
On the Security of Iterated Hashing based on
Forgery-resistant Compression Functions

Charles Bouillaguet1, Orr Dunkelman1, Pierre-Alain Fouque1, and Antoine Joux2,3

1 École normale supérieure, Paris
{charles.bouillaguet,orr.dunkelman,pierre-alain.fouque}@ens.fr

2 DGA, Saint-Quentin-en-Yvelines
3 Université de Versailles Saint-Quentin

Antoine.Joux@m4x.org

Abstract. In this paper we re-examine the security notions suggested for hash functions,
with an emphasis on the delicate notion of second preimage resistance. We start by showing
that, in the random oracle model, both Merkle-Damg̊ard and Haifa achieve second preimage
resistance beyond the birthday bound, and actually up to the level of known generic attacks,
hence demonstrating the optimality of Haifa in this respect.
We then try to distill a more elementary requirement out of the compression function to get
some insight on the properties it should have to guarantee the second preimage resistance of
its iteration. We show that if the (keyed) compression function is a secure FIL-MAC then
the Merkle-Damg̊ard mode of iteration (or Haifa) still maintains the same level of second
preimage resistance. We conclude by showing that this “new” assumption (or security notion)
implies the recently introduced Preimage-Awareness while ensuring all other classical security
notions for hash functions.
Key words: hash function, security proof, MAC, second preimage, random oracle

1 Introduction

Of all major cryptographic primitives, hash functions have been continuously avoiding the theoretical
nirvana other cryptographic primitives enjoy. While ciphers, encryption schemes, message authen-
tication codes and signature schemes have well understood theoretical foundations, acknowledged
security definitions, and some can be idealized using primitives which are considered natural and
fair, hash functions have remained as illusive as they were.

The task of defining the security of hash functions dates back to the collision resistance preserva-
tion of the Merkle-Damg̊ard mode of iteration [14, 24] and the works of Naor and Yung on Universal
One-Way Hash Functions [27] and of Bellare and Rogaway on Target Collision Resistance [5]. In
recent years, some other notions of security were suggested such as the (always/everywhere) second
preimage resistance and the (always/everywhere) preimage resistance [29], the enhanced Target Col-
lision Resistance [17], the indifferentiability from random oracle (also called Preservation of Random
Oracle) [23], and most recently the Preimage Awareness (PA) [16]. The situation is all the more
complex that despite the existence of a plethora of security notions, there are still intuitive results
that these notions do not capture on classical modes of iteration.

We take the notion of second preimage resistance as the archetypal example of a problematic
security notion. It can be defined in multiple ways (with or without keys, with a chosen or imposed
challenge), but this is not the main issue. As far as this notion is concerned, there is a gap between
the best attacks and the best proofs, and there is a gap between theory and practice.

Gap Between Attacks and Proofs. The Merkle-Damg̊ard mode of iteration and its improvement
Haifa [6] are the most practical modes of iteration, as a quick examination of the SHA-3 candidates
reveals. What (provable) level resistance to second preimage attacks do these modes of iteration

1

exhibit? To the best of our knowledge, they only achieve provable second preimage resistance up
to the birthday bound, because a second preimage is in particular a collision, and both modes of
iteration reduce a collision to a collision on the compression function.

We are not aware of any proof technique that would allow us to prove any kind of result beyond
the birthday bound for these two main modes of iteration. For example, the recently introduced
notion of PA can only be achieved up to the birthday bound because it entails collision resistance.
The same goes for indifferentiability: first of all, Merkle-Damg̊ard is not indifferentiable from a
random oracle due to the length extension attack. Second, both modes of iteration (and also the
Enveloped Merkle-Damg̊ard [2]) are only indifferentiable up to the birthday bound, because once
a single collision has been found, many additional collisions can be cooked up for free (which is not
possible with a random function).

This lack of security guarantees has to be compared with the best generic attacks on these
constructions: on Merkle-Damg̊ard, and assuming that the size of both the chaining value and the
hash is n bits, the best attack is that of [15, 21] which finds a second preimage of a message of size 2k

in time O
(
2n−k

)
, while there is no known attack against Haifa besides a trivial exhaustive search.

Gap Between Theory and Practice. There was for some time a big gaping hole between theory
and practice regarding second preimage resistance. Constructions of keyed hash functions (UOWHFs)
provably achieving the eSec (a.k.a. TCR) notion in the standard model based on the hardness of
a general assumption have been known for quite a while [27, 18]. Later on, schemes were designed
that promote the eSec property of a compression function to the whole construction [5, 30]. Amongst
the latter, Shoup’s construction has an n-bit internal state and achieves O

(
2n−k

)
second preimage

resistance. This bound has recently been shown to be tight thanks to the second preimage attack
of [1]. However, these schemes hardly made it to the world of practical cryptography, as keyed hash
functions are rarely used.

An important progress towards closing the gap has been achieved with the double-pipe hash of
[22], which is both second preimage resistant in the random oracle model (i.e. there are no generic
attacks) and practical, since about half of the SHA-3 candidates adopted it.

This still leaves the case of narrow-pipe1 Merkle-Damg̊ard or Haifa open. It is a legitimate
question from both a theoretical and practical point of view, since this case nearly represent the
other half of the SHA-3 candidates, and yet little is known about its second preimage resistance.

