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Abstract

We describe CoSP, a general framework for conducting computational soundness proofs of
symbolic models and for embedding these proofs into formal calculi. CoSP considers arbitrary
equational theories and computational implementations, and it abstracts away many details that
are not crucial for proving computational soundness, such as message scheduling, corruption
models, and even the internal structure of a protocol. CoSP enables soundness results, in the
sense of preservation of trace properties, to be proven in a conceptually modular and generic way:
proving x cryptographic primitives sound for y calculi only requires x + y proofs (instead of x · y

proofs without this framework), and the process of embedding calculi is conceptually decoupled
from computational soundness proofs of cryptographic primitives. We exemplify the usefulness of
CoSP by proving the first computational soundness result for the full-fledged applied π-calculus
under active attacks. Concretely, we embed the applied π-calculus into CoSP and give a sound
implementation of public-key encryption and digital signatures.
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1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the distributed-system
aspects of multiple interleaved protocol runs, awkward for humans to generate. Hence, work
towards the automation of such proofs started soon after the first protocols were developed.
From the start, the actual cryptographic operations in such proofs were idealized into so-called
Dolev-Yao models, following [DY83, EG83, Mer83], see, e.g., [KMM94, Sch96, AG97, Low96,
Pau98, BMV04]. This idealization simplifies proofs by freeing them from cryptographic details
such as computational restrictions, probabilistic behavior, and error probabilities. While it was
initially not clear whether Dolev-Yao models are a sound abstraction from real cryptography
with its computational security definitions, a large number of results in the last ten years helped
to establish a general understanding of which cryptographic primitives can or cannot be proven
computationally sound in which adversarial settings under which assumptions (see Section 1.2).

A careful inspection of this series of results, however, reveals that the soundness theorems
stated in these works, and even more so the frameworks that underly these theorems, differ
from each other considerably in many respects. These differences range from various ways of
syntactically expressing security protocols and corresponding restrictions on the set of permitted
protocol classes, to different semantics for modelling protocol communication and communication
with the adversary, to different (often incomparable) notions of computational soundness, to
different assumptions on the adversary’s capabilities, etc.1 Moreover, many of these frameworks
were freshly invented in the respective papers; they hence lack support from suitable verification
tools and are more likely to suffer from idiosyncracies than more established frameworks for
reasoning about security protocols.

The lack of a common framework that underlies results about computational soundness com-
plicates the thorough comparison of their strengths and limitations. Even worse, it often remains
unclear whether assumptions in computational soundness results (additional randomization in the
cryptographic implementation, the absence of key cycles, etc.) stem from idiosyncracies of the
underlying framework, or if they constitute conceptual limitations of computational soundness
results for the prevalent cryptographic definitions. Moreover, framework-specific assumptions
complicate the extension of existing results to other frameworks, or to more comprehensive set-
tings, e.g., a more expressive set of cryptographic primitives or a stronger adversary. In fact, such
results are often proven from scratch again (for an extended new framework). To put it bluntly:
formally asserting computational soundness of x different cryptographic primitives within y dif-
ferent frameworks currently requires x · y separate proofs.

1.1 Our contribution

A general framework for computational soundness proofs. We describe CoSP, a general
framework for conducting Computational Soundness Proofs in symbolic models that enables
formulating soundness results in a unified and comparable manner and for embedding these proofs
into formal calculi. CoSP comprises a general definition of symbolic protocols, their symbolic and

1To get a sense of the diversity of the statements: [BPW03a, KM07, CLC08] all establish (among others
results) the computational soundness of symbolic encryption (either symmetric or asymmetric): First, [BPW03a]
expresses protocols as probabilistic input-output automata, exploits the communication model offered by the
Reactive Simulatability (RSIM) framework [BPW07], and shows computational soundness in the sense of reactive
simulatability for encryption schemes. Second, [KM07] expresses protocols and their communication using a
newly introduced concept called abstract algebras, and shows computational soundness of encryption schemes
in the sense of preservation of static equivalence in the presence of an adaptive, but passive adversary. Third,
[CLC08] expresses protocols and their communication within a small fragment of the applied π-calculus, and shows
computational soundness for encryption schemes in the sense of preservation of observational equivalence in the
presence of an active adversary.
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computational execution, as well as a definition of computational soundness for trace properties.2

CoSP does not put constraints on the symbolic model; in particular, it permits arbitrary sets
of constructors, deduction rules, equational theories and computational implementations, and it
is specifically designed for establishing soundness results in that it abstracts away from many
details that are not crucial for proving computational soundness, such as message scheduling,
corruption models, and even the internal structure of a protocol. Instead, we treat the whole
protocol as a single entity that interacts with an attacker. This allows for a unified treatment of
different symbolic models by embedding them into CoSP.

CoSP enables proving computational soundness results in a conceptually modular and generic
way: every computational soundness proof phrased in CoSP automatically holds for all embedded
calculi, and the process of embedding formal calculi is conceptually decoupled from computational
soundness proofs. This is crucial since these two tasks are often tackled using different techniques
and pursued by people with different backgrounds in computer science. Asserting computational
soundness of x cryptographic primitives within y calculi hence requires only x+y proofs in CoSP.

We stress that we do not develop soundness results for novel cryptographic primitives or less
restricted protocol classes in this paper; nor do we unify all existing soundness results. However,
CoSP provides a basis for doing so. To lay the foundation, we show computational soundness for
public-key encryption and digital signatures in CoSP in this paper. This shows the computational
soundness of these primitives in all calculi embedded in CoSP.

Computational soundness of the applied π-calculus. We show how to use CoSP to establish
the first computational soundness result for a full-fledged applied π-calculus with encryption
and signatures under active attacks. We consider the process calculus proposed in [BAF08]
additionally augmented with events; the calculus in [BAF08] itself is a combination of the original
applied π-calculus [AF01] with one of its dialects [Bla04]. This combination offers the richness of
the original applied π-calculus while additionally being accessible to state-of-the-art verification
tools such as ProVerif [Bla01]; in particular, our result can be extended to arbitrary equational
theories. Our result hence yields computational soundness guarantees for ProVerif.

We first give a mapping of processes in the applied π-calculus to CoSP protocols. This embed-
ding is particularly instructive because the semantics of the applied π-calculus differ significantly
from CoSP’s semantics. We then show that a process in the applied π-calculus is computationally
sound whenever the corresponding CoSP protocol is computationally sound.

Together with the computational soundness of encryptions and digital signatures in CoSP, this
implies the computational soundness of the applied π-calculus with encryptions and signatures.
In particular, the result shows that CoSP is capable of embedding a formal calculus that is well
understood and accepted by the scientific community, that is expressive enough for expressing and
reasoning about state-of-the-art protocols, and that is accessible to state-of-the-art verification
tools.

As an example (essentially a litmus test for our framework), we use ProVerif to analyze the
entity authentication property of the Needham-Schroeder-Lowe protocol. Using the aforemen-
tioned computational soundness of public-key encryption in CoSP, this yields an implementation
of this protocol within the applied π-calculus such that the implementation is provably secure
under active attacks.

Restrictions. Currently, the CoSP-framework is restricted to integrity properties. That is,
a security property is modeled as a prefix-closed set of traces, and we guarantee that if the
symbolic protocol satisfies a trace property, so does its computational implementation. We do
not, however, model liveness properties which guarantee that some event will eventually occur.
Furthermore, we also do not cover preservation of observational equivalence as needed for, e.g.,

2We currently only consider the preservation of trace properties in CoSP. Extending CoSP to the preservation
of more sophisticated properties such as observational equivalence [CLC08] is left for future work.
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anonymity properties. Finally, although we gain modularity by separating the calculus-specific
part of the computational soundness proof from the part specific to the symbolic theory, the proof
of the soundness of a symbolic theory itself is not modular: We cannot prove the soundness of
encryption and of signatures individually and then conclude that encryptions and signatures are
jointly sound.

1.2 Related work

Cryptographic underpinnings of a Dolev-Yao model were first addressed by Abadi and Rogaway
in [AR02] for passive adversaries and symmetric encryption. The protocol language and security
properties handled were extended in [AJ01, Lau01, HLM03, ABW06], but still apply only to
passive adversaries. This excludes many of the typical ways of attacking protocols, e.g., man-in-
the-middle attacks and attacks by reusing a message part in a concurrent protocol run.

A cryptographic justification of a Dolev-Yao model for arbitrary active attacks and within
arbitrary surrounding interactive protocols (within the Reactive Simulatability (RSIM) Frame-
work [BPW07]) was first given by Backes, Pfitzmann, and Waidner in [BPW03a] with extensions
in [BPW03b, BP04]. Tool support for this Dolev-Yao model was subsequently added in [SBB+06].
Laud [Lau04] has subsequently presented a cryptographic underpinning for a Dolev-Yao model
of symmetric encryption under active attacks. His work enjoys a direct connection with a formal
proof tool, but it is specific to certain confidentiality properties and restricts the surrounding pro-
tocols to straight-line programs. Micciancio and Warinschi [MW04] and Janvier, Lakhnech, and
Mazaré [JLM05] have presented cryptographic underpinnings for a Dolev-Yao model of public-
key encryption. Their results are narrower than those in [BPW03a] since they are specific for
public-key encryption and restricted classes of protocols, but they consider simpler real implemen-
tations. Baudet, Cortier, and Kremer [BCK05] have established the soundness of specific classes
of equational theories in a Dolev-Yao model under passive attacks. Canetti and Herzog [CH06]
have shown that a Dolev-Yao-style symbolic analysis can be conducted using the framework of
universal composability [Can01] for a restricted class of protocols.

