Am)
for all n 6= m since An 6= Am. Therefore the image of φ in Xj has size T , which
implies φ is one-to-one.

Since the t-sets of columns separated by row i are in one-to-one corre-
spondence with those separated by row j, and they have the same sA values,
~Si = ~Sj .

The following theorem is the implication of Theorem 3.6 on anonymity in
BPHF-MAC.

Theorem 3.7. Let S be an instance of the BPHF-MAC scheme constructed
with a cyclic BPHF. Then µav(Ai) = µav(Aj) = µav(S) for all Ai, Aj ∈ Γ.

Proof. In the case of cyclic codes we can show that all rows are equally likely
to be used in a tag. The probability that a given row r is used (recall equation
(3)) is:

Pr[r] =
1(
n
t

) ∑
A∈Γ

r separates A

1
sA

=
1(
n
t

) ( ~Sr(1)
1

+
~Sr(2)

2
+ . . . +

~Sr(`)
`

)
.

14



This quantity is the same for all rows since ~Sri = ~Srj for all ri, rj and hence
Pr[ri] = Pr[rj ]. Substituting Pr[r] = 1/` in (4) gives

Pr[A|r] =
`

sA

(
n
t

) ,

and hr can be expressed as follows:

hr = −
∑
A∈Γ

r separates A

`

sA

(
n
t

) log2

(
`

sA

(
n
t

)) .

We will group the terms of this sum by sA value. There are ` possible sA

values, and ~Sr(i) is the number of terms (i.e. sets A) with sA = i. Therefore,

hr = −
∑̀
i=1

~Sr(i)
`

i
(
n
t

) log2

(
`

i
(
n
t

)) . (6)

Since the values ~Sr are are the same for all rows, hr is also the same for all rows.
This is sufficient, by Remark 2.8, to show that the entropy-based measures of
group anonymity are equal.

While we are not able to compute µav and hr for BPHF-MAC when arbi-
trary BPHF are used, we can assure that, for cyclic BPHF, anonymity will be
equitable. Computing ~Sr for large codes/PHF appears to be a difficult problem.

Example 3.8. For the cyclic BPHF(3; 8, 2, 2) given as an example in Section
1.3, ~S1 = ~S2 = ~S3 = (4, 8, 4) since there are 4, 8 and 4 sets separated by exactly
1, 2, and 3 rows, respectively. Since this BPHF is cyclic, and ~S is known, we
can use (6) to compute the key entropy of any row r:

hr = −
3∑

i=1

~Sr(i)
3

i
(
8
2

) log2

(
3

i
(
8
2

))

= −4
(

3
28

log
3
28

)
+ 8

(
3
56

log
3
56

)
+ 4

(
3
84

log
3
84

)
= 3.9 .

As noted in the discussion following Definition 2.6, four bits is the maximum
possible key entropy in this example, therefore BPHF-MAC provides nearly
optimal anonymity for all A ∈ Γ.

3.1.2 Bounding the Key Entropy

While computing hr for BPHF-MAC schemes constructed from arbitrary BPHF
appears difficult without knowledge of ~Sr, we can use the min-entropy of Pr[A|r]
to guarantee a minimum amount of anonymity.

15



Let X be a random variable defined on a set X and γ = maxx∈X {Pr[X = x]}.
The min-entropy of X is defined to be

H∞(X) = log2

(
1
γ

)
= − log2 γ .

Since H(X) ≥ H∞(X), the min-entropy gives a lower bound on the Shannon
entropy.

With respect to the key anonymity of BPHF-MAC, defined as H(A|r), to
compute H∞(A|r), we must determine the maximum value of Pr[A|r] over all
authorized sets A and all rows r. Following equation (5) in Section 3.1, we have

max {P [A|r] : A ∈ Γ, 1 ≤ r ≤ `} =
`tt

nt

and therefore

hr ≥ log2

(
nt

`tt

)
= t log2 n− log2 l − t log2 t . (7)

While this lower bound will, in general, be strictly lower than the actual value of
hr, it is useful since it can be easily computed for any instance of BPHF-MAC,
without knowledge of ~Sr.