Related Work. After the work of Bellare and Rogaway [3], hash functions have usually been treated
as random objects. Subsequently, many security proofs have been done in the relativized model of
the random oracle. On the negative side, there are schemes that are secure in the random oracle
model, but there is no efficient implementation of hash functions that can be used to implement
them, as it has been shown by Canetti et al. [11]. One good news is that the construction of such
schemes is rather artificial. On the positive side, the ROM allows to show that there is no structural
failure in the design of the scheme. However, in practice, the random oracle is replaced by a fixed
and, more importantly, public function which cannot be a random oracle.

An important line of research tries to avoid the use of the random oracle since the main drawback
of the ROM is that, besides providing only heuristic security, we do not really know what is the precise
security property of the random oracle that we need for the security of the actual scheme. It has been
shown [8] that in some public-key schemes, hash functions with strong properties such as perfectly
one-way hash function [10] and verifiable pseudorandom functions [25] can be substituted to one of
the random oracles while maintaining security.

In order to construct hash functions that mimic random oracle, the indifferentiability methodol-
ogy [23] has been used, and many modes of iteration have been proved secure in this framework [13,
12]. Proofs in this model show that if the compression function is a random oracle, then the iteration
1 We call “narrow-pipe” a construction where the chaining value has the same length as the digest

2

behaves as a random oracle. Consequently, there are no generic attacks against any property of the
iteration. A common point between the random oracle model and the indifferentiability model is that
the compression function is considered as a black-box to which one only has oracle access. Therefore,
only generic attacks, independent of the specific primitive, are taken into account in both cases.

In any case, the Merkle-Damg̊ard construction is not indifferentiable from a random oracle.
Recently, Dodis et al. in [16] have tried to ”salvage” this mode of iteration by relaxing the indiffer-
entiability framework to preimage awareness on one hand and to the concept of public-use random
oracle on the other hand. They have made a first step in bridging the gap between the absence of
attacks on Merkle-Damg̊ard and some theoretical explanation of this fact. However, the compres-
sion function is always idealized and we do not know what is the required assumption, if such an
assumption exists, even in the black-box model.

Our Goal and our Results. We pursue the search for a somewhat better understanding of the
security of narrow-pipe Merkle-Damg̊ard and Haifa, in particular with regard to the delicate notion
of second preimage resistance. We start with proofs of security in the random oracle model. Our
first contribution is to show that if the compression function is treated as a random oracle, then the
second preimage resistance is O

(
2n−k

)
for 2k-blocks messages in Merkle-Damg̊ard, and O (2n) for

Haifa. We therefore demonstrate that the existing generic second preimage attacks against Merkle-
Damg̊ard are optimal and that there is no generic second preimage attack at all against Haifa,
therefore closing the gap between attacks and proofs.

We are aware that the suggested proofs do not tell the designers of practical schemes how to
design a compression function to avoid second preimage attacks. We therefore examine these proofs
with the hope to identify an assumption on the compression function that is simultaneously weaker
that being a random oracle, and still strong enough to allow the same results to be proved.

Our second contribution is to show that if we treat the compression function as a fixed-input
length MAC (FIL-MAC), i.e., if it is unforgeable, then a Merkle-Damg̊ard or Haifa iteration of it
offers the same security level as in the random oracle model. This is the first time (to our knowledge)
that a more concrete (and realizable) security property is identified to be sufficient for security. We
note that this assumption still maintains some to be desired as it assumes that the MAC is secure
when the key is random and unknown to the adversary, despite the fact that in practice it is“revealed”
during the hash computation to everyone.

While we were trying to identify a better assumption on the compression function, we considered
the recent PA notion as a natural candidate. Our last contribution is to show the existing connection
between MACs and the PA notion: the Merkle-Damg̊ard or Haifa iteration of a FIL-MAC achieves
optimal PA of the hash function.

Organization of the Paper. The organization of this paper is as follows: In Section 2 we define
the notations we use through the rest of the paper. In Section 3 we offer proofs of security for
the Merkle-Damg̊ard and Haifa modes of iteration in the random oracle model. We then follow
in Section 4 to introduce the unforgeability assumption and offer proofs for the same security level
while using this weaker assumption. The discussion concerning the Preimage-Awareness model is
given in Section 5. We conclude the paper in Section 6.

2 Preliminaries and Definitions

2.1 Iterated Constructions of Hash Functions

The Merkle-Damg̊ard mode of iteration. The Merkle-Damg̊ard mode of iteration was inde-
pendently suggested in [14, 24]. The hash function HF : {0, 1}∗ → {0, 1}n is built by iterating a
compression function F : {0, 1}n × {0, 1}m → {0, 1}n. The hash process works as follows:

3

– Pad and split a message M into r blocks x1, . . . , xr of m bits each.
– Set h0 to the initialization value IV .
– For each message block xi compute hi = f (hi−1, xi).
– Output HF (M) = hr.

The padding is done usually by appending a single ’1’ bit followed by as many ’0’ bit as needed
to complete a m-bit block including the length of M in bits (the well-known Merkle-Damg̊ard
strengthening).

The Haifa mode of iteration. The HAsh Iterative FrAmework (Haifa), introduced in [6], is a
Merkle-Damg̊ard construction where a bit counter and salt are added to the input of the compression
function2. We describe an instance of Haifa with a 64-bit counter (this matches the sizes used in
currently deployed hash functions). The HAsh Iterative FrAmework HF : {0, 1}∗ → {0, 1}n is built
by iterating a compression function F : {0, 1}n × {0, 1}m × {0, 1}64 → {0, 1}n.

