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Abstract

Non-malleability is an interesting and useful property which ensures that a cryptographic protocol pre-
serves the independence of the underlying values: given forexample an encryptionE(m) of some unknown
messagem, it should be hard to transform this ciphertext into some encryption E(m∗) of a related mes-
sagem∗. This notion has been studied extensively for primitives like encryption, commitments and zero-
knowledge. Non-malleability of one-way functions and hashfunctions has surfaced as a crucial property in
several recent results, but it has not undergone a comprehensive treatment so far. In this paper we initiate the
study of such non-malleable functions. We start with the design of an appropriate security definition. We
then show that non-malleability for hash and one-way functions can be achieved, via a theoretical construc-
tion that uses perfectly one-way hash functions and simulation-sound non-interactive zero-knowledge proofs
of knowledge (NIZKPoK). We also discuss the complexity of non-malleable hash and one-way functions.
Specifically, we show that such functions imply perfect one-wayness and we give a black-box based sepa-
ration of non-malleable functions from one-way permutations (which our construction bypasses due to the
“non-black-box” NIZKPoK). We exemplify the usefulness of our definition in cryptographic applications by
showing that non-malleability is necessary and sufficient to securely replace one of the two random oracles
in the IND-CCA encryption scheme by Bellare and Rogaway, andto improve the security of client-server
puzzles.
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1 Introduction

MOTIVATION . Informally, non-malleability of some functionf is a cryptographic property that asks that learn-
ing f(x) for somex does not facilitate the task of generating somef(x∗) so thatx∗ is related tox in some
non-trivial way. This notion is especially useful whenf is used to build higher-level multi-user protocols where
non-malleability of the protocol itself is crucial (e.g., for voting or auctioning). Non-malleability has been
rather extensively studied for some cryptographic primitives. For example, both definitions as well as construc-
tions from standard cryptographic assumptions are known for encryption, commitments and zero-knowledge
[15, 5, 27, 14, 18, 12, 1, 13, 25, 26, 2]. Non-malleability in the case of other primitives, notably for one-way
functions and for hash functions,1 has only recently surfaced as a crucial property in several works [6, 7, 10, 17],
which we discuss below.

For instance, plenty of cryptographic schemes are only proved secure in the random oracle (RO) model [4],
where one assumes that a hash function behaves as a truly random function to which every party has access
to. It is well-known that such proofs do not strictly guarantee security for instantiations with hash functions
whose only design principles are based on one-wayness and/or collision-resistance, because random functions
posses multiple properties the proofs may rely on. Hiding all partial information about pre-images, i.e. perfect
one-wayness, is one of these properties, and has been studied in [8, 11]. Non-malleability is another example
of such a property.

An illustrative example is the encryption scheme of Bellareand Rogaway [4], where a ciphertext of message
M has the form(f(r), G(r)⊕M,H(r,M)) for a trapdoor permutationf , hash functionsG,H and randomr.
The scheme is known to be IND-CCA secure in the random oracle model. However, an instantiation ofH with
a malleable function for which givenH(r,M) it is possible to computeH(r,M ⊕M ′), for some fixedM ′

known to the attacker, renders the scheme insecure: the attacker can recoverM by submitting to the decryption
oracle the valid ciphertext(f(r), G(r)⊕M ⊕M ′,H(r,M ⊕M ′)).

It was shown in [6] that a similar attack can be carried out against the popular OAEP encryption scheme
whenever the instantiation of the underlying hash functionis malleable. A subsequent work [7] showed that
some form of non-malleability permits positive results about security of an alleviated version of the OAEP
scheme in the standard model. However, it remains unclear ifthe approach to non-malleability in [7] expands
beyond the OAEP example, and the work left open the construction of non-malleable primitives.

Another motivating example is the abstraction used to modelhash functions in symbolic (Dolev-Yao) secu-
rity analysis. In this setting it isaxiomatizedthat an adversary can compute some hash only when it knows the
underlying value. Clearly, malleable hash functions do notsatisfy this axiom. Therefore, non-malleability for
hash functions is necessary in order to ensure that symbolicanalysis is (in general) sound with respect to the
standard cryptographic model. Otherwise, real attacks that use malleability can not be captured/discovered in
the more abstract symbolic model.

In a different vein, and from a more conceptual perspective,higher-level protocols could potentially benefit
from non-malleable hash functions as a building block. A recent concrete example is the recommended use of
such non-malleable hash functions in a human-computer interaction protocol for protecting local storage [10].
There, access should be linked to the ability to answer human-solvable puzzles (similar to CAPTCHAs), but it
should be infeasible for a machine to maul puzzles and redirect them under a different domain to other human
beings.

We will also discuss a construction of a cryptographic puzzle from [23] designed to prevent DoS attacks,
and show that non-malleability of the underlying hash is necessary for its security.

Hence, non-malleability is a useful design principle that designers of new hash functions should keep in
mind. At this point, however, it is not even clear what the exact requirements from a theoretical viewpoint are.
Therefore, a first necessary step is to find a suitable definition which is (a) achievable, and (b) applicable. The
next step would be to design practical hash functions and compression functions which are non-malleable, or
which at least satisfy some weaker variant of non-malleability.

1In the sequel we aggregate both one-way functions and hash functions under the term hash functions for simplicity.
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CONTRIBUTIONS. In this paper we initiate the foundational study of non-malleable hash functions. We start
with the design of an appropriate security definition. Our definition uses the standard simulation paradigm,
also employed in defining non-malleability for encryption and commitment schemes. It turns out however that
a careless adjustment of definitions for other primitives yield definitions for non-malleable hash functions that
cannot be realized. We therefore motivate and provide a meaningful variation of the definition which ensure
that the notion is achievable and may be useful in applications.

Testifying to the difference to other cryptographic primitives, we note that for non-malleable encryption the
original simulation-based definition of [15] was later shown to be equivalent to an indistinguishability-based
definition [5]. For our case here, finding an equivalent indistinguishability-based definition for non-malleable
hash functions appears to be far from trivial, and we leave the question as an interesting open problem.

We then show that our definition can be met. Our construction of a non-malleable hash function employs a
perfectly one-way hash function (POWHF) [8, 11], i.e., a probabilistic hash function which hides all information
about its pre-image. Notice that this form of secrecy in itself does not ensure non-malleability, so we make the
function non-malleable by appending a simulation-sound non-interactive zero-knowledge proof of knowledge
(NIZKPoK) [27, 12] of the hashed value. Both primitives exist, for example, if trapdoor permutations exist.2

The construction we provide is probabilistic and does not achieve the desired level of efficiency for practical
applications. We emphasize that our construction should beregarded as a feasibility result that shows that, in
principle, non-malleable hash functions can be built from standard assumptions. We leave open the problem
of finding a practical, deterministic solution. We note thatour definition is general enough to allow such
constructions.

Next, we investigate necessary cryptographic assumptionsfor building non-malleable hash functions. We
provide two results. First we show that a non-malleable hashfunction needs to hide any information about
the pre-image. This result justifies the use of POWHFs in our construction. Then we show (in the style of
Impagliazzo-Rudich [22]) that black-box constructions ofnon-malleable one-way functions from one-way per-
mutations are in fact impossible; to be more precise, we follow the approach of Hsiao and Reyzin [21] and
show that no black-box security reduction is possible. Notice that our construction circumvents the impossibil-
ity result due to the use of a “non-black-box” NIZKPoK.

Finally, we study the applicability of our definition. We show that non-malleability is in fact sufficient for
secure partial instantiation of the aforementioned encryption scheme of Bellare and Rogaway [4], i.e., that the
scheme remains IND-CCA secure whenH is replaced with a non-malleable hash function. Although G is still
a random oracle, this partial instantiation helps is to better understand the necessary properties of the primitives
and also provides a better security heuristic.

We also sketch an application to the framework of cryptographic puzzles [23] as a defense against DoS
attacks, where non-malleability surfaces as an important property. The usefulness of the definition has also
been shown in [17], using a special case of a preliminary version of our definition to prove that HMAC [3]
is a secure message authentication code, assuming that the compression function of the hash function is non-
malleable. We expect further applications of non-malleable hash functions in other areas, and some of the
techniques used in our proof here may be helpful for these scenarios.

RELATED WORK. Independently of our work, Canetti and Dakdouk [9] and Pandey et al. [24] recently also
suggested one-way functions with special properties related to, yet different from non-malleability. The work
of Canetti and Dakdouk [9] introduces the notion of extractable perfect one-way functions where generating an
image also guarantees that one knows a preimage. This shouldeven hold if an adversary sees related images,
somewhat resembling our non-malleability setting. Yet, extractability in [9] is defined by having a knowledge
extractor generate a preimage from the adversary’s view, including the other images. In contrast, the common
(and our) approach to non-malleability is to deny the simulator the other images, in order to capture the idea
that these images should not help.

2We remark that the intuitively appealing approach of using non-malleable encryption or commitment schemes to directlyconstruct
non-malleable hashes does not work. One of the reasons is that the former primitives rely on secret randomness, whereas hash values
need to be publicly verifiable given the pre-image.
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The work by Pandey et al. [24] defines adaptive one-way functions where inversion for an image under
some indextag is still infeasible, even if one is allowed to obtain preimages under different indicestag′. This
notion is also related to non-malleability and turns out to be useful to design non-malleable protocols like
commitments and zero-knowledge proofs. Unfortunately, this strong notion is not known to be realizable at this
point.

It is noteworthy that, analogously to our work here, both papers choose the Bellare-Rogaway encryption
scheme as a test case (among others). This gives three different views on the requirements of the hash functions
in this encryption scheme. While we only instantiate one of the two random oracles, the authors of [9] and
of [24] aim at instantiating both hash functions, requiringpseudorandomness as another property of the hash
function. Yet, neither extractable perfect one-way functions which are also pseudorandom, nor adaptive pseu-
dorandom generators are known to be constructible under common assumptions. In contrast, our single-oracle
instantiation through a non-malleable hash function is possible under standard assumptions.

2 Preliminaries

If x is a string then|x| denotes its bit length and ifx, y are strings thenx‖y denotes the concatenation ofx and

y. If k ∈ N then1k is the string consisting ofk consecutive “1” bits. IfS is a set then we writex1, x2, . . .
$

← S

for selectingx1, x2, . . . independently at random fromS. If X is a distribution thenx
$

← X (1k) stands for
a sampling process wherex is picked according toX for input 1k. The term “PPT” (resp. “PT”) stands for
“probabilistic polynomial-time,” (resp. “polynomial-time”) and “PPTA” (resp. “PTA”) for “PPT algorithm”
(resp. “PT algorithm”). IfA is a PPTA then the notationy

$

← A(x1, x2, . . .) denotes thaty is assigned the
outcome ofA running on inputsx1, x2, . . .. If A is deterministic (PTA), we often drop the dollar sign above the
arrow.

Definition 2.1 (Hash Functions) A hash functionH = (HK,H,HVf) consists of PPTAs for key generation,
evaluation and verification, where

• PPTAHK for security parameter1k outputs a keyK (which contains1k and implicitly defines a domain
DK ),

• PPTAH for inputsK andx ∈ DK returns a valuey ∈ {0, 1}∗,

• PTAHVf on inputsK,x, y returns a decision bit.

It is required that for anyK
$

← HK(1k), anyx ∈ DK , anyy
$

← H(K,x), algorithmHVf(K,x, y) outputs1.