Example 3.9. Recall the example PHF(3; 8, 2, 2) given in Section 1.3, for which
hr was computed in Example 3.8 as 3.9 bits. Using the bound of (7), we can
compute

hr ≥ 3 log2 8− log2 2− 2 log2 2
= 2.4

A similar computation gives hr ≥ 2.75 for the PHF(4; 9, 3, 3) given in Section
2.4, while hr = 4.6. In Example 3.13, for C2,2, hr ≥ 1 while hr = 1.91, for C2,6,
hr ≥ 7.41 while hr = 9.87, and for C2,10, hr ≥ 14.68 while hr = 17.92.

3.1.3 A Code with Known Separating Distance Distribution

Here we describe a simple code for which ~Sr may be computed explicitly. Let
Cq,` be the (`; q`, q) complete code over q symbols of length `. Note that Cq,` is
cyclic since the cyclic shift of any codeword is another `-tuple of the q symbols,
hence it belongs to Cq,`.

Theorem 3.10. In the code Cq,` for a coordinate r, the separating distance
distribution vector ~Sr defined

~Sr(i) = | {A : A ⊂ Cq,`, |A| = q, A is separated by r and sA,q = i} |,

has the values
~Sr(i) =

(
`− 1
i− 1

)
(q!)i−1 (qq − q!)`−i+1

,

for i = 1, . . . , `.

16



Proof. We wish to count the number of q-sets of codewords separated by co-
ordinate r with separating distance i. The coordinate r is fixed, and contains
symbols 1, . . . , q. Each q-set will have i − 1 separating coordinates (excluding
r) and ` − i + 1 non-separating coordinates. First we must choose which i − 1
coordinates will be separated, which can be done in

(
`−1
i−1

)
distinct ways. Each

of the i − 1 separating coordinates may be chosen in q! ways, since they must
be a permutation of {1, . . . , q}. The ` − i + 1 non-separating coordinates can
be chosen in qq − q! different ways, since they are all possible assignments mi-
nus those which separate the codewords in this coordinate. Taking the product
gives the desired result; the number of q-sets of codewords in Cq,` which are
separated in position r and have i− 1 other separating coordinates.

The following corollary applies Theorem 3.10 to the case q = 2.

Corollary 3.11. C2,` is a cyclic BPHF(`, 2`, 2, 2) with

~Sr(i) =
(

`− 1
i− 1

)
2`−1

for all rows r and i = 1, . . . `.

Proof. Note that C2,` is a PHF of strength 2 because all codewords are distinct,
and that Cq,` is cyclic as remarked above. C2,` is balanced since it contains all
words of length ` over the alphabet {0, 1}.

The next theorem gives an explicit formula for our entropy-based anonymity
measures for the case when C2,` is used with the BPHF-MAC scheme, by ap-
plying the formulae of Theorem 3.7.

Theorem 3.12. Let S be an instance of the (2, 2`) BPHF-MAC scheme imple-
mented with C2,`. Then

µav(A) = µav(S) = hr = −
∑̀
i=1

(
`− 1
i− 1

)
2`−1 `

i
(
n
t

) log2

(
`

i
(
n
t

))

for all A ∈ Γ and key indices r.

Proof. Equality of µav(A), µav(S) and hr follows from Theorem 3.7. Recall that
in the case of cyclic BPHF, following (6), we can express hr as:

hr = −
∑̀
i=1

~Sr(i)
`

i
(
n
t

) log2

(
`

i
(
n
t

)) . (8)

By substituting ~Sr(i) with the value given in Corollary 3.11, we arrive at the
desired formula.

17



Example 3.13. We give a few examples of the group and participant anonymity
(µ and ρ) as well as the average anonymity µav, provided by the (2, 2`) BPHF-
MAC scheme implemented with C2,`. Details of the participant anonymity of
BPHF-MAC are given in Section 3.2. The column µav(opt) gives log2((n/t)t)
which is the largest possible value of hr (see the discussion following Definition
2.6).