Subsequent work concentrated on linking symbolic and cryptographic secrecy properties.
Cortier and Warinschi [CW05] have shown that symbolically secret nonces are also computa-
tionally secret, i.e., indistinguishable from a fresh random value given the view of the adversary.
Backes and Pfitzmann [BP05] and Canetti and Herzog [CH06] have established new symbolic cri-
teria for showing that a key is cryptographically secret. Laud [Lau05] has designed a type system
for proving payload secrecy of security protocols based on the BPW model [BPW03a]. His work
is extended to key secrecy in [BL06]. Kremer and Mazaré [KM07] have established computational
soundness results for static equivalence. Adão and Fournet [AF06] have shown computational
soundness in the sense of observational equivalence of cryptographic implementations of processes.
Their work does not consider explicit symbolic abstractions of cryptographic primitives, e.g., en-
cryption keys cannot be sent, and hence does not allow for describing most existing security
protocols without ruling out attacks. Cortier and Comon-Lundh [CLC08] have established com-
putational soundness results as the preservation of observational equivalence within a fragment
of the applied π-calculus. This fragment is restricted to protocols that do not branch, and it
contains some non-standard extensions that are not supported by existing tools like ProVerif.
Comon-Lundh [CL08a] has presented general definitions for trace properties and observational
equivalence that are parametric in the underlying equational theory and the computational im-
plementation. His definition is more restrictive than ours in that it requires the existence of a
so-called trace mapping. Moreover, in contrast to our result, it does not address how to embed
existing calculi like the applied π-calculus into his model.

Further work aimed at establishing computational soundness results for additional crypto-
graphic primitives. Cortier, Kremer, Küsters, and Warinschi [CKKW06] and Backes, Pfitzmann,
and Waidner [BPW06] have shown computational soundness of hash functions in the random
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oracle model. Janvier, Lakhnech, and Mazaré [JLM07] have shown computational soundness of
hash functions under a non-standard cryptographic assumption in the standard model, i.e., with-
out random oracles. Garcia and van Rossum [GvR08] have shown computational soundness of
hash functions under passive adversaries when implemented using perfect one-way hash functions
[CMR98]. Backes and Unruh [BU09] have shown computational soundness of non-interactive zero-
knowledge proofs. Bresson, Lakhnech, Mazaré, and Warinschi [BLMW07] have provided a com-
putationally sound theory for reasoning about protocols based on the decisional Diffie-Hellman
assumption (DDH) for passive adversaries. Limitations of computational soundness in the sense
of Reactive Simulatability were shown by Backes and Pfitzmann for hash functions [BPW06] and
the XOR operation [BPW05].

Recently, efforts have also been started to formulate syntactic calculi with a probabilistic,
polynomial-time semantics to directly reason about cryptographic primitives/protocol, including
approaches based on process algebra [MMS98, LMMS98], security logics [IK03, DDM+05] and
cryptographic games [Bla06, BP06, Cd06, Now07, BGJZ07, BBU08]. In general, this line of
work is orthogonal to the work of justifying Dolev-Yao models, which offer a higher level of
abstractions and thus much simpler proofs where applicable, so that proofs of larger systems can
be automated.

1.3 Outline of the paper

Section 2 introduces our framework for computational soundness proofs. Section 2.5 introduces
the notion of a simulator, and it identifies which properties a simulator needs to have to entail
a computational soundness result. Section 3 contains a case study: how to establish the com-
putational soundness of public-key encryption within the general framework by constructing a
suitable simulator. Section 4 establishes the computational soundness of the applied π-calculus.
Section 5 concludes and outlines future work.

2 A general framework for computational soundness proofs

2.1 Preliminaries

We first introduce basic notations that are used in this paper, as well as central concepts such as
constructors, destructors, and deduction relations.

Notation. Given a term t and a substitution ϕ, we denote by tϕ the result of applying ϕ to
t. Given a function f , f(x := y) is the function f ′ with f ′(x) = y and f ′(z) = f(z) for z 6= x.
We abbreviate x1, . . . , xn with x if n is clear from the context. Given a set M and a function
f , we define f−1(M) := {x : f(x) ∈ M}. We call a set M efficiently decidable if there is a
deterministic polynomial-time algorithm deciding membership in M . We call M prefix-closed if
x ∈M implies x′ ∈M for all prefixes x′ of x. A non-negative function f is negligible if for every
c and sufficiently large n, f(n) < n−c. f is overwhelming if 1− f is negligible.

Definition 1 (Constructors, destructors, nonces, and messages types) A constructor
C is a symbol with a (possibly zero) arity. A nonce N is a symbol with zero arity. We write
C/n ∈ C to denote that C contains a constructor C with arity n. A message type T over C and
N is a set of terms over constructors C and nonces N. A destructor D of arity n, written D/n,
over a message type T is a partial map Tn → T. If D is undefined on t, we write D(t) = ⊥.

In the following, we only consider sets of constructors C such that the same constructors
cannot have different arities, i.e., C/n, C/m ∈ C implies n = m. (This restriction simplifies nota-
tion and is without loss of generality, as one can simulate multi-arity constructors by adding the
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arity to the name of the constructor.) We moreover assume that constructors have symbols that
are bitstrings, and similarly for destructors and node identifiers in CoSP protocols as introduced
below.

To unify notation, for a constructor, destructor, or nonce F/n, we define the partial function
evalF : Tn → T as follows: If F is a constructor or nonce, evalF (t1, . . . , tn) := F (t) if F (t) ∈ T
and evalF (t) := ⊥ otherwise. If F is a destructor, evalF (t) := F (t) if F (t) 6= ⊥ and evalF (t) := ⊥
otherwise.

We now define which terms can be deduced from other terms; this is formalized using a
deduction relation ⊢ over a set of terms T. The intuition of S ⊢ m for S ⊆ T and m ∈ T is that
the term m can be deduced from the terms in S.

Definition 2 (Deduction relation) A deduction relation ⊢ over a message type T is a relation
between 2T and T.

In most cases, the adversary can apply all constructors and destructors. This can be modelled
by defining S ⊢ t⇒ S ⊢ C(t) for every constructor C and S ⊢ t∧D(t) 6= ⊥ ⇒ S ⊢ D(t) for every
destructor D, respectively. However, our model does not assume this in general, i.e., it supports
private constructors as used by, e.g., ProVerif.

The constructors, destructors, and nonces, together with the message type and the deduction
relation together form a symbolic model. Such a symbolic model describes a particular Dolev-
Yao-style theory.

Definition 3 (Symbolic model) A symbolic model M = (C,N,T,D,⊢) consists of a set of
constructors C, a set of nonces N, a message type T over C and N with N ⊆ T, a set of
destructors D over T, and a deduction relation ⊢ over T.

Predicates and how to model arbitrary (non-free) equational theories. A predicate P of
arity n over a set of constructors C is a subset of Tn. Predicates can be used to describe arbitrary
tests that a protocol may perform. In particular, they can describe the equality test equals(x, y)
which is the diagonal on T2 for free equational theories and the equivalence relation between terms
in non-free equational theories (i.e., equals(x, y) iff x = y in the equational theory). For instance,
a non-free theory in which E(D(m)) = m holds can be modeled by constructors E and D, and
by letting equals(E(D(m)), m). (In this case, of course, all destructors should be compatible
with equals .) Furthermore, since each predicate P (including equals) can be realized using a
destructor DP by defining DP (t1, . . . , tn) := t1 if P (t1, . . . , tn) = true and DP (t1, . . . , tn) := ⊥
otherwise, predicates do not require an explicit treatment. For an example on how to model
non-free equational theories, see Section 4.

2.2 Symbolic protocols

We define a CoSP protocol as a tree with a distinguished root and with labels on both nodes
and edges. Intuitively, the nodes correspond to different protocol actions: Computation nodes
produce terms (using a constructor or destructor); input and output nodes correspond to receive
and send operations; nondeterministic nodes encode nondeterministic choices in the protocol3;
control nodes allow an outside entity (i.e., an adversary) to influence the control flow of the
protocol.

The edge labels intuitively allow for distinguishing branches in the protocol execution, e.g.,
destructor nodes have two outgoing edges labelled with yes and no, corresponding to the two

3Our main application of CoSP in this paper—specifically, the embedding of the applied π-calculus—does not
make use of nondeterministic nodes; however, we feel that nondeterministic nodes can be very useful for other
(future) applications.
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cases that the destructor is defined on the input term or not; hence we can, e.g., speak about the
yes-successor of a destructor node.

Definition 4 (CoSP protocol) A CoSP protocol Πs is a tree with a distinguished root and
labels on both edges and nodes. Each node has a unique identifier N and one of the following
types:

• Computation nodes are annotated with a constructor, nonce, or destructor F/n together with
the identifiers of n (not necessarily distinct) nodes. Computation nodes have exactly two
successors; the corresponding edges are labeled with yes and no, respectively.

• Output nodes are annotated with the identifier of one node. An output node has exactly one
successor.

• Input nodes have no further annotation. An input node has exactly one successor.

• Control nodes are annotated with a bitstring l. A control node has at least one and up to
countably many successors annotated with distinct bitstrings l′ ∈ {0, 1}∗. (We call l the out-
metadata and l′ the in-metadata.)

• Nondeterministic nodes have no further annotation. Nondetermininistic nodes have at least
one and at most finitely many successors; the corresponding edges are labeled with bitstrings.

We assume that the annotations are part of the node identifier N . If a node N contains an
identifier N ′ in its annotation, then N ′ has to be on the path from the root to N (including
the root, excluding N), and N ′ must be a computation node, or input node. In case N ′ is a
computation node, the path from N ′ to N has to additionally go through the outgoing edge of N ′

with label yes.