Note that we consider a very general syntax, comprising the “classical” notions of one-way functions (with
a public key) and of collision-resistant hash functions which compress the input to a shorter digest (see [20]
for definitions). In our case the evaluation algorithmH may be probabilistic, as long the correctness of hash
values is verifiable given the pre-image only (viaHVf). Also, we do not demand the length of the output of
the hash function to be smaller than that of the input. However, while we capture a large class of primitives,
the generalized syntax may not preserve all properties of the special cases, e.g., if the evaluation algorithm is
probabilistic, two independent parties hashing the same input will not necessarily get the same value.

We now use the above syntax to recall the definitions of one-wayness and collision resistance. For one-
wayness the definition that we give is more general than the standard one in that it considers specific input
distributionsX for the function, and also accounts for the possibility thatthe adversary may have some partial
information about the pre-image (modeled through a probabilistic functionhint):

Definition 2.2 (One-wayness and Collision-resistance)A hash functionH = (HK,H,HVf) is called

• one-way(wrt X and hint) if for any PPTAA the probability that forK
$

← HK(1k), x
$

← X (1k),

hx
$

← hint(K,x), y
$

← H(K,x) andx∗ $

← A(K, y, hx) we haveHVf(K,x∗, y) = 1, is negligible.

• collision-resistantif for any PPTAA the probability forK
$

← HK(1k), (x, x′, y)
$

← A(K) that x 6= x′

butHVf(K,x, y) = 1 andHVf(K,x′, y) = 1, is negligible.
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3 Non-Malleability of Hash and One-Way Functions

Our definition for hash functions follows the classical (simulation-based) approach for defining non-malleability
[15]. Informally, our definition requires that for any adversary which, on input a hash valuey, finds another
valuey∗ such that the pre-images are related, there exists a simulator which does just as wellwithout ever
seeingy.

In the adversary’s attack we consider a three-stage process. The adversary first selects a distributionX
from which a secret inputx is then sampled (and passes on some state information st). Inthe second stage
the algorithm sees a hash valuey of this inputx, and the adversary’s goal is to create another hash valuey∗

(usually different fromy). In the third stage the adversary is givenx and now has to output a pre-imagex∗ to
y∗ which is “related” tox (we make the definition stronger by giving the challenge pre-image to the adversary).
The simulator may also pick a distributionX according to whichx is sampled, but then the simulator needs to
specifyx∗ directly from the key of the hash function only.

In the second stage the adversary (and consequently the simulator) also gets as input a “hint”hx about the
original pre-imagex, to represent some a-priori information potentially gathered from other executions of other
protocols in whichx is used. In fact, such side information is often crucial for the deployment in applications,
e.g., for the encryption example in Section 6. As in the case of non-malleable commitments and encryption,
related pre-images are defined via a relationR(x, x∗). This relation may also depend on the distributionX to
catch significantly diverging choices of the adversary and the simulator and to possibly restrict the choices for
X , say, to require a certain min-entropy. However, unlike forother primitives, we do not measure the success
of the adversary and the simulator for arbitrary relationsR betweenx andx∗, but instead restrict the relations
to a classR of admissible relations. We discuss this and other subtleties after the definition:

Definition 3.1 (NM-Hash) A hash functionH = (HK,H,HVf) is called non-malleable (with respect to prob-
abilistic functionhint and relation classR)3 if for any PPTAA = (Ad,Ay,Ax) there exists a PPTAS =
(Sd,Sx) such that for every relationR ∈ R the difference

Pr
[
Expnmh-1

H,A (k) = 1
]
− Pr

[
Expnmh-0

H,S (k) = 1
]

is negligible, where :

Experiment Expnmh-1
H,A (k)

K
$

← HK(1k)

(X , std)
$

← Ad(K)

x
$

← X (1k), hx
$

← hint(K,x)

y
$

← H(K,x)

(y∗, sty)
$

← Ay(y, hx, std)

x∗ $

← Ax(x, sty)
Return 1 iff

R(X , x, x∗)
∧ (x, y) 6= (x∗, y∗) ∧ HVf(K,x∗, y∗) = 1

Experiment Expnmh-0
H,S (k)

K
$

← HK(1k)

(X , std)
$

← Sd(K)

x
$

← X (1k), hx
$

← hint(K,x)

x∗ $

← Sx(hx, std)
Return 1 iff

R(X , x, x∗)

REMARK 1. Our definition is parameterized by a class of relationsR. This is because for some relations the
definition is simply not achievable, as in the case when the relation involves the hash ofx instead ofx itself.
More specifically, consider the relationR(x, x∗) which parsesx∗ asK, y and outputsHVf(K,x, y). Then, an

adversary on inputy, hx, std may outputy∗
$

← H(K, (K, y)) and then, givenx, returnsx∗ = (K, y). This
adversary succeeds in experimentExpnmh-1

H,A (k) with probability1. In contrast, any simulator is likely to fail, as
long as the hash function does not have “weak” keys, i.e., keys for which the distribution of generated images
is non-trivial (such that the simulator can guessy with sufficiently high probability).

3Throughout the paper all hint functions and relations are assumed to be efficient. We furthermore assume that the security parameter
is given in unary to all algorithms as additional input (if not mentioned explicitly).
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We resolve this problem by requiring the definition to hold for a subsetR of all relations. It is of course
desirable to seek secure constructions with respect to verybroad classes of relations (cf. our construction in
Section 4) which are more handy for general deployment. At the same time, certain scenarios may only require
non-malleability with respect to a small set of relations (cf. the application example discussed in Section 6).
Our definition is general enough and permits easy tuning for the needs of a particular application or a class of
applications.

REMARK 2. For virtually all “interesting” functionsH and relation classesR the definition is achievable
only for adversaries and simulators that output descriptions of well-spread distributionsX (i.e., with super-
logarithmic min-entropy) and so-called uninvertible functions hint [8] (for which finding the exact pre-image
is infeasible). Note that uninvertibility is a weaker requirement than one-wayness, as it holds for example for
constant functions. We prefer to keep the definition as general as possible, so we do not explicitly impose such
restrictions on the adversary, simulator, andhint.

REMARK 3. In our definition we demand that the simulator outputsx∗ given K and hx only. A weaker
condition would be to have a simulatorSy(hx, std) first outputy∗, like the adversaryAy, and thenx∗ ←
Sx(x, sty), before checking thatR(X , x, x∗) and thatHVf(K,x∗, y∗) = 1. We call this aweak simulator
and hash functions achieving this notionweakly non-malleable. This distinction resembles the notions of non-
malleable commitments with respect to commitment and with respect to opening [14, 18]. Depending on the
application scenario of non-malleable hash functions the stronger or weaker version might be required. As an
example, the result about the Bellare-Rogaway encryption scheme uses the stronger definition above, and our
construction in the next section achieves this stronger notion, which obviously implies the weaker one.

REMARK 4. Note that we only demand that(x, y) 6= (x∗, y∗) for the adversary’s choice (instead of demanding
x 6= x∗ or y 6= y∗ instead), yielding a stronger definition, especially when the randomized hash function has
multiple images for some input. Again, the particular need depends on the application and our solution meets
this stronger requirement.

REMARK 5. In the case of non-malleable encryption the original simulation-based definition of [15] was later
shown to be equivalent to an indistinguishability-based definition [5]. The superficial similarity between our
definition of non-malleable hash functions and the one of non-malleable encryption suggests that this may
be possible here as well. Surprisingly, straightforward attempts to define non-malleability of hash functions
through indistinguishability do not seem to yield an equivalent definition. We discuss this issue in Appendix A
, and leave it as an interesting open problem to find a suitableindistinguishability-based definition for non-
malleable hash functions.

REMARK 6. The usual security notions for hash functions include one-wayness and collision-resistance. How-
ever, neither property is known to follow from Definition 3.1. Consider aconstantfunctionH which is clearly
not one-way nor collision-resistant. But the function is weakly non-malleable as a simulator can simulateA
in a black-box way by handing the adversary the constant value. We keep these rather orthogonal security
properties separate, as some applications may require one but not the others.

REMARK 7. Some applications (like the HMAC example in [17]) requirea multi-valued version of the def-
inition in which the adversary can adaptively generate several distributions and receive the images (with side
information) before deciding upony∗. One can easily extend our definition accordingly, lettingAd loop sev-
eral times, in each roundi generating a distributionXi and receivingyi andhxi at the beginning of the next
round and before outputting an imagey∗. In general, it is possible to extend our construction to this case using
stronger, adaptive versions of POWHFs and NIZKPoKs. See Remark 1 after Theorem 4.2.

4 Constructing Non-Malleable Hash Functions

In this section we give feasibility results via constructions for non-malleable hash functions. The main ingre-
dient of our constructions is a perfectly one-way hash function (POWHF) [8, 11], which hides all information
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about the pre-image but which may still be malleable [6]. To ensure non-malleability we tag the hash value
with a simulation-sound non-interactive zero-knowledge proof of knowledge of the pre-image. We first recall
the definitions of these two primitives.

For POWHFs we slightly adapt the definition from [8, 11] to oursetting. Originally, POWHFs have been de-
fined to have a specific input distributionX (like the uniform distribution in [11, 16]). Here we let the adversary
choose the input distribution adaptively, and merely demand that this distributionX satisfies a certain efficient
predicatePpow(X ); this is analogous to the non-malleability experiment in which the adversary choosesX and
the relationR takesX as additional input. Also note that we call the side information hereaux (as opposed to
hint for non-malleability) in order to distinguish between the two primitives. In fact, in our constructionaux

useshint as a sub routine but generates additional output.

Definition 4.1 (POWHF) A hash functionP = (POWK,POW,POWVf) is called a perfectly one-way hash
function (with respect to predicatePpow and probabilistic functionaux) if it is collision resistant, and if for
any PPTAB = (Bd,Bb), whereBb has binary output, the following random variables are computationally
indistinguishable:

K
$

← POWK(1k) ; x
$

← X (1k)

ax
$

← aux(K,x) ; y
$

← POW(K,x)

b
$

← Bb(y, ax, std)
return (K,x, b) if Ppow(X ) = 1, else⊥

K
$

← POWK(1k)

(X , std)
$

← Bd(K) ; x
$

← X (1k), x′ $

← X (1k)

ax
$

← aux(K,x) ; y′
$

← POW(K,x′)

b
$

← Bb(y
′, ax, std)

return (K,x, b) if Ppow(X ) = 1, else⊥

REMARK 1. As pointed out in [8, 11] the definition only makes sense ifaux is an uninvertible function of
the input (such that finding the pre-imagex from ax is infeasible) andBx only outputs descriptions of well-
spread distributions (with super-logarithmic min-entropy). Otherwise the notion is impossible to achieve. For
generality, we do not restrictX andaux explicitly here.

REMARK 2. Perfectly one-way hash functions (in the sense above) canbe constructed from any one-way
permutation [11, 16] (for the uniform input distribution),any regular collision-resistant hash function [11] (for
any distribution with fixed, super-logarithmic min-entropy), or under the decisional Diffie-Hellman assumption
[8] (for the uniform distribution). Usually these general constructions are not known to be secure assuming
arbirtrary functionsaux, yet for the particular functionaux required by the application they can often be adapted
accordingly. A concrete example is given in Section 6, in ourdiscussion of the Bellare-Rogaway encryption
scheme.

ON THE CHOICE OF THE RELATION CLASS. Recall that the definition of non-malleability is parametrized by a
class of relations. As explained earlier in the paper, no non-malleable hash function for an arbitrary class exists
(see Remark 1 after Definition 3.1). In the sequel, we exhibita class of relations for which we show how to
construct non-malleable hash functions, and then present our provably secure construction.