` t n µ µav(S) µav(opt) ρ
2 2 4 0.5 1.91 bits 2 bits 0.5
6 2 64 0.994 9.87 bits 10 bits 0.968
10 2 1024 0.99996 17.92 bits 18 bits 0.998

3.2 Participant anonymity of BPHF-MAC

In this section we determine the anonymity of individual participants. Analysis
of the participant anonymity provided by BPHF-MAC is simpler than group
anonymity, and relies only on the balance property. BPHF-MACs provide op-
timal and equitable participant anonymity, as proven in the following theorem.

Theorem 3.14. The participant anonymity of BPHF-MAC is

ρ(Pj) = 1− t

n

for all Pj ∈ P.

Proof. First, recall that every row separates (n/t)t sets of participants (Lemma
3.2). Let Pj be any participant, and r be any row. Given that Kr was used, we
evaluate Pr[Pj |r], the probability that Pj has participated in the creation of a
tag using Kr. Pj has some symbol in row r, hence there remain t− 1 symbols
corresponding to participants which can belong to a set including Pj separated
by row r. Since our PHF is balanced, each of these symbols occurs (n/t) times
in row r. The other t− 1 symbols/participants can be chosen in (n/t)t−1 ways.
Therefore,

Pr[Pj |r] =
| {A ∈ Γ : Pj ∈ A, row r separates A} |

| {A ∈ Γ : row r separates A} |

=
(n/t)t−1

(n/t)t

=
1

n/t

=
t

n

Since Pr[Pj |r] = t/n is the same for all rows and all participants, ρ(Pj) = 1−t/n
for all Pj ∈ P as required.

18



4 GCA Constructions From Arbitrary PHF

When previously discussing constructions of GCAs using PHF, we gave only
the connection between PHF(`;n, t, t) and GCA(t, n; `, `). This is a restriction,
since we require that the number of symbols in the PHF and the strength be
equal (both must be t).

It is also possible to construct GCAs from a general perfect hash family,
denoted PHF(`;n, m, t), where m ≥ t. The new structure is only a GCA by
some definitions, due to the following small difference. Some definitions1 require
that K = {K1, . . . ,Kv} (the set of keys) be a partition of Y = {k1, . . . , k`m}
(the set of key components). In the construction we are about to describe this
is not the case, however all other GCA properties are satisfied. A GCA where
the sets of K are not necessarily disjoint, which we call a relaxed GCA, will be
shown adequate for the application at hand.

We use the following PHF(3; 12, 5, 3) to illustrate the construction (source:
PHFtables [13]).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

2 4 4 4 0 1 0 2 3 3 3 1
3 1 0 4 0 1 2 0 2 4 3 3
1 4 0 1 3 2 1 2 4 2 3 0

As in the restricted case, each (row, symbol) pair will correspond to a key
component. The total number of key components is `m in general, and 15 in
our example. Instead of having only one key Kr associated to row r, there will
be
(
m
t

)
keys; one key for each subset of t symbols in row r. The total number

of keys is therefore `
(
m
t

)
. In the example, each row has a key associated with

each of the ten 3-sets of key components:

{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4} , {1, 2, 5} ,

{1, 3, 5} , {2, 3, 5} , {1, 4, 5} , {2, 4, 5} , {3, 4, 5}

for a total of 3×10 = 30 keys. There are n players, and player i is given the key
components corresponding to the i-th column, denoted Bi. The notation Kr,i

refers to the i-th key of row r. The subsets are numbered using m bits in the
following canonical way: if symbol j (1 ≤ j ≤ m) belongs to the subset then bit
j is 1, otherwise bit j is zero. For example, {1, 2, 3} is numbered (00111)2 = 7
and {2, 4, 5} = (11010)2 = 26.

Now we verify the GCA properties.

1. For a set A = {Pi1 , . . . , Pit} ∈ Γ, columns i1, . . . , it will be distinct in at
least one row, therefore the key components held by A:

⋃t
j=1 Bij , will

contain at least one Kr,i. A may have one key from multiple rows, but
never multiple keys from any row, since in each row they hold only t key
components.