Assigning each nondeterministic node a probability distribution over its successors yields the
notion of a probabilistic CoSP protocol.

Definition 5 (Probabilistic CoSP protocol) A probabilistic CoSP protocol Πp is a CoSP
protocol, where each nondeterministic node is additionally annotated with a probability distribu-
tion on the labels of the outgoing edges.

In the following, we assume that such a probability distribution is encoded as a list of pairs,
consisting of a label and a rational probability. Any probabilistic CoSP protocol Πp can be
transformed canonically into a CoSP protocol Πs by erasing the probability distributions. We
will call Πs the symbolic protocol that corresponds to Πp.

Probabilistic CoSP protocols will be crucial in the definition of computational soundness.
Moreover, they often constitute an intermediate technical step within a larger proof. For instance,
reasoning about implementations of CoSP protocols is difficult since they do not have a unique
such implementation if nondeterministic nodes are present, in contrast to probabilistic CoSP
protocols. With the notion of probabilistic CoSP protocols at hand, one can instead consider the
set of all implementations of all probabilistic CoSP protocols whose corresponding CoSP protocol
is Πs.

Definition 6 (Efficient protocol) We call a probabilistic CoSP protocol efficient if:

• There is a polynomial p such that for any node N , the length of the identifier of N is bounded
by p(m) where m is the length (including the total length of the edge-labels) of the path from
the root to N .

• There is a deterministic polynomial-time algorithm that, given the identifiers of all nodes and
the edge labels on the path to a node N , computes the label of N .

We finally provide the notions of a symbolic execution of a CoSP protocol.
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The symbolic execution of a CoSP protocol for a given symbolic model consists of a sequence
of triples (S, ν, f) where S represents the knowledge of the adversary, ν represents the current
node identifier in the protocol, and f represents a partial function mapping already processed
node identifiers to messages.

Definition 7 (Symbolic execution) Let a symbolic model (C,N,T,D,⊢) and a CoSP proto-
col Πs be given. A full trace is a (finite) list of tuples (Si, νi, fi) such that the following conditions
hold:

• Correct start: S1 = ∅, ν1 is the root of Πs, f1 is a totally undefined partial function mapping
node identifiers to terms.

• Valid transition: For every two consecutive tuples (S, ν, f) and (S′, ν′, f ′) in the list, let ν̃ be
the node identifiers in the annotation of ν and define t̃ through t̃j := f(ν̃j). We have:

– If ν is a computation node with constructor, destructor or nonce F , then S′ = S. If
m := evalF (t̃) 6= ⊥, ν′ is the yes-successor of ν in Πs, and f ′ = f(ν := m). If m = ⊥, then
ν′ is the no-successor of ν and f ′ = f .

– If ν is an input node, then S′ = S and ν′ is the successor of ν in Πs and there exists an m
with S ⊢ m and f ′ = f(ν := m).

– If ν is an output node, then S′ = S ∪ {t̃1}, ν′ is the successor of ν in Πs and f ′ = f .

– If ν is a control or a nondeterministic node, then ν′ is a successor of ν and f ′ = f and
S′ = S.

A list of node identifiers (νi) is a node trace if there is a full trace with these node identifiers.

Example. For the sake of exposition, we illustrate how to phrase a cryptographic protocol as a
CoSP protocol, i.e., according to Definition 4. Consider the first step of the Needham-Schroeder
public-key protocol:

A→ B : EekB
(NA, ekA).

In this step, A sends the encryption EekB
(NA, ekA) of a fresh nonce NA and A’s encryption

key ekA under B’s encryption key ekB to B. We assume that ekA has been generated by A
himself, and ekB has been provided by the adversary. Figure 1 shows how to model this protocol
step as a CoSP protocol. Solid lines represent the edges in the protocol tree, and dashed lines
refer to the nodes that are given to computation and outputs nodes as arguments. In a node
with two outgoing edges, the left edge is the yes-edge, and the right one the no-edge. E.g.,
the E-computation node is executed if the NR-computation node succeeds and produces a term
E(a, b, c) where a, b, c are the terms constructed by the input, the pair -computation, and the
NR-computation node. We assume that, if a constructor application fails, the protocol is stuck,
this is modeled by a subtree ∞ which consists of an infinite sequence of nondeterministic nodes.
The overall effect of this tree is to compute E(ekB, pair (NA, ekA), NR) with ekA := ek(NK) when
receiving ekB from the adversary.

A full-fledged modeling of the Needham-Schroeder protocol would also contain a description
of the party B. In this case, the adversary might use control nodes to indicate which party to
schedule at which point, each possible schedule would correspond to a path in the tree. One
should keep in mind, however, that such trees are not intended to be produced by hand, instead,
they are an intermediate representation needed to encode other calculi.

2.3 Computational model

We now define the computation implementation of a symbolic model as a family of functions that
provide computation interpretations to constructors, destructors, and nonces.

8



NK

∞

ek
∞

in-
put

NA

∞

pair

∞

NR

∞

E
∞

out-
put

∞

∞

:=

non-
det

non-
det

non-
det

...

Figure 1: Symbolic protocol representing the first step of the Needham-Schroeder protocol.

Definition 8 (Computational implementation) Let a symbolic model M = (C,N,T,D,⊢)
be given. A computational implementation of M is a family of functions A = (Ax)x∈C∪D∪N

such that AF for F/n ∈ C ∪D is a partial deterministic function N× ({0, 1}∗)n → {0, 1}∗, and
AN for N ∈ N is a total probabilistic function with domain N and range {0, 1}∗ (i.e., it specifies
a probability distribution on bitstrings that depends on its argument). The first argument of AF

and AN represents the security parameter.
All functions AF have to be computable in deterministic polynomial-time, and AN has to be

computable in probabilistic polynomial-time.4

Requiring AC and AD to be deterministic is without loss of generality, since one can always
add an explicit randomness argument that takes a nonce as input.

The computational execution of a probabilistic CoSP protocol defines an overall probability
distribution on all possible node traces that the protocol proceeds through. In contrast to sym-
bolic executions, we do not aim at defining the notion of a full trace: the adversary’s symbolic

4More precisely, there has to exist a single uniform probabilistic polynomial-time algorithm A that, given the
name of C ∈ C, D ∈ D, or N ∈ N, together with an integer k and the inputs m, computes the output of AC , AD ,
and AN or determines that the output is undefined. This algorithm must run in polynomial-time in k + |m| and
may not use random coins when computing AC and AD.
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knowledge S has no formal counterpart in the computational setting, and the function f occuring
in the computational executions will not be needed in our later results.

Note on the computational interpretation of symbols. Here and in the following, we will
assume a canonical bitstring representation of symbols. We do not require that the bitstring
representation of a term, say, E(m) hides (the bitstring representation of) m. (A suitable secrecy
property will be ensured by an additional Dolev-Yao-like requirement on the computational ma-
chine that receives and sends bitstring representations of terms.) The purpose of the bitstring
presentation is only to be syntactically able to consider a CoSP protocol in a computational
setting.

Definition 9 (Computational execution) Let a symbolic model M = (C,N,T,D,⊢), a com-
putational implementation A of M, and a probabilistic CoSP protocol Πp be given. Let a proba-
bilistic polynomial-time interactive machine E (the adversary) be given (polynomial-time in the
sense that the number of steps in all activations are bounded in the length of the first input of E),
and let p be a polynomial. We define a probability distribution Nodesp

M,A,Πp,E
(k), the computa-

tional node trace, on (finite) lists of node identifiers (νi) according to the following probabilistic
algorithm (both the algorithm and E are run on input k):

• Initial state: ν1 := ν is the root of Πp. Let f be an initially empty partial function from node
identifiers to bitstrings, and let n be an initially empty partial function from N to bitstrings.

• For i = 1, 2, . . . do the following:

– Let ν̃ be the node identifiers in the label of ν. m̃j := f(ν̃j).

– Proceed depending on the type of node ν:

∗ If ν is a computation node with nonce N ∈ N: Let m′ := n(N) if n(N) 6= ⊥ and sample
m′ according to AN (k) otherwise. Let ν′ be the yes-successor of ν, f ′ := f(ν := m′), and
n′ := n(N := m′). Let ν := ν′, f := f ′ and n := n′.

∗ If ν is a computation node with constructor or destructor F , then m′ := AF (k, m̃). If
m′ 6= ⊥, then ν′ is the yes-successor of ν, if m′ = ⊥, then ν′ is the no-successor of ν. Let
f ′ := f(ν := m′). Let ν := ν′ and f := f ′.

∗ If ν is an input node, ask for a bitstring m from E. Abort the loop if E halts. Let ν′ be
the successor of ν. Let f := f(ν := m) and ν := ν′.

∗ If ν is an output node, send m̃1 to E. Abort the loop if E halts. Let ν′ be the successor
of ν. Let ν := ν′.

∗ If ν is a control node, labeled with out-metadata l, send l to E. Abort the loop if E halts.
Upon receiving an answer l′, let ν′ be the successor of ν along the edge labeled l′ (or the
lexicographically smallest edge if there is no edge with label l′). Let ν := ν′.

∗ If ν is a nondeterministic node, let D be the probability distribution on the label of ν.
Pick ν′ according to the distribution D, and let ν := ν′.

– Let νi := ν.

– Let len be the number of nodes from the root to ν plus the total length of all bitstrings in
the range of f . If len > p(k), stop.

2.4 Computational Soundness

We first define trace properties and their fulfillment by a (probabilistic) CoSP protocol. After
that, we provide the definition of computational soundness for trace properties.