Specifically, we consider the class of relationsRrinfo
pred, parameterized by an optional functionrinfo and which

consists of all relations of the formR(x, x∗) = P (x, P ∗(rinfo(x), x∗)), for all efficient predicatesP,P ∗.4 The
functionrinfo(x) may be empty or consist of a small fraction of bits ofx (e.g., up to logarithmically many), and
should be interpreted as the information aboutx that may be used in evaluating the relationR. It is important
that rinfo is an univertible function, as otherwise, if one could recover x from rinfo(x), thenRrinfo

pred would
comprise all efficient relations,R(x, x∗) = P ∗(x, x∗), and non-malleability with respect to this class, again,
would not be achievable.

As an example consider the empty functionrinfo such thatRpred consists of all relationsR(x, x∗) =
P (x, P ∗(x∗)). This class of relations allows to check for instance that individual bits ofx andx∗ are com-
plement of each other, i.e., ifπj denotes the projection onto thej-th bit then one setsP ∗(x∗) = πj(x

∗) and lets

4Where we neglect the distributionX as part of the relation’s input for the moment.
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P (x, P ∗(x∗)) output1 if πj(x) 6= πj(x
∗). This example has also been used by Boldyreva and Fischlin [6] to

show the necessity of non-malleability for OAEP, and to givean example of a perfectly one-way hash function
that is malleable in the sense that flipping the first bit of an image produces a hash of the pre-image whose first
bit is also flipped.

In the examples aboverinfo has been the empty function. Of course, using non-trivial functionsrinfo allows
for additional relations and enriches the classRrinfo

pred. Consider for example a hash functionH that is malleable

in the sense that an adversary, givenH(K, r‖m) for randomr ∈ {0, 1}k , can computeH(K, r‖m′) for some
m′ 6= m. One way to capture that the two pre-images coincide on the firstk bits is to setrinfo(r||m) = r and
to setP ∗(r, x∗) = 1 if and only if r is the prefix ofx∗. Sincerinfo should be univertible, the function should
rather return only a fraction ofr, though. Similarly, one can see that the classRrinfo

pred “captures” relations like
R(x, x∗) = 1 iff x⊕ x∗ = δ for some constantδ, and many other useful relations.

Finally, we note that each relation from the class also checks that the chosen input distributionX “complies”
with the eligible distributions from the underlying POWHF.That is, each relation also checks that the predicate
Ppow(X ) of the POWHF is satisfied. The full relationR(X , x, x∗) then evaluates to1 iff P (x, P ∗(rinfo(x), x∗)) =
1 andPpow(X ) = 1. More formally, for any predicatePpow and uninvertible functionrinfo we define the class
of relations:

R
rinfo,Ppow

pred =

{
R :

there exist efficient (probabilistic) predicatesP,P ∗

such thatR(X , x, x∗) = P (x, P ∗(rinfo(x), x∗)) ∧ Ppow(X )

}
.

Our construction also uses a simulation-sound zero-knowledge proof of knowledgeΠ = (CRS,P,V) for the
NP-relationRpow defined by:

Rpow = {(Kpow||ypow, x||r) : POW(Kpow, x; r) = ypow} .

which essentially says that one “knows” a pre-image of a hashvalue. Simulation-sound NIZK proofs of knowl-
edge for such relations can be derived from trapdoor permutations [27, 12]. We recall the definition of such
proof systems in Appendix B.

THE CONSTRUCTION AND ITS SECURITY. The following theorem captures the security of our construction.

Theorem 4.2 LetP = (POWK,POW,POWVf) be a perfectly one-way hash function with respect toPpow

and aux, whereaux = (hint, rinfo) for probabilistic functionshint and rinfo. Let Π = (CRS,P,V) be a
simulation-sound non-interactive zero-knowledge proof of knowledge for relationRpow. Then the following

hash functionH = (HK,H,HVf) is non-malleable with respect tohint andRrinfo,Ppow

pred :

• PPTAHK on input1k samplesKpow
$

← POWK(1k) andcrs
$

← CRS(1k) and outputsK = (Kpow, crs).
The associated domainDK is given byDKpow .

• PPTAH on inputK and x ∈ DK computesypow ← POW(Kpow, x; r) for randomr
$

← RNDKpow as

well asπ
$

← P(crs,Kpow||ypow, x||r). It outputsy = (ypow, π).

• PTAHVf for inputsK = (Kpow, crs), x andy = (ypow, π) outputs1 if and only if
POWVf(Kpow, x, ypow) = 1 andV(crs,Kpow||ypow, π) = 1.

In addition,H is collision-resistant.

We give the proof of the theorem in Appendix C. Here we providea sketch. Consider an adversaryA
attacking the non-malleability property, i.e., getting(y, hx, std) as input (after picking distributionX ) and
subsequently producing outputs(y∗, sty) andx∗ (after learningx). Then we construct a simulatorS with black-
box access toA as follows.S first simulatesA to produce distributionX . In the second stage,S computes the
POWHF valuey′pow of an independent samplex′ and then prepares a zero-knowledge proofπ′ for this value. It
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runsA on this valuey′ = (y′pow, π′) to receivey∗ for y∗ = (y∗pow, π∗). The simulator then uses the knowledge
extractor of the NIZKPoK to recoverx∗ from y∗pow, π∗ and outputs this valuex∗.

By the perfect one-wayness of the POWHF (with respect toaux) and the zero-knowledge property of the
proof, runningA on the fake valuey′ cannot changeA’s success probability significantly. By the simulation
soundness of the NIZK the simulator is most likely able to extract the pre-imagex∗ from y∗ (even if it has
generated only a simulated proofπ′ before). The collision-resistance of the POWHF finally implies that this
valuex∗ is quasi unique and will satisfy the non-malleability relation R with essentially the same probability.

REMARK 1. The malleability adversary has access to essentially twodifferent sources of partial information
aboutx: hint(x) which it receives explicitly as input, andrinfo(x) which it can use indirectly through the
relation R. This motivates the requirement thatP be perfectly one-way with respect to partial information
aux = (hint, rinfo).

REMARK 2. As mentioned after the definition of non-malleable hash functions, some applications (like the one
about HMAC [17]) may require a stronger notion in which the adversary can adaptively generate distributions
and receives the images, before deciding upony∗. Our construction above can be extended to this case, as-
suming that the POWHF obeys a corresponding “adaptiveness”property and that the zero-knowledge proof of
knowledge is multiple simulation-sound and multiple zero-knowledge. Such adaptively-secure POWHFs (for
uniform distributions) can be built from one-way permutations [16] and suitable zero-knowledge proofs exist,
assuming trapdoor permutations [27, 12].

5 On the Complexity of Non-Malleable Functions

In this section we discuss the existential complexity of non-malleable functions. We first indicate, via an
oracle separation result, that deriving non-malleable hash and one-way functions via one-way permutations is
infeasible. We then continue to show that non-malleable hash functions imply POWHFs.

5.1 On the Impossibility of Black-Box Reductions

We first show that, under reasonable conditions, there is no black-box reduction from non-malleable hash
functions (which might not even be collision-resistant butrather one-way only) to one-way permutations. For
space reasons most of the proofs have been delegated to Appendix D.

BLACK -BOX REDUCTIONS. In their seminal paper Impagliazzo and Rudich [22] have shown that some cryp-
tographic primitives cannot be derived from other primitives, at least if the starting primitive is treated as a
black box. Instead of separating primitives as in [22] here we follow the more accessible approach of Hsiao
and Reyzin [21], giving a relaxed separation result with respect to black-box security reductions. We give a
formalization of the oracle-based black-box separation approach that we use in Appendix D.

For our result we assume that the algorithms of the hash functionH are granted oracle access to a random
permutation oracleP (which is one-way, of course). A black-box reduction toP is now an algorithm which,
with oracle access toP and a putative successful attackerA on the non-malleability property, invertsP with
noticeable probability. Such an attackerAmay take advantage of another oracleO (related toP) which allows
it to break the non-malleability but does not help to invert the one-way permutationP. Since neither the
construction nor the reduction are given access toO, the reduction must be genuinely black-box.

DEFINING ORACLES P AND O. For now we letP be a random permutation oracle which in particular is a
one-way function. Below we show through de-randomization techniques that some fixedP must also work.
For our separation we let the side information of the non-malleable hash function include an image of the
uniformly distributed inputx underP. More precisely, consider the functionhint

P
sep which on input(1k,K, x)

for randomx computeshx = P(0k||x|| 〈HVf〉 ||K) for the description〈HVf〉 of the verification algorithm and
finally outputshx.5

5We note that the side informationhx does not reveal any essential information aboutx in the sense that one can show that, for any
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We next construct the oracleO that helps to break non-malleability. The idea is that usingO it is possible
to extract from the imagey and “hint” hx (described above) the pre-imagex of y. Since the adversary gets
y as input, but the simulator does not, the oracle is only helpful to the adversary. Note that breaking non-
malleability means that no simulator of comparable complexity is able to approximate the success probability
of AP,O closely. To ensure that the simulator has the equal power asAP,O we grant the simulatorSP,O

therefore access to both oraclesP,O.

Construction 5.1 Let oracleO take as input a parameter1k, an imagey and a “hint” hx. The oracle first
finds the pre-imagez||x|| 〈HVf〉 ||K of hx underP and verifies thatz = 0k; if not it immediately returns⊥.
Else it checks thatHVf

P(K,x, y) = 1 and returnsx if so (and outputs⊥ otherwise).

We show thatO does not help to invertP, thus showing that relative to the oracles there still exists one-way
permutations (see again Appendix D for the proof):

Proposition 5.2 For any efficient algorithmB?,?, the probability thatBP,O breaks the one-wayness ofP is
negligible.

In light of this lemma we conclude that there exists a particularP that is hard to invert for all PPT adversaries
with oraclesP,O. The argument is the same as in [21]. For a fixed PPT adversaryB, we define the sequence
of events (indexed byk) whereB inverts strings of lengthk with some good probability; for a suitable choice
of parameters, the sum of the probabilities (overP) of these events converges and by the first Borel-Cantelli
lemma only finitely many of these events may occur, almost surely. Then taking the countable intersection over
all PPTB, we get that there is at least oneP with the desired property.

SEPARATION. We require some mild, technical conditions for our non-malleable hash function and the relation.
Namely, we assume that

• the hash function isnon-trivial meaning that it is infeasible to predict an image for uniformly distributed
input over{0, 1}k (thus ruling out trivial examples like constant hash functions), and

• the relation classR contains the relationRsep which on input(X , x, x∗) checks thatX is the uniform
distribution on{0, 1}k , and thatparity(x) =

⊕
xi = parity(x∗) =

⊕
x∗

i . Note thatRsep ∈ Rpred for
our predicate-based relations, even for the empty functionrinfo, and can thus be achieved in principle.

Theorem 5.3 Let HP = (HK
P ,HP ,HVf

P) be a non-trivial non-malleable hash function with respect to
hint

P
sep andR ∋ Rsep. Then there exists an adversaryAP,O that breaks non-malleability ofHP (for any

simulatorSP,O).

The idea is that the adversary can easily compute the pre-imagex with the help ofy, hx and oracleO and
then find another valuex∗ with the same parity asx. In constrast, the simulator most likely cannot get a useful
answer fromO givenhx only (but noty), because it is infeasible to guess the right valuey by the non-triviality
of the hash function. Hence, the adversary succeeds with probability 1 while any simulator cannot be more
successful than with probability close to1/2.

Corollary 5.4 There exists no black-box reduction from non-trivial non-malleable functions (with respect to
hint

P
sep andR ∋ Rsep) to one-way permutations.

At first glance it seems as if our result would transfer (aftersome minor modifications) to other non-
malleable primitives like commitments. This is not the case. The oracleO in our construction relies on the
ability to check whether a pre-imagex matches an imagey (public verifiability of hash functions), while other
primitives such as encryptionE(m; r) and commitments Com(m; r) use hidden randomness (which is not part
of the input of functionhint).

non-malleable hash function for the uniform input distribution and no side information at all, the hash function remains non-malleable
with respect tohx relative to the random permutationP (but not relative toO, of course). Also observe that the common strategy of
using black-box simulators usually works for any side information, and in particular for the one here.
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5.2 On the Relation between Non-Malleability and Perfect One-Wayness

It it intuitively appealing to conclude that a function which is not perfect one-way is also malleable. Roughly,
if an adversary can recover even a single bit of information about x, sayP (x), from the hash valueH(x),
then it should be able to produceH(x∗) for somex∗ such thatP (x∗) = P (x). As long as the distribution
from whichx is selected has enough min-entropy, it would be more difficult for a simulator, not seeingH(x),
to emulate the behavior of the adversary. The following proposition captures the above intuition, using an
alternative formulation for perfect one-wayness, called oracle-simulatability [8]. When no auxiliary information
is present, perfect one-wayness in the oracle simulatability sense is equivalent to perfect one-wayness in the
sense of Definition 4.1 fornon-uniformadversaries [8]. In general however, security in Definition4.1 is only
known to imply security in the oracle simulatability sense,and not vice versa. In Appendix E we recall the
oracle-simulatability based definition of perfect one-wayness and prove the following:

Proposition 5.5 LetH be a hash function that is collision resistant and non-malleable with respect to side
informationhint and relation class6RPpow

pred , wherePpow is such thatPpow(X ) = 1 implies thatX is well-spread.
ThenH is perfectly one-way with respect toPpow and partial informationhint, in the oracle-simulatability
sense.

6 Applications

In this section we study the usefulness of our notion for cryptographic applications. As an example we show
that when one of the two random oracles in the aforementionedencryption scheme proposed by Bellare and
Rogaway in [4] is instantiated with a non-malleable hash function, the scheme remains IND-CCA secure. In
addition, we argue that non-malleability is useful in preventing off-line computation attacks against a certain
class of cryptographic puzzles.

INSTANTIATING RANDOM ORACLES. We start with recalling the scheme. LetF be a familiy of trapdoor
permutations andG,H be random oracles. The message space of the scheme BRG,H [F ] = (K, E ,D) is the
range ofG. The key generation algorithmK outputs a randomF-instancef and its inversef−1 as the public
and secret key, respectively. The encryption algorithmE on inputsf andm picks randomr in the domain off
(we assume thatr ∈ {0, 1}k) and outputs(f(r), G(r) ⊕m,H(r||m)). The decryption algorithm on inputsf−1

and(y, g, h) first computesr ← f−1(y), thenm ← g ⊕G(r), and outputsm iff H(r‖m) = h. The scheme
BRG,H [F ] is proven to be IND-CCA secure in the random oracle model assuming thatF is one-way [4].

Here we study the possibility of realizing the random oracleH with an actual hash function familyH =
(HK,H,HVf), a so-calledpartial H-instantiationof the scheme. More precisely, we modify the scheme so

that the public key and secret key also contain a keyK
$

← HK(1k) specifying a function. ThenE computes
H(K, r‖m) instead ofH(r‖m), andD computesHVf(K, r‖m,h) instead of checking thatH(r‖m) = h. We
refer to this scheme as BRG,H[F ]. As explained in the Introduction, non-malleability is a necessary property
for H for the scheme to be IND-CCA secure (still in the random oracle model). The following shows that
non-malleability is in fact sufficient for a secure partialH-instantiation.

Before stating the sufficient conditions for security to hold, we fix some notation. Below we let the function
rinfoBR(x) = msbk/2(x) output thek/2 most significant bits of its input. The class of relations we require here
for non-malleability is only a subset of the achievable class discussed in Section 4. Namely, we only require a
relation of the formRBR(X , x, x∗) = P ∗(rinfoBR(x), x∗) ∧ Ppow(X ), wherePpow is the predicate that checks
thatX is the canonical representation of the uniform distribution on the firstk bits, andP ∗ is the predicate that
simply verifies thatmsbk/2(x

∗) = rinfoBR(x). We choose this specific predicateRBR so that it can check if
x = x∗, while erring with only negligible probability, but still admit the construction of non-malleable hash
functions.

6With empty functionrinfo.
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Below we will require that the trapdoor permutation family is msbk/2-partial one-way, meaning that it is
hard to compute thek/2 most significant bits of the random inputr given a random instancef andf(r) (cf. [19]
for the formal definition). This is a rather mild assumption to impose onF . For example, RSA was shown to
be partial one-way under the RSA assumption in [19]. A general approach to construct such a partial one-way
family F is to definef(r) = g(msbk/2(r))‖g(lsbk/2(r)) for a trapdoor permutationg.7

We need one more technical detail before stating the theorem. We start with some hash function family
H = (HK,H,HVf) and trapdoor permutation familyF . We will require thatH is non-malleable, even when
a random instance ofF is included with the key output byHK. We stress that this detail still leaves our non-
malleable hash function achievable by the construction in the previous section. We writeH = (HKF ,H,HVf)
for the modified hash function for which key generation outputs a random instance ofF along with the original
hash key. The purpose of this change is to allow the side information function to compute a hint related to the
random trapdoor permutation instance. Below we writehintBR for the function that takes as input a key(K, f)
and stringx, and outputsf(r), wherer are the firstk bits of the inputx. We note the IND-CPAversion of the
scheme by Bellare and Rogaway was shown secure in the standard model by Canetti [8], assuming the hash
function is a POWHF with respect to a similar hint function.

Theorem 6.1 LetF be anmsbk/2-partial one-way trapdoor permutation family and letH = (HKF ,H,HVf)
be a collision-resistant hash function which is non-malleable with respect to the functionhintBR and to the
relation RBR. Assume further thatH is a perfectly one-way hash function with respect toPpow and hintBR.
Then BRG,H[F ] is IND-CCA secure (in the RO model).

REMARK . Although the non-malleability property of the hash implies that no partial information about pre-
images is leaked (cf. Theorem 5.5 for a formal statement of this implication), the theorem above requires the
hash to be perfectly one-way in the sense of Definition 4.1, which is a stronger requirement in general.

The proof is in Appendix F. Here we provide some intuition forit. Consider an adversaryB that breaks
IND-CCA security of the scheme. After selecting two messages m0,m1 it is given the challenge ciphertext of
the form(y, g, h) = (f(r), G(r) ⊕mb,H(K, r‖mb)) for a random stringr and bitb, andB tries to predictb.
We first claim that the scheme is IND-CPA, meaning that without decryption queriesB cannot break security.
This follows from the perfect one-wayness condition above.That is, if B has non-negligible advantage in
determiningb without making any decryption queries, then one can break perfect one wayness ofH.

Next we show that decryption queries are useless toB. Assume thatBmakes decryption queries of the form
(y′, g′, h′). If B has queried oracleG aboutr′ = f−1(y′) before then we can easily find this entry in the list
of G-queries and simulate the additional decryption steps. Else, consider the case thatB has not made such a
query toG but tries to succeed by mauling the challenge ciphertext(y, g, h) to (y, g′, h′). Then it follows from
the non-malleability ofH that this ciphertext is likely to be invalid. The collision-resistance ofH additionally
prevents the case thatB creates any other valid ciphertext(y′, g′, h) without queryingG aboutr′ before.

APPLICATION TO CRYPTOGRAPHIC PUZZLES. Cryptographic puzzles are a defense mechanism against denial
of service attacks (DoS). The idea is that, before spending any resources for the execution of a session between
a client and a server, the server requires the client to solvea puzzle. Since solving puzzles requires spending
cycles, the use of puzzles prevents a malicious client to engage in a large number of sessions without spending
itself a significant amount of resources. One desirable condition is that the server does not store any client-
related state.

A simple construction for such puzzles proposed by Juels andBrainard [23] is based on any arbitrary one-
way functionh : {0, 1}l → {0, 1}l . First, select at randomx

$

← {0, 1}l and computey = h(x). Then, a puzzle
is given by the tuple(x[1..l− k], y) consisting of the firstl− k bits ofx together withy. To prove it solved the

7In fact, this construction also has the useful property thatf(r) is still hard to invert, even if givenmsbk/2(r). Thus this trapdoor
permutation is suitable for constructing POWHFs secure with respect to side information(msbk/2(r), f(r)) and therefore, via our
construction, non-malleable hash functions for side informationhintBR(r) = f(r) and the relationRBR. In other words, non-malleable
hash functions forhintBR andRBR exist under common cryptographic assumptions.
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puzzle, the client has to return(x, y). It can be easily seen that the construction above is not entirely satisfactory.
In particular, it either fails against replay attacks —where the clients present the same puzzle-solution pair to
the server— or the server needs to store all of thex’s used to compute the puzzles.

The solution proposed to mitigate the above problem is to computex asH(S, t), whereS is some large
bitstring known only to the server, andt is some bitstring that somehow “expires” after a certain amount of
time (this can be for example the current system time). The puzzle is then given by(t, x[1..l − k], y), where
y = h(x). A solution (or solved puzzle) is(t, x, y) which needs to satisfy the obvious equations, and moreover,
t is not an expired bitstring.

In the setting above, non-malleability ofH surfaces as an important property. If out of the first two elements
(t,H(S, t)) of a puzzle solution the adversary can efficiently construct(t′,H(S, t′)) for t′ 6= t, a string which
has not yet expired, then the defense sketched above is rendered useless: the adversary can easily construct
new puzzles (together with their solutions). Requiring that the functionH is non-malleable with respect to the
relationR(s1, s2) = 1 iff s1 = (S, t) ands2 = (S, t′) for t 6= t′ is sufficient to prevent the above attack.

7 Conclusions

We initiated the study of non-malleability of hash and one-way functions. We designed a definition of non-
malleability and showed that it can be met. Namely, we proposed a (theoretical) construction from perfect one-
way hash functions and simulation-sound non-interactive zero-knowledge proofs of knowledge. We discussed
the complexity of non-malleable functions, and gave a black-box based separation of non-malleable functions
from one-way permutations. We exemplified the usefulness ofour definition in cryptographic applications by
showing that non-malleability is necessary and sufficient to securely replace one of the two random oracles
in the IND-CCA encryption scheme by Bellare and Rogaway, andto improve the security of client-server
puzzles. We believe that our definition will find other interesting applications, and while our treatment is
mostly theoretical, it helps to understand a practical property that designers of hash functions can keep in mind.
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A Towards Alternative Definitions of Hash Non-Malleability

In this section we describe some approaches to defining non-malleability of hash functions in the style of indis-
tinguishability and show why these approaches fail. First consider the following indistinguishability definition:

Definition A.1 LetH = (HK,H,HVf) be a hash function. It isnon-malleable with respect to side information
hint and class of relationsR if for any adversaryA = (Ad,Ay,Ax) and relationR ∈ R, Advcnmh

H,A,R(k) is
negligible, where

Advcnmh
H,A,R(k) = Pr

[
Expcnmh−1

H,A,R (k) = 1
]
− Pr

[
Expcnmh−0

H,A,R (k) = 1
]

and

Experiment Expcnmh−1
H,A,R (k)

K
$
← HK(1k)

(X , std)← Ad(K)

x
$
← X (1k) ; hx ← hint(x)

y ←H(K,x)
(y∗, sty)← Ay(y, hx, std)
x∗ ← Ax(x, sty)
return 1 iff

(y∗ 6= y) ∧ HVf(K,x∗, y∗) = 1
∧R(X , x, x∗) = 1

Experiment Expcnmh−0
H,A,R (k)

K
$
← HK(1k)

(X , std)← Ad(K)

x, x̂
$
← X (1k) ; hx ← hint(x)

y ←H(K,x)
(y∗, sty)← Ay(y, hx, std)
x∗ ← Ax(x, sty)
return 1 iff

(y∗ 6= y) ∧ HVf(K,x∗, y∗) = 1
∧R(X , x̂, x∗) = 1

Intuitively, this definition states that whatever valueA can produce a hash of with the help ofy, the resulting
pre-image will be unrelated to the challenge message. Similarly to Definition 3.1, this definition is impos-
sible to achieve for an arbitraryR: an adversary can always setx∗ = (K, y) and the relationR(x, x∗) =
R(x, (K, y)) = HVf(K,x, y) will give A non-negligible advantage for anyH. In this caseExpcnmh−1

H,A,R (k) = 1

always, butPr
[
Expcnmh−0

H,A,R (k) = 1
]

is likely to be negligible.

To prevent the definition from being trivially unsatisfiable, we can try to limitR so that the relations only
look at parts ofx∗, as we do in Theorem 4.2. ButR may still get some information aboutx from an adversary
that useshx to computex∗, and we must rule out the possibility thatR can simply tell whether such side
information matchesx or not. Thus this definition only makes sense when we require thatR cannot distinguish
hx from the side information corresponding to another random message. This assumption is too strong for our
purposes, such as in our encryption example. (We note that this does cause a problem in the simulation-based
definition of non-malleability because such an attack is just using the side information, and a simulator can also
do this.)

It is possible to define non-malleable hash security in a way that does not rule out maulings that depend on
the actual hash value itself. This weaker version of security may be sufficient for some applications.

Definition A.2 LetH = (HK,H,HVf) be a hash function. It isweakly non-malleableif for any adversary
A = (Ad,Ay,Ax), Advcnmh

H,A (k) is negligible, where

Advcnmh
H,A (k) = Pr

[
Expcnmh−1

H,A (k) = 1
]
− Pr

[
Expcnmh−0

H,A (k) = 1
]

and
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Experiment Expcnmh−0
H,A (k)

K
$
← HK(1k)

(X , std)← Ad(K)

x
$
← X (1k) ; y ← H(K,x)

y∗ ← Ay(y, std)
x∗ ← Ax(x)
return 1 iff

(y∗ 6= y) ∧ HVf(K,x∗, y∗) = 1

Experiment Expcnmh−1
H,A (k)

K
$
← HK(1k)

(X , std)← Ad(K)

x, x̂
$
← X (1k) ; y ←H(K,x)

y∗ ← Ay(y, std)
x∗ ← Ax(x̂)
return 1 iff

(y∗ 6= y) ∧ HVf(K,x∗, y∗) = 1

Note thatAx only getsx or x̂ as input when computingx∗. In particular,Ax does not know the hash key
and does not get any state information from the other stages of the adversary. Intuitively, the adversary is
committed to some mauling strategy when it specifiesAx, and thenAd andAy will try to suceed with respect
to that strategy.

To see that this definition is strictly weaker than Definition3.1, consider the following function. LetH be
a perfectly one-way hash function, and defineH′(K,x) = H(K,x)‖H(K,x ⊕ w)‖w, wherew is a uniformly
chosen bit string that is not all zeros. GivenH′(K,x) = y‖y′‖w, Ay can computeH′(K,x ⊕ w) by simply
outputtingy′‖y‖w and havingAx(x) outputx ⊕ w. But such an adversary does seem to be ruled out by the
above definition, asAx does not have any information aboutw.

Hence, we leave at as an open question to find a suitable indistinguishability-based definition for non-
malleable hash functions.

B Simulation-Sound Non-Interactive Zero-Knowledge Proofs of Knowledge

Here we give the definition of simulation-sound NIZK proofs of knowledge [27, 12].

Definition B.1 (SS-NIZK) A simulation-sound non-interactive zero-knowledge proofof knowledgeΠ = (CRS,P,V)
for NP-relation RL consists of three PPTA, the common reference string generator CRS, the proverP and the
verifier V, such that there exist a (pair of) PPTAZ = (Z0,Z1), the zero-knowledge simulator, andK, the
knowledge extractor, with the following properties:

• Completeness: For any security parameterk ∈ N, any crs
$

← CRS(1k), any (x,w) ∈ RL any π
$

←
P(crs, x, w) we haveV(crs, x, π) = 1.

• Zero-Knowledge: For any (pair of) PPTAD = (D0,D1) the following random variables are computa-
tionally indistinguishable:

crs
$

← CRS(1k)

(x,w, state)
$

← D0(crs)

if (x,w) ∈ RL thenπ
$

← P(crs, x, w)
elseπ = ⊥

returnd
$

← D1(x,w, state, π)

(σ, crs)
$

← Z0(1
k)

(x,w, state)
$

← D0(crs)

if (x,w) ∈ RL then π
$

← Z1(σ, x)
elseπ = ⊥

return d
$

← D1(x,w, state, π)

• Simulation-Soundness: For any (pair of) PPTAA = (A0,A1) the following experiment returns1 with
negligible probability only:

(σ, crs)
$

← Z0(1
k)

(x, state)
$

← A0(crs)

π
$

← Z1(σ, x)

(x∗, π∗)
$

← A1(state, π)

w∗ $

← K(σ, x∗, π∗)
return 1 iff (x∗, π∗) 6= (x, π) and V(crs, x∗, π∗) = 1 and(x∗, w∗) /∈ RL.

15



The proof is calledmultiplezero-knowledge, if one cannot even distinguishD’s output in the case whenD
asks the proverP to see several proofs for adaptively chosen statements(x,w), and in the case when the proofs
are provided by the simulatorZ1 instead. The proof is calledmultiplesimulation-sound ifK can still extract a
witness from a new accepted pair(x∗, π∗), even if adversaryA can see several proofsπi generated byZ1 for
adaptively chosen statementsxi before.

C Proof of Theorem 4.2 (Non-Malleability of Our Construction)

To prove non-malleability we present a simulatorS that, with black-box access to any adversaryA, manages
to succeed in the non-malleability experimentExpnmh-0

H,S (k) almost as often asA does inExpnmh-1
H,A (k).

The simulatorS works as follows. In modeSd it gets as input a keyK0 = (Kpow, crs0) of our hash

function and invokes the zero-knowledge simulator to generate (crs, σ)
$

← Z0(1
k). It substitutescrs0 in K0

by crs to getK = (Kpow, crs) and runsAd(K) to get(X , std) and outputsX and(K,σ, std) as state. In the

next stageSx receives side informationhx (and the state). It first picksx′ $

← X (1k) and computesy′pow
$

←
POW(Kpow, x′; r′) for randomr′. It also invokes the zero-knowledge simulator to generate asimulated proof

π′ $

← Z1(σ,Kpow||y
′
pow). Let y′ = (y′pow, π′) and runAy on input(y′, hx, std) to get an output(y∗, sty). Then

compute a witness through the knowledge extractor,x∗
K||r

∗
K

$

← K(σ,Kpow||y
∗
pow, π∗), and return the valuex∗

K.
To analyze the simulator’s behavior we consider a sequence of games in which we run the adversaryA

on varying inputs. We denote byGame0(k) the original attack of the adversary andGame3(k) corresponds to
the simulator’s experiment. We show that each transition fromGamei(k) to Gamei+1(k) does not decrease the
output distribution noticeably. Hence, the success probability in the simulator’s experiment is at least as large
as the one in the original attack of the adversary (minus a negligible amount), proving our claim. The games
are described formally in Figure C on page 26.

COMPARING GAMES ZERO AND ONE. In comparison to the original attack inGame0(k), the modified game
Game1(k) deploys the zero-knowledge simulator to prepare the commonreference string and a fake proof, and
replaces the requirement(x, y) 6= (x∗, y∗) simply byy 6= y∗. The latter step cannot increase the adversary’s
success probability by more than a negligible amount, otherwise it is straightforward to derive a successful
collision-finder for the POWHF (running the original experiment and using the adversary as a subroutine to get
x∗ 6= x with the same hash valuey = y∗).

We next show that the outputs of both games are indistinguishable if Π is zero-knowledge. Namely, as-
sume towards contradiction that the probabilities of returning 1 in experimentsGame0(k) andGame1(k) differ
noticeably. We then construct an algorithmD = (D0,D1) which is able to distinguish between genuine and
simulated proofs forΠ.

Algorithm D0 gets as input1k and a stringcrs, either generated byCRS(1k) or as part of the output

(crs, σ) of Z0(1
k). It next computes a POWHF valuey by samplingKpow

$

← POWK(1k) andx
$

← X (1k) for

(X , std)
$

← Ad(K) for K = (Kpow, crs). It also computeshx
$

← hint(K,x), r
$

← RNDKpow and computing
ypow ← POW(Kpow, x; r). It outputs(Kpow||y, x||r) for which a proofπ is generated, either produced by
P(crs,Kpow||ypow, x||r) or by the zero-knowledge simulatorZ1(σ,Kpow||ypow). Algorithm D1 next invokes
Ay on input(y, hx, std) for y = (ypow, π) to receive(y∗, sty) wherey∗ = (y∗pow, π∗). AlgorithmD1 computes

x∗ $

← Ax(x, sty) and outputs1 if and only if y 6= y∗, R(X , x, x∗) = 1, POWVf(Kpow, x∗, y∗pow) = 1 and
V(crs,Kpow||y

∗
pow, π∗) = 1.

It is easy to see thatD1 returns1 with the same probability asGame0(k) (with the modified checky 6= y∗)
if the stringcrs and the proofπ are generated byCRS andP. If, on the other hand,crs andπ are created by the
simulatorZ, thenD outputs1 with the same probability asGame1(k) returns1. Hence, if both probabilities for
the games would differ noticeably, then we would derive a successful distinguisher against the zero-knowledge
property.
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COMPARING GAMES ONE AND TWO. In Game2(k), instead of computingx∗ $

← Ax(x, sty) only, we also

run the knowledge extractor ifPOWVf(Kpow, x∗, y∗pow) = 1 to derive a hash function pre-imagex∗
K||r

∗
K

$

←
K(σ,Kpow||y

∗
pow, π∗) fromAy ’s output (else, ifPOWVf(Kpow, x∗, y∗pow) = 0, we setx∗

K||r
∗
K ← ⊥ to force the

output of the game to be0). ExperimentGame2(k) then uses the extracted valuex∗
K to evaluate the decision

and outputs1 iff y 6= y∗, R(X , x, x∗
K) = 1, POWVf(Kpow, x∗

K, y∗pow) = 1 andV(crs,Kpow||y
∗
pow, π∗) = 1.

It will follow from the collision-resistance ofP and the simulation soundness ofΠ that the output of these
experiments cannot differ significantly. To compare the probabilities we consider the probability ofx∗ 6= x∗

K

with respect to the following disjoint events, conditioning in all cases implicitly on event

valid ≡
[
POWVf(Kpow, x∗, y∗pow) = 1 ∧ V(crs,Kpow||y

∗
pow, π∗) = 1 ∧ y 6= y∗

]
,

which is necessary for output1 in both games:

• x∗ 6= x∗
K andPOWVf(Kpow, x∗

K, y∗pow) = 0
In this case it would particularly holdPOW(Kpow, x∗

K; r∗K) 6= y∗pow (else the verification would suc-
ceed by the completeness of the perfectly one-way hash function). But then, since we additionally have
V(crs,Kpow||y

∗
pow, π∗) = 1 andy 6= y∗, the probability for this must be negligible, else it would be

straightforward to construct a successful attack against the simulation soundness of the proof system
(yielding a valid proof but for which the extractor returns an invalid witnessx∗

K||r
∗
K not mapping to the

hash valuey∗pow).

• x∗ 6= x∗
K andPOWVf(Kpow, x∗

K, y∗pow) = 1 andPOWVf(Kpow, x∗, y∗pow) = 1
If this would happen with noticeable probability it would straightforwardly contradict the collision-
resistance of the perfectly one-way hash function.

• x∗ 6= x∗
K andPOWVf(Kpow, x∗

K, y∗pow) = 1 andPOWVf(Kpow, x∗, y∗pow) = 0
This case cannot happen since we setx∗

K ← ⊥ if the verification of the adversarial pre-imagex∗ fails.

Hence, we havePr [ x∗ = x∗
K ] with probability negligibly close to1 (conditioning onvalid). The factx∗ = x∗

K,
on the other hand, guarantees thatGame2(k) returns1 with the same probability asGame1(k). It follows for
some negligible functionν(k) that

Pr [ Game2(k) = 1 ]

= Pr [ Game2(k) = 1 ∧ ¬valid ] + Pr [ Game2(k) = 1 ∧ valid ]

= Pr [ ¬valid ] · Pr [ Game2(k) = 1 | ¬valid ] + Pr [ valid ] · Pr [ Game2(k) = 1 | valid ]

= 0 + Pr [ valid ] · (Pr [ x∗ = x∗
K | valid ] · Pr [ Game2(k) = 1 | x∗ = x∗

K, valid ]

+ Pr [ x∗ 6= x∗
K | valid ] · Pr [ Game2(k) = 1 | x∗ 6= x∗

K, valid ])

= Pr [ valid ] · ((1− ν(k)) · Pr [ Game1(k) = 1 | valid ]

+ ν(k) · Pr [ Game2(k) = 1 | x∗ 6= x∗
K, valid ]) ≥ Pr [ Game1(k) = 1 ]− ν(k)

and the probabilities of successful runs inGame2(k) can only increase (except for a negligible amount).

COMPARING GAMES TWO AND THREE. The transition toGame3(k) consists of two modifications. First,
instead of checking thatPOWVf(Kpow, x∗, y∗pow) = 1 and running the extractor only then, we now extractx∗

K

in any case. This can only increase the success probability of the experiment. As for the second modification
we choose an independentx′ $

← X (1k) and compute the hash value asypow ← POW(Kpow, x′; r′) for r′
$

←
RNDKpow, whereas we still measure the extracted valuex∗

K with respect to the original valuex. It follows
from the perfect one-wayness of the hash function that the probabilities of generating output1 in experiments
Game2(k) andGame3(k) cannot be affected by this modification noticeably. Assume towards contradiction
that this was not the case, and fix a “bad” relationR ∈ Rrinfo

pred given by predicatesPpow, P andP ∗ (and by
rinfo).
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Consider the adversaryBd which gets as inputKpow. Algorithm Bd runs the zero-knowledge simulator to
create(crs, σ) and invokesAd on K = (Kpow, crs) to create a distributionX (and state std). Algorithm Bd

outputsX and state(std,K, σ). In the next stageBb receives an imageypow of (x, r) or of (x′, r′), together with

auxiliary information(rx, hx)
$

← aux(K,x) = (rinfo(x), hint(K,x)). Algorithm Bb runs the zero-knowledge
simulator to create a simulated proofπ for Kpow||ypow. It next invokes a black-box simulation ofAy on input
((ypow, π), hx, std) to derive(y∗, sty). Given these valuesBb extracts a pre-imagex∗

K of y∗ with help of the
knowledge extractor andσ. It finally outputsb ← P ∗(rx, x∗

K) iff y 6= y∗, POWVf(Kpow, x∗
K, y∗) = 1 and

V(crs,Kpow||y
∗
pow, π∗) = 1; if any of the conditions is violated thenB returns a random bit.

Note that our goal is to show that the outputs(K,x, b) in the two cases (forx andx′) are indistinguishable.
The analysis is a bit involved, due to the fact that we check for A’s success when switching fromx to x′ in
two stages (some checks performed byB and the checkP (x, b) basically performed by the final distinguisher).
To show the claim first letcond be the event that the conditionsy 6= y∗, POWVf(Kpow, x∗

K, y∗) = 1 and
V(crs,Kpow||y

∗
pow, π∗) = 1 andPpow(X ) = 1 for A’s output are satisfied (given either an image ofx or of x′).

Then it is easy to see thatPr [ cond | x ] is negligibly close toPr [ cond | x′ ], else one could easily devise an
attacker against the POWHF which merely checks for these conditions and outputsb′ = 1 if and only if they
are satisified (i.e., such that the tuples(K,x, b′) would be easily distinguishable). So from now on we condition
on both probabilities being negligibly close.

GivenK,x andB’s output bitb it is now easy to distinguish the two cases for an algorithmD by simply
verifying thatP (x, b) = 1. Note that, given¬cond andB has returned a random bitb, the probabilities for
P (x, b) = 1 are identical for both casesx andx′. Hence,

Pr [D(K,x, b) = 1 | x ]

= Pr [D(K,x, b) = 1 ∧ cond | x ] + Pr [D(K,x, b) = 1 ∧ ¬cond | x ]

= Pr [ P (x, b) = 1 ∧ cond | x ] + Pr [ P (x, b) = 1 ∧ ¬cond | x ]

= Pr [ P (x, b) = 1 ∧ cond | x ] + Pr [ P (x, b) = 1 | ¬cond, x ] · Pr [ ¬cond | x ]

and analogously for the casex′:

Pr
[
D(K,x, b) = 1 | x′

]

= Pr
[
P (x, b) = 1 ∧ cond | x′

]
+ Pr

[
P (x, b) = 1 | ¬cond, x′

]
· Pr

[
¬cond | x′

]

Recall that the probabilitiesPr [ ¬cond | x ] andPr [ ¬cond | x′ ] are negligibly close (as discussed above),
and that the conditional probabilities forP (x, b) = 1 (given¬cond andx resp.x′) are identical. Hence, the
products are therefore negligibly close, too. The other twoprobabilitiesPr [ P (x, b) = 1 ∧ cond | x ] and
Pr [ P (x, b) = 1 ∧ cond | x′ ] correspond to the cases thatA suceeds in the two games. Since they have a
non-negligible difference by assumption this contradictsthe perfect one-wayness ofP.

The final game now mirrors the simulator’s strategy and the corresponding experiment (except that the
simulator does not need to obey the stipulationsy 6= y∗ andHVf(K,x∗, y∗) = 1, which can only increase its
success probability further). This proves non-malleability.

COLLISION-RESISTANCE. It remains to show that the hash function is collision-resistant. But this follows
straightforwardly from the collision-resistance of the perfectly one-way hash function.

D Auxiliary Results for Our Black-Box Separation

This section covers some formal statements and proofs for the black-box separation result.

BLACK -BOX REDUCTIONS. We first recall the more formal definition of black-box reductions from [21]:

Definition D.1 (Black-Box Reduction) A black-box reductionfrom a non-malleable hash function (with re-
spect to somehint

?) to one-way permutations consists of efficient algorithmsH? = (HK
?,H?,HVf

?) andA?
P

with the following properties. For all algorithmsP andAH, each of arbitrary complexity,
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• Correctness: IfP is a permutation (i.e., is a bijection over{0, 1}k for eachk ∈ N), thenHP is a hash
function.

• Security: IfAH breaks the non-malleability of the hash functionHP with respect tohint
P (i.e., violates

Definition 3.1), thenAAH

P
breaks the one-wayness ofP.

We use the following lemma of [21] (adapted to our setting), which generalizes the standard technique of
proving the impossibility of a black-box reduction by giving oracles relative to which the reduction cannot exist.

Lemma D.2 (adapted from [21]) No black-box reduction from non-malleable hash functions (with respect to
somehint

?) can exist if there exists oraclesP andO with the following properties:

• P is a one-way permutation secure against all PPTBP,O.

• For all PPTH? = (HK
?,H?,HVf

?), there exists a PPT adversaryAP,O that breaks non-malleability of
HP (with respect to somehint

P )

Note that breaking non-malleability means that no simulator of comparable complexity is able to approxi-
mate the success probability ofAP,O close enough. To ensure that the simulator has equal power wegrant the
simulatorSP,O therefore access to both oraclesP,O.

DEFINING ORACLES P AND O. Recall that we letP be a random permutation (which we will later de-
randomize) and that our oracleO on input(1k, y, p) looks up the pre-image0k||x|| 〈HVf〉 ||K of hx underP
and returnsx if and only if z = 0k andHVf

P(K,x, y) = 1. We first show thatO does not help to break the
one-wayness ofP:

Proposition D.3 For any efficient algorithmB?,?, the probability thatBP,O breaks the one-wayness ofP is
negligible.

Proof: Assume that there exist an efficient algorithmBP,O that breaks the one-wayness with noticeable prob-
ability 1/q(k) for a polynomialq and infinitely manyk’s. Let t(k) be the polynomial bounding the running
time of B. Then we construct an efficient algorithmCP which inverts images with almost the same success
probability, but without the help ofO.

Algorithm CP is given someβ ∈ {0, 1}k as input and first queries its oracleP for all values of sizeB :=
B(k) := log2(2q(k)t(k) + t(k)). It records all those queries and answers in a listLP , which is possible in
polynomial space and time. It then starts a black-box simulation ofBP,O(β) in whichC answers each query of
B toP with the help of oracleP, but whereC also appends all queries and answers to the listLP .

Each ofB’s queries(1k′

, y, p) to oracleO is processed byC as follows.C searches through the listLP so far
and checks whether it has stored a pair in whichp appears as the image. If so thenC proceeds as the oracleO
would (i.e., checks that the leading bits of the pre-image are zero and that the final part verifies with respect to
y, and returns the pre-image if all tests succeed). If, on the other hand, no such entry exists inLP thenC simply
returns⊥. Algorithm C finally outputs whateverB returns.

For the analysis consider thei-th query(1k′

, y, p) of B toO, conditioning on the fact thatC has answered all
i− 1 previous queries consistently withO’s replies. IfC finds a corresponding value/image pair in the listLP

then the reply for this reply is also consistent withO’s answer. Assume that there is no such pair inLP . In
particular, the parameterk′ must then be larger thanB. At any point during the simulationB has gathered at
mostt(k) value/image pairs forP (where we also count the information derived through previousO queries,
possibly showing only that the leading bits of these pre-images are not zero). Hence, the probability that for the
k′ most significant bitsmsbk′(P−1(p)) = 0k′

is at most 1
2k′−t(k)

, and thus at most 1
2q(k)t(k) . Summing over all

at mostt(k) queries ofB toO all answers ofC are consistent with probability at least1− 1
2q(k) .
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In conclusion, the probability thatC succeeds is bounded from below by the probability12q(k) . In addition,C
runs in polynomial time ink and thus contradicts the one-wayness ofP.

SEPARATION. Recall that we need the technical assumption that the hash function is non-trivial in the sense
that for uniformly distributed input the output has enough min-entropy. For sake of simplicity we state this
requirement without the oraclesP,O:

Definition D.4 A hash functionH is non-trivial if, for anyK ← HK(1k) and anyy, the probability that

HVf(K,x, y) = 1 for x
$

← {0, 1}k , is negligible.

As another technical prerequisite we assume that the relation Rsep(X , x, x∗) which checks thatX is the
uniform distribution on{0, 1}k and that the parity ofx andx∗ are equal, is in the relation classR. Note that
clearlyRsep ∈ Rpred is in the class of relations for which our construction holds.

With the properties above we can show the following:

Theorem D.5 Let HP = (HK
P ,HP ,HVf

P) be a non-trivial non-malleable hash function with respect to
hint

P
sep andR ∋ Rsep. Then there exists an adversaryAP,O that breaks non-malleability ofHP (for any

simulatorSP,O).

Proof: Consider the adversaryAP,O
d which for inputK returns (a description of) the uniform distributionX

over{0, 1}k and the state std = K. AdversaryAy on inputy, hx and std forwards(1k, y, hx) to oracleO to

recoverx. It then continously samplesx∗ $

← X (1k) till it finds one with equal parity asx (or stops after at most
n trials with undefinded output). It computes a hash valuey∗ ← HP (K,x∗) and returns this value (together
with the state sty = x∗). AdversaryAx for input x and sty = x∗ simply outputsx∗. Note thatA’s output
satisfies relationRsep and(x, y) 6= (x∗, y∗) with probability negligibly close to1 (there is a small probability
of 2−n thatAy cannot find a suitablex∗ within n trials, and a negligible probability thatx∗ = x).

Consider now an arbitrary (efficient) simulatorSP,O
x , making at mostt(k) queries to either oracle for poly-

nomial t(k). First note that the distributionX output bySP,O
d (K) must also be the uniform distribution with

overwhelming probability, and from now on we condition on this. Consider both stages,Sd andSx, where the
latter algorithm getshx = P(0k||x|| 〈HVf〉 ||K) and std as input. We first claim that the probability thatS
receives fromO the pre-imagex or puts a query toP includingx in any of the two stages (eventBAD) cannot
be more than negligible.

Consider the(i + 1)-st query which is either aP-query or a query toO, assuming that none of the previousi
queries has triggered eventBAD. If this is a query to oracleP thenS has gathered information about at mosti
otherP-values so far (either directly or throughO), thus finding the unique pre-image and causing eventBAD
with probability at most 1

2k−i
(which is negligible for largek’s). Now suppose that thei-th query(1k′

, y′, p)

is to oracleO. If p = hx then the answer can only bex if HVf(K,x, y′) = 1. But this can only happen with
negligible probability, as the only information aboutx at this point is that it is different from all previously
seen pre-images underP, and the non-triviality of the hash function implies that the verification succeeds with
negligible probability only. In casep 6= hx the probability thatO returnsx is at most 1

2k−i
, because the pre-

image ofp underP is either known byS via a previous query and therefore distinct fromx, or the probability
that the pre-image underP containsx is at most 1

2k−i
.

It follows that, for any of the at most polynomially many queries to its oracles,S receives a useful answer
causing evenBAD with negligible probability only. Hence, with overwhelming probability any of the2k− t(n)
possible pre-images ofhx underP is still equally like from the viewpoint ofS, meaning that the simulator
cannot approximate the parity ofx better than with probability negligibly close to12 , which is noticeably away
fromA’s success probability.

It now follows easily:
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Corollary D.6 There exists no black-box reduction from non-trivial non-malleable functions (with respect to
hint

P
sep andR ∋ Rsep) to one-way permutations.

E Definition and Proof for Proposition 5.5 (NM Implies POWHFs)

We first recall the oracle-simulatability definition of perfect one-wayness from [8] for adversaries that get
auxillary information. This version of the definition is slightly different from the original in how handle message
distributions. Here, we allow the adversary and simulator to pick the message distribution after seeing the hash
key instead of quantifying over all message distributions.We also allow the experiment to run a predicate on
the chosen message distribution before declaring if the adversary has won.

Definition E.1 (POWHF, oracle-simulatability definition) LetH = (HK,H,HVf) be a hash function. It is
perfectly one-way in the oracle-simulatability sensewith respect to a functionhint and predicatePpow, if if for
any PPTAA = (Ad,Ap) and any PT predicateΠx, there exists a PPT simulatorS = (Sd,Sp) such that the
difference

Pr
[
Exp

pow−1
H,A (k) = 1

]
− Pr

[
Exp

pow−0
H,S (k) = 1

]

is negligible, where:

Experiment Exp
pow−1
H,A (k)

K
$
← HK(1k)

(X , std)
$

← Ad(K)

x
$
← X (1k), hx ← hint(x)

y ← H(K,x) ; p← Ap(y, hx, std)
Return 1 iffp = Πx(x) ∧ Ppow(X ) = 1

Experiment Exp
pow−0
H,S (k)

K
$
← HK(1k)

(X , std)
$

← Sd(K)

x
$
← X (1k), hx ← hint(x)

p← Sp(hx, std)
Return 1 iffp = Πx(x) ∧ Ppow(X ) = 1

We only consider predicatesPpow for whichPpow(X ) = 1 implies thatX is well-spread.

REMARK 1. Because the definition in [8] considers arbitrary distributions, the simulator in the “ideal” exper-
iment is given the oracle that verifies whether a given pre-image is the one chosen by the experiment. Since a
perfectly one-way hash function should usually be at least one-way, we consider only well-spread distributions
(therefore the restriction that we put onPpow) and hence such an oracle is of no use to the simulator.

REMARK 2. The introduction in [8] suggests that a perfectly one-wayhash function must be randomized,
and all the suggested constructions are. However, a deterministic hash function does not violate perfect one-
wayness, and the constructions in [8, 11] are still POWHF if the randomness becomes part of the key and are
used for a single message. Hence, our implication that non-malleability implies perfect one-wayness does not
necessarily mean that non-malleable hash functions must beprobabilistic.

Proof of Proposition 5.5: The goal is to show thatH is perfectly one-way with respect tohint andPpow.
Fix some adversaryApow that attacks perfect one-wayness according to the above definition for some predicate

Πx. We construct an adversaryAnm and a relationR ∈ RPpow

pred so thatAnm performs almost as well in the
non-malleability experiment asApow does in the oracle-simulatability experiment. Then, we usethe non-
malleability ofH to build a simulatorSpow that performs almost as well asApow.

Below we letx0 be the string output by fixing the random tape of the sampling algorithmX (1k) to all zeros.
(We simply needx0 to be an element of the message space thatX (1k) outputs with low probability.)

Now we can describe the NM adversaryAnm = (Anm,d,Anm,y,Anm,x). The first algorithm,Anm,d, is
almost exactly likeApow,d; it outputs the sameX and std, except that it appends the hash keyK to std. The
third algorithm,Anm,x, simply outputs sty. To complete the description of our NM adversary, and the relation
it attacks,Anm,y andR are as follows:
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Adversary Anm,y(y, hx, std)
p← Apow,p(y, hx, std)

if p = 0 thenx∗ ← x0 elsex∗ $
← X (1k)

y∗ ← H(K,x∗) ; sty ← x∗

output(y∗, sty)

Relation R(x, x∗,X )
output(Πx(x)⊕ [x∗ = x0]) ∧ Ppow(X )

Clearly,R belongs to the classRPpow

pred because it can be expressed asP (x, P ∗(x∗)) by settingP ∗(x∗) = [x∗ =

x0] andP (x, b) = Π(x)⊕ b. By writing out and re-arrangingExpnmh-1
H,Anm

, we get:

Experiment Expnmh-1
H,Anm

(k)

K
$
← HK(1k) ; X (1k)← Apow,d(K)

x
$
← X (1k) ; hx ← hint(x) ; y ← H(K,x)

p← Apow,p(K, y, hx)

if p = 0 thenx∗ ← x0 elsex∗ $
← X (1k)

y∗ ← H(K,x∗)
Return 1 iff(y∗ 6= y) ∧ HVf(K,x∗, y∗) = 1 ∧ (Πx(x)⊕ [x∗ = x0]) ∧ Ppow(X ) = 1

It then follows that the differencePr
[
Expnmh-1

H,Anm

]
− Pr

[
Exp

pow−1
H,Apow

(k)
]

is negligible. Namely, ifApow

predicts correctlyp = 0, thenAnm also causesR to output1. If Apow predicts correctlyp = 1, however,
there is a chance that thex∗ 6= x0 requirement will not be met. But sinceX is well-spread, this happens with
only negligible probability. The only remaining difference in the outputs ofExpnmh-1

H,Anm
could be caused by and

Exp
pow−1
H,Apow

(k) is they∗ 6= y, requirement. However,Pr [ y∗ = y ] is negligible sinceH is collision-resistant.
By the non-malleability ofH under Definition 3.1, there exists a simulatorSnm = (Snm,d,Snm,x) such that

the differencePr
[
Expnmh-1

H,Anm
= 1

]
− Pr

[
Expnmh-0

H,Snm
= 1

]
is negligible. We now complete the proof by con-

structing a simulatorSpow (that works analogously toAnm), and for which we have thatPr
[
Exp

pow−0
H,Spow

(k)
]

=

Pr
[
Expnmh-0

H,Snm

]
. The simulatorSpow = (Spow,d,Spow,p) operates as follows.Spow,d is exactlySnm,d. Spow,p is

defined by:

Simulator Spow,p(hx, std)
x∗ ← Snm,x(hx, std)
if x∗ = x0 thenp← 0 elsep← 1
outputp

WheneverSnm causesR(x, x∗,X ) = 1, thenSpow will correctly guessΠx(x) and satisfyPpow(X ).

F Proof of Proposition 6.1 (IND-CCA Security of BR Encryption)

We first recall the standard definition of security under chosen-ciphertext attack, or IND-CCA security, for
public-key encryption.

Definition F.1 (IND-CCA) Let PKE= (K, E ,D) be a public-key encryption scheme. It isIND-CCA secureif

for any PPTAB = (Bm,Bb), the differencePr
[
Expind−cca

PKE,B (k) = 1
]
− 1/2 is negligible, where:

Experiment Expind−cca
PKE,B (k)

(pk, sk)
$
← K(1k) ; (m0,m1, st)

$

← B
Dsk(·)
m (pk)

b
$

← {0, 1} ; c
$

← Epk(mb)

b∗ ← B
Dsk(·)
b (c, st)

Return 1 iffb∗ = b
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We assume thatBb does not queryDsk(c).

Let us fix some notation used in the proof. Below we will use thenatural modification of this definition where
we give all of the algorithms involved access to a random oracle, which we denoteG. We letB be an adversary
attacking the encryption scheme in the IND-CCA game. We willrefer to the challenge ciphertext asŷ, ĝ, ĥ.

We first describe a sequence of games, whereGame0 is equivalent toExpind−cca
PKE,B (k) from Definition F.1,

and the final game is simple to analyze. Next we show that for each pair of adjacent gamesGamei andGamei+1,
the adversary’s advantage can change only negligibly. In the final game, we complete the proof by showing that
the adversary’s advantage is negligible.

Game1. This is likeGame0, except that on decryption query(y, g, h), if y 6= ŷ andB has not queried anr to G
such thaty = f(r), Game1 rejects the ciphertext.

Game2. This game is likeGame1, except now the decryption oracle queries(y, g, h), wherey = ŷ andh = ĥ
(and thusg 6= ĝ), and the adversary has not queriedG(r) such thaty = f(r), are rejected.

Game3. This is likeGame2, except now the decryption oracle rejectsall ciphertexts(y, g, h) such thatB did
not queryG(r) such thaty = f(r). (This amounts to adding a new rule to reject ciphertexts with y = ŷ, h 6= ĥ,
and this property.)

Game4. This is likeGame3, except that now the challenge ciphertext is set to an encryption of a uniformly
chosen random message instead ofmb.

COMPARING GAMES ZERO AND ONE LetF1 be the event thatB submits a ciphertext inGame1 that is rejected,
but would not have been rejected inGame0. It is clear that condition on the event thatF1 does not occur,B’s
outputs inGame0 andGame1 have the same distribution.

We claim thatPr[F1] = ε1 is negligible, by the collision resistance ofH. To see this, define the following
adversaryA1 that attemps to find collisions inH. AdversaryA1 takes as input a hash key(K, f) and uses it in
the public key inGame1, but replacesf by sampling an independent instancef0 (thus knowing the secret key
f
−1
0 ) and generates the rest of the public key/secret key pair itself and answers all oracle queries forB, having

full control over oracleG (i.e., answering each new query with a new random string and storing all queries and
the relies in an array calledG-list, so the repeated queries could be answered consistently) and also creating the
challenge ciphertext as described by the protocol. IfA1 detects a ciphertext(y, g, h) that would get rejected
in Game1, it halts the game. Then adversaryA1 computesr = f

−1
0 (y), m = G(r) ⊕ g, generating the value

G(r) from scratch. AttackerA1 then selects a new random messagem′, and outputs(r‖m, r‖m′) andh as its
collision.

Since the ciphertext(y, g, h) would not be rejected inGame0, we know thatHVf(K,h, r‖m) = 1. Observe
that whenA1 computedm = G(r) ⊕ g, it was actuallysettingm to a random message. This is true because
B had never queriedG(r), soA1 selected a random string for it after the game was over. Now observe that an
ε1 fraction of the possible coins that determineGame0 will cause the eventF1 to occur. It then follows by a
standard averaging argument that, for anε1/2 fraction of the coins forGame0, there is anε1/2 chance over the
choice ofG(r) (with the other coins fixed) will causeF1. Thus, when theA1 selects a second messagem′ after
halting the game, there is at least anε2

1/4 chance that it will satisfyHVf(K,h, r‖m′) = 1. Thus the chance that
A1 finds a collision is at leastε3

1/8, andε1 must negligible.

COMPARING GAMES ONE AND TWO It is clear that until the new reject rule is used,Game1 andGame2 are
the same. LetF2 be the event that a query is rejected because of this rule thatwould not have been rejected in
Game1, and letε2 = Pr[F2]. We claim thatε2 is negligible by the collision resistance ofH.

We showε2 is negligible by presenting an efficient adversaryA2 that takes as input a hash keyK finds
a collision inH with probability related toε2. AlgorithmA2 also generates a new pair(f0, f

−1
0 ) and usesK

andf0 in the public key and runsGame2 for B until the reject rule inGame2 is used (again, controllingG and
generating a valid challenge ciphertext). Let(y, g, h) be the ciphertext that triggered the reject rule, soy = ŷ
andh = ĥ. AdversaryA2 computesm′ = G(r)⊕ g, computeŝr = f

−1
0 (ŷ), recalls thatmb was the message

used in the challenge ciphertext, and then outputs(r̂‖mb, r̂‖m
′) andĥ as its collision.
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We claim thatA2 finds a collision with probabilityε2. This is because if the eventF2 was used, then the
ciphertext(y, g, h) must have been valid, i.e.,HVf(K,h, r̂‖(G(r̂) ⊕ g)) = 1. By assumptiong 6= ĝ, hence
m′ = G(r)⊕ g is different frommb = G(r)⊕ ĝ but still maps (prepended byr = r̂) to the same hash value
h = ĥ. The claim follows, andε2 must be negligible.

COMPARING GAMES TWO AND THREE Game2 andGame3 are clearly the same until the new rule is applied.
Let F3 be the event that a ciphertext is queried that triggers this reject rule inGame3. but would not have been
rejected inGame2. We claim thatPr[F3] is negligible, by the non-malleability condition onH in the theorem.

Let ε3 = Pr[F3]. To see this we construct an adversaryA3 = (Ad,Ay,Ax) to win the non-malleability
game withhintBR and our relationRBR ∈ R

rinfo
pred∗ more often than any simulator. Recall that our relation

RBR(X , r0‖m0, r1‖m1) tests if (1)X is a canonical sampler that samplesr
$

← {0, 1}k and outputsr‖m for
somem and (2) if the leadingk/2 bits of r0 andr1 are equal.

OurAd takes as input a hash keyK ′ = (K, f) and begins to simulateGame3 for B using (K, f) as the
public key. To simulate the random oracleG properly,Ad stores all the random oracle queriesB makes and the
corresponding replies in an associative array, theG-list. Ad answers decryption queries(y, g, h) as described
in Game2 by first locating a previously made queryg in theG-list such thaty = f(r), and rejecting all other
ciphertexts.Ad never accessesf−1 to maintain this simulation.
Ad runsB until it outputs two messages(m0,m1). ThenAd chooses a random bitb and outputs the

canonical encoding of the distributionX that selectsr
$

← {0, 1}k and outputsr‖mb.
After the expirement sampleŝr‖mb andAy receiveŝh← H(K, r̂‖mb), f(r̂) as input,Ay setŝg to a random

string, definesG(r̂) = ĝ ⊕mb and returns(ŷ, ĝ, ĥ) as the challenge ciphertext forB. For each ofB’s queries
ri to the random oracleG, adversaryAy checks iff(ri) = ŷ, and if so, returnsG(r̂); else it uses the same lazy
sampling technique as before.Ay continues to answer decryption queries as before untilB halts.

After B halts,Ay examines all of the rejected decryption queries issued byB that had their first part̂y and
other part(g, h) 6= (ĝ, ĥ). Out of theseqD queries,Ay selectsy∗‖g∗‖h∗ at random and returnsh∗ as its new
hash in the non-malleability game. Finally, the algorithmAx takesr‖mb as input, selectsm′ at random, and
outputsr‖m′.

Now if the eventF3 occured, then there is some ciphertext that should not have been rejected, andA3 will
have a1/qD chance at picking that ciphertext for its output in the NM game. It is simple to check thatF3 occurs
andA3 selects this ciphertext, it wins the NM game, giving it aε3/qD chance at winning, since the firstk/2
bits coincide. In constrast, any simulatorS = (Sd,Sx) receivesK ′ = (K, f) as input, chooses the distribution
X , and gets onlyf(r) as input toSx. Although this simulator may depend on the relationRBR, it still must
choose a canonical encoding ofX for its message distribution, and thus predict the leadingk/2 bits of r. But
then it violates partial one-wayness off. Therefore, the probability of the simulator satisfying the relationRBR

is negligible, and there is noticeable difference toA3’s success probability.
This yields the contradiction that the hash function isnot non-malleable for the relationRBR. Thusε3 must

also be negligible.

COMPARING GAMES THREE AND FOUR Let S3 be the event thatB wins Game3, and letS4 be the event that
it wins Game4. We claim that|Pr[S3] − Pr[S4]| = ε4 is negligible by the POWHF condition in the theorem.
To prove this, we construct an adversaryA4 = (Ad,Ab) that wins the POWHF game with probabilityε4. Ad

gets a hash keyK ′ = (K, f) as input, and runsB with public key(K, f). Ad answers decryption queries itself,
as decribed inGame3, without f−1. WhenB outputs a pair(m0,m1), Ad selects a random bitb and outputs a

canonical distributionX that samplesr
$

← {0, 1}k and a randomm′ from the message space, and outputsr‖mb

with probability1/2 andr‖m′ otherwise.
Ab gets as input̂h andŷ = f(r̂). Ab first chooses a random strinĝg, which implicitly definesG(r̂) = ĝ⊕m,

wherem is eithermb or a random message chosen by the hash oracle.Ab continues to simulate the game forB
with challenge ciphertext̂y, ĝ, ĥ until either (1)B queriesG(r̂) or (2)B halts with a bitb∗ as output.

In case (1),Ab aborts the simulation and can immediately win the POWHF game(with overwhelming
probability) by checking ifHVf(K, r̂‖mb, ĥ) = 1. In case (2),Ab tests ifb∗ = b, and if so, it outputs1, and
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otherwise it outputs0. If the hash oracle returned̂h = G(K, r‖mb), thenA4 perfectly simulatedGame3 for
the adversary. Otherwise, the adversary perfectly simulated Game4. A standard argument gives thatA4 has
advantage negligibly close toε4/4, finishing the proof of the claim.

Finally, it is obvious thatPr[B winsGame4] = 1/2 because the bitb is never used, and collecting the
relations between all of the games, we get thatB must have had negligible advantage in the original IND-CCA
game.

25



Experiment Game0(k):

Kpow
$

← POWK(1k)

crs
$

← CRS(1k)
K = (Kpow, crs)

(X , sty)
$

← Ad(K)

x
$

← X (1k); hx
$

← hint(K,x)

ypow ← POW(Kpow, x; r) for r
$

← RNDKpow

π
$

← P(crs, ypow, x||r)
y = (ypow, π)

(y∗, sty)
$

← Ay(y, hx, sty) wherey∗ = (y∗pow, π∗)

x∗ $

← Ax(x, sty)
Return 1 iff

R(X , x, x∗) = 1 ∧ (x, y) 6= (x∗, y∗)
∧POWVf(Kpow, x∗, y∗pow) = 1

∧V(crs, y∗pow, π∗) = 1

Experiment Game1(k):

Kpow
$

← POWK(1k)

(crs, σ)
$

← Z0(1
k)

K = (Kpow, crs)

(X , sty)
$

← Ad(K)

x
$

← X (1k); hx
$

← hint(K,x)

ypow ← POW(Kpow, x; r) for r
$

← RNDKpow

π
$

← Z1(σ, ypow)

y = (ypow, π)

(y∗, sty)
$

← Ay(y, hx, sty) wherey∗ = (y∗pow, π∗)

x∗ $

← Ax(x, sty)
Return 1 iff

R(X , x, x∗) = 1∧ (y 6= y∗)

∧POWVf(Kpow, x∗, y∗pow) = 1

∧V(crs, y∗pow, π∗) = 1

Experiment Game2(k):
Kpow

$

← POWK(1k)

(crs, σ)
$

← Z0(1
k)

K = (Kpow, crs)

(X , sty)
$

← Ad(K)

x
$

← X (1k); hx
$

← hint(K,x)

ypow ← POW(Kpow, x; r) for r
$

← RNDKpow

π
$

← Z1(σ, ypow)
y = (ypow, π)

(y∗, sty)
$

← Ay(y, hx, std) wherey∗ = (y∗pow, π∗)

x∗ $

← Ax(x, sty)

if POWVf(Kpow, x∗, y∗pow) = 1

then x∗
K||r

∗
K

$

← K(σ, y∗pow, π∗)

else x∗
K ← ⊥

Return 1 iff
R(X , x, x∗

K ) = 1 ∧ (y 6= y∗)

∧POWVf(Kpow, x∗
K , y∗pow) = 1

∧V(crs, y∗pow, π∗) = 1

Experiment Game3(k):

Kpow
$

← POWK(1k)

(crs, σ)
$

← Z0(1
k)

K = (Kpow, crs)

(X , sty)
$

← Ad(K)

x
$

← X (1k); hx
$

← hint(K,x)

x′ $

← X (1k)

y′pow ← POW(Kpow, x′; r′) for r′
$

← RNDKpow

π
$

← Z1(σ, y′pow )

y = ( y′pow , π)

(y∗, sty)
$

← Ay(y, hx, std) wherey∗ = (y∗pow, π∗)

x∗
K||r

∗
K

$

← K(σ, y∗pow, π∗)

Return 1 iff
R(X , x, x∗

K) = 1 ∧ (y 6= y∗)
∧POWVf(Kpow, x∗

K, y∗pow) = 1

∧V(crs, y∗pow, π∗) = 1

Figure 1: Games in the Proof of Theorem 4.2:Shaded areas indicate the differences between the games.
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