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Abstract

Non-malleability is an interesting and useful property ethensures that a cryptographic protocol pre-
serves the independence of the underlying values: giveexmple an encryptiofi(m) of some unknown
messagen, it should be hard to transform this ciphertext into somergpiton £(m*) of a related mes-
sagem™*. This notion has been studied extensively for primitivée kencryption, commitments and zero-
knowledge. Non-malleability of one-way functions and hasictions has surfaced as a crucial property in
several recent results, but it has not undergone a comsipledreatment so far. In this paper we initiate the
study of such non-malleable functions. We start with thagiesf an appropriate security definition. We
then show that non-malleability for hash and one-way funmgtican be achieved, via a theoretical construc-
tion that uses perfectly one-way hash functions and sinamegound non-interactive zero-knowledge proofs
of knowledge (NIZKPoK). We also discuss the complexity ohfmalleable hash and one-way functions.
Specifically, we show that such functions imply perfect evegmess and we give a black-box based sepa-
ration of non-malleable functions from one-way permutasigwhich our construction bypasses due to the
“non-black-box” NIZKPoK). We exemplify the usefulness afraefinition in cryptographic applications by
showing that non-malleability is necessary and sufficiersigicurely replace one of the two random oracles
in the IND-CCA encryption scheme by Bellare and Rogaway, tanchprove the security of client-server
puzzles.
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1 Introduction

MoOTIVATION. Informally, non-malleability of some functiofiis a cryptographic property that asks that learn-
ing f(z) for somex does not facilitate the task of generating sofite*) so thatz* is related taz in some
non-trivial way. This notion is especially useful whéiis used to build higher-level multi-user protocols where
non-malleability of the protocol itself is crucial (e.ggrfvoting or auctioning). Non-malleability has been
rather extensively studied for some cryptographic priragti For example, both definitions as well as construc-
tions from standard cryptographic assumptions are knoweticryption, commitments and zero-knowledge
[15, 5, 27, 14, 18, 12, 1, 13, 25, 26, 2]. Non-malleability fve ttase of other primitives, notably for one-way
functions and for hash functioridyas only recently surfaced as a crucial property in sevesegks\[6, 7, 10, 17],
which we discuss below.

For instance, plenty of cryptographic schemes are onlygat@ecure in the random oracle (RO) model [4],
where one assumes that a hash function behaves as a trubmrdndction to which every party has access
to. It is well-known that such proofs do not strictly guaetsecurity for instantiations with hash functions
whose only design principles are based on one-waynessramllision-resistance, because random functions
posses multiple properties the proofs may rely on. Hidihgaitial information about pre-images, i.e. perfect
one-wayness, is one of these properties, and has beendsind& 11]. Non-malleability is another example
of such a property.

An illustrative example is the encryption scheme of Belkmd Rogaway [4], where a ciphertext of message
M has the form(f(r), G(r) & M, H(r, M)) for a trapdoor permutatiofi, hash functiongz, H and randonr.
The scheme is known to be IND-CCA secure in the random oraoldein However, an instantiation &f with
a malleable function for which giveH (r, M) it is possible to computé (r, M & M’), for some fixedM’
known to the attacker, renders the scheme insecure: tloekattean recovef! by submitting to the decryption
oracle the valid ciphertextf (), G(r) ® M © M', H(r, M @& M")).

It was shown in [6] that a similar attack can be carried ouiragiahe popular OAEP encryption scheme
whenever the instantiation of the underlying hash funcisomalleable. A subsequent work [7] showed that
some form of non-malleability permits positive results atbsecurity of an alleviated version of the OAEP
scheme in the standard model. However, it remains uncleae iapproach to non-malleability in [7] expands
beyond the OAEP example, and the work left open the congtruof non-malleable primitives.

Another motivating example is the abstraction used to mbdsh functions in symbolic (Dolev-Yao) secu-
rity analysis. In this setting it iaxiomatizedhat an adversary can compute some hash only when it knows the
underlying value. Clearly, malleable hash functions dogatisfy this axiom. Therefore, non-malleability for
hash functions is necessary in order to ensure that symaoditysis is (in general) sound with respect to the
standard cryptographic model. Otherwise, real attackisutbe malleability can not be captured/discovered in
the more abstract symbolic model.

In a different vein, and from a more conceptual perspechigher-level protocols could potentially benefit
from non-malleable hash functions as a building block. Aerd@oncrete example is the recommended use of
such non-malleable hash functions in a human-computenaictien protocol for protecting local storage [10].
There, access should be linked to the ability to answer hesoduable puzzles (similar to CAPTCHAS), but it
should be infeasible for a machine to maul puzzles and reidinem under a different domain to other human
beings.

We will also discuss a construction of a cryptographic peizmdm [23] designed to prevent DoS attacks,
and show that non-malleability of the underlying hash isaissary for its security.

Hence, non-malleability is a useful design principle thesigners of new hash functions should keep in
mind. At this point, however, it is not even clear what theatxaquirements from a theoretical viewpoint are.
Therefore, a first necessary step is to find a suitable definitihich is (a) achievable, and (b) applicable. The
next step would be to design practical hash functions andpoession functions which are non-malleable, or
which at least satisfy some weaker variant of non-mallégbil

1In the sequel we aggregate both one-way functions and hastidas under the term hash functions for simplicity.



CONTRIBUTIONS. In this paper we initiate the foundational study of nondeetle hash functions. We start
with the design of an appropriate security definition. Oduiirdéon uses the standard simulation paradigm,
also employed in defining non-malleability for encryptiardacommitment schemes. It turns out however that
a careless adjustment of definitions for other primitivedd/definitions for non-malleable hash functions that
cannot be realized. We therefore motivate and provide a imgfah variation of the definition which ensure
that the notion is achievable and may be useful in applinatio

Testifying to the difference to other cryptographic prir@s, we note that for non-malleable encryption the
original simulation-based definition of [15] was later simot® be equivalent to an indistinguishability-based
definition [5]. For our case here, finding an equivalent itidggiishability-based definition for non-malleable
hash functions appears to be far from trivial, and we leagajtiestion as an interesting open problem.

We then show that our definition can be met. Our constructiarmn-malleable hash function employs a
perfectly one-way hash function (POWHF) [8, 11], i.e., dgadoilistic hash function which hides all information
about its pre-image. Notice that this form of secrecy inlfitdees not ensure non-malleability, so we make the
function non-malleable by appending a simulation-souna-interactive zero-knowledge proof of knowledge
(NIZKPoK) [27, 12] of the hashed value. Both primitives éxfsr example, if trapdoor permutations exist.

The construction we provide is probabilistic and does nbieae the desired level of efficiency for practical
applications. We emphasize that our construction shoulegarded as a feasibility result that shows that, in
principle, non-malleable hash functions can be built fraemdard assumptions. We leave open the problem
of finding a practical, deterministic solution. We note tloatr definition is general enough to allow such
constructions.

Next, we investigate necessary cryptographic assumptarizuilding non-malleable hash functions. We
provide two results. First we show that a non-malleable Hashbtion needs to hide any information about
the pre-image. This result justifies the use of POWHFs in amstuction. Then we show (in the style of
Impagliazzo-Rudich [22]) that black-box constructionsioh-malleable one-way functions from one-way per-
mutations are in fact impossible; to be more precise, weviolhe approach of Hsiao and Reyzin [21] and
show that no black-box security reduction is possible. &othat our construction circumvents the impossibil-
ity result due to the use of a “non-black-box” NIZKPoK.

Finally, we study the applicability of our definition. We sthdhat non-malleability is in fact sufficient for
secure partial instantiation of the aforementioned enmyscheme of Bellare and Rogaway [4], i.e., that the
scheme remains IND-CCA secure whénis replaced with a non-malleable hash function. Althougts Gtiil
a random oracle, this partial instantiation helps is todvathderstand the necessary properties of the primitives
and also provides a better security heuristic.

We also sketch an application to the framework of cryptogi@puzzles [23] as a defense against DoS
attacks, where non-malleability surfaces as an importeopgrty. The usefulness of the definition has also
been shown in [17], using a special case of a preliminaryimersf our definition to prove that HMAC [3]
is a secure message authentication code, assuming thairtipFassion function of the hash function is non-
malleable. We expect further applications of non-malledidsh functions in other areas, and some of the
techniques used in our proof here may be helpful for theseasies.

RELATED WORK. Independently of our work, Canetti and Dakdouk [9] and Rgnet al. [24] recently also
suggested one-way functions with special propertiesaéltd, yet different from non-malleability. The work
of Canetti and Dakdouk [9] introduces the notion of extradgerfect one-way functions where generating an
image also guarantees that one knows a preimage. This skeeiidhold if an adversary sees related images,
somewhat resembling our non-malleability setting. Yetraotability in [9] is defined by having a knowledge
extractor generate a preimage from the adversary’s vieahyding the other images. In contrast, the common
(and our) approach to non-malleability is to deny the sinmuléhe other images, in order to capture the idea
that these images should not help.

2\We remark that the intuitively appealing approach of usiog-malleable encryption or commitment schemes to direxthstruct
non-malleable hashes does not work. One of the reasong ihéhBbrmer primitives rely on secret randomness, whereah kalues
need to be publicly verifiable given the pre-image.



The work by Pandey et al. [24] defines adaptive one-way fanstiwhere inversion for an image under
some indexag is still infeasible, even if one is allowed to obtain preireaginder different indicemg’. This
notion is also related to non-malleability and turns out éouseful to design non-malleable protocols like
commitments and zero-knowledge proofs. Unfortunatelg,gtrong notion is not known to be realizable at this
point.

It is noteworthy that, analogously to our work here, bothgrarhoose the Bellare-Rogaway encryption
scheme as a test case (among others). This gives threedtffeews on the requirements of the hash functions
in this encryption scheme. While we only instantiate onehef tiwo random oracles, the authors of [9] and
of [24] aim at instantiating both hash functions, requirpgeudorandomness as another property of the hash
function. Yet, neither extractable perfect one-way fumasi which are also pseudorandom, nor adaptive pseu-
dorandom generators are known to be constructible undemoomassumptions. In contrast, our single-oracle
instantiation through a non-malleable hash function isjds under standard assumptions.

2 Preliminaries

If = is a string thenz| denotes its bit length and if, y are strings ther||y denotes the concatenation:ofnd
y. If k € N then1” is the string consisting of consecutive “1” bits. IfS is a set then we write, zo, . . . &g
for selectingzy, z2, . .. independently at random froti. If X is a distribution then: & X(1*) stands for
a sampling process whereis picked according tet for input 1%. The term “PPT” (resp. “PT”) stands for
“probabilistic polynomial-time,” (resp. “polynomialftie”) and “PPTA’ (resp. “PTA”") for “PPT algorithm”
(resp. “PT algorithm”). 1f4 is a PPTA then the notation <- A(zq,z9,...) denotes thay is assigned the
outcome of4 running on inputsey, o, . ... If A is deterministic (PTA), we often drop the dollar sign abdwe t
arrow.