Definition 10 (Trace property) A trace property P is an efficiently decidable and prefix-
closed set of (finite) lists of node identifiers.
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Let M = (C,N,T,D,⊢) be a symbolic model and Πs a CoSP protocol. Then Πs symbolically
satisfies a trace property P in M iff every node trace of Πs is contained in P. Let A be a com-
putational implementation of M and let Πp be a probabilistic CoSP protocol. Then (Πp, A) com-
putationally satisfies a trace property P in M iff for all probabilistic polynomial-time interactive
machines E and all polynomials p, the probability is overwhelming that Nodesp

M,A,Πp,E
(k) ∈ P.

Definition 11 (Computational soundness) A computational implementation A of a sym-
bolic model M = (C,N,T,D,⊢) is computationally sound for a class P of CoSP protocols
iff for every trace property P and for every efficient probabilistic CoSP protocol Πp, we have that
(Πp, A) computationally satisfies P whenever the corresponding CoSP protocol Πs of Πp symboli-
cally satisfies P and Πs ∈ P .

A computational soundness result with respect to a non-trivial message type T (a message
type that does not contain all terms) may be useful when embedding a calculus in our model that
supports typed messages (e.g., most modern programming languages). Many calculi, however, do
not support typed messages. In this case, it may be impossible to directly represent the message
type in the calculus. An example is the applied π-calculus presented in Section 4. To handle such
calculi, the following lemma can be used. Intuitively, it states that if the protocol is guaranteed
not to try to construct non-well-typed terms (terms not in T), one can remove the restriction to
well-typed terms from the model, i.e., one can set T to be the set of all terms.

Lemma 1 (Removing the message type) Let M = (C,N,T,D,⊢) be a symbolic model, P
a class of CoSP protocols. We call a CoSP protocol Πs T-conform if in any symbolic execution
of Πs, no no-successor of a computation node annotated with a constructor is reached. Let T′ be
the set of all terms over C ∪N (the trivial message type), let ⊢′ be a relation on 2T × T with
⊢′⊇⊢, let M′ = (C,N,T′,D,⊢′), and let P ′ := {Πs ∈ P : Πs is T-conform}. Assume that A is
a computationally sound implementation of M for protocols in P . Then A is a computationally
sound implementation of M′ for protocols in P ′.

Proof. Fix a trace property P and an efficient probabilistic CoSP protocol Πp with Πs ∈ P ′ ⊆ P .
Assume that (Πp, A) does not computationally satisfy P . Since A is a computationally sound
implementation of M, we have that Πs does not symbolically satisfy P with respect to the model
M. Hence there is a node trace ν /∈ P of Πs with respect to M. By assumption, in the symbolic
execution leading to ν, no no-successor of a computation node annotated with a constructor is
ever reached. Since N ⊆ T, no no-successor of a computation node annotated with a nonce is
ever reached.

Thus, ν is also a symbolic trace with respect to the symbolic model (C,N,T′,D,⊢). Since ⊢′

is finer than ⊢, ν is also a symbolic trace with respect to M′ = (C,N,T′,D,⊢′). Thus Πs does
not symbolically satisfy P with respect to the symbolic model M′. �

2.5 A Sufficient Criterion for Soundness

To tame the complexity of computational soundness proofs, we introduce a technical tool to show
soundness. We introduce the notion of a simulator and identify several properties such that the
existence of a simulator with all of these properties already entails computational soundness in the
sense of Definition 11. This notion might remind of the simulation-based proofs of computational
soundness [BPW03a, BP04, BP05, CH06], but it does not depend on framework-specific details
such as scheduling, message delivery, etc. We stress that, in CoSP, asserting computational
soundness proofs need not be done using this simulator-based characterization to enjoy CoSP’s
benefits, but every other prevalently used technique for showing computational soundness can be
used as well.
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In the following, we fix a symbolic model M = (C,N,T,D,⊢) and a computational imple-
mentation A of M. In the following, we moreover assume that whenever a machine sends a term
or a node, the term/node is suitably encoded as bitstring.

We proceed by introducing the notion of a simulator, essentially by imposing syntactic con-
straints on the set of all interactive machines.

Definition 12 (Simulator) A simulator is an interactive machine Sim that satisfies the follow-
ing syntactic requirements:

• When activated without input, it replies with a term m ∈ T. (This corresponds to the situation
that the protocol expects some message from the adversary.)

• When activated with some t ∈ T, it replies with an empty output. (This corresponds to the
situation that the protocol sends a message to the adversary.)

• When activated with (info, ν, t) where ν is a node identifier and t ∈ T, it replies with
(proceed).

• At any point (in particular instead of sending a reply), it may terminate.

A simulator Sim is intuitively expected to translate a computational attack into a correspond-
ing symbolic attack. Sim operates in a symbolic setting, but will usually simulate internally a
computational adversary. Thus Sim essentially translates bitstrings to terms, and vice versa.

We proceed by defining the hybrid execution of a probabilistic CoSP protocol. We call this
execution hybrid because it is a mixture of the symbolic and the computational execution. Con-
cretely, we define a hybrid protocol machine ΠC that is associated to Πp and interfaces Sim with
a probabilistic CoSP protocol Πp.

Definition 13 (Hybrid execution) Let Πp be a probabilistic CoSP protocol, and let Sim be
a simulator. We define a probability distribution H -Trace

M,Πp,Sim (k) on (finite) lists of tuples

(Si, νi, fi) called the full hybrid trace according to the following probabilistic algorithm ΠC , run
on input k, that interacts with Sim. (ΠC is called the hybrid protocol machine associated with Πp

and internally runs a symbolic simulation of Πp as follows:)

• Start: S1 := S := ∅, ν1 := ν is the root of Πp, and f1 := f is a totally undefined partial
function mapping node identifiers to T. Run Πp on ν.

• Transition: For i = 2, . . . do the following:

– Let ν̃ be the node identifiers in the label of ν. Define t̃ through t̃j := f(ν̃j).

– Proceed depending on the type of ν:

∗ If ν is a computation node with constructor, destructor, or nonce F , then let m := F (̃t).
If m 6= ⊥, let ν′ be the yes-successor of ν and let f ′ := f(ν := m). If m = ⊥, let ν′ be
the no-successor of ν and let f ′ := f .

∗ If ν is an output node, send t̃1 to Sim (but without handing over control to Sim). Let ν′

be the unique successor of ν. Set ν := ν′.

∗ If ν is an input node, hand control to Sim, and wait to receive m ∈ T from Sim. Let
f ′ := f(ν := m), and let ν′ be the unique successor of ν. Set f := f ′ and ν := ν′.

∗ If ν is a control node labeled with out-metadata l, send l to Sim, hand control to Sim, and
wait to receive a bitstring l′ from Sim. Let ν′ be the successor of ν along the edge labeled
l′ (or the lexicographically smallest edge if there is no edge with label l′). Let ν := ν′.

∗ If ν is a nondeterministic node, sample ν′ according to the probability distribution specified
in ν. Let ν := ν′.

– Send (info, ν, t) to Sim. When receiving an answer (proceed) from Sim, continue.

– If Sim has terminated, stop. Otherwise let (Si, νi, fi) := (S, ν, f).

12



The probability distribution of the (finite) list ν1, . . . produced by this algorithm we denote
H -NodesM,Πp,Sim(k). We call this distribution the hybrid node trace.

We write Sim + ΠC to denote the execution of Sim and ΠC .
We proceed by defining properties of a simulator, such as adhering to a Dolev-Yao style

deduction relation. Later we will show that simulators that satisfy these properties entail compu-
tational soundness results. Treating these properties separately instead of immediately conjoining
them into a general soundness criterion allows us to more careful identify where these individual
properties are exploited in computational soundness proofs.

The first property – Dolev-Yao-style – captures that Sim adheres to the deduction relation ⊢
in Definition 7 for input/output nodes. More precisely, the terms that Sim sends to the CoSP
protocol have to be derivable from Sim ’s symbolic view so far.

Definition 14 (Dolev-Yao style simulator) A simulator Sim is Dolev-Yao style (short: DY)
for M and Πp, if with overwhelming probability the following holds:

In an execution of Sim + ΠC , for each ℓ, let mℓ ∈ T be the ℓ-th term sent (during processing
of one of ΠC ’s input nodes) from Sim to ΠC in that execution. Let Tℓ ⊆ T the set of all terms
that Sim has received from ΠC (during processing of output nodes) prior to sending mℓ. Then
we have Tℓ ⊢ mℓ.

The second property – indistinguishability – captures that the hybrid node traces are computa-
tionally indistinguishable from real node traces, i.e., the corresponding random variables cannot
be distinguished by any probabilistic algorithm that runs in polynomial time in the security

parameter. We write
c
≈ to denote computational indistinguishability.

Definition 15 (Indistinguishable simulator) A simulator Sim is indistinguishable for M,
Πp, an implementation A, an adversary E, and a polynomial p, if

Nodesp
M,A,Πp,E

(k)
c
≈ H -NodesM,Πp,Sim(k),

i.e., if the computational node trace and the hybrid node trace are computationally indistinguish-
able.

We define the following abbreviation.

Definition 16 (Good simulator) A simulator is good for M, Πp, A, E, and p if it is Dolev-
Yao style for M, and Πp, and indistinguishable for M, Πp, A, E, and p.

We can now formally state and prove the main result of this section: the existence of a good
simulator implies computational soundness.

Theorem 1 (Good simulator implies soundness) Let M = (C,N,T,D,⊢) be a symbolic
model, let P be a class of CoSP protocols, and let A be a computational implementation of M.
Assume that for every efficient probabilistic CoSP protocol Πp (whose corresponding CoSP protocol
is in P ), every probabilistic polynomial-time adversary E, and every polynomial p, there exists a
good simulator for M, Πp, A, E, and p. Then A is computationally sound for protocols in P .

Proof. We have to show that for every probabilistic CoSP protocol Πp, we have that (Πp, A)
computationally satisfies P whenever Πs symbolically satisfies a property P (where Πs is the
corresponding CoSP protocol of Πp). Thus, for every E and p, Nodesp

M,A,Πp,E
(k) has to be

contained in P with overwhelming probability. Fix Πp, E, and p, and let Sim be a good simulator
for M, Πp, A, E, and p. Let AP denote a polynomial-time algorithm that decides property P .

We first show a lemma on the hybrid node traces and then proceed with the overall proof.
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Lemma 2 Consider a hybrid execution of Sim + ΠC in which Sim is DY, i.e., we have
{t1, . . . , tℓ} ⊢ mℓ for all ti and mℓ as in Definition 14 and all ℓ.

Let tr be the full hybrid trace of that execution. Then tr is a full symbolic trace of Πs.

Proof. (of Lemma 2) We show that tr fulfills the conditions on full traces of Definition 7. This
is clear for constructor, destructor, and control nodes, since the processing of these nodes in the
hybrid setting of Definition 13 matches the one in the symbolic setting of Definition 7.

Input/output nodes in tr consist of a term t ∈ T sent from ΠC to Sim, or a term t′ sent from
Sim to ΠC . By the DY property of Sim, we know that S ⊢ t′, where S denotes all terms (including
t) sent from ΠC to Sim so far. Hence, the node satisfies the requirement for input/output nodes
from Definition 7. This completes the proof of the lemma. �

Lemma 2 immediately entails that the probability is overwhelming that H -NodesM,Πp,Sim(k)
is a symbolic node trace of Πs, and hence that H -Nodes

M,Πp,Sim ∈ P . Since AP decides P , this
means that

Pr
[

AP (H -Nodes
M,Πp,Sim (k)) = 1

]

is overwhelming. (1)

By Sim ’s indistinguishability property, we know that

Nodesp
M,A,Πp,E

(k)
c
≈ H -NodesM,Πp,Sim(k).

Since AP is polynomial-time in its input, and Nodesp
M,A,Πp,E

(k) is polynomially-sized in k by

construction, this implies that

Pr
[

AP(Nodesp
M,A,Πp,E

(k)) = 1
]

is overwhelming,

and hence that Nodesp
M,A,Πp,E

(k) ∈ P with overwhelming probability. This concludes the proof

of Theorem 1. �

3 Case study: computational soundness of public-key en-

cryption and signatures

In this section, we provide a symbolic model that allows for expressing encryption, signatures,
and pairs, and we derive criteria under which a computational implementation of that model is
computationally sound.

The symbolic model. We first specify the symbolic model M = (C,N,T,D,⊢):

• Constructors and nonces: Let C := {E/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2, string0/1,
string1/1, empty/0, garbageSig/2, garbage/1, garbageE/2} and N := NP ∪ NE . Here NP

and NE are countably infinite sets representing protocol and adversary nonces, respec-
tively. Intuitively, encryption, decryption, verification, and signing keys are represented as
ek(r), dk (r), vk (r), sk (r) with a nonce r (the randomness used when generating the keys).
E(ek(r′), m, r) encrypts m using the encryption key ek(r′) and randomness r. sig(sk(r′), m, r)
is a signature of m using the signing key sk (r′) and randomness r. The constructors string0 ,
string1 , and empty are used to model arbitrary strings used as payload in a protocol (e.g.,
a bitstring 010 would be encoded as string0 (string1 (string0 (empty)))). garbage, garbageE ,
and garbageSig are constructors necessary to express certain invalid terms the adversary may
send, these constructors are not used by the protocol.
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• Message type: We define T as the set of all terms M matching the following grammar:

M ::= E(ek (N), M, N) | ek (N) | dk (N) |

sig(sk (N), M, N) | vk(N) | sk(N) |

pair (M, M) | S | N |

garbage(N) | garbageE (M, N) |

garbageSig(M, N)

S ::= empty | string0(S) | string1(S)

where the nonterminal N stands for nonces.

• Destructors: D := {D/2, isenc/1, isek/1, ekof /1, verify/2, issig/1, isvk/1, vkof /2, fst/1,
snd/1, unstring0/1, unstring1/1, equals/2}. The destructors isek , isvk , isenc, and issig re-
alize predicates to test whether a term is an encryption key, verification key, ciphertext, or
signature, respectively. ekof extracts the encryption key from a ciphertext, vkof extracts the
verification key from a signature. D(dk (r), c) decrypts the ciphertext c. verify(vk (r), s) veri-
fies the signature s with respect to the verification key vk(r) and returns the signed message
if successful. The destructors fst and snd are used to destruct pairs, and the destructors
unstring0 and unstring1 allow to parse payload-strings. (Destructors ispair and isstring are
not necessary, they can be emulated using fst , unstringi, and equals(·, empty).)
The behavior of the destructors is given by the following rules; an application matching none
of these rules evaluates to ⊥:

D(dk (t1), E(ek (t1), m, t2)) = m

isenc(E(ek (t1), t2, t3)) = E(ek (t1), t2, t3)

isenc(garbageE (t1, t2)) = garbageE (t1, t2)

isek(ek (t)) = ek (t)

ekof (E (ek (t1 ),m, t2 )) = ek (t1)

ekof (garbageE (t1 , t2 )) = t1

verify(vk(t1), sig(sk(t1), t2, t3)) = t2

issig(sig(sk(t1), t2, t3)) = sig(sk (t1), t2, t3)

issig(garbageSig (t1, t2)) = garbageSig (t1, t2)

isvk (vk (t1)) = vk (t1)

vkof (sig(sk(t1), t2, t3)) = vk (t1)

vkof (garbageSig (t1, t2)) = t1

fst(pair (x, y)) = x

snd(pair (x, y)) = y

unstring0(string0(s)) = s

unstring1(string1(s)) = s

equals(t1, t1) = t1

• Deduction relation: ⊢ is the smallest relation satisfying the rules in Figure 2.

The computational implementation. Obtaining a computational soundness result for the
symbolic model M requires its implementation to use an IND-CCA2 secure encryption scheme and
a strongly existentially unforgeable signature scheme. More precisely, we require that (Aek , Adk ),
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m ∈ S

S ⊢ m

N ∈ NE

S ⊢ N

S ⊢ t t ∈ T F ∈ C ∪D evalF (t) 6= ⊥

S ⊢ evalF (t)

Figure 2: Deduction rules for the symbolic model of the applied π-calculus

AE , and AD form the key generation, encryption and decryption algorithm of an IND-CCA2-
secure scheme; and that (Avk , Ask ), Asig , and Averify form the key generation, signing, and
verification algorithm of a strongly existentially unforgeable signature scheme. Let Aisenc(m) = m
iff m is a ciphertext. (Only a syntactic check is performed; it is not necessary to check whether
m was correctly generated.) Aissig , Aisek , and Aisvk are defined analogously. Aekof extracts
the encryption key from a ciphertext, i.e., we assume that ciphertexts are tagged with their
encryption key. Similarly Avkof extracts the verification key from a signature, and Averify can be
used to extract the signed message from a signature, i.e., we assume that signatures are tagged
with their verification key and the signed message. Nonces are implemented as (suitably tagged)
random k-bit strings. Apair , Afst , and Asnd construct and destruct pairs. We require that the
implementation of the constructors are length regular, i.e., the length of the result of applying a
constructor depends only on the lengths of the arguments. No restrictions are put on Agarbage ,
AgarbageE , and AgarbageSig as these are never actually used by the protocol. (The implementation
of these functions need not even fulfill equations like Aisenc(AgarbageE (x)) = AgarbageE (x).)

The exact requirements are as follows:

Implementation conditions. We require that the implementation A of the symbolic model M
has the following properties:

1. A is an implementation of M in the sense of Definition 8 (in particular, all functions Af

(f ∈ C ∪D) are polynomial-time computable).

2. There are disjoint and efficiently recognizable sets of bitstrings representing the types nonces,
ciphertexts, encryption keys, decryption keys, signatures, verification keys, signing keys, pairs,
and payload-strings. The set of all bitstrings of type nonce we denote Noncesk.5 (Here and
in the following, k denotes the security parameter.)

3. The functions AE , Aek , Adk , Asig , Avk , Ask , Apair , Astring0
, and Astring1

are length-regular.
We call an n-ary function f length regular if |mi| = |m′

i| for i = 1, . . . , n implies |f(m)| =
|f(m′)|. All m ∈ Noncesk have the same length.

4. AN for N ∈ N returns a uniformly random r ∈ Noncesk.

5. Every image of AE is of type ciphertext, every image of Aek and Aekof is of type encryption
key, every image of Adk is of type decryption key, every image of Asig is of type signature,
every image of Avk and Avkof is of type verification key, every image of Aempty , Astring0

, and
Astring1

is of type payload-string.

6. For all m1, m2 ∈ {0, 1}∗ we have Afst (Apair (m1, m2)) = m1 and Asnd (Apair (m1, m2)) = m2.
Every m of type pair is in the range of Apair . If m is not of type pair, Afst (m) = Asnd (m) = ⊥.

7. For all m of type payload-string we have that Aunstringi
(Astringi

(m)) = m and
Aunstringi

(Astringj
(m)) = ⊥ for i, j ∈ {0, 1}, i 6= j. For m = empty or m not of type payload-

string, Aunstring0
(m) = Aunstring1

(m) = ⊥. Every m of type payload-string is of the form
m = Aunstring0

(m′) or m = Aunstring1
(m′) or m = empty for some m′ of type payload-string.