The hash process works as follows:

– Pad and split a message M into r blocks x1, . . . , xr of m bits each.
– Set h0 to the initialization value IV .
– For each message block xi compute hi = F (hi−1, xi, i).
– Output HF (M) = hr.

The padding is done by appending a single ’1’ bit followed by as many ’0’ bit as needed to
complete an m-bit block after the message length and the digest size are appended.

2.2 Computational Model

The proofs presented in this paper always assume oracle access to the compression function. When
this primitive is considered as a (public) random function, the number of queries sent to the primitive
can be used as a meaningful complexity measure (because the adversary cannot obtain any kind of
advantage by computation alone without querying the function). Therefore, in this setting, we will
consider information-theoretic (i.e., computationally unbounded) adversaries, and the number of
queries to the oracle will be the main measure of complexity. In any case, it gives a lower-bound on
the time complexity of the adversary. This setting is very similar to the analysis of block cipher-based
constructions in the ideal cipher model of [7].

We often denote by q the number of queries sent to the compression function F by an adversary
A. For the sake of convenience, we enforce adversaries not to abort, as well as collision and (second)
preimage adversaries to always return a message M , even if they fail the security game, and to eval-
uate HF (M) before terminating, by issuing the corresponding queries to the compression function.
We also enforce adversaries not to ask the same query twice.

2.3 Security Properties

Unforgeability. The security of a Fixed-Input-Length MAC (FIL-MAC) is usually measured via
the existential forgery game under chosen message attack. A forgery adversary A against the MAC
F has oracle access to Fk(·) (for which the key k is chosen uniformly at random), and thus can
learn the tag values for some adaptively chosen messages of its choice m1,m2, It then returns a
forgery (m, τ) made of a message along with a tag. The forger wins if Fk(m) = τ and the tag for
m was not queried before. We refer to an adversary of this kind as a (t, q, ε)-forger, where t and q

2 We shall disregard the salt throughout this paper (as it has no affect on our results. We will also treat
the counter as a block counter, rather than a bit counter. For the purposes of this paper, the definition
we use is equivalent.

4

are upper bounds on its running time and on its number of MAC-queries, and ε is a lower bound on
its success probability. In the same vein, a function family F is a (t, q, ε)-secure FIL-MAC family, if
the success probability of any forger against Fk running in time t and using a number of at most
q queries is at most ε for a randomly sampled key k. It is straightforward to see that a family of
random functions with n-bit output is a (t, q, 2−n)-secure FIL-MAC for any value of q. We use the
term “unforgeable” to denote a secure MAC.

Collision Resistance. It is well known that collision resistance cannot be defined for an individual
hash functions (because of trivial adversaries already containing a collision and which is “produced”
as output). A keyed hash function family H is (t, q, ε)-collision resistant if the advantage of any
attacker running in time t and asking at most q queries to the hash function finds a collision on Fk

with probability at most ε, when Fk is sampled at random from the family F .

Second Preimage Resistance. Amongst the numerous notions of second preimage resistance, we
will mostly consider the one defined by the following game: a second preimage adversary A has oracle
access to a compression function F . It receives a randomly generated challenge M of length `, and
succeeds if it outputs a second message M ′ such that M 6= M ′ and HF (M) = HF (M ′), where H
is an iteration mode for F (such as Merkle-Damg̊ard or Haifa). Such an adversary (t, q, `, ε)-breaks
HF if its running time is at most t, and if after at most q queries to F its success probability is lower-
bounded by ε. A hash function HF is (t, q, `, ε)-second preimage resistant (SPR) if the advantage
for messages of length ` of any attacker asking at most q queries and running in time at most t is
upper-bounded by ε.

Preimage-Awareness. The Preimage-Awareness notion introduced in [16] is an adaptation of the
notion of Plaintext-Awareness [4] to keyless constructions. Informally, it means that an adversary
has to evaluate a cryptographic construction to obtain a later-useful output, i.e., if one knows the
output, then one is “aware” of a preimage. Both notions are defined in a model where one has oracle
access to an idealized primitive. The Preimage-Awareness notion is therefore a property of mode of
iterations, and not of monolithic primitives. We consider the setting where PA adversary are made of
two parts (A1,A2) allowed to have some common internal state and having oracle access to an ideal
primitive P (say, a compression function). The game played by the adversary is defined as follows:

(1) A1 queries P, and then output a hash value z. (2) A polynomial extractor Ex is then run
on z and on the transcript of the interaction between A1 and P. (3) The extractor outputs either
MEx = ⊥ or a message MEx such that HP (MEx) = z. (4) A2 is then run on the output MEx of
the extractor, and outputs a message M ′.

The adversary wins if HP(M ′) = z and M ′ 6= MEx. An adversary (q, t, ε,Ex)-break the PA of a
construction H if q and t are upper-bounds on the number of queries to the ideal primitive and on
the running time of A, for a given extractor Ex, while ε is a lower-bound on the success probability
of A. A construction H is PA if there exists an extractor for which no polynomial adversary achieves
non-negligible success probability.

3 Second Preimage Resistance in the Random Oracle Model

Let us consider a narrow-pipe Merkle-Damg̊ard or Haifa iteration of a public random function.
What can we say about the security of this construction? We know it offers collision-resistance up
to the birthday bound, since the ideal compression function offers optimal collision-resistance, and
any collision on the iteration induces a collision on the compression function. We also know that
it offers optimal preimage-resistance, since a preimage on the iteration induces a preimage on the

5

ideal compression function (on the last block). To the best of our knowledge, the second-preimage-
resistance of this scheme is known to lie somewhere between 2n/2 and 2n−k queries in the case of
Merkle-Damg̊ard for messages of length 2k (resp. 2n queries for Haifa).

We now come to the first point of this paper, namely that it is possible to achieve beyond-
the-birthday-bound second preimage resistance when the compression function is considered to be
ideal.

Theorem 1 (Second Preimage Resistance of Merkle-Damg̊ard). Let F be a public random
function, let MDF be the Merkle-Damg̊ard iteration of F , and A a second preimage adversary against
MDF which (t, q, `, ε)-break the SPR of MDF . Then:

ε ≤ q · `
2n

.

Before the proof, we note that throughout the paper
∣∣M ∣∣ denotes the length of M in blocks (and

not in bits as usually done), i.e.,
∣∣M ∣∣ = ` if M has l blocks.

Actually, the main idea common to all the proofs presented in this paper is almost directly
adapted from the existing generic second preimage attacks: we lower-bound the complexity of one
particular step common to all these attacks, namely when some kind of a possible prefix has to be
“connected” to the target message.

Proof (of theorem 1). Consider an adversary A that (t, q, `, ε)-breaks the SPR of MDF . We denote
by hi, for 1 ≤ i ≤ `, the chaining values obtained while hashing M , according to the description in
section 2.1. If A succeeds in finding a second preimage, then in particular A has found a collision.
It is well known that in the presence of the Merkle-Damg̊ard strengthening, this implies a collision
on the compression function F [14, 24]. In our case, there exists an index i0 such that one of the
colliding chaining value is hi0 . This collision on F is therefore actually a second preimage of hi0 for
F . Note that because F is a random function, all the hi’s are random values.3

We now give an upper bound on the probability that A finds a second preimage of one out of
` random chaining values. We simulate the execution of A, and bookmark the queries sent to the
oracle for F . Every time A submits a new query to the oracle, it receives a uniformly-distributed
random value. The probability that A wins thanks to this particular query is upper-bounded by the
probability that this random value is one of the hi’s. This probability is exactly ` · 2−n. Since A
sends at most q queries, A wins with probability at most q · ` · 2−n. ut

It must be noted that this proof is fairly general, because it reduces the problem of finding a
second preimage for MDF to the problem of finding a second preimage of one out of many random
chaining values for F . It actually covers nearly all the existing iterated hash functions; for example,
it could be adapted to the EMD [2] mode of iteration, to Shoup’s UOWHF [30], to Rivest’s dithered
hash [28], to Haifa [6], etc.

The inventors of Haifa claim that it has optimal resistance against generic second preimage
attacks. The bound given by theorem 1 is however not strong enough to back up their claim. A
slightly more involved proof technique is required to prove that Haifa achieves optimal second
preimage resistance. The next theorem captures the intuitive idea that the attacks of [15, 21, 1] do
not work against Haifa.

Theorem 2 (Second Preimage Resistance of Haifa). Let F be a public random function and
HaifaF be the Haifa-iteration of F , and A a second preimage adversary that (t, q, `, ε)-break the
SPR of HaifaF . Then:

ε ≤ q

2n−1
.

3 We note that this claim is not necessarily true when the message is long and there are collision between
the various chaining values. However, as this has a non-negligible probability only when ` ≥ O(2n/2), we
allow ourselves to disregard such very long messages.

6

The proof is deferred to annex A. It uses essentially the same techniques as the proof of theorem 1,
but takes into consideration the counter used in each application of F .

Partial Conclusion: What do we Learn From These Proofs? These two results rely crucially
on the fact that the compression function is modeled as a public random function. For this reason,
it could be argued that since no actual compression function will ever satisfy this hypothesis, then
our results are vacuous.

Considering the underlying primitive to be ideal is a natural idea when reasoning about modes of
iteration of hash functions. The 64 constructions from PGV were proved secure in the Ideal Cipher
model [7], i.e. assuming that the underlying primitive is ideal. At the very least, the security results
obtained in our model imply security against generic attacks, so they say something meaningful
about the security of the mode of iteration itself. For example, we know that the existing generic
second preimage attacks [1, 20, 21] are almost optimal: in order to find a second preimage on Merkle-
Damg̊ard in less than 2n−k operations, an attacker has to take a look at what is happening inside
the compression function.

4 Hashing With an Unforgeable Compression Function

We were able to state and prove theorems 1 and 2 because we were reasoning in the random oracle
model, which is arguably too strong and unrealistic (for symmetric cryptography). It is however in
this model that the generic attacks which have inspired these proofs have been conceived. After noting
that in both the indifferentiability framework and in the definition of the PA notion the underlying
primitive is also assumed to be ideal, we now get to the second point of this paper. Assuming that
the compression function is random does not tell anyone how to design better compression functions.
We therefore try to identify more precisely what are the good properties of the compression function
that would allow us to replay the same proofs, while being less far-fetched.

It seems that the crucial point in the proofs presented earlier is that the adversary has to evaluate
the compression function to know its output, and that this output cannot be predicted or biased.
This is reminiscent of some well-known notions such as pseudorandomness, unpredictability, or un-
forgeability. Additionally, it is folklore that a random function can be replaced by a pseudorandom
function, as long as it is still accessed through a black-box interface. In this section, we show that
assuming the unforgeability of the compression function is sufficient to prove many security proper-
ties on the iteration. It must be noted that this property is strictly weaker than the function being
a PRF.

In the sequel, we consider a mode of iteration H which is either Merkle-Damg̊ard or Haifa. We still
suppose that the compression function F is accessed through a black-box interface, and that it takes
as input the (chaining value, message block) pair (and also the counter when relevant for Haifa).
We first prove that if F is an unforgeable function family, then HFk is both collision-resistant and
preimage resistant if k is an (unknown) key sampled uniformly at random.

Theorem 3. Let A be a collision-adversary that (t, q, ε)-breaks the collision resistance of HFk . Then
we may construct a MAC-forger B that (t, q, µ)-breaks F , with:

µ =
2 · ε

q · (q + 1)

Proof. We simulate the execution of A and bookmark the queries sent to the Fk: let us denote by
(hi, xi) the i-th query sent to Fk and by yi = Fk (hi ||xi) the answer of Fk.

Let us observe what happens when A wins. Then A has necessarily sent two queries (hi, xi) and
(hj , xj) (with 1 ≤ i < j ≤ q) that collide, i.e., yield the same output yi = yj . We call the j-th query

7

the magic query. If we knew the indices i and j in advance, it would be easy to forge Fk: we could
interrupt A just after it issued the magic j-th query, and not relay it to Fk. Instead, we could output
the forgery: (hj ||xj , yi).

To construct B, we just guess uniformly at random the values of i and j (by fixing 1 ≤ i < j ≤ q).
We now have to lower-bound the probability of success of the forgery. There are q · (q + 1)/2 pairs
(i, j) such that 1 ≤ i < j ≤ q. Choosing i and j uniformly at random will yield the good guess with
probability at least 2/(q · (q + 1)). ut

Theorem 4. Let A be a preimage-adversary that (t, q, ε)-breaks the preimage resistance of HFk .
Then we may construct a MAC-forger B that (t, q, ε · q−1)-breaks F .

Proof. We simulate the execution of A, exactly as in the proof of theorem 3. Let us denote by h the
challenge hash. If A wins, then one of its queries yields h as its answer. If we knew in advance the
index i of this particular query, then we could play the same trick, interrupting A, not relaying this
query to Fk, and then outputting the forgery (hi ||xi, h).

Now, to construct B, we guess the index of the “magic query” by taking i uniformly at random
with 1 ≤ i ≤ q. Since our guess will be right with probability at least 1/q, this gives a lower-bound
on the success probability of B. ut

The case of second preimage is a bit more involved, especially in the case of Haifa, as it is
intermediate between the collision case and the preimage case.

Theorem 5. i) Let A be a second preimage-adversary that (t, q, `, ε)-break the SPR of MDFk .
Then we may construct a MAC-forger B that (t, q, µ)-break F , with:

µ =
ε

q · `

ii) Let A be a second preimage-adversary that (t, q, `, ε)-break the SPR of HaifaFk . Then we may
construct a MAC-forger B that (q, t, µ)-break F , with:

µ =
ε

q

Proof. We simulate the execution of A, exactly as in the proofs of theorems 3 and 4. Let us denote
by m1, . . . ,m` the chaining values produced by the hashing process of the challenge M , as they play
a particular role, and let h be the hash value of the challenge M .

i) We observe when A wins, then A has necessarily sent a query (hj , xj) (with 1 ≤ j ≤ q) that
yielded one of the chaining values mi obtained while hashing the challenge M . Again, if we
knew the indices i and j in advance, it would be easy to forge Fk: we could just play the same
trick, stop A before relaying its j-th query and outputting the forgery: (hj ||xj ,mi).
To construct B, we again guess uniformly at random the values of i and j (by fixing 1 ≤ j ≤ q
and 1 ≤ i ≤ `). We now have to lower-bound the success probability of the forgery. There are
q · ` pairs (i, j) such that 1 ≤ i ≤ q, 1 ≤ i ≤ `. Choosing i and j uniformly at random will yield
the good guess with probability 1/(q · `).

ii) In the case of Haifa, we consider the same division into two cases as in the proof of theorem 2,
as there are essentially two possible strategies for A to win. A can:

(a) either find a second preimage M ′ with
∣∣M ′∣∣ =

∣∣M ∣∣, and “connect” somewhere in the middle
of M .

(b) or find a second preimage M ′ with
∣∣M ′∣∣ 6= ∣∣M ∣∣, which essentially amount to invert Fk on

the last block.

8

Because we do not know in advance which strategy A will use, we flip a coin to “guess” what
strategy will A make us of. Then we guess the index i of the “magic query” uniformly at random
such that 1 ≤ i ≤ q. We simulate A as before, interrupt it after it sent its i-th query, and do
not relay the query to Fk. Then:
– If we guessed that A will “connect” to M , we look at the counter value ci of the i-th query.

We then output the forgery (hi ||xi || ci,mci).
– Or if we “guessed” that A would invert the last block, we output the forgery (hi ||xi || ci, h).

In both cases, provided that the “guess” was right and that A wins, the probability that the
choice of i was right is at least 1/q, which in turn gives a lower bound on the success probability
of the forger.

ut

The results can be summarized in the following synthetic way:

Corollary 1. Assume that Fk is an optimally secure MAC, with the key k being sampled uniformly
at random. Then

i) HFk is collision resistant up to 2(n−1)/2 queries.
ii) MDFk is second-preimage resistant up to 2n−k queries.

iii) HaifaFk is second-preimage resistant up to 2n−1 queries.
iv) HF k

is preimage resistant up to 2n queries.

5 Preimage-Awareness Using an Unforgeable Primitive

While we were trying to find a suitable assumption on the compression function, the notion of
Preimage-Awareness was a natural candidate. It is weaker than being a full-blown RO, and at the
same time it allows to prove interesting and useful security results for Merkle-Damg̊ard. Unfortu-
nately, the notion of PA could not help us to find a replacement for the random oracle, as it can only
be achieved up to the birthday bound (not to mention that it cannot be a property of monolithic
compression functions).

However, the PA notion was reminiscent of some kind of unforgeability property. Consequently,
we have investigated the relation between PA and unforgeability. The next theorem demonstrates
that PA is implied by the unforgeability of the underlying primitive.

When we say that a construction is PA, it is always with respect to a certain extractor. We
therefore define our extractor ExU , which we call the “universal extractor”. We consider the set of
queries issued by A1 as a graph, where each vertex is labeled with a chaining value, each edge is
label-led with a message block, and x

m−→ y means that Fk (x ||m) = y. In this graph, there are two
special nodes, the IV node, and the z node, where z is the hash value A1 committed to. If there is
a path in this graph connecting the IV node to the z node, then the sequence of blocks labeling the
edges of this path forms a message that hashes to z. In that case, ExU replies it. If there is no such
path, ExU replies ⊥. It is straightforward to check that ExU runs in polynomial time in the size of
the transcript.

We conjecture that this is the best possible extractor in the case of Merkle-Damg̊ard. In any case,
the next theorem show that if the compression function is unforgeable, then its Merkle-Damg̊ard or
Haifa iteration is PA with respect to this reasonably good extractor.

Theorem 6. Let A be a PA-adversary that (t, q, ε,ExU)-breaks the Preimage-Awareness of HFk for
the universal extractor. Then we may construct a MAC-forger B that (t, q, µ)-breaks F , with:

µ =
ε

q · (q + 1)

9

Proof. We consider a two-part PA adversary (A1,A2) against the preimage-awareness of HFk . As-
sume that A1 committed to the hash value z, and that A wins. There are again two possible
scenarios:

1. The extractor ExU replies ⊥. In that case, A wins by outputting a message that is a preimage
of h.

2. The extractor ExU outputs a message MEx. In that case, A wins by outputting a message M
that collides with MEx. A essentially finds a collision in this case.

As we did in the proof of Theorem 5, we flip a coin to “guess” what the strategy of A will be.
The second case is in fact covered by Theorem 3, and in that case we can just ignore the extractor
and look for a collision (note that we can abort early if it outputs ⊥, as this means that our guess
was wrong).

Let us now assume that we are in the case where the extractor replied ⊥. If we were to run the
extractor after A2, and providing it with all the additional queries A2 sent to Fk, then the extractor
would answer with a message (and not ⊥), because A2 output a message that it necessarily hashed
(so ExU would find the path created by this message in the graph).

This allows us to make use of a hybrid argument: there is a particular query of A2 that makes
the extractor change its answer from ⊥ to some message. This is the magic query. Note that we
cannot expect this query to yield the answer z (suppose for example that z was obtained by hashing
a fixed message from a random IV, and that the magic query connects to this IV). So what can we
say about the answer of Fk to the magic query?

We can interpret the answer of the extractor in graph-theoretic terms: the fact that the extractor
answers ⊥ means that the two special nodes IV and z (where z is the output of A1) are in two
distinct connected components, and a contrario the fact that it answers a message means that there
exist a path between them. The magic query therefore connects a node that is reachable from the
IV node to a node from which z is reachable. Let us rephrase this idea: the magic query yield a
chaining value which is part of another query previously sent to Fk.

To construct B, we then proceed as follow:

– We guess the strategy of A uniformly at random.
– If we guessed that the extractor will reply a message, we ignore it and do as if A were a collision

adversary.
– If we guessed that the extractor will reply ⊥, we pick uniformly at random two indices i and j

such that 1 ≤ i < j ≤ q. We then run A, interrupt it when it sends the j-th query, and output
the forgery: (hj ||xj , hi).

What remains is to lower-bound the success probability of the forgery. In both case, if we guessed
the strategy ofA correctly, we choose a pair of indices amongst q·(q+1)/2. Therefore, in each separate
case the success probability is 2ε

q·(q+1) . Since the guess is only right with probability 1/2, this gives
the announced result. ut

Corollary 2. Assume that F is an optimally unforgeable function family Then HFk is Preimage-
Aware up to the birthday bound if the (unknown) key k is sampled uniformly at random.

6 Concluding Thoughts

We first demonstrated that there are proofs of second preimage resistance beyond the birthday bound
for both Merkle-Damg̊ard and Haifa when the compression function is modeled as a random oracle.
We then demonstrated that the same results can be achieved when the compression function is a
secure MAC to which one only has oracle access (in particular, the key is unknown). We proceeded
to show that Preimage Awareness is implied by the unforgeability assumption, hence, suggesting a
more viable design target for implementors.

10

In this somewhat non-technical concluding section, we discuss the possibility of a reduction of the
second preimage resistance of HF to some particular properties of F . Such a reduction would have
the advantage of removing the need for F to be accessed through an oracle interface, and provide a
proof that covers practical situations. So far, such a reduction has not been found for the ubiquitous
Merkle-Damg̊ard mode.

Impossibility of a Reduction to Randomness Assumptions. The randomness of F , or more
precisely the fact that A has to evaluate it and cannot predict or bias its output, plays an essential
role in all the proofs presented in this paper. In particular, the randomness of the output can be
either achieved when the used function contains sufficient randomness (e.g., a random oracle), or
that there is a hidden key which “masks” nonrandom behavior.

In the first case, it is clear that if an adversary succeeds in breaking the SPR of HF with an advan-
tage greater that what the proofs guarantee, then clearly F is not random. This reduces the second
preimage resistance of HF to some kind of “randomness” property of F , such as unpredictability [26]
or into random oracle assumption [3].

Unfortunately, the second class of randomness notions (such as PRF-ness [26]) are usually defined
though a distinguishing game which again supposes the black-box access to the primitive we are
precisely trying to avoid. The main obstacle is that the description of HF is public; the distinguishing
or forgery games are meaningless when the description of HF is public. The use of keys cannot
circumvent this problem, as they are made public.

Existing Constructions and the Specific Problem of Merkle-Damg̊ard and Haifa. As
mentioned in the introduction, Shoup’s UOWHF [30] and the Randomized Hashing [17] achieve
beyond the birthday bound security in the standard model. Both constructions however lose a factor
` in the reduction. The later reduces the SPR of the iteration the e-SPR notion on the compression
function. The e-SPR notion is not very natural, as it expresses the fact that the second preimage
resistance of HF actually depends on properties of the iteration of F . In the case of Merkle-Damg̊ard,
it would also be possible to define a similar ad hoc security notion, with the same level of guarantee.
However, the common inconvenience of these ad hoc notion is that they do not help at all compression
function designers in producing compression functions that will provide provable second preimage
resistance for Merkle-Damg̊ard or Haifa.

Suppose that we are given a second preimage adversary A against an iterated mode of iteration.
We wish to use A to attack some property against a single iteration of the compression function.
Intuitively, the interesting thing that A does is “connecting” to M . However, we have no control
over where in M the connection happens. Shoup’s UOWHF and the randomized hashing solve this
problem by manipulating the input of the compression function: in Shoup’s UOWHF, masks that
are part of the key are XORed to the chaining value, while in the randomized hashing, the key is a
mask that is XORed to all the message blocks. This enables them to place a single-block challenge
at a random position in a bigger message M by choosing the key carefully. Intuitively, A cannot
tell in which place in M is the actual challenge we are interested in. This means that whatever A’s
strategy be, the “connection” will hit the actual challenge with probability 1/`. This explains, by the
way, the loss of a factor ` in the security proofs of these two constructions. Such a loss appears to
be unavoidable, especially as there are attacks which offer this time complexity (providing an upper
bound for the security).

In the case of Merkle-Damg̊ard and Haifa we cannot easily manipulate the input of the com-
pression function. This makes it very difficult to randomly embed a single block challenge into a
bigger message. It therefore seems unlikely to the authors that the second preimage resistance of
these schemes could be established thanks to a reduction to a similar property of the compression
function. Additionally, the existence of an unavoidable loss of a factor ` in the existing security
proofs for Merkle-Damg̊ard opens a new gap between second preimage resistance in the standard

11

and random oracle models. Closing this gap, by either exhibiting a narrow-pipe mode of iteration
which enjoys full SPR in the standard model, or proving some kind of separation result, is an exciting
subject of future work.

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.A., Hoch, J.J., Kelsey, J., Shamir, A., Zimmer, S.: Second
Preimage Attacks on Dithered Hash Functions. In Smart, N.P., ed.: EUROCRYPT. Volume 4965 of
Lecture Notes in Computer Science, Springer (2008) 270–288

2. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Trans-
form. In Lai, X., Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture Notes in Computer Science,
Springer (2006) 299–314

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.
In: ACM Conference on Computer and Communications Security. (1993) 62–73

4. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In Santis, A.D., ed.: EUROCRYPT. Volume
950 of Lecture Notes in Computer Science, Springer (1994) 92–111

5. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. [19] 470–
484

6. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions — HAIFA. Cryptology ePrint
Archive, Report 2007/278 (August 24–25 2006) http://eprint.iacr.org/2007/278.

7. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function
Constructions from PGV. In Yung, M., ed.: CRYPTO. Volume 2442 of Lecture Notes in Computer
Science, Springer (2002) 320–335

8. Boldyreva, A., Fischlin, M.: Analysis of Random Oracle Instantiation Scenarios for OAEP and Other
Practical Schemes. [31] 412–429

9. Brassard, G., ed.: CRYPTO ’89, Santa Barbara, California, USA, August0-24, 1989, Proceedings. In
Brassard, G., ed.: CRYPTO. Volume 435 of Lecture Notes in Computer Science, Springer (1990)

10. Canetti, R.: Towards Realizing Random Oracles: Hash Functions That Hide All Partial Information.
[19] 455–469

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4) (2004)
557–594

12. Chang, D., Nandi, M.: Improved Indifferentiability Security Analysis of chopMD Hash Function. In
Nyberg, K., ed.: FSE. Volume 5086 of Lecture Notes in Computer Science, Springer (2008) 429–443

13. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How to Construct a Hash
Function. In: CRYPTO’05. (2005) 430–448

14. Damg̊ard, I.: A Design Principle for Hash Functions. [9] 416–427
15. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton University (January 1999)
16. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgard for Practical Applications. In:

EUROCRYPT ’09, Springer-Verlag (2009) http://people.csail.mit.edu/dodis/ps/md-good.ps.
17. Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hashing. In Dwork, C.,

ed.: CRYPTO. Volume 4117 of Lecture Notes in Computer Science, Springer (2006) 41–59
18. Impagliazzo, R., Naor, M.: Efficient Cryptographic Schemes Provably as Secure as Subset Sum. J.

Cryptology 9(4) (1996) 199–216
19. Kaliski, B.S.J., ed.: Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings. In Kaliski, B.S.J., ed.:
CRYPTO. Volume 1294 of Lecture Notes in Computer Science, Springer (1997)

20. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In Vaudenay, S., ed.:
EUROCRYPT’06. Volume 4004 of Lecture Notes in Computer Science, Springer (2006) 183–200

21. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less than 2n Work. In
Cramer, R., ed.: EUROCRYPT’05. Volume 3494 of Lecture Notes in Computer Science, Springer (2005)
474–490

22. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In Roy, B.K., ed.: ASIACRYPT’05.
Volume 3788 of Lecture Notes in Computer Science, Springer (2005) 474–494

23. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reductions, and
Applications to the Random Oracle Methodology. In Naor, M., ed.: TCC. Volume 2951 of Lecture Notes
in Computer Science, Springer (2004) 21–39

12

24. Merkle, R.C.: One Way Hash Functions and DES. [9] 428–446
25. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable Random Functions. In: FOCS. (1999) 120–130
26. Naor, M., Reingold, O.: From Unpredictability to Indistinguishability: A Simple Construction of Pseudo-

Random Functions from MACs (Extended Abstract). In Krawczyk, H., ed.: CRYPTO. Volume 1462 of
Lecture Notes in Computer Science, Springer (1998) 267–282

27. Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In:
STOC, ACM (1989) 33–43

28. Rivest, R.L.: Abelian Square-Free Dithering for Iterated Hash Functions. Presented at ECrypt Hash
Function Workshop, June 21, 2005, Cracow, and at the Cryptographic Hash workshop, November 1,
2005, Gaithersburg, Maryland (August 2005)

29. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Sepa-
rations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In Roy, B.K.,
Meier, W., eds.: FSE. Volume 3017 of Lecture Notes in Computer Science, Springer (2004) 371–388

30. Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In: EUROCRYPT’00.
(2000) 445–452

31. Shoup, V., ed.: Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings. In Shoup, V., ed.: CRYPTO.
Volume 3621 of Lecture Notes in Computer Science, Springer (2005)

A Proof of Theorem 2

We simulate the execution of the adversary A, and bookmark the queries sent by A to F : it is
a set S of tuples (x,m, c, y), with y = F (x,m, c). We suppose that A evaluates HF (M), so A
sends the corresponding queries to the oracles at some point. Let us denote these particular queries
(hi,mi, ci, hi+1)1≤i≤`. In particular, HF (M) = h`+1.

Suppose now that A wins. We first eliminate the special case when A finds a preimage of hr for
F (this essentially means that A has found a preimage without using the fact that M is known).

1. If
∣∣M ∣∣ 6= ∣∣M ′∣∣, then the values of the counter entering the compression function in its last

invocation are different. Therefore, A has found a second preimage on F . Each query has a
probability 2−n to give this preimage, because of the randomness of F .

2. Otherwise,
∣∣M ∣∣ =

∣∣M ′∣∣. This means that A has found collision with M , similarly to what
happens in the proof of theorem 1. We model this situation with the following event, that we
call E. Intuitively, E is realized as soon as A submits a query to F the answer of which gives
a second preimage of one of the hi. Formally, E is realized if and only if there is in S a query
(x,m, i0, hi0+1) for a given value of i0 (recall that hi0 is the i0-th chaining value obtained in the
process of hashing M), and such that (x,m) 6= (hi0 ,mi0).

Claim. If A wins and
∣∣M ∣∣ =

∣∣M ′∣∣, then E is realized.

Justification. Thanks to the result of Merkle-Damg̊ard, we know that there is a collision on the
compression function where one of the colliding hash value is one of the hi. However, this is not
sufficient to say that E is realized, because we would need to know that the values of the counter
are actually the same. We now prove that it is indeed the case.

Lemma 1 (Collision-Resistance Preservation on Haifa). Let HF be the Haifa iteration of
an arbitrary compression function F .

If HF (M) = HF (M ′) with M 6= M ′ and
∣∣M ∣∣ =

∣∣M ′∣∣, then there is a collision on F , with the
same value of the counter (this means that E is realized).

Proof. let us note M = x1, . . . , xr, M ′ = x′1, . . . , x
′
r, h0 = h′0 = IV , hi = F (hi−1, xi, i) and h′i =

F (h′i−1, x
′
i, i).

Since hr = h′r, either there is a collision on F (with counter value r), or (xr, hr−1) = (x′r, h
′
r−1).

In the latter case, either there is a collision for F (with counter value r − 1) or (xr−1, hr−2) =

13

(x′r−1, h
′
r−2). This argument repeats. Since

∣∣M ∣∣ =
∣∣M ′∣∣, then either there is a collision for F at some

point (with the same counter value), or xi = x′i, for all i, 1 ≤ i ≤ r. In the latter case, M = M ′,
which is impossible. This completes the proof of the lemma. ut

To complete the proof of theorem 2, we now show an upper-bound on the probability that E is
realized. When A submits its i-th query to the simulator (and note that the number i is part of the
query), a random value is chosen by the simulator and returned to A. The event E is realized if and
only if this value is hi+1, and this happens with probability 2−n. This query may also allow A to
invert h` with probability 2−n. Each query allows A to win with probability 2−(n−1), and there are
q queries, which completes the proof. ut

14