1The definition of GCAs in the literature is inconsistent. In [9] and [8] it is not specified
that the Kis be disjoint, but in [11] and [10] the requirement that the Kis be disjoint appears.
The fact that the Kis are disjoint is used once in an anonymity proof in [10].

19



2. For a set A =
{
Pi1 , . . . , Pit−1

}
6∈ Γ, none of the Kr,i are held since A holds

at most t− 1 key components from each row, and |Kr,i| = t (for all keys).

Note that the necessity of the condition that the keys in K be disjoint de-
pends crucially on how the key components are distributed to participants. The
relaxed GCA construction ensures that no participant gets more than one com-
ponent of any Kr,i, to preserve the threshold condition.

For an example, take participants P5, P7 and P8. They have key components
0 and 2 in row 1, components 0 and 2 in row 2, and components 1, 2 and 3 in row
3. Therefore, they may use key K3,7. Further, this key depends on components
held by all three participants and hence this key could not be used by only one
or two of the participants.

The only modification required to the BPHF-MAC scheme when using a
relaxed GCA is that the index of the key used must be computed differently.
The index information in the tag grows from log(`) bits to log(`)+m bits (using
the subset numbering scheme given above, but this can be reduced to t log(m)
or fewer bits if desired).

Using a hash family with these parameters for the BPHF-MAC scheme will
improve efficiency significantly, as shown in Section 4.1, but at the cost of a
small reduction in anonymity, discussed in Section 4.2.

A note on strong unforgeability. This MAC scheme does not provide
strong unforgeability, as defined by An, Dodis and Rabin [1]. While it is not pos-
sible for an adversary to create a valid tag for a new message, it may be possible
to create a different tag on a previously authenticated message. Consider a (2, n)
scheme which has four key components per row, fix a row, and denote the key
components k1, . . . , k4. Given σ1 = Fk1(m)⊕Fk2(m) and σ2 = Fk3(m)⊕Fk2(m),
the tag σ1 ⊕ σ2 is valid but different for the same message m.

4.1 Impact on Efficiency

We make three general remarks with respect to efficiency of BPHF-MAC schemes
based on relaxed GCAs.

1. When considering upper bounds for PHF [3], larger n are possible when
` and t are fixed, since n ≤ t`/(t−1) < m`/(t−1) when m > t.

2. There are a better variety of constructions available, including those from
coding theory, which construct cyclic BPHF.

3. The potentially large number of keys `
(
m
t

)
has no effect on efficiency, since

the number of key components is only `m.

Intuitively, lifting the requirement that all keys Ki be disjoint (as tuples of
key components), increases the number keys available for a given number of key
components, which reduces the number of such components required.

The comparison relevant for BPHF-MAC is the number key components for
a (t, n) scheme using a PHF(`;n, t, t), versus the number of key components

20



when a PHF(`′;n, m, t) is used. Asymptotically, the improvement will be at
most a constant factor and will depend on a specific construction, since for
fixed m and t, ` = O(log n).

Example 4.1. We compare the number of key components required for a
(5, 121) threshold scheme. Using the PHF construction based on Reed-Solomon
codes in [14], we can construct a PHF(11; 121, 11, 5), and BPHF-MAC requires
11×11 = 121 key components in total, while each participant must store 11 key
components. The best construction of a PHF(`, 121, 5, 5) on PHFtables [13] has
` = 176. Here, BPHF-MAC requires 176 × 5 = 880 key components in total,
about 7.3 times more. Each participant must store 176 key components, which
is 16 times more than the Reed-Solomon construction.

Example 4.2. We repeat example 4.1 but using t = 6. Using the Reed-
Solomon construction we obtain a PHF(16; 256, 16, 6), which is trivially also
a PHF(16; 121, 16, 6). The (6, 121) and (6, 256) BPHF-MAC schemes using this
PHF require 256 key components in total, while each participant must store 16
key components. The equivalent best known construction of PHF(`; 121, 6, 6)
from [13] has ` = 1160 for a total of 6960 total key components and a storage
requirement of 1160 key components per participant. In the (6, 256) case, the
lowest value of ` is 1232, giving a total of 7392 key components, and a storage
requirement of 1232 key components per participant.

Additional examples with larger t for comparison are difficult to construct
due to the lack of direct constructions for PHF(N ;n, t, t). If we consider the
existence result of Mehlhorn [12], which states that a PHF(`;n, m, t) exists
when ` ≥ tet2/m log n, we can make a more general comparison. In the case
that m = αt, this bound requires ` ≥ t

α
√

et log n, so the minimum value of ` is
reduced from tet log n to t

α
√

et log n.

4.2 Impact on Anonymity

To determine the worst-case anonymity of BPHF-MAC based on relaxed GCAs
(the m ≥ t case), we use an approach similar to the one used when m = t in
Section 3.1. Let ri denote the i-th key of row r (recall that there are

(
m
t

)
keys

per row). By “ri separates A” we mean that (i) row r separates A, and (ii) A
has the i-th t-set of symbols in row r. In other words, A is not only separated
by r, but separated by t specific symbols in row r.

Given a group A ∈ Γ, A may use sA keys, and will choose to use one of them
with probability 1/sA. Therefore,

Pr[ri|A] =
{

0 when ri does not separate A
1

sA
when ri separates A .

21



Now we consider Pr[ri] the probability that key ri is used.

Pr[ri] =
∑
A∈Γ

(Pr[ri|A]× Pr[A])

=
1(
n
t

) ∑
A∈Γ

ri separates A

1
sA

(9)

The number of A ∈ Γ separated by a given ri is (n/m)t in a BPHF, since each
of the t symbols in ri appears n/m times in row r. Since sA is at most ` and
the sum in (9) has nt/mt terms,

Pr[ri] ≥
1(
n
t

) ( nt

mt

)
1
`

=
nt

`mt
(
n
t

) .

From Bayes’ theorem,

Pr[A|ri] =
Pr[ri|A] Pr[A]

Pr[ri]

=
(1/sA)

(
1/
(
n
t

))
Pr[ri]

=
1

sA

(
n
t

)
Pr[ri]

(10)

Now recall that µ = 1−max{Pr[A|ri] : A ∈ Γ, ri = 1, . . . , `
(
m
t

)
}. The probability

Pr[A|ri] is maximized when the denominator of (10) is smallest, i.e. when sA = 1
and Pr[ri] = nt

`mt(n
t)

. Therefore

µ = 1− 1(
n
t

)
nt

`mt(n
t)

= 1− `mt

nt
,

which corresponds to equation 5 in the case m = t.
For fixed `, there is clearly a decrease in anonymity. However, as shown in

the efficiency discussion, setting m > t reduces `. Therefore, when m > t, `
decreases while the other term in the numerator increases. We now present two
examples, one where anonymity is significantly decreased, and one where it is
decreased only slightly.

Example 4.3. Recall the example PHF(3; 8, 2, 2) from Section 1.3. Using this
PHF, the (2, 8) BPHF-MAC scheme has µ = 0.81. We can replace this PHF
with the following PHF(2; 8, 4, 2).

22



1 2 3 4 1 2 3 4
1 1 2 2 3 3 4 4

This instance of the (2, 8) BPHF-MAC scheme has µ = 0.5.

Example 4.4. Using the same parameters as in Example 4.1, the m = t in-
stance of the (5, 121) BPHF-MAC has µ = 0.9999787 and hr ≥ 15.53, while the
relaxed instance has µ = 0.9999316 and hr ≥ 13.84. (The bounds on hr are
given by the min-entropy of Pr[A|ri].)

When we revisit the (6, 256) scheme from 4.1, we find µ = 0.99999979 and
hr ≥ 22.22 if m = t. The (6, 256) scheme based on the relaxed construction has
µ = 0.99999904 and hr ≥ 20.

The decrease in anonymity can be explained by the relative sizes of the pa-
rameters in the examples. In Example 4.3, |Γ| is much smaller than in Example
4.4. Also the impact of the change in ` in Example 4.4 counterbalances some of
the lost anonymity.

Participant Anonymity. An analysis similar to the proof of Theorem 3.14
shows that (t, n) BPHF-MAC schemes constructed with PHF(N ;n, m, t) have
participant anonymity ρ(P ) = 1−m/n for all participants P . This is a reduction
from 1− t/n.

5 Conclusion

We have strengthened the definition of anonymity in the context of shared sym-
metric key primitives. Group anonymity is measured in the worst case, and
the concept of participant anonymity was introduced. We have presented mod-
ified schemes for sharing symmetric key operations with improved group and
participant anonymity using balanced perfect hash families. The relaxed GCA
construction of Section 4 provides a useful trade-off for practical applications,
providing large gains in efficiency with only a small decrease in anonymity.

References

[1] J.H. An, Y. Dodis and T. Rabin. On the security of joint signature and
encryption. Proceedings of EUROCRYPT ’02, LNCS 2332 (2002), 83–107.

[2] L.A. Bassalygo, M. Burmester, A. Dyachkov and G. Kabatianski. Hash
codes. Proceedings of the 1997 IEEE International Symposium on Informa-
tion Theory (1997), 174.

[3] S.R. Blackburn and P.R. Wild. Optimal linear perfect hash families. Journal
of Combinatorial Theory, Series A 83 (1998), 233–250.

[4] E.F. Brickell, G. Di Crescenzo and Y. Frankel. Sharing block ciphers. In-
formation Security and Privacy, LNCS 1841 (2000), 457–470.

23



[5] S. Even and O. Goldreich. On the power of cascade ciphers. ACM Transac-
tions on Computer Systems 3 (1985), 108–116.

[6] J. Katz and A.Y. Lindell. Aggregate message authentication codes. Pro-
ceedings of CT-RSA ’08, LNCS 4964 (2008), 155–169.

[7] L. Liu and H. Shen. Explicit constructions of separating hash families from
algebraic curves over finite fields. Designs, Codes and Cryptography, 41
(2006), 221–233.

[8] S. Long, J. Pieprzyk, H. Wang and D.S. Wong. Generalised cumulative
arrays in secret sharing. Designs, Codes and Cryptography 40 (2006), 191–
209.

[9] K.M. Martin, R. Safavi-Naini, H. Wang and P.R. Wild. Distributing the en-
cryption and decryption of a block cipher. Designs, Codes and Cryptography
36 (2005), 263–287.

[10] K.M. Martin, J. Pieprzyk, R. Safavi-Naini, H. Wang and P.R. Wild.
Threshold MACs. Proceedings of ICISC 2002, LNCS 2587 (2003), 237–
252.

[11] K.M. Martin and S.-L. Ng. The combinatorics of generalised cumulative
arrays. Journal of Mathematical Cryptology 1 (2007), 13–32.

[12] K. Melhorn. Data Structures and Algorithms, Vol. 1, Springer-Verlag
(1984).

[13] R.A. Walker II. PHFtables.com. www.phftables.com. Accessed April 2008.

[14] D.R. Stinson, R. Wei and L. Zhu. New constructions for perfect hash fam-
ilies and related structures using combinatorial designs and codes. Journal
of Combinatorial Designs 8 (2000), 189–200.

[15] D.R. Stinson. Some baby-step giant-step algorithms for the low hamming
weight discrete logarithm problem. Mathematics of Computation 71 (2002),
379–391.

[16] D.R. Stinson and R. Wei. Generalized cover-free families. Discrete Mathe-
matics 279 (2004), 463–477.

[17] H. Wang and C. Xing. Explicit constructions of perfect hash families from
algebraic curves over finite fields. Journal of Combinatorial Theory, Series A
93 (2001), 112–124.

[18] H. Wang and J. Pieprzyk. Shared generation of pseudo-random function
with cumulative maps. Proceedings of CT-RSA ’03, LNCS 2612 (2003),
281–294.

24