8. Aekof (AE(p, x, y)) = p for all p of type encryption key, x ∈ {0, 1}∗, y ∈ Noncesk. Aekof (e) 6= ⊥
for any e of type ciphertext and Aekof (e) = ⊥ for any e that is not of type ciphertext.

9. Avkof (Asig (Ask (x), y, z)) = Avk (x) for all y ∈ {0, 1}∗, x, z ∈ Noncesk. Avkof (e) 6= ⊥ for any e
of type signature and Avkof (e) = ⊥ for any e that is not of type signature.

5This would typically be the set of all k-bit strings with a tag denoting nonces.
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10. AE(p, m, y) = ⊥ if p is not of type encryption key.

11. AD(Adk (r), m) = ⊥ if r ∈ Noncesk and Aekof (m) 6= Aek (r). (This implies that the encryption
key is uniquely determined by the decryption key.)

12. AD(Adk (r), AE(Aek (r), m, r′)) = m for all r, r′ ∈ Noncesk.

13. Averify (Avk (r), Asig (Ask (r), m, r′)) = m for all r, r′ ∈ Noncesk.

14. For all p, s ∈ {0, 1}∗ we have that Averify (p, s) 6= ⊥ implies Avkof (s) = p.

15. Aisek (x) = x for any x of type encryption key. Aisek (x) = ⊥ for any x not of type encryption
key.

16. Aisvk (x) = x for any x of type verification key. Aisvk (x) = ⊥ for any x not of type verification
key.

17. Aisenc(x) = x for any x of type ciphertext. Aisenc(x) = ⊥ for any x not of type ciphertext.

18. Aissig (x) = x for any x of type signature. Aissig (x) = ⊥ for any x not of type signature.

19. We define an encryption scheme (KeyGen, Enc, Dec) as follows: KeyGen picks a random r ←
Noncesk and returns (Aek (r), Adk (r)). Enc(p, m) picks a random r ← Noncesk and returns
AE(p, m, r). Dec(k, c) returns AD(k, c). We require that then (KeyGen, Enc, Dec) is IND-CCA
secure.

20. We define a signature scheme (SKeyGen, Sig, Verify) as follows: SKeyGen picks a random
r ← Noncesk and returns (Avk (r), Ask (r)). Sig(p, m) picks a random r ← Noncesk and
returns Asig(p, m, r). Verify(p, s, m) returns 1 iff Averify (p, s) = m. We require that then
(SKeyGen, Sig, Verify) is strongly existentially unforgeable.

21. For all e of type encryption key and all m ∈ {0, 1}∗, the probability that AE(e, m, r) =
AE(e, m, r′) for uniformly chosen r, r′ ∈ Noncesk is negligible.

22. For all rs ∈ Noncesk and all m ∈ {0, 1}∗, the probability that Asig (Ask (rs), m, r) =
Asig(Ask (rs), m, r′) for uniformly chosen r, r′ ∈ Noncesk is negligible.

Note that any IND-CCA secure encryption scheme and strongly existentially unforgeable sig-
nature scheme can be transformed into an implementation satisfying the above conditions by
suitably tagging and padding the ciphertexts, signatures, and keys.

Key-safe protocols. The computational soundness result we derive in this section requires
that the CoSP protocol satisfies certain constraints. In a nutshell, these constraints require that
encryption, signing, and key generation always use fresh randomness, that decryption only uses
honestly generated (i.e., through key generation) decryption keys, that only honestly generated
keys are used for signing, and that the protocol does not produce garbage terms. Decryption
and signing keys may not be sent around. (In particular, this avoids the so-called key-cycle and
key-commitment problems.) We call protocols satisfying these conditions key-safe. We stress that
key-safe protocols are not a requirement induced by our framework as such. In fact, requirements
similar to key-safeness are standard and state-of-the art assumptions for soundness results (either
explicit or implicitly enforced by the modeling, see, e.g., [AR02, MW04, BPW03a]).

The exact requirements are the following:

Protocol conditions. A CoSP protocol is key-safe if it satisfies the following conditions:

1. The argument of every ek -, dk -, vk -, and sk -computation node and the third argument of
every E- and sig-computation node is an N -computation node with N ∈ NP . (Here and in
the following, we call the nodes referenced by a protocol node its arguments.) We call these
N -computation nodes randomness nodes .

2. Every computation node that is the argument of an ek -computation node or of a dk -
computation node on some path p occurs only as argument to ek - and dk -computation nodes
on that path p.

17



3. Every computation node that is the argument of a vk -computation node or of an sk -
computation node on some path p occurs only as argument to vk - and sk -computation nodes
on that path p.

4. Every computation node that is the third argument of an E-computation node or of a sig-
computation node on some path p occurs exactly once as an argument in that path p.

5. Every dk -computation node occurs only as the first argument of a D-destructor node.

6. The first argument of a D-destructor node is a dk -computation node.

7. Every sk -computation node occurs only as the first argument of a sig-computation node.

8. The first argument of a sig-computation node is an sk -computation node.

9. There are no computation nodes with the constructors garbage , garbageE , garbageSig , or
N ∈ NE .

Construction of the simulator. In the following, we define distinct nonces Nm ∈ NE for each
m ∈ {0, 1}∗. In a hybrid execution, we call a term t honestly generated if it occurs as a subterm
of a term sent by the protocol ΠC to the simulator before it has occurred as a subterm of a term
sent by the simulator to the protocol ΠC .

For an adversary E and a polynomial p, we construct the simulator Sim as follows: In the
first activation, it chooses rN ∈ Noncesk for every N ∈ NP . It maintains an integer len, initially
0. At any point in the execution, N denotes the set of all nonces N ∈ NP that occurred in terms
received from ΠC . R denotes the set of randomness nonces (i.e., the nonces associated with all
randomness nodes of ΠC passed through up to that point).

Sim internally simulates the adversary E. When receiving a term t̃ ∈ T from ΠC , it passes
β(t̃) to E where the partial function β : T → {0, 1}∗ is defined below. When E answers with
m ∈ {0, 1}∗, the simulator sends τ(m) to ΠC where the function τ : {0, 1}∗ → T is defined
below. The bitstrings sent from the protocol at control nodes are passed through to E and vice
versa. When the simulator receives (info, ν, t), the simulator increases len by ℓ(t) + 1 where
ℓ : T → {0, 1}∗ is defined below. If len > p(k), the simulator terminates, otherwise it answers
with (proceed).

Translation functions. The partial function β : T → {0, 1}∗ is defined as follows (where the
first matching rule is taken):

• β(N) := rN if N ∈ N .

• β(Nm) := m.

• β(E(ek (t1), t2, M)) := AE(β(ek (t1)), β(t2), rM ) if M ∈ N .

• β(E(ek (M), t, Nm)) := m if M ∈ N .

• β(ek (N)) := Aek (rN ) if N ∈ N .

• β(ek (Nm)) := m.

• β(dk (N)) := Adk (rN ) if N ∈ N .

• β(sig(sk (N), t, M)) := Asig(Ask (rN ), β(t), rM ) if N, M ∈ N .

• β(sig(sk (M), t, Ns)) := s.

• β(vk (N)) := Avk (rN ) if N ∈ N .

• β(vk (Nm)) := m.

• β(sk(N)) := Ask (rN ) if N ∈ N .

• β(pair (t1, t2)) := Apair (β(t1), β(t2)).

• β(string0(t)) := Astring0
(β(t)).

• β(string1(t)) := Astring1
(β(t)).

• β(empty) := Aempty().

• β(garbage(N c)) := c.
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• β(garbageE (t, N c)) := c.

• β(garbageSig(t1, t2, N
s)) := s.

• β(t) := ⊥ in all other cases.

The total function τ : {0, 1}∗ → T is defined as follows (where the first matching rule is taken):

• τ(r) := N if r = rN for some N ∈ N \ R.

• τ(r) := N r if r is of type nonce.

• τ(c) := E(ek (M), t, N) if c has earlier been output by β(E(ek (M), t, N)) for some M ∈ N,
N ∈ N .

• τ(c) := E(ek(N), τ(m), N c) if c is of type ciphertext and τ(Aekof (c)) = ek (N) for some
N ∈ N and m := AD(Adk (rN ), c) 6= ⊥.

• τ(e) := ek (N) if e has earlier been output by β(ek (N)) for some N ∈ N .

• τ(e) := ek (Ne) if e is of type encryption key.

• τ(s) := sig(sk(M), t, N) if s has earlier been output by β(sig(sk(M), t, N)) for some M, N ∈
N .

• τ(s) := sig(sk(M), τ(m), Ns) if s is of type signature and τ(Avkof (s)) = vk (M) for some
M ∈ N and m := Averify (Avkof (s), s) 6= ⊥.

• τ(e) := vk (N) if e has earlier been output by β(vk (N)) for some N ∈ N .

• τ(e) := vk (Ne) if e is of type verification key.

• τ(m) := pair (τ(Afst (m)), τ(Asnd (m))) if m of type pair.

• τ(m) := string0(m
′) if m is of type payload-string and m′ := Aunstring0

(m) 6= ⊥.

• τ(m) := string1(m
′) if m is of type payload-string and m′ := Aunstring1

(m) 6= ⊥.

• τ(m) := empty if m is of type payload-string and m = Aempty().

• τ(c) := garbageE (τ(Aekof (c)), N
c) if c is of type ciphertext.

• τ(s) := garbageSig(τ(Avkof (s)), N
s) if s is of type signature.

• τ(m) := garbage(Nm) otherwise.

The function ℓ : T → {0, 1}∗ is defined as ℓ(t) := |β(t)|. Note that ℓ(t) does not depend on
the actual values of rN because of the length-regularity of AE , Aek , Adk , Asig , Avk , Ask , Apair ,
Astring0

, and Astring1
. Hence ℓ(t) can be computed without accessing rN .

The faking simulator. The simulator Sim ′ is defined exactly like Sim , except that it
makes use of an encryption and a signing oracle (these oracles also supply keypairs (ekN , dkN ),
resp. (vkN , skN )). When computing β(ek (N)) or β(dk (N)) with N ∈ N , it instructs the en-
cryption oracle to generate a new encryption/decryption key pair (ekN , dkN ) (unless (ekN , dkN )
are already defined) and retrieves ekN or dkN from the oracle, respectively. When computing
β(E(ek (N), t, M)) with N, M ∈ N , instead of computing AE(Aek (rN ), β(t), rM ), Sim ′ requests
the encryption Enc(ekN , β(t)) of β(t) from the encryption oracle (that is, Sim ′ has to compute
β(t) but does not need to retrieve ekN ). However, the resulting ciphertext is stored and when
later computing β(E(ek (N), t, M)) with the same arguments, the stored ciphertext is reused.
When computing β(E(ek (Ne), t2, M)) with M ∈ N , Sim ′ requests the encryption Enc(e, β(t))
from Sim ′. (In this case, the oracle encrypts β(t) using its own randomness but using the en-
cryption key e provided by Sim ′.) When computing τ(c), instead of computing AD(Adk (rN ), c),
Sim ′ invokes the encryption oracle to decrypt c using the decryption key dkN (again, Sim ′ does
not need to retrieve dkN ).

Similarly, to compute β(vk (N)) or β(sk (N)), Sim ′ retrieves keys vkN or skN from the signing
oracle. To compute β(sig(sk(N), t, M)), Sim ′ invokes the signing oracle with message β(t) to get
a signature under the signing key skN . However, the resulting signature is stored and when later
computing β(sig(sk(N), t, M)) with the same arguments, the stored ciphertext is reused. Sim ′

does not invoke the signing oracle for verifying signatures, instead Sim ′ executes Averify directly
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(as does Sim).
The simulator Simf is defined like Sim ′, except that when computing β(E(ek (N), t, M))

with N, M ∈ N , instead of invoking the encryption oracle with plaintext β(t), it invokes it with
plaintext 0ℓ(t). (But in a computation β(E(ek (Ne), t, M)) with M ∈ N , the simulator Simf still
uses β(t) as plaintext.)

Properties of the simulator. We derive several properties of the simulators Sim and Simf

that will finally allow to show that Sim is a good simulator for key-safe protocols. In the following,
let Π′ always denote an key-safe probabilistic CoSP protocol. By construction, Sim , Sim ′ and
Simf run in polynomial time.

Lemma 3 The full traces H -Trace
M,Πp,Sim and H -Trace

M,Πp,Simf
are computationally indistin-

guishable.

Proof. Note that the difference between Sim and Sim ′ is that the randomness for the key
generation, the encryption, and the signing is chosen by the algorithms KeyGen, SKeyGen, Enc,
and Sig in Sim ′, while Sim uses nonces rN instead. However, from protocol conditions 1, 2,
3, 4, it follows that Sim never uses a given randomness rN twice (note that, since N ∈ R, τ
does not access rN either). Hence the full traces H -Trace

M,Πp,Sim and H -Trace
M,Πp,Sim′ are

indistinguishable.
Note that by definition of τ , Sim ′ invokes Dec(dkN , c) only for values c that have not been

output by β(E(ek (M), t, N)). Thus Dec(dkN , c) is invoked only for values c that have not been
output by Enc(ekN , ·). By protocol condition 5, dkN is only used as an argument to Dec. Since
|β(t)| = |0ℓ(t)| by definition of ℓ, the IND-CCA property of (KeyGen, Enc, Dec) (implementation
condition 19) implies that the full traces H -Trace

M,Πp,Sim′ and H -Trace
M,Πp,Simf

are indistin-
guishable. Using the transitivity of computational indistinguishability, the lemma follows.

�

Lemma 4 Sim is indistinguishable for M, Π, A, and for every polynomial p.

The reader may wonder why the proof of Lemma 4 (given below) is so long in our framework,
in particular in view of the fact that many prior works that follow a similar proof idea (e.g.,
[MW04, CW05, CKKW06]) do not seem to need such a proof step. The answer is these works
did indeed depend on a similar fact: In their proofs, the protocol constructs bitstrings from terms,
and the simulator parses bitstrings, and we need that parsing a bitstring does indeed yield the
original term. This fact is usually implicitly assumed to be true, but when verified in detail (such
as done in [BU09]), the proof turns out to be very lengthy (Appendix A of [BU09] is dedicated
to proving the analogue of the claims 1–4 of our Lemma 4).

Proof. We will first show that when fixing the randomness of the adversary and the
protocol, the node trace Nodesp

M,A,Πp,E
in the computational execution and the node trace

H -NodesM,Πp,Sim in the hybrid execution are equal. Hence, fix the variables rN for all N ∈ NP ,
fix a random tape for the adversary, and for each node ν fix a choice eν of an outgoing edge.

We assume that the randomness is chosen such that all bitstrings rN , Aek (rN ), Adk (rN ),
Avk (rN ), Ask (rN ), AE(e, m, rN ), and sig(s, m, rN ) are all pairwise distinct for all N ∈ N and all
bitstrings e of type encryption key, s of type signing key, and m ∈ {0, 1}∗ that result from some
evaluation of β in the execution.

Note that this is the case with overwhelming probability: For terms of different types this
follows from implementation condition 5. For keys, this follows from the fact that if two ran-
domly chosen keys would be equal with non-negligible probability, the adversary could guess
secret keys and thus break the IND-CCA property or the strong existential unforgeability (imple-
mentation conditions 19 and 20). For nonces, if two random nonces rN , rM would be equal with
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non-negligible probability, so would encryption keys Aek (rN ) and Aek (rM ). For encryptions,
by implementation condition 21, the probability that AE(e, m, rN ) for random rN ∈ Noncesk

matches any given string is negligible. Since by protocol condition 4, each AE(e, m, rN ) com-
puted by β uses a fresh nonce rN , this implies that AE(e, m, rN ) equals a previously computed
encryption is negligible. Analogously for signatures (implementation condition 22, protocol con-
ditions 4 and 8).

In the following, we designate the values fi and νi in the computational execution by f ′
i and

ν′
i, and in the hybrid execution by fC

i and νC
i . Let s′i denote the state of the adversary E in the

computational model, and sC
i the state of the simulated adversary in the hybrid model.

Claim 1: In the hybrid execution, for any b ∈ {0, 1}∗, β(τ(b)) = b.
This claim follows by induction over the length of b and by distinguishing the cases in the

definition of τ .
Claim 2: In the hybrid execution, for any term t stored at a node ν, β(t) 6= ⊥.

By induction on the structure of t.
Claim 3: For all terms t 6∈ R that occur in the hybrid execution, τ(β(t)) = t.

By induction on the structure of t and using the assumption that rN , Aek (rN ), Adk (rN ),
Avk (rN ), Aek (rN ), as well as all occuring encryptions and signatures are pairwise distinct for
all N ∈ N . For terms t that contain randomness nonces, note that by protocol condition 4,
randomness nonces never occur outside the last argument of E-, sig-, ek -, dk -, vk -, or sk -terms.
Claim 4: In the hybrid execution, at any computation node ν = νi with constructor or destruc-
tor F and arguments ν̄1, . . . , ν̄n the following holds: Let ti be the term stored at node ν̄i (i.e.,
tj = f ′

i(ν̄j)). Then β(evalF (t)) = AF (β(t1), . . . , β(tn)). Here the left hand side is defined iff the
right hand side is.

We show Claim 4. We distinguish the following cases:

Case 1: “F = ek”.
Note that by protocol condition 1, we have t1 ∈ NP . Then β(ek (t1)) = Aek (rt1) = Aek (β(t1)).

Case 2: “F ∈ {dk , vk , sk}”.
Analogous to the case F = ek .

Case 3: “F ∈ {pair , fst , snd , string0, string0, unstring0, unstring1, empty}”.
Claim 4 follows directly from the definition of β.

Case 4: “F = isek”.
If t1 = ek(t′1), we have that t′1 = N ∈ N or t′1 = Nm where m is of type ciphertext (as other
subterms of the form ek(·) are neither produced by the protocol nor by τ). In both cases,
β(ek (t′1)) is of type encryption key. Hence β(isek (t1)) = β(ek (t′1)) = Aisek (β(ek (t′1))) =
Aisek (β(t1)). If t1 is not of the form ek (·), then β(t1) is not of type public key (this uses that
τ only uses Nm with m of type public key inside a term ek(Nm)). Hence β(isek (t1)) = ⊥ =
Aisek (β(t1)).

Case 5: “F ∈ {isvk , isenc, issig}”.
Similar to the case F = isek .