Definition 2.1 (Hash Functions) A hash functiori{ = (HK, H, HVf) consists of PPTAs for key generation,
evaluation and verification, where

e PPTAHK for security parametet”* outputs a key< (which containsl* and implicitly defines a domain
Dg),

e PPTAH for inputs K andx € D returns a valuey € {0, 1}*,

e PTAHVf on inputsk, z, y returns a decision bit.

It is required that for anykx < HK(1%), anyz € D, anyy & H(K, z), algorithmHVf (K, z, y) outputsl.

Note that we consider a very general syntax, comprising thesSical” notions of one-way functions (with
a public key) and of collision-resistant hash functions ehcompress the input to a shorter digest (see [20]
for definitions). In our case the evaluation algoritiiimay be probabilistic, as long the correctness of hash
values is verifiable given the pre-image only (H&f). Also, we do not demand the length of the output of
the hash function to be smaller than that of the input. Howewnhile we capture a large class of primitives,
the generalized syntax may not preserve all propertieseo§plecial cases, e.g., if the evaluation algorithm is
probabilistic, two independent parties hashing the samet iwill not necessarily get the same value.

We now use the above syntax to recall the definitions of ongaess and collision resistance. For one-
wayness the definition that we give is more general than @redsrd one in that it considers specific input
distributions X’ for the function, and also accounts for the possibility thatadversary may have some partial
information about the pre-image (modeled through a praiséibifunction hint):

Definition 2.2 (One-wayness and Collision-resistance\ hash functiort{ = (HK, H, HVf) is called
e one-way(wrt X' and hint) if for any PPTAA the probability that forkK < HK(1%), z < x(1F),
hy < hint(K,z), y < H(K,z) andz* < A(K,y, hy) we haveHVf(K, z*,y) = 1, is negligible.

e collision-resistantf for any PPTAA the probability forK” <& HK(1%), (z,2,y) & A(K) thatz # o’
butHVf(K,z,y) = 1 andHVf(K,2',y) = 1, is negligible.



3 Non-Malleability of Hash and One-Way Functions

Our definition for hash functions follows the classical (slation-based) approach for defining non-malleability
[15]. Informally, our definition requires that for any adsary which, on input a hash valuye finds another
value y* such that the pre-images are related, there exists a sonwiditich does just as welvithout ever
seeingy.

In the adversary’s attack we consider a three-stage process adversary first selects a distributigh
from which a secret input is then sampled (and passes on some state information stie Isecond stage
the algorithm sees a hash valyef this inputx, and the adversary’s goal is to create another hash yglue
(usually different fromy). In the third stage the adversary is givemnd now has to output a pre-imagéto
y* which is “related” tox (we make the definition stronger by giving the challengeiprage to the adversary).
The simulator may also pick a distributicti according to which: is sampled, but then the simulator needs to
specifyz* directly from the key of the hash function only.

In the second stage the adversary (and consequently théasimualso gets as input a “hinti,, about the
original pre-imager, to represent some a-priori information potentially gatldefrom other executions of other
protocols in whiche is used. In fact, such side information is often crucial for tleployment in applications,
e.g., for the encryption example in Section 6. As in the cdsen-malleable commitments and encryption,
related pre-images are defined via a relatitfx, «*). This relation may also depend on the distributitirto
catch significantly diverging choices of the adversary dredsimulator and to possibly restrict the choices for
X, say, to require a certain min-entropy. However, unlikedtirer primitives, we do not measure the success
of the adversary and the simulator for arbitrary relatiGhbetween: andz*, but instead restrict the relations
to a classk of admissible relations. We discuss this and other suefletiter the definition:

Definition 3.1 (NM-Hash) A hash functior{ = (HK, H, HVf) is called non-malleable (with respect to prob-
abilistic functionhint and relation classR)? if for any PPTAA = (A4, Ay, A;) there exists a PPTA =
(84, S.) such that for every relatiol € R the difference

[Expnmh k) =1]-Pr [Expnmh k) = 1] is negligible, where :

Experlment Exp}"i (k) Experlment Expjd Ak)
K & HK(1F) K & HKgl’“)
(X,st) & Aq(K) (X; Sta) < Sd(K$)
& X(1F), hy & hint(K, z) x < X(1%), hy < hint(K, 2)
y < H(K, z)

" $
W 3h) < Aull b Sl) 2" 28, (hy. St)
o = Ax(z,Sh) Return 1 iff
Return 1 iff R(X, 2, 2")
R(X,x,z*)
A(z,y) # (2, y*) A HVE(K, 2%, y*) =1

REMARK 1. Our definition is parameterized by a class of relatifsThis is because for some relations the
definition is simply not achievable, as in the case when tlaioa involves the hash aof instead ofz itself.
More specifically, consider the relatid®(x, *) which parses:* as K,y and outputHVf (K, z,y). Then, an
adversary on inpu, h,, St; may outputy* < H(K, (K,y)) and then, giverr, returnsz* = (K,y). This
adversary succeeds in experlmﬁhtp”mh (k) with probability 1. In contrast, any simulator is likely to fail, as
long as the hash function does not have “weak” keys, i.es kmywhich the distribution of generated images
is non-trivial (such that the simulator can gugssith sufficiently high probability).

3Throughout the paper all hint functions and relations asemd to be efficient. We furthermore assume that the sgpariameter
is given in unary to all algorithms as additional input (it mentioned explicitly).
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We resolve this problem by requiring the definition to hold dosubsefR of all relations. It is of course
desirable to seek secure constructions with respect tobread classes of relations (cf. our construction in
Section 4) which are more handy for general deployment. &stime time, certain scenarios may only require
non-malleability with respect to a small set of relationk the application example discussed in Section 6).
Our definition is general enough and permits easy tuninghfemeeds of a particular application or a class of
applications.

REMARK 2. For virtually all “interesting” functions and relation classeR the definition is achievable
only for adversaries and simulators that output descnptiof well-spread distribution&’ (i.e., with super-
logarithmic min-entropy) and so-called uninvertible ftions hint [8] (for which finding the exact pre-image

is infeasible). Note that uninvertibility is a weaker regunent than one-wayness, as it holds for example for
constant functions. We prefer to keep the definition as gg@arpossible, so we do not explicitly impose such
restrictions on the adversary, simulator, dinat.

REMARK 3. In our definition we demand that the simulator outptitsgiven K and h, only. A weaker
condition would be to have a simulaté¥,(h,, st;) first outputy®, like the adversary4,, and thenz* —
Sz(z,st,), before checking thaR(X,z,2*) and thatHVf(K,z*,y*) = 1. We call this aweak simulator
and hash functions achieving this notimeakly non-malleableThis distinction resembles the notions of non-
malleable commitments with respect to commitment and va#pect to opening [14, 18]. Depending on the
application scenario of non-malleable hash functions ttumger or weaker version might be required. As an
example, the result about the Bellare-Rogaway encrypiibierse uses the stronger definition above, and our
construction in the next section achieves this strongaongtvhich obviously implies the weaker one.

REMARK 4. Note that we only demand th@at, y) # (=*, y*) for the adversary’s choice (instead of demanding
x # x* ory # y* instead), yielding a stronger definition, especially whes tandomized hash function has
multiple images for some input. Again, the particular neegahds on the application and our solution meets
this stronger requirement.

REMARK 5. In the case of non-malleable encryption the original $athen-based definition of [15] was later
shown to be equivalent to an indistinguishability-basefiniteon [5]. The superficial similarity between our
definition of non-malleable hash functions and the one of-mafieable encryption suggests that this may
be possible here as well. Surprisingly, straightforwatérapts to define non-malleability of hash functions
through indistinguishability do not seem to yield an eqlaaadefinition. We discuss this issue in Appendix A
, and leave it as an interesting open problem to find a suitablistinguishability-based definition for non-
malleable hash functions.

REMARK 6. The usual security notions for hash functions includewagness and collision-resistance. How-
ever, neither property is known to follow from Definition 3 @onsider aonstantfunction H which is clearly
not one-way nor collision-resistant. But the function isaklg non-malleable as a simulator can simulzte

in a black-box way by handing the adversary the constantevallVe keep these rather orthogonal security
properties separate, as some applications may requireuvmetithe others.

REMARK 7. Some applications (like the HMAC example in [17]) requarenulti-valued version of the def-
inition in which the adversary can adaptively generate rsd\distributions and receive the images (with side
information) before deciding upagi*. One can easily extend our definition accordingly, lettiigloop sev-
eral times, in each roundlgenerating a distributioi; and receivingy; andh,, at the beginning of the next
round and before outputting an image In general, it is possible to extend our construction te tase using
stronger, adaptive versions of POWHFs and NIZKPoKs. SeedRefnafter Theorem 4.2.

4 Constructing Non-Malleable Hash Functions

In this section we give feasibility results via construogdor non-malleable hash functions. The main ingre-
dient of our constructions is a perfectly one-way hash fionc{POWHF) [8, 11], which hides all information



about the pre-image but which may still be malleable [6]. Meuge non-malleability we tag the hash value
with a simulation-sound non-interactive zero-knowledgeop of knowledge of the pre-image. We first recall
the definitions of these two primitives.

For POWHFs we slightly adapt the definition from [8, 11] to satting. Originally, POWHFs have been de-
fined to have a specific input distribution (like the uniform distribution in [11, 16]). Here we let thehaersary
choose the input distribution adaptively, and merely daifrthat this distribution” satisfies a certain efficient
predicatePpow(X); this is analogous to the non-malleability experiment inchithe adversary choosésand
the relationR takesX” as additional input. Also note that we call the side infoimrahereaux (as opposed to
hint for non-malleability) in order to distinguish between thetprimitives. In fact, in our constructiosux
useshint as a sub routine but generates additional output.

Definition 4.1 (POWHF) A hash functior? = (POWK, POW, POWV¥) is called a perfectly one-way hash
function (with respect to predicatE,o, and probabilistic functioraux) if it is collision resistant, and if for
any PPTAB = (B, By), whereB, has binary output, the following random variables are cotafianally
indistinguishable:

K & POWK(1F); 2 & x(1%) K & POWK(1%)
Gy & aux(K,x); y & POW(K, z) (X, sty) & By(K); x & X(1%), 2/ & X (1%)
b By(y, az, Sty) ay < aux(K,z) ;o & POW (K, z')

return (K, z,b) if Poow(X) =1, elseL b < By(y', az, Sty)
return (K, z,b) if Ppow(X) =1, elseL

REMARK 1. As pointed out in [8, 11] the definition only makes senseuif is an uninvertible function of
the input (such that finding the pre-imagegrom a, is infeasible) and3, only outputs descriptions of well-
spread distributions (with super-logarithmic min-engrppOtherwise the notion is impossible to achieve. For
generality, we do not restrict’ andaux explicitly here.

REMARK 2. Perfectly one-way hash functions (in the sense above)eatonstructed from any one-way
permutation [11, 16] (for the uniform input distributior@ny regular collision-resistant hash function [11] (for
any distribution with fixed, super-logarithmic min-entydpor under the decisional Diffie-Hellman assumption
[8] (for the uniform distribution). Usually these generanstructions are not known to be secure assuming
arbirtrary functionsaux, yet for the particular functioaux required by the application they can often be adapted
accordingly. A concrete example is given in Section 6, in discussion of the Bellare-Rogaway encryption
scheme.

ON THE CHOICE OF THE RELATION CLASS Recall that the definition of non-malleability is paranetd by a
class of relations. As explained earlier in the paper, nematieable hash function for an arbitrary class exists
(see Remark 1 after Definition 3.1). In the sequel, we exlhitass of relations for which we show how to
construct non-malleable hash functions, and then presgrirovably secure construction.

Specifically, we consider the class of relatidhg‘gg, parameterized by an optional functianfo and which

consists of all relations of the for(z, 2*) = P(x, P*(rinfo(z), z*)), for all efficient predicate®, P*.# The
functionrinfo(x) may be empty or consist of a small fraction of bitsidfe.g., up to logarithmically many), and
should be interpreted as the information abeothat may be used in evaluating the relati@n |t is important
that rinfo is an univertible function, as otherwise, if one could rezray from rinfo(z), then Rg{‘gg would
comprise all efficient relationsR(z, z*) = P*(z,z*), and non-malleability with respect to this class, again,
would not be achievable.

As an example consider the empty functionfo such thatRyeq consists of all relations?(x, z*) =
P(z, P*(z*)). This class of relations allows to check for instance thdividual bits of z andz* are com-
plement of each other, i.e.,f; denotes the projection onto thh bit then one set®*(z*) = 7;(2*) and lets

“Where we neglect the distributioli as part of the relation’s input for the moment.



P(x, P*(x*)) outputl if 7;(x) # m;(z*). This example has also been used by Boldyreva and Fiscljlio [6
show the necessity of non-malleability for OAEP, and to gimeexample of a perfectly one-way hash function
that is malleable in the sense that flipping the first bit ofrange produces a hash of the pre-image whose first
bit is also flipped.

In the examples abowénfo has been the empty function. Of course, using non-triviatfionsrinfo allows
for additional relations and enriches the clﬁ;ﬂg. Consider for example a hash functiéhthat is malleable
in the sense that an adversary, givéqi, r||m) for randomr € {0, 1}*, can computed (K, r||m’) for some
m’ # m. One way to capture that the two pre-images coincide on tsig:fbits is to setinfo(r||m) = r and
to setP*(r,2*) = 1 if and only if r is the prefix ofz*. Sincerinfo should be univertible, the function should
rather return only a fraction of, though. Similarly, one can see that the c|@§$gg “captures” relations like
R(z,z*) = 1iff z & z* = ¢ for some constant, and many other useful relations.

Finally, we note that each relation from the class also ch#wkt the chosen input distributida “complies”
with the eligible distributions from the underlying POWHTHat is, each relation also checks that the predicate
Poow(X) of the POWHF is satisfied. The full relatid®( X', z, «*) then evaluates toiff P(x, P*(rinfo(z),2*)) =
1 and Ppow(X) = 1. More formally, for any predicaté’},o and uninvertible functiominfo we define the class
of relations:

R1info,Ppow _ { R there exist efficient (probabilistic) predicatEsP* }

pred " such thatR(X, z, 2*) = P(x, P*(rinfo(x), z*)) A Pyow(X)

Our construction also uses a simulation-sound zero-krdy@leoroof of knowledgél = (CRS, P, V) for the
NP-relationRpon defined by:

Rpow = {(KpOW||Z/pOW>33||7”) : POW(KpowJ?; r) = ypow}'

which essentially says that one “knows” a pre-image of a lakke. Simulation-sound NIZK proofs of knowl-
edge for such relations can be derived from trapdoor petoo&g[27, 12]. We recall the definition of such
proof systems in Appendix B.

THE CONSTRUCTION AND ITS SECURITY The following theorem captures the security of our corcs$ion.

Theorem 4.2 Let? = (POWK, POW, POWVf) be a perfectly one-way hash function with respecBPigy
and aux, whereaux = (hint,rinfo) for probabilistic functionshint and rinfo. LetII = (CRS,P,V) be a
simulation-sound non-interactive zero-knowledge prdofrmwledge for relationpoy. Then the following

hash functior{ = (HK, H, HVf) is non-malleable with respect tant and RSPJS’P’”W'

e PPTAHK on input1* samplesk pow <~ POWK(1%) andcrs < CRS(1%) and outputsk = (K pow, crs).
The associated domaii is given byDg,,,-
e PPTAH on inputK andz € Dy computegpow «— POW(Kpow, ;1) for randomr & RNDx,,, as

e PTAHVf for inputs K = (Kpow, crs), z andy = (ypow, 7) outputsl if and only if
POWVf(KpOW’ [L', ypow) — 1 and V(CI”S, Kpow| |yp0W7 7T) — 1

In addition, H is collision-resistant.

We give the proof of the theorem in Appendix C. Here we provadsketch. Consider an adversafly
attacking the non-malleability property, i.e., gettifig h.,St;) as input (after picking distributiort’) and
subsequently producing outputs’, st,) andz* (after learninge). Then we construct a simulatSrwith black-
box access tod as follows.S first simulatesA to produce distributiot’. In the second stagé, computes the
POWHF valuey,,, of an independent sampié and then prepares a zero-knowledge prddbr this value. It



runs.A on this valuey’ = (ypow, 7') to receivey” for y* = (y5o, 7). The simulator then uses the knowledge
extractor of the NIZKPoK to recover* from y;,,, 7* and outputs this value*.

By the perfect one-wayness of the POWHF (with respeciutd and the zero-knowledge property of the
proof, running.A on the fake valug/ cannot changel’s success probability significantly. By the simulation
soundness of the NIZK the simulator is most likely able taaottthe pre-image:* from y* (even if it has
generated only a simulated proof before). The collision-resistance of the POWHF finally ireplthat this
valuex* is quasi unique and will satisfy the non-malleability redatR with essentially the same probability.

REMARK 1. The malleability adversary has access to essentiallydifferent sources of partial information
aboutz: hint(z) which it receives explicitly as input, and@nfo(z) which it can use indirectly through the
relation R. This motivates the requirement thHAtbe perfectly one-way with respect to partial information
aux = (hint, rinfo).

REMARK 2. As mentioned after the definition of non-malleable hastttions, some applications (like the one
about HMAC [17]) may require a stronger notion in which theerdary can adaptively generate distributions
and receives the images, before deciding upbnOur construction above can be extended to this case, as-
suming that the POWHF obeys a corresponding “adaptivergsgerty and that the zero-knowledge proof of
knowledge is multiple simulation-sound and multiple zempwledge. Such adaptively-secure POWHFs (for
uniform distributions) can be built from one-way permudas [16] and suitable zero-knowledge proofs exist,
assuming trapdoor permutations [27, 12].

5 On the Complexity of Non-Malleable Functions

In this section we discuss the existential complexity of -nwaleable functions. We first indicate, via an
oracle separation result, that deriving non-malleablén lzaxsl one-way functions via one-way permutations is
infeasible. We then continue to show that non-malleablé fasctions imply POWHFs.

5.1 On the Impossibility of Black-Box Reductions

We first show that, under reasonable conditions, there islack#box reduction from non-malleable hash
functions (which might not even be collision-resistant tather one-way only) to one-way permutations. For
space reasons most of the proofs have been delegated todipjen

BLACK-BOX REDUCTIONS. In their seminal paper Impagliazzo and Rudich [22] havenshtihat some cryp-
tographic primitives cannot be derived from other prin@sy at least if the starting primitive is treated as a
black box. Instead of separating primitives as in [22] heeefallow the more accessible approach of Hsiao
and Reyzin [21], giving a relaxed separation result witlpees to black-box security reductions. We give a
formalization of the oracle-based black-box separatiqmr@gch that we use in Appendix D.

For our result we assume that the algorithms of the hashiumet are granted oracle access to a random
permutation oraclé® (which is one-way, of course). A black-box reductioriRds now an algorithm which,
with oracle access t® and a putative successful attackéron the non-malleability property, inverf8 with
noticeable probability. Such an attackémay take advantage of another ora@ldrelated toP) which allows
it to break the non-malleability but does not help to invér bne-way permutatio. Since neither the
construction nor the reduction are given acces® tthe reduction must be genuinely black-box.

DEFINING ORACLES P AND O. For now we letP be a random permutation oracle which in particular is a
one-way function. Below we show through de-randomizatechhiques that some fixgd must also work.
For our separation we let the side information of the nonl@ahle hash function include an image of the
uniformly distributed input: underP. More precisely, consider the functi(mhwtfep which on input(1*, K, z)

for randomz computesh,, = P(0*||x|| (HVf) || K) for the descriptionHV) of the verification algorithm and
finally outputsh,,.>

SWe note that the side informatidn. does not reveal any essential information abeirt the sense that one can show that, for any



We next construct the oracl® that helps to break non-malleability. The idea is that ugih is possible
to extract from the imagg and “hint” h, (described above) the pre-imageof y. Since the adversary gets
y as input, but the simulator does not, the oracle is only hélgf the adversary. Note that breaking non-
malleability means that no simulator of comparable comniplas able to approximate the success probability
of A7:© closely. To ensure that the simulator has the equal powe4’a8 we grant the simulato§”-©
therefore access to both oraciésO.

Construction 5.1 Let oracleO take as input a parametel, an imagey and a “hint” h,. The oracle first
finds the pre-image||z|| (HVf) || K of h, underP and verifies that = 0*; if not it immediately returnslL..
Else it checks thd’HVfP(K, x,y) = 1 and returnse if so (and outputsL otherwise).

We show thatD does not help to inverP, thus showing that relative to the oracles there still existe-way
permutations (see again Appendix D for the proof):

Proposition 5.2 For any efficient algorithm3”?, the probability thatB3”:© breaks the one-wayness Bfis
negligible.

In light of this lemma we conclude that there exists a paldicE that is hard to invert for all PPT adversaries
with oraclesP, ©. The argument is the same as in [21]. For a fixed PPT advetsame define the sequence
of events (indexed b¥) whereB inverts strings of lengtt: with some good probability; for a suitable choice
of parameters, the sum of the probabilities (o¥rof these events converges and by the first Borel-Cantelli
lemma only finitely many of these events may occur, almoslgulhen taking the countable intersection over
all PPTB, we get that there is at least oRewith the desired property.

SEPARATION. We require some mild, technical conditions for our nonie@dle hash function and the relation.
Namely, we assume that

e the hash function ison-trivial meaning that it is infeasible to predict an image for uniftyratistributed
input over{0, 1}* (thus ruling out trivial examples like constant hash fumasi), and

e the relation clas$k contains the relatiosep, Which on input(X', z, 2*) checks that¥' is the uniform
distribution on{0, 1}*, and thatparity(z) = @ =; = parity(z*) = @ x}. Note thatRsep € Rpred for
our predicate-based relations, even for the empty funetign, and can thus be achieved in principle.

Theorem 5.3 Let H¥ = (HK” HP HVf?) be a non-trivial non-malleable hash function with respemt t
hintly, and R > Rsep. Then there exists an adversad/”© that breaks non-malleability of(” (for any
simulatorS”-9).

The idea is that the adversary can easily compute the prgemavith the help ofy, h, and oracle® and
then find another value* with the same parity as. In constrast, the simulator most likely cannot get a useful
answer fromO givenh,. only (but noty), because it is infeasible to guess the right vallxy the non-triviality
of the hash function. Hence, the adversary succeeds withapriiity 1 while any simulator cannot be more
successful than with probability close 1@2.

Corollary 5.4 There exists no black-box reduction from non-trivial noaleable functions (with respect to

hintl, andR > Rsep) to one-way permutations.

At first glance it seems as if our result would transfer (aleme minor modifications) to other non-
malleable primitives like commitments. This is not the ca$ée oracle© in our construction relies on the
ability to check whether a pre-imagematches an image (public verifiability of hash functions), while other
primitives such as encryptiafi(m; ) and commitments Cofm;r) use hidden randomness (which is not part
of the input of functiorhint).

non-malleable hash function for the uniform input disttibo and no side information at all, the hash function remmaion-malleable
with respect tah, relative to the random permutatidn (but not relative taD, of course). Also observe that the common strategy of
using black-box simulators usually works for any side infation, and in particular for the one here.



5.2 On the Relation between Non-Malleability and Perfect Oa-Wayness

It it intuitively appealing to conclude that a function whigs not perfect one-way is also malleable. Roughly,
if an adversary can recover even a single bit of informatibouaz, say P(x), from the hash valuél(z),
then it should be able to produt¢(z*) for somez* such thatP(z*) = P(z). As long as the distribution
from which x is selected has enough min-entropy, it would be more diffitula simulator, not seeinf(z),

to emulate the behavior of the adversary. The following psiipn captures the above intuition, using an
alternative formulation for perfect one-wayness, callextte-simulatability [8]. When no auxiliary information

is present, perfect one-wayness in the oracle simulatalsdinse is equivalent to perfect one-wayness in the
sense of Definition 4.1 fonon-uniformadversaries [8]. In general however, security in Definidoh is only
known to imply security in the oracle simulatability senaad not vice versa. In Appendix E we recall the
oracle-simulatability based definition of perfect one-mass and prove the following:

Proposition 5.5 Let H be a hash function that is collision resistant and non-nedile with respect to side
informationhint and relation cIas%Rfr"gg, whereP,,, is such thatPy,, (X) = 1 implies thatt is well-spread.
Then'H is perfectly one-way with respect 1., and partial informationhint, in the oracle-simulatability

sense.

6 Applications

In this section we study the usefulness of our notion for wymphic applications. As an example we show
that when one of the two random oracles in the aforementiemedyption scheme proposed by Bellare and
Rogaway in [4] is instantiated with a non-malleable hastcfiom, the scheme remains IND-CCA secure. In
addition, we argue that non-malleability is useful in praieg off-line computation attacks against a certain
class of cryptographic puzzles.

INSTANTIATING RANDOM ORACLES. We start with recalling the scheme. L&tbe a familiy of trapdoor
permutations and’, H be random oracles. The message space of the schemé/BR = (K, &, D) is the
range ofG. The key generation algorithiid outputs a randond-instancef and its inversé¢—! as the public
and secret key, respectively. The encryption algorithon inputsf andm picks randomr in the domain oft
(we assume that € {0, 1}*) and outputgf(r), G(r) @ m, H(r||m)). The decryption algorithm on inpufs*
and(y, g, h) first computes: «— f~!(y), thenm « g @ G(r), and outputsn iff H(r||m) = h. The scheme
BR%H[F] is proven to be IND-CCA secure in the random oracle modelrassyuthatF is one-way [4].

Here we study the possibility of realizing the random ordglevith an actual hash function famifyt =
(HK, H, HVf), a so-calledpartial H-instantiationof the scheme. More precisely, we modify the scheme so

that the public key and secret key also contain aKey$— HK(1%) specifying a function. The# computes
H(K, r|jm) instead ofH (r||m), andD computedHVf (K, r|m, h) instead of checking tha (r||m) = h. We
refer to this scheme as BR[F]. As explained in the Introduction, non-malleability is acessary property
for H for the scheme to be IND-CCA secure (still in the random @anbdel). The following shows that
non-malleability is in fact sufficient for a secure partiatinstantiation.

Before stating the sufficient conditions for security todjale fix some notation. Below we let the function
rinfogr () = msby, o () output thek /2 most significant bits of its input. The class of relations eguire here
for non-malleability is only a subset of the achievable gldiscussed in Section 4. Namely, we only require a
relation of the formRgr (X, z,2*) = P*(rinfogr(z), *) A Pyow(X'), WherePyo is the predicate that checks
that X’ is the canonical representation of the uniform distributim the firstc bits, andP* is the predicate that
simply verifies thatnsby, »(z*) = rinfogr(z). We choose this specific predicaligr so that it can check if
x = z*, while erring with only negligible probability, but stilldmit the construction of non-malleable hash
functions.

SWith empty functionrinfo.
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Below we will require that the trapdoor permutation famiynisb, ,-partial one-way meaning that it is
hard to compute thg/2 most significant bits of the random inpugiven a random instandeandf () (cf. [19]
for the formal definition). This is a rather mild assumptionmpose onF. For example, RSA was shown to
be partial one-way under the RSA assumption in [19]. A gdragproach to construct such a partial one-way
family 7 is to definef () = g(msby,/2(r)) | g(Ishy o(r)) for a trapdoor permutation.”

We need one more technical detail before stating the theok&start with some hash function family
H = (HK, H, HVf) and trapdoor permutation famil§. We will require that/{ is non-malleable, even when
a random instance of is included with the key output b{K. We stress that this detail still leaves our non-
malleable hash function achievable by the constructiohénprevious section. We writd = (HK =, H, HVf)
for the modified hash function for which key generation otg@urandom instance df along with the original
hash key. The purpose of this change is to allow the siderimdtion function to compute a hint related to the
random trapdoor permutation instance. Below we whitegg for the function that takes as input a kely, f)
and stringz, and outputd(r), wherer are the first bits of the inputz. We note the INDEPAversion of the
scheme by Bellare and Rogaway was shown secure in the stamaattel by Canetti [8], assuming the hash
function is a POWHF with respect to a similar hint function.

Theorem 6.1 Let F be anmsby, ,-partial one-way trapdoor permutation family and lgt= (HKz, H, HVf)
be a collision-resistant hash function which is non-maileawith respect to the functiohintgr and to the
relation Rgr. Assume further thak{ is a perfectly one-way hash function with respectg,, and hintgg.
Then BR'7[F] is IND-CCA secure (in the RO model).

REMARK. Although the non-malleability property of the hash impligat no partial information about pre-
images is leaked (cf. Theorem 5.5 for a formal statementisfitiplication), the theorem above requires the
hash to be perfectly one-way in the sense of Definition 4.i¢kvis a stronger requirement in general.

The proof is in Appendix F. Here we provide some intuition itorConsider an adversar§ that breaks
IND-CCA security of the scheme. After selecting two messagg, m it is given the challenge ciphertext of
the form(y, g, h) = (f(r), G(r) & my, H(K, r|jmy)) for a random string- and bitb, and B tries to predict.
We first claim that the scheme is IND-CPA, meaning that withdecryption querie$S cannot break security.
This follows from the perfect one-wayness condition aboWéat is, if 5 has non-negligible advantage in
determiningb without making any decryption queries, then one can bredegieone wayness df.

Next we show that decryption queries are useleés thssume that3 makes decryption queries of the form
(v',¢',h). If B has queried oraclé& aboutr’ = f~!(y') before then we can easily find this entry in the list
of G-queries and simulate the additional decryption stepse, Elsnsider the case th&thas not made such a
query toG but tries to succeed by mauling the challenge cipheftgxd, /) to (v, ¢, h’). Then it follows from
the non-malleability ofH that this ciphertext is likely to be invalid. The collisigasistance of{ additionally
prevents the case thBtcreates any other valid cipherteyt, ¢, h) without queryingG aboutr’ before.

APPLICATION TO CRYPTOGRAPHIC PUZZLESCryptographic puzzles are a defense mechanism agairiat den
of service attacks (DoS). The idea is that, before spendiggesources for the execution of a session between
a client and a server, the server requires the client to solyezzle. Since solving puzzles requires spending
cycles, the use of puzzles prevents a malicious client taga@ a large number of sessions without spending
itself a significant amount of resources. One desirable iionds that the server does not store any client-
related state.

A simple construction for such puzzles proposed by JuelsBaathard [23] is based on any arbitrary one-
way functionh : {0,1}! — {0, 1}!. First, select at random <- {0, 1}! and compute = k(z). Then, a puzzle
is given by the tupléx[1..l — k], y) consisting of the first — k bits of » together withy. To prove it solved the

"In fact, this construction also has the useful property fhat is still hard to invert, even if givemsb,, /5 (r). Thus this trapdoor
permutation is suitable for constructing POWHFs securé wéspect to side informatiomsby, 2 (), f(r)) and therefore, via our
construction, non-malleable hash functions for side mi@tionhintggr () = f(r) and the relatiorRgr. In other words, non-malleable
hash functions fohintgr and Rgr exist under common cryptographic assumptions.
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puzzle, the client has to retufm, y). It can be easily seen that the construction above is naegnsiatisfactory.
In particular, it either fails against replay attacks —wehthe clients present the same puzzle-solution pair to
the server— or the server needs to store all ofastaused to compute the puzzles.

The solution proposed to mitigate the above problem is toprdew as H (S, t), whereS is some large
bitstring known only to the server, arids some bitstring that somehow “expires” after a certain amaf
time (this can be for example the current system time). Tiezlpus then given byt, z[1..l — k], y), where
y = h(x). A solution (or solved puzzle) ig, =, y) which needs to satisfy the obvious equations, and moreover,
t is not an expired bitstring.

In the setting above, non-malleability &f surfaces as an important property. If out of the first two eptn
(t,H(S,t)) of a puzzle solution the adversary can efficiently constftict (S,t')) for t' # t, a string which
has not yet expired, then the defense sketched above isreehdseless: the adversary can easily construct
new puzzles (together with their solutions). Requiring tha functionH is non-malleable with respect to the
relation R(s1, s2) = 1iff s1 = (S,¢) andsy = (S,t') for t # t' is sufficient to prevent the above attack.

7 Conclusions

We initiated the study of non-malleability of hash and orepfunctions. We designed a definition of non-
malleability and showed that it can be met. Namely, we pregas(theoretical) construction from perfect one-
way hash functions and simulation-sound non-interacter®-knowledge proofs of knowledge. We discussed
the complexity of non-malleable functions, and gave a blaak based separation of non-malleable functions
from one-way permutations. We exemplified the usefulnessuoflefinition in cryptographic applications by
showing that non-malleability is necessary and sufficiensecurely replace one of the two random oracles
in the IND-CCA encryption scheme by Bellare and Rogaway, @nanprove the security of client-server
puzzles. We believe that our definition will find other intgirg applications, and while our treatment is
mostly theoretical, it helps to understand a practical eriypthat designers of hash functions can keep in mind.
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A Towards Alternative Definitions of Hash Non-Malleability

In this section we describe some approaches to defining radieability of hash functions in the style of indis-
tinguishability and show why these approaches fail. Fiosistder the following indistinguishability definition:

Definition A.1 LetH = (HK, H, HVf) be a hash function. It ison-malleable with respect to side information
hint and class of relationsR if for any adversaryd = (A,4, Ay, A;) and relationk € R, Adv%‘ﬁf‘R(k) IS
negligible, where

Advz (k) = Pr [ Expiylis (k) = 1] — Pr [ Expiy0(k) = 1]

and
Experiment Expf;"; ' (k) Experiment Expf; "'z ° (k)

K & HK(1Y) K & HK(1F)

(X, sty) — Aq(K) (X, sty) — A4(K)

z & X(1%); hy < hint(z) 2,7 & X(1%) 5 hy < hint(z)

y— H(K,z) y— H(K, )

(y*’Sty) — ‘Ay(ya hJHStd) (9*75@) — Ay(% hl’aStd)

¥ — Ay(x,sty) ¥ — Ay(x,st))

return1iff return1iff
(y* #y) NHVE(K, 2%, y) = 1 (y* #y) NHVE(K, 2%, y) = 1
AR(X,z,x*) =1 AR(X,z,z*) =1

Intuitively, this definition states that whatever valdecan produce a hash of with the help:gfthe resulting
pre-image will be unrelated to the challenge message. &imito Definition 3.1, this definition is impos-
sible to achieve for an arbitrari®: an adversary can always set = (K,y) and the relationR(x, z*) =
R(z,(K,y)) = HVf(K, z,y) will give A non-negligible advantage for afty. In this casdi)xp%ﬂz;l(k) =1
always, butPr [Exp;}zﬂk’go(k‘) = 1} is likely to be negligible.

To prevent the definition from being trivially unsatisfiablee can try to limitR so that the relations only
look at parts ofc*, as we do in Theorem 4.2. Bl may still get some information aboutfrom an adversary
that usesh, to computex*, and we must rule out the possibility th&t can simply tell whether such side
information matches or not. Thus this definition only makes sense when we rego&&i cannot distinguish
h,. from the side information corresponding to another randoessage. This assumption is too strong for our
purposes, such as in our encryption example. (We note tlsatitles cause a problem in the simulation-based
definition of non-malleability because such an attack isyssg the side information, and a simulator can also
do this.)

It is possible to define non-malleable hash security in a Waydoes not rule out maulings that depend on
the actual hash value itself. This weaker version of secundy be sufficient for some applications.

Definition A.2 LetH = (HK,H, HVf) be a hash function. It isveakly non-malleabléf for any adversary
A= (Ag, Ay, Ap), Adv§y (k) is negligible, where

Adv§PR (k) = Pr [Exp%ﬂh_l(k) =1 } —Pr [Exp;’;‘ﬁh_o(k) =1

and

14



Experiment Expf; " (k) Experiment Exp§;"}" " (k)
K & HK(1F) K & HK@k)
(X, sty) — Aa(K) (X, sty) — Aa(K)
xﬁX(lk);y%H(K,m) m,fﬁX(lk);y%H(K,x)
y* e Ay(y, sta) y* = Ay(y, sta)
r* — Ay(x) ¥ — Ay(z)
return 1iff returnliff
(y* #y) NHVE(K, 2%, y") = 1 (y* #y) NHVF(K, 2%, y") =1

Note thatA, only getsz or z as input when computing*. In particular, A, does not know the hash key
and does not get any state information from the other stafjisecadversary. Intuitively, the adversary is
committed to some mauling strategy when it specifigs and then4,; and.A, will try to suceed with respect
to that strategy.

To see that this definition is strictly weaker than Definitiha, consider the following function. L&{ be
a perfectly one-way hash function, and defié K, ) = H(K, z)||H (K, z & w)|w, wherew is a uniformly
chosen bit string that is not all zeros. Givefi(K, z) = yl|y/|w, A, can compute’ (K, z & w) by simply
outputtingy’||y||w and havingA4,(x) outputz & w. But such an adversary does seem to be ruled out by the
above definition, agl, does not have any information abauit

Hence, we leave at as an open question to find a suitable ingligghability-based definition for non-
malleable hash functions.

B Simulation-Sound Non-Interactive Zero-Knowledge Proo$ of Knowledge

Here we give the definition of simulation-sound NIZK proofskoowledge [27, 12].

Definition B.1 (SS-NIZK) A simulation-sound non-interactive zero-knowledge pod&howledgdl = (CRS, P, V)
for NP-relation Ry, consists of three PPTA, the common reference string gesre@®S, the proverP and the
verifier V, such that there exist a (pair of) PPTA = (Zy,Z,), the zero-knowledge simulator, ad the
knowledge extractor, with the following properties:

e Completeness: For any security parametee N, anycrs <~ CRS(1%), any (z,w) € Ry anyr <
P(crs, z, w) we haveV(crs, z, ) = 1.

e Zero-Knowledge: For any (pair of) PPTR = (Do, D;) the following random variables are computa-
tionally indistinguishable:

crs < CRS(1%) (o, crs) < Zo(1%)

(z,w, state) < Dy (crs) (z,w, state) < Dy(crs)

if (z,w) € Ry, thenw & P(crs, z, w) if (z,w) € Rpthenn & Z,(0,x)
elser = L elser = L

returnd < D (z, w, state ) returnd < Dy (z, w, state )

e Simulation-Soundness: For any (pair of) PPPA= (Ay,.4;) the following experiment returnswith
negligible probability only:
(0, crs) < Zo(1%)
(z, state) & Ag(crs)
7 & Z4(0,2)
(z*, ) & A (state 7)
w* & K(o, 2, 7*)
return 1 iff (z*, 7*) # (z,7) and V(crs, z*, 7*) = 1 and (z*, w*) ¢ Ry.
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The proof is callednultiple zero-knowledge, if one cannot even distingui3is output in the case wheR
asks the provel to see several proofs for adaptively chosen statenients), and in the case when the proofs
are provided by the simulatat, instead. The proof is callethultiple simulation-sound iK can still extract a
witness from a new accepted p&ir*, 7*), even if adversaryd can see several proofs generated by for
adaptively chosen statementshefore.

C Proof of Theorem 4.2 (Non-Malleability of Our Construction)

To prove non-malleability we present a simulafthat, with black-box access to any adversallymanages
to succeed in the non-malleability experimﬂ»tp%“fsh‘o(k) almost as often ad does inExp;TQ'l(k).

The simulatorS works as follows. In modes, it gets as input a key<, = (Kpow,crsg) of our hash

function and invokes the zero-knowledge simulator to gatedirs, o) < Zo(1%). It substitutescrsy in K
by crs to get K = (Kpow, crs) and runsA,(K) to get(X, st;) and outputst’ and (K, o, St;) as state. In the

next stageS, receives side informatioh, (and the state). It first picks’ & X(1%) and compute%ow &
POW (K pow, z’; ") for randomy”’. It also invokes the zero-knowledge simulator to generatienalated proof

& Z4(o, Kpow!|[Ypow)- Lety" = (ypow, ') @and runA, oninput(y’, h., st;) to get an outputy™, st,). Then

compute a witness through the knowledge extraatpf}ry < K(o, Kpow||[Ypow, ™), @nd return the valuey.

To analyze the simulator's behavior we consider a sequehgaroes in which we run the adversady
on varying inputs. We denote lyame (k) the original attack of the adversary aGdme; (k) corresponds to
the simulator’s experiment. We show that each transitiomfGame; (k) to Game;;1 (k) does not decrease the
output distribution noticeably. Hence, the success pritibalm the simulator’'s experiment is at least as large
as the one in the original attack of the adversary (minus #gielg amount), proving our claim. The games
are described formally in Figure C on page 26.

COMPARING GAMES ZERO AND ONE. In comparison to the original attack Gamey (%), the modified game
Game, (k) deploys the zero-knowledge simulator to prepare the conmefenence string and a fake proof, and
replaces the requiremefit,y) # («*,y*) simply byy # y*. The latter step cannot increase the adversary’s
success probability by more than a negligible amount, atiser it is straightforward to derive a successful
collision-finder for the POWHF (running the original expeant and using the adversary as a subroutine to get
x* # x with the same hash valuge= y*).

We next show that the outputs of both games are indistingblshif II is zero-knowledge. Namely, as-
sume towards contradiction that the probabilities of &g 1 in experimentGamey (k) andGame; (k) differ
noticeably. We then construct an algoritih= (Dy, D;) which is able to distinguish between genuine and
simulated proofs fofI.

Algorithm D, gets as inputl” and a stringers, either generated bgRS(1%) or as part of the output
(crs, o) of Zy(1%). It next computes a POWHF valyeby samplingK pow <~ POWK (1%) andz & X' (1) for
(X,sty) & Ag(K) for K = (Kpow, crs). It also computes,, & hint(K,z), r & RNDg,,, and computing
Ypow — POW(Kpow, z;7). It outputs(Kpew||y, z||r) for which a proofr is generated, either produced by
P(crs, Kpow||ypow, x||7") or by the zero-knowledge simulatds (o, Kpow||ypow). Algorithm D; next invokes
Ay on input(y, h., sty) for y = (ypow, 7) to receive(y*, st,) wherey* = (ygo,, 7). Algorithm D; computes
& A (z,st,) and outputsl if and only if y # y*, R(X,x,2*) = 1, POWVS(Kpow, 7", ypon) = 1 and
V(ers, Kpow||Ypow> 7*) = 1.

It is easy to see thd@®?, returnsl with the same probability aSame( (k) (with the modified checly # y*)
if the stringcrs and the proofr are generated bgRS andP. If, on the other hand;rs andr are created by the
simulatorZ, thenD outputsl with the same probability aSame; (k) returnsl. Hence, if both probabilities for
the games would differ noticeably, then we would derive asssful distinguisher against the zero-knowledge

property.

16



COMPARING GAMES ONE AND TwO. In Gamey(k), instead of computing* < A, (x,st,) only, we also
run the knowledge extractor ROWVf(Kpow, 7*, ypow) = 1 to derive a hash function pre-imagg |7y &
K(a, Kpow||ypow: 7*) from A,’s output (else, POWVF(Kpow, 7*, ypow) = 0, we setrg|[rg < L to force the
output of the game to b@). ExperimentGame; (k) then uses the extracted valug to evaluate the decision
and outputd iff y # y*, R(X, x, 2§ ) = 1, POWVF(Kpow, Tk, Ypow) = 1 andV (crs, Kpow||ypow: 7) = 1.

It will follow from the collision-resistance oP and the simulation soundnessldthat the output of these
experiments cannot differ significantly. To compare thebphilities we consider the probability of # xj
with respect to the following disjoint events, conditiogiim all cases implicitly on event

valid = [POWVf(KpOW,x*,ySOW) =1A V(crs,KpOWHySOW,W*) =1ANy# y*] ,
which is necessary for outpuitin both games:

o 2" # xy andPOWVF(Kpow, Tk, Ypow) = 0
In this case it would particularly hol@OW (Kpow, zi; ) # Ypow (else the verification would suc-
ceed by the completeness of the perfectly one-way hashidmcBut then, since we additionally have
V(ers, Kpow||ypow, ™) = 1 andy # y*, the probability for this must be negligible, else it would b
straightforward to construct a successful attack agaheststimulation soundness of the proof system
(vielding a valid proof but for which the extractor returns iavalid witnessey || not mapping to the
hash valuey;,,).

o 1% # xyg andPOWVS(Kpow, Ty, Ypow) = 1 aNAPOWVF (Kpow, %, Ypow) = 1
If this would happen with noticeable probability it wouldraghtforwardly contradict the collision-
resistance of the perfectly one-way hash function.

o T* # xi andPOWVf(KpOW,w’&,ySOW) =1 andPOWVf(KpOW,x*,ySOW) =0
This case cannot happen since weaggt— L if the verification of the adversarial pre-image fails.
Hence, we haver [ 2* = z | with probability negligibly close ta (conditioning orvalid). The factz* = xj,
on the other hand, guarantees tBaine, (k) returnsl with the same probability aSame; (k). It follows for
some negligible functiom (k) that

Pr[ Gamey(k) = 1]
= Pr[Gamey(k) =1 A —valid | + Pr[ Gamey(k) = 1 A valid ]
= Pr[-valid]-Pr|[Gamey(k) =1 | —valid ]|+ Pr[valid] - Pr[ Games(k) =1 | valid ]
=0+Prjvalid]- (Pr[z* =k | valid]-Pr|[Gamey(k) =1 | =" = 2k, valid ]
+ Pr{a® # ag | valid]-Pr[Gamey(k) =1 | =" # xk, valid])
=Pr[valid]- ((1 —v(k))-Pr[Game;(k) =1 | valid ]
+ v(k)-Pr[Gamey(k) =1 | 2" # xk,valid]) > Pr[ Game; (k) = 1] — v(k)

and the probabilities of successful runsGame; (k) can only increase (except for a negligible amount).

COMPARING GAMES TWO AND THREE. The transition toGames(k) consists of two modifications. First,
instead of checking th&®OWVf(Kpow, 7*, ypow) = 1 @nd running the extractor only then, we now extrajt

in any case. This can only increase the success probabilthe@xperiment. As for the second modification
we choose an independerit & X'(1%) and compute the hash value @sw — POW(Kpow, 2/; ') for /&
RNDx,,,, Whereas we still measure the extracted valjiewith respect to the original value. It follows
from the perfect one-wayness of the hash function that tbbatilities of generating outputin experiments
Gameq (k) and Games(k) cannot be affected by this modification noticeably. Assuaveatds contradiction
that this was not the case, and fix a “bad” relati®nc Rg;‘efg given by predicateg’,oy, P and P* (and by
rinfo).
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Consider the adversady, which gets as inpuk(pow. Algorithm 5, runs the zero-knowledge simulator to
create(crs, o) and invokesA,; on K = (Kpow, crs) to create a distributiort’ (and state g). Algorithm B,
outputst’ and statesty, K, o). In the next stagé#), receives an imagg,ow of (z, ) or of (z’, 1), together with
auxiliary information(r,, h,) < aux(K,z) = (rinfo(z), hint(K, z)). Algorithm B, runs the zero-knowledge
simulator to create a simulated praofor Kyow||ypow- It Next invokes a black-box simulation gf, on input
((ypow, ), h, Sty) to derive(y*, st,). Given these valueB,, extracts a pre-imagejy of y* with help of the
knowledge extractor and. It finally outputsb «— P*(r,,zy) iff v # y*, POWVS(Kpow, zi,y*) = 1 and
V(crs, Kpow||ypow, 7*) = 1; if any of the conditions is violated thefi returns a random bit.

Note that our goal is to show that the outp(is, =, b) in the two cases (far andz’) are indistinguishable.
The analysis is a bit involved, due to the fact that we check4is success when switching fromto 2’ in
two stages (some checks performeddbgnd the checlP(x, b) basically performed by the final distinguisher).
To show the claim first letond be the event that the conditions# y*, POWVf(Kpow, i, y*) = 1 and
V(crs, Kpowl|ypow, ™) = 1 and Fyow(X) = 1 for A’s output are satisfied (given either an imagerair of 2).
Then itis easy to see thRt:[ cond | x| is negligibly close tdr [ cond | 2’], else one could easily devise an
attacker against the POWHF which merely checks for thesdittons and outputd’ = 1 if and only if they
are satisified (i.e., such that the tuplé$, x, ') would be easily distinguishable). So from now on we conditio
on both probabilities being negligibly close.

Given K, x andB’s output bitb it is now easy to distinguish the two cases for an algoritirby simply
verifying that P(z,b) = 1. Note that, given-cond and 5 has returned a random it the probabilities for
P(z,b) = 1 are identical for both casesandx’. Hence,

Pr[D(K,z,b) =1 z]
= Pr[D(K,z,b) =1Acond | z|+Pr[D(K,z,b) =1A-cond | z]
= Pr[P(z,b) =1Acond | z|+Pr[P(z,b)=1A-cond | z]
= Pr[P(z,b) =1Acond | z|+Pr[P(x,b)=1| —cond,z]-Pr[—cond | z]

and analogously for the casé

Pr[D(K,z,b)=1] 2’|
= Pr[P(z,b)=1Acond | 2’| +Pr[P(z,b) =1 | —cond,2’ | - Pr[—cond | ']

Recall that the probabilitieBr [ ~cond | z ] andPr[—cond | 2’| are negligibly close (as discussed above),
and that the conditional probabilities fét(x,b) = 1 (given —cond andz resp.z’) are identical. Hence, the
products are therefore negligibly close, too. The other prababilitiesPr | P(x,b) =1 Acond | x| and
Pr[P(z,b) =1Acond | 2’ ] correspond to the cases thdtsuceeds in the two games. Since they have a
non-negligible difference by assumption this contradibtsperfect one-wayness Bf

The final game now mirrors the simulator's strategy and theesponding experiment (except that the
simulator does not need to obey the stipulatigng y* andHVf (K, z*,y*) = 1, which can only increase its
success probability further). This proves non-malleghbili

CoLLISION-RESISTANCE It remains to show that the hash function is collisionstsit. But this follows
straightforwardly from the collision-resistance of thafpetly one-way hash functionl

D Auxiliary Results for Our Black-Box Separation

This section covers some formal statements and proofs édoltitk-box separation result.
BLACK-Box REDUCTIONS. We first recall the more formal definition of black-box retians from [21]:

Definition D.1 (Black-Box Reduction) A black-box reductiorfrom a non-malleable hash function (with re-
spect to somaint’) to one-way permutations consists of efficient algorittiis= (HK’, H”, HVf’) and A;;
with the following properties. For all algorithm® and.4;, each of arbitrary complexity,
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e Correctness: IfP is a permutation (i.e., is a bijection ovén, 11* for eachk ¢ N), thenH” is a hash
function.

e Security: If. A3, breaks the non-malleability of the hash functitff with respect tchint” (i.e., violates
Definition 3.1), thenA;i‘“ breaks the one-waynessf

We use the following lemma of [21] (adapted to our setting)joln generalizes the standard technique of
proving the impossibility of a black-box reduction by giginracles relative to which the reduction cannot exist.

Lemma D.2 (adapted from [21]) No black-box reduction from non-malleable hash functiomish(respect to
somehint’) can exist if there exists oracléd and © with the following properties:

e P is a one-way permutation secure against all PB:©.

e Forall PPTH’ = (HK’,H’, HVf"), there exists a PPT adversa#”© that breaks non-malleability of
HP (with respect to somkint”)

Note that breaking non-malleability means that no simulat@omparable complexity is able to approxi-
mate the success probability 4f”-© close enough. To ensure that the simulator has equal powgraméthe
simulatorS”-© therefore access to both oraciesO.

DEFINING ORACLES P AND O. Recall that we letP be a random permutation (which we will later de-
randomize) and that our oraot® on input(1*,y, p) looks up the pre-image”||x|| (HVf) || K of h, underP
and returnse if and only if z = 0F andHVf” (K, z,y) = 1. We first show that? does not help to break the
one-wayness oP:

Proposition D.3 For any efficient algorithm3””, the probability thatB3”:© breaks the one-wayness Bfis
negligible.

Proof: Assume that there exist an efficient algoritiifi-© that breaks the one-wayness with noticeable prob-
ability 1/q(k) for a polynomialg and infinitely manyk’s. Let ¢(k) be the polynomial bounding the running
time of B. Then we construct an efficient algorith@® which inverts images with almost the same success
probability, but without the help a®.

Algorithm C” is given some3 € {0,1}* as input and first queries its orack for all values of sizeB :=
B(k) = logy(2q(k)t(k) + t(k)). It records all those queries and answers in allist which is possible in
polynomial space and time. It then starts a black-box sitimiaf 87-©(3) in which C answers each query of
BB to P with the help of oracléP, but whereC also appends all queries and answers to thd list

Each ofB’s queries(l’f', y,p) to oracleO is processed by as follows.C searches through the litp so far
and checks whether it has stored a pair in whidppears as the image. If so théproceeds as the oraate
would (i.e., checks that the leading bits of the pre-imagezaro and that the final part verifies with respect to
y, and returns the pre-image if all tests succeed). If, on therdnand, no such entry existsin thenC simply
returnsL. Algorithm C finally outputs whateveB returns.

For the analysis consider thieh query(l’f',y,p) of B to O, conditioning on the fact that has answered all

1 — 1 previous queries consistently wit's replies. IfC finds a corresponding value/image pair in the ligt
then the reply for this reply is also consistent wifts answer. Assume that there is no such pailn In
particular, the parametéf must then be larger thaB. At any point during the simulatio8 has gathered at
mostt(k) value/image pairs foP (where we also count the information derived through presi® queries,
possibly showing only that the leading bits of these pregiesaare not zero). Hence, the probability that for the

k' most significant bitsnsb, (P~ (p)) = 0¥ is at mostrlt(k), and thus at mosf . Summing over all
1

at mostt(k) queries of3 to O all answers o€ are consistent with probability at leaist- TR
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In conclusion, the probability that succeeds is bounded from below by the probab%. In addition,C
runs in polynomial time irk and thus contradicts the one-waynes$of I

SEPARATION. Recall that we need the technical assumption that the hasthidn is non-trivial in the sense
that for uniformly distributed input the output has enougim+entropy. For sake of simplicity we state this
requirement without the oraclg3, O:

Definition D.4 A hash functior® is non-trivial if, for any K « HK(1*) and anyy, the probability that
HVf(K, z,y) = 1 for z < {0,1}*, is negligible.

As another technical prerequisite we assume that theorlatic, (X', 2, 2*) which checks thaf(’ is the
uniform distribution on{0, 1}* and that the parity of andz* are equal, is in the relation clag Note that
clearly Rsep € Rpredis in the class of relations for which our construction holds

With the properties above we can show the following:

Theorem D.5 Let H” = (HK” HP HVf”) be a non-trivial non-malleable hash function with respemst t
hintfep and R > Rsep. Then there exists an adversad/”© that breaks non-malleability of(” (for any
simulatorS?-9).

Proof. Consider the adversabgltzl”(9 which for input K returns (a description of) the uniform distributidn
over {0, 1}* and the state st= K. Adversary.4, on inputy, h, and s forwards(1¥,y, h,) to oracle© to

recoverz. It then continously samples’ & X (1%) till it finds one with equal parity as (or stops after at most
n trials with undefinded output). It computes a hash vajtie— H” (K, z*) and returns this value (together
with the state st = 2*). Adversary.A, for input z and s}, = x* simply outputsz®. Note thatA’s output
satisfies relatiorRsep and(x,y) # («*,y*) with probability negligibly close td (there is a small probability
of 27" that 4, cannot find a suitable* within » trials, and a negligible probability that = x).

Consider now an arbitrary (efficient) simulatsf ™, making at most(k) queries to either oracle for poly-
nomialt(k). First note that the distributio” output bySZ;’O(K) must also be the uniform distribution with
overwhelming probability, and from now on we condition oistiConsider both stageS, andS,., where the
latter algorithm getsr, = P(0%||z|| (HVf)||K) and s§ as input. We first claim that the probability thst
receives fromO the pre-imager or puts a query t@ including z in any of the two stages (eveBAD) cannot
be more than negligible.

Consider the€i + 1)-st query which is either #-query or a query t@, assuming that none of the previous
queries has triggered eveBAD. If this is a query to oracl® thenS has gathered information about at most
otherP-values so far (either directly or through), thus finding the unique pre-image and causing eB#id
with probability at mostﬁ (which is negligible for largek’s). Now suppose that theth query(l’f’,y’,p)

is to oracleO. If p = h, then the answer can only heif HVf(K, z,y’) = 1. But this can only happen with
negligible probability, as the only information abautat this point is that it is different from all previously
seen pre-images und®y;, and the non-triviality of the hash function implies thag trerification succeeds with
negligible probability only. In casg # h, the probability thatO returnsz is at mostﬁ, because the pre-
image ofp underP is either known byS via a previous query and therefore distinct framor the probability
that the pre-image undé? containse is at most;—.

It follows that, for any of the at most polynomially many gigsrto its oraclesS receives a useful answer
causing eveBAD with negligible probability only. Hence, with overwhelngiprobability any of the* —t(n)
possible pre-images df, underP is still equally like from the viewpoint of5, meaning that the simulator
cannot approximate the parity ofbetter than with probability negligibly close %1 which is noticeably away
from A’s success probability.l

It now follows easily:
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Corollary D.6 There exists no black-box reduction from non-trivial noaHeeble functions (with respect to

hintl, andR > Rsep) to one-way permutations.

E Definition and Proof for Proposition 5.5 (NM Implies POWHFs)

We first recall the oracle-simulatability definition of pect one-wayness from [8] for adversaries that get
auxillary information. This version of the definition isgfitly different from the original in how handle message

distributions. Here, we allow the adversary and simulaigritk the message distribution after seeing the hash
key instead of quantifying over all message distributiove also allow the experiment to run a predicate on
the chosen message distribution before declaring if theradwy has won.

Definition E.1 (POWHF, oracle-simulatability definition) LetH = (HK,H, HVf) be a hash function. It is
perfectly one-way in the oracle-simulatability semééh respect to a functiohint and predicater,,,, if if for
any PPTAA = (Ay, Ap) and any PT predicatél,, there exists a PPT simulatdt = (S;, S,) such that the
difference

Pr [Exp%oﬁ_l(k) = 1} —Pr [Exp%og_o(k) =1

is negligible, where:

Experiment Exp};", " (k) Experiment Exp}y's (k)
K & HK(1Y) K & HK(1F)
(X, sty) < Ag(K) (X, sl) < S4(K)
& X(1%), hg < hint(x) z & X(1%), hy < hint(z)
y — H(K,2); p— Ap(y, ha,St) p < Sp(ha,st)
Return 1 iffp = I, (z) A Pyow(X) =1 Return 1 iffp = I, (z) A Pyow(X) =1

We only consider predicaté,,, for which Py, (X') = 1 implies thatY is well-spread.

REMARK 1. Because the definition in [8] considers arbitrary disiitins, the simulator in the “ideal” exper-
iment is given the oracle that verifies whether a given pragienis the one chosen by the experiment. Since a
perfectly one-way hash function should usually be at leastway, we consider only well-spread distributions
(therefore the restriction that we put é),,,) and hence such an oracle is of no use to the simulator.

REMARK 2. The introduction in [8] suggests that a perfectly one-wagh function must be randomized,
and all the suggested constructions are. However, a detistroihash function does not violate perfect one-
wayness, and the constructions in [8, 11] are still POWHRéf tandomness becomes part of the key and are
used for a single message. Hence, our implication that nalfeability implies perfect one-wayness does not
necessarily mean that non-malleable hash functions mystdiabilistic.

Proof of Proposition 5.5: The goal is to show th&k{ is perfectly one-way with respect tont and Fyo, .
Fix some adversarylpo, that attacks perfect one-wayness according to the abovsitaefifor some predicate

II.. We construct an adversard,m and a relationk € Rf;’gg so thatAnm performs almost as well in the
non-malleability experiment aslyoy does in the oracle-simulatability experiment. Then, we thgenon-
malleability of 7/ to build a simulatoSp, that performs almost as well agouw.

Below we letz be the string output by fixing the random tape of the sampliggrithm X' (1*) to all zeros.
(We simply needx, to be an element of the message spaceiiat) outputs with low probability.)

Now we can describe the NM adversafpm = (Anmd, Anmy, Anmz). The first algorithm, Apm g, iS
almost exactly likedpowq; it outputs the same’ and sf, except that it appends the hash K&yto st;. The
third algorithm, Anm ., Simply outputs st To complete the description of our NM adversary, and thatiai
it attacks,Anm, and R are as follows:
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Relation R(x, z*, X)

Adversary A yha,s
1y Anmy (Y ) output(IL,(z) ® [z* = z0]) A Poow(X)

p ApOW,p(ya ha,Stq)

if p = 0 thenz* — x elsex* & X (1F)
y* — H(K,z*); st, — 2"

output(y*, st,)

Clearly, R belongs to the cIastr”gg because it can be expressedrds;, P*(z*)) by settingP*(z*) = [z* =
nmh-1

zo] and P(z,b) = I1(x) @ b. By writing out and re-arrangingxpy; 1., we get:

Experiment Exp"}'% (k)
K & HK(1F) 3 X(1F) — Apowa(K)
z & X(1F) 5 hy < hint(z) ; y «— H(K, 2)
p— ApOW,p(K7 Y, hx)
if p=0thenz* «— z( elsex* & X (1%)
y* — H(K,z")
Return 1iff(y* # y) A HVF(K, 2%, y*) = 1 A (I (2) @ [z = 20]) A Ppow(X) =1

It then follows that the differenc®r [ Expf"y | — Pr [Exp?fﬁ;;v(k)} is negligible. Namely, ifApow
predicts correctlyp = 0, then Anm also causes? to outputl. If Apoy predicts correctlyp = 1, however,
there is a chance that thé £ xq requirement will not be met. But sinck is well-spread, this happens with
only negligible probability. The only remaining differem the outputs oExpg‘g‘Q'nlm could be caused by and
Exp?ﬁﬁ;;v(k) is they™* # y, requirement. HoweveRr [ y* = y | is negligible sinceH is collision-resistant.

By the non-malleability of{ under Definition 3.1, there exists a simulaf = (Shm,d, Snm,) Such that
the differencePr [Expg‘{’f‘ﬂ'n}n =1]-Pr [Expg‘{f‘gg = 1] is negligible. We now complete the proof by con-
structing a simulatoSpo (that works analogously td,m), and for which we have thatr [Exp%o‘ggwov(k) ] =

Pr [ Exp}"3? |. The simulatoSpow = (Spow.d: Spowp) OPerates as followsSpow,q is exactlySnm,d. Spowp i

defined by:

Simulator Spow,p(haz, Sty)
¥ — Snmz(he, Sty)
if * = x9thenp « 0 elsep — 1
outputp

WheneverS,m causesk(z, z*, X') = 1, thenSpow Will correctly guesdl,, (x) and satisfyP,on (X). |

F Proof of Proposition 6.1 (IND-CCA Security of BR Encryption)

We first recall the standard definition of security under emesiphertext attack, or IND-CCA security, for
public-key encryption.

Definition F.1 (IND-CCA) Let PKE= (K, &, D) be a public-key encryption scheme. ItND-CCA secureif
for any PPTAB = (B,,, By), the differencePr {Exp?ﬁE‘,ga(l@) = 1} — 1/2 is negligible, where:

Experiment Exppide 57 (k)
(pk,sk) & K%Y 5 (mo, m1, st & BoxY) (pk)
b i {0, 1} ; C i Spk(mb)
b* — Bstk(‘)(c’ St)
Return 1iffo* = b
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We assume thds, does not querPg(c).

Let us fix some notation used in the proof. Below we will userthtural modification of this definition where
we give all of the algorithms involved access to a randomlerachich we denoté;. We let3 be an adversary
attacking the encryption scheme in the IND-CCA game. Wengitkr to the challenge ciphertext &5, h.

We first describe a sequence of games, witenee, is equivalent tcExpiF{‘,?,ggca(k) from Definition F.1,
and the final game is simple to analyze. Next we show that fdr pair of adjacent gamésme; andGame; 1,
the adversary’s advantage can change only negligibly.dfittal game, we complete the proof by showing that
the adversary’s advantage is negligible.

Game;. This is like Game, except that on decryption quety, g, h), if y # g andB has not queried anto G
such thaty = f(r), Game; rejects the ciphertext.

Game,. This game is likeGame;, except now the decryption oracle querigsg, h), wherey = y andh = h
(and thugyy # §), and the adversary has not quer@@-) such thaty = f(r), are rejected.

Games. This is like Games, except now the decryption oracle rejeatkciphertexts(y, g, h) such that3 did
not queryG(r) such thaty = f(r). (This amounts to adding a new rule to reject ciphertexth wit g, h # h,
and this property.)

Gamey. This is like Games, except that now the challenge ciphertext is set to an etiorypf a uniformly
chosen random message insteachgf

COMPARING GAMES ZERO AND ONE Let F; be the event thaf submits a ciphertext iGame; that is rejected,
but would not have been rejected@amey. It is clear that condition on the event th&t does not occur3’s
outputs inGamey andGame; have the same distribution.

We claim thatPr[F;]| = ¢; is negligible, by the collision resistance &f. To see this, define the following
adversaryA; that attemps to find collisions iK. AdversaryA; takes as input a hash ké¥’, f) and uses itin
the public key inGame;, but replace$ by sampling an independent instarfgethus knowing the secret key
fo 1y and generates the rest of the public key/secret key pelf #ad answers all oracle queries #y having
full control over oracle~ (i.e., answering each new query with a new random string aorthg all queries and
the relies in an array calle@-list, so the repeated queries could be answered con$ygtant also creating the
challenge ciphertext as described by the protocol4lfdetects a ciphertext, g, h) that would get rejected
in Gamey, it halts the game. Then adversady computes: = fo_l(y), m = G(r) @ g, generating the value
G(r) from scratch. Attackerd; then selects a new random messaggeand outputgr||m, r||m’) andh as its
collision.

Since the ciphertexty, g, h) would not be rejected itamey, we know thaHVf(K, h, r||m) = 1. Observe
that whenA; computedn = G(r) @ g, it was actuallysettingm to a random messagé his is true because
B had never queried(r), so.A; selected a random string for it after the game was over. Naeme that an
1 fraction of the possible coins that determiGeme, will cause the event} to occur. It then follows by a
standard averaging argument that, foray2 fraction of the coins foGamey, there is ar; /2 chance over the
choice ofG(r) (with the other coins fixed) will causE;. Thus, when thed; selects a second messageafter
halting the game, there is at leastsgi4 chance that it will satisfHVf (K, h, r|jm’) = 1. Thus the chance that
A finds a collision is at least} /8, ands; must negligible.

COMPARING GAMES ONE AND Two It is clear that until the new reject rule is usdghme; and Game, are
the same. LeE; be the event that a query is rejected because of this rulevilat! not have been rejected in
Gamey, and letzo = Pr[F,]|. We claim thats, is negligible by the collision resistance Hf.

We showes is negligible by presenting an efficient adversaty that takes as input a hash kéy finds
a collision inH with probability related ta,. Algorithm A, also generates a new paf(),fo‘l) and useg{
andf, in the public key and run&ame, for B until the reject rule inGamey is used (again, controlling’ and
generating a valid challenge ciphertext). ILgtg, h) be the ciphertext that triggered the reject ruleyse y
andh = h. Adversary.A; computesn’ = G(r) & g, computes® = f; 1(@), recalls thatn;, was the message
used in the challenge ciphertext, and then outpiitsn,, #||m’) andh as its collision.
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We claim thatA; finds a collision with probabilitys. This is because if the evet was used, then the
ciphertext(y, g, h) must have been valid, i.edVf(K, h, 7||(G(7) @ g)) = 1. By assumptiory # g, hence
m’ = G(r) @ g is different fromm, = G(r) & ¢ but still maps (prepended by= ) to the same hash value
h = h. The claim follows, and, must be negligible.

COMPARING GAMES TWO AND THREE Gamey andGameg are clearly the same until the new rule is applied.

Let F; be the event that a ciphertext is queried that triggers #et rule inGames. but would not have been

rejected inGame,y. We claim thafPr[F3] is negligible, by the non-malleability condition @t in the theorem.
Letes = Pr[F3]. To see this we construct an adversaty = (A4, Ay, A;) to win the non-malleability

game withhintggr and our relationRgr € Rgpgg more often than any simulator. Recall that our relation

Rgr(X,ro|/mo, r1]jm,) tests if (1).X is a canonical sampler that samptes™- {0, 1}* and outputs-||m for
somem and (2) if the leading: /2 bits of o andr; are equal.

Our A, takes as input a hash k&’ = (K, f) and begins to simulat€ame; for B using (K, f) as the
public key. To simulate the random oracleproperly,.A,; stores all the random oracle queri@snakes and the
corresponding replies in an associative array,Ghiést. A; answers decryption queri€s, g, h) as described
in Game, by first locating a previously made quegyin the G-list such thaty = f(r), and rejecting all other
ciphertexts.4, never accessds ' to maintain this simulation.

Ay runs B until it outputs two messagesng, mi1). Then.A; chooses a random bit and outputs the

canonical encoding of the distributicti that selects <- {0, 1}* and outputs-||m;.

After the expirement samplédmn;, and.A, receivesh < H (K, ||m), f(7) as input,A, setsj to a random
string, definesz(7) = g ® m; and returngy, g, ﬁ) as the challenge ciphertext f6r For each of5’s queries
r; to the random oraclé’, adversary4, checks iff(r;) = g, and if so, returngs(7); else it uses the same lazy
sampling technique as beford,, continues to answer decryption queries as before Griilts.

After B halts, A, examines all of the rejected decryption queries issue8l byat had their first parg and
other part(g, ) # (g, ). Out of theseyp queries, A, selectsy*|¢*||h* at random and returris* as its new
hash in the non-malleability game. Finally, the algorithin takesr||m,, as input, selects:’ at random, and
outputsr||m’.

Now if the eventFs occured, then there is some ciphertext that should not hewe fejected, ands will
have al /¢p chance at picking that ciphertext for its output in the NM gart is simple to check that; occurs
and Aj; selects this ciphertext, it wins the NM game, giving it ¢p chance at winning, since the firkf2
bits coincide. In constrast, any simulat®r= (S;, S,) receivesk” = (K, f) as input, chooses the distribution
X, and gets onlyf(r) as input toS,. Although this simulator may depend on the relatiBpg, it still must
choose a canonical encoding &ffor its message distribution, and thus predict the leadifybits of r. But
then it violates partial one-waynessfofT herefore, the probability of the simulator satisfying tielationRgr
is negligible, and there is noticeable differencedgs success probability.

This yields the contradiction that the hash functionesnon-malleable for the relatioRgg. Thusss must
also be negligible.

COMPARING GAMES THREE AND FOUR Let S3 be the event tha wins Games, and letS, be the event that
it wins Game4. We claim that Pr[Ss] — Pr[S,]| = ¢4 is negligible by the POWHF condition in the theorem.
To prove this, we construct an adversaty = (Ay4, A;) that wins the POWHF game with probability. A,
gets a hash ke’ = (K, f) as input, and rung with public key (K, f). A, answers decryption queries itself,
as decribed irGames, withoutf~!. When outputs a paifmg, m;), A4 selects a random bitand outputs a
canonical distributiont’ that samples <- {0, 1}* and a randomv’ from the message space, and outptjis.
with probability 1/2 andr||m’ otherwise.

Ay gets as inpub andyj = f(7). Ay first chooses a random striggwhich implicitly defines(7) = g®m,
wherem is eitherm, or a random message chosen by the hash oragleontinues to simulate the game #6r
with challenge ciphertex, g, h until either (1)B queriesG(7) or (2) B halts with a bith* as output.

In case (1),4, aborts the simulation and can immediately win the POWHF génmitn overwhelming
probability) by checking iﬂ-lVf(K,meb,ﬁ) = 1. In case (2).4, tests ifb* = b, and if so, it outputd, and
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otherwise it outputs). If the hash oracle returneld = G(K, r||m;), then A, perfectly simulatedsiames for
the adversary. Otherwise, the adversary perfectly simdli@bme,. A standard argument gives thdt, has
advantage negligibly close tq /4, finishing the proof of the claim.

Finally, it is obvious thatPr[B wins Games] = 1/2 because the bit is never used, and collecting the
relations between all of the games, we get thahust have had negligible advantage in the original IND-CCA
game. |
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Experiment Gamey(k):
Kpow <~ POWK(1*)
crs < CRS(1%)
K = (Kpow, c18)
(X,st) & Ay(K)
& X(1%); by & hint(K, z)
Ypow — POW (Kpow, ;7) for r & RNDx o
T P(crs, Ypow, x||1)
Y = (Ypow, )
(y*,Sty) < Ay(y, ha, Sty) wherey* = (yion, )
& Ay (z,st)
Return 1 iff
R(X7x7x*) =1A (way) # (‘T*7y*)
A POWVf(Kpow,:E*,y;;OW) =1
AV (ers, Ypow, ™) = 1

Experiment Game; (k):
Kpow < POWK(1)
(CI‘S, U) & ZO(lk)
K = (Kpow,crs)
(X, st,) < Ag(K)
& X(1%); by & hint(K, z)
ypow — POW(Kpow, x7 T) fOf T <i RNDKpOW
& Zy(o, ?/pow)
Yy = (Z/powﬂT)
(y*,st) < Ay (y, ha, sty) wherey* = (ow, 7)
& Az (x,sty)
Return 1 iff
R(X,z,2*)=1NA (y #y")
/\ POWVf(Kpow, x*, ySOW) = 1
AV (ers, ygow, ) = 1

Experiment Gamesy(k):

Kpow < POWK(1)

(crs, o) < Zo(1F)

K = (Kpow, CI‘S)

(X, st,) < Aq(K)

& X(1%); by & hint(K, z)

ypow — POW(Kpow, x7 T) fOf T i RNDKpOW
& Zy(o, ypow)

Yy = (ypow 7T)

(v, Sty) < Ay(y, he, Sta) Wherey*™ = (yon, ™)
& Ay (z,st)

t hen ok < K(0, yow: ™)
el sexy «— L

Return 1 iff
R(X,l’, ‘/L‘T( ) =1A (y 7& y*)
N POWVF(Kpow, T ,y;OW) =
/\V(crs,ygow,ﬂ*) =1

1

Figure 1: Games in the Proof of Theorem 4Skaded areas indicate the differences between the games.
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Experiment Games(k):

Kpow < POWK(1*)

(crs, o) < Zo(1%)

K = (Kp0W7ch)

(‘X7 Sty) <i Ad(K)

x & X(1%); by & hint(K, z)

' & X (1k)

Yhow — POW(Kpow, 2’5 7') for ' < RNDg,,
T & Z4(o, g

Yy = ( y;{,)ow 77T)
(y*,st,) < Ay (y, he, Sta) wherey* = (yion, )

* * $ * *
xKHTK — K(a, Ypows T )
Return 1 iff

R(X,xz,x5) =1 A (y £ y*)
A POWVf(KpOW7wr<ay;oW) =1
/\V(crs,ySoWﬂT*) =1