Case 6: “F = ekof ”.
If t1 = E(ek (u1), u2, M) with M ∈ N , we have that β(t1) = AE(β(ek (u1)), β(u2), rM ). By
implementation condition 8, Aekof (β(t1)) = β(ek (u1)). Furthermore, ekof (t1) = ek (u1),
hence Aekof (β(t1)) = β(ekof (t1)). If t1 = E(ek(u1), u2, N

m), by protocol condition 9,
t1 was not honestly generated. Hence, by definition of τ , m is of type ciphertext, and
ek(u1) = τ(Aekof (m)). Thus with Claim 1, β(ek (u1)) = Aekof (m). Furthermore, we
have β(t1) = m by definition of β and thus Aekof (β(t1)) = β(ek (u1)) = β(ekof (t1)). If
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t1 = garbageE (u1, u2), the proof is analogous. In all other cases for t1, β(t1) is not of type ci-
phertext, hence Aekof (β(t1)) = ⊥ by implementation condition 8. Furthermore ekof (t1) = ⊥.
Thus β(ekof (t1)) = ⊥ = Aekof (β(t1)).

Case 7: “F = vkof ”.
If t1 = sig(sk(N), u1, M) with N, M ∈ N , we have that β(t1) = Asig (Ask (rN ), β(u2), rM ). By
implementation condition 9, Aekof (β(t1)) = Avk (rN ). Furthermore, vkof (t1) = vk(N), hence
Avkof (β(t1)) = Avk (rN ) = β(vk (N)) = β(vkof (t1)). All other cases for t1 are handled like in
the case of F = ekof .

Case 8: “F = E”.
By protocol condition 1, t3 =: N ∈ N . If t1 = ek(u1) we have β(E(t1, t2, t3)) =
AE(β(t1), β(t2), rN ) by definition of β. Since β(N) = rN , we have β(E(t1, t2, t3)) =
AE(β(t1), β(t2), β(t3)). If t1 is not of the form ek(u1), then E(t1, t2, t3) = ⊥ and by defi-
nition of β, β(t1) is not of type encryption key and hence by implementation condition 10,
β(E(t1, t2, t3)) = Aek (β(t1), . . . ) = ⊥ = β(E(t1, t2, t3)).

Case 9: “F = D”.
By protocol condition 6, t1 = dk(N) with N ∈ N . We distinguish the following cases for t2:

Case 9.1: “t2 = E(ek (N), u2, M) with M ∈ N”.
Then AD(β(t1), β(t2)) = AD(Adk (rN ), AE(Aek (N), β(u2), rM )) = β(u2) by implementa-
tion condition 12. Furthermore β(D(t1, t2)) = β(u2) by definition of D.

Case 9.2: “t2 = E(ek (N), u2, N
c)”.

Then t2 was produced by τ and hence c is of type ciphertext and τ(AD(Adk (rN ), c)) = u2.
Then by Claim 1, AD(Adk (rN ), c) = β(u2) and hence AD(β(t1), β(t2)) = AD(Adk (rN ), c) =
β(u2) = β(D(t1, t2)).

Case 9.3: “t2 = E(u1, u2, u3) with u1 6= ek(N)”.
As shown above (case F = ekof ), Aekof (β(E(u1, u2, u3)) = β(ekof (E(u1, u2, u3)) = β(u1).
Moreover, from Claim 3, Aekof (β(E(u1, u2, u3)) = β(u1) 6= β(ek (N)) = Aek (rN ). Thus
by implementation condition 11, AD(β(t1), β(t2)) = AD(Adk (rN ), β(E(u1, u2, u3))) = ⊥.
Furthermore, D(t1, t2) = ⊥ and thus β(D(t1, t2)) = ⊥.

Case 9.4: “t2 = garbageE (u1, N
c)”.

Assume that m := AD(β(t1), β(t2)) = AD(Ask (rN ), c) 6= ⊥. By implementation condi-
tion 11 this implies Aekof (c) = Aek (rN ) and thus τ(Aekof (c)) = τ(Aek (rN )) = ek(N).
By protocol condition 9, t2 has been produced by τ , i.e., t2 = τ(c). Hence c is of type
ciphertext. Then, however, we would have τ(c) = E(ek (N), τ(m), N c) 6= t2. This is a
contradiction to t2 = τ(c), so the assumption that AD(β(t1), β(t2)) 6= ⊥ was false. So
AD(β(t1), β(t2)) = ⊥ = β(⊥) = β(D(t1, garbageE (u1, N

c))).

Case 9.5: “All other cases”.
Then β(t2) is not of type ciphertext. By implementation condition 8, Aekof (β(t2)) = ⊥.
Hence Aekof (β(t2)) 6= Aek (rN ) and by implementation condition 11, AD(β(t1), β(t2)) =
AD(Adk (rN ), β(t2)) = ⊥ = β(D(t1, t2)).

Case 10: “F = sig”.
By protocol conditions 8 and 1 we have that t1 = sk(N) and t3 = M with
N, M ∈ N . Then β(sig(t)) = Asig (Ask (rN ), β(t3), rM ) = Asig(β(sk (N)), β(t2), β(M)) =
Asig(β(t1), β(t2), β(t3)).

Case 11: “F = verify”.
We distinguish the following subcases:
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Case 11.1: “t1 = vk(N) and t2 = sig(sk(N), u2, M) with N, M ∈ N”.

Then Averify (β(t1), β(t2)) = Averify (Avk (rN ), Asig (Ask (rN ), β(u2), rM ))
(∗)
= β(u2) =

β(verify(t)) where (∗) uses implementation condition 13.

Case 11.2: “t2 = sig(sk(N), u2, M) and t1 6= vk(N) with N, M ∈ N”.
By Claim 3, β(t1) 6= β(vk (N)) Furthermore Averify (β(vk (N)), β(t2)) =

Averify (β(t1), Asig (Ask (rN ), β(u2), rM ))
(∗)
= β(u2) 6= ⊥. Hence with implementation

condition 14, Averify (β(t1), β(t2)) = ⊥ = β(⊥) = verify(t1, t2).

Case 11.3: “t1 = vk(N) and t2 = sig(sk(N), u2, M
s)”.

Then t2 was produced by τ and hence s is of type signature with τ(Avkof (s)) = vk(N)
and m := Averify (Avkof (s), s) 6= ⊥ and u2 = τ(m). Hence with Claim 1 we have
m = β(τ(m)) = β(u2) and β(t1) = β(vk (N)) = β(τ(Avkof (s))) = Avkof (s). Thus
Averify (β(t1), β(t2)) = Averify (Avkof (s), s) = m = β(u2). And β(verify(t1, t2)) =
β(verify(vk (N), sig(sk(N), u2, M

s))) = β(u2).

Case 11.4: “t2 = sig(sk(N), u2, M
s) and t1 6= vk(N)”.

As in the previous case, Averify (Avkof (s), s) 6= ⊥ and β(vk (N)) = Avkof (s). Since t1 6=
vk(N), by Claim 3, β(t1) 6= β(vk (N)) = Avkof (s). From implementation condition 14 and
Averify (Avkof (s), s) 6= ⊥, we have Averify(β(t1), β(t2)) = Averify (β(t1), s) = ⊥ = β(⊥) =
β(verify(t1, t2)).

Case 11.5: “t2 = garbageSig(u1, N
s)”.

Then t2 was produced by τ and hence s is of type signature and either Averify (Avkof (s), s) =
⊥ or τ(Avkof (s)) is not of the form vk(. . . ). The latter case only occurs if Avkof (s) = ⊥
as otherwise Avkof (s) is of type verification key and hence τ(Avkof (s)) = vk(. . . ). Hence
in both cases Averify (Avkof (s), s) = ⊥. If β(t1) = Avkof (s) then Averify (β(t1), β(t2)) =
Averify (Avkof (s), s) = ⊥ = β(verify(t1, t2)). If β(t1) 6= Avkof (s) then by implementa-
tion condition 14, Averify (β(t1), β(t2)) = Averify (β(t1), s) = ⊥. Thus in both cases, with
verify(t1, t2) = ⊥ we have Averify (β(t1), β(t2)) = ⊥ = β(verify(t1, t2)).

Case 11.6: “All other cases”.
Then β(t2) is not of type signature, hence by implementation condition 9, Avkof (β(t2)) =
⊥, hence β(t1) 6= Avkof (β(t2)), and by implementation condition 14 we have
Averify (β(t1), β(t2)) = ⊥ = β(verify(t1, t2)).

Case 12: “F = equals”.
If t1 = t2 we have β(equals(t1, t2)) = β(t1) = Aequals(β(t1), β(t1)) = Aequals(β(t1), β(t2)). If
t1 6= t2, then t1, t2 6∈ R. To see this, let N1 be the node associated with t1. If N1 is a nonce
computation node, then t1 6∈ R follows from protocol conditions 2, 3, and 4. In case N1 is an
input node, t1 6∈ R follows by definition of τ . Finally, if N1 is a destructor computation node,
t1 6∈ R follows inductively. (Similarly for t2.) By Claim 3, t1, t2 6∈ R implies β(t1) 6= β(t2)
and hence β(equals(t1, t2)) = ⊥ = Aequals(β(t1), β(t2)) as desired.

Case 13: “F ∈ {garbage, garbageE , garbageSig} ∪NE”.
By protocol condition 9, the constructors garbage , garbageE , garbageSig , and N ∈ NE do not
occur in the protocol.

Thus Claim 4 holds.
We will now show that for the random choices fixed above, Nodesp

M,A,Πp,E
=

H -NodesM,Πp,Sim .

To prove this, we show the following invariant: f ′
i = β ◦ fC

i and ν′
i = νC

i and si = s′i for all
i ≥ 0. We show this by induction on i.

We have f ′
0 = fC

0 = ∅ and ν′
0 = νC

0 is the root node, so the invariant is satisfied for i = 0.
Assume that the invariant holds for some i. If ν′

i is a nondeterministic node, ν′
i+1 = νC

i+1 is
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determined by eν′

i
= eνC

i
. Since a nondeterministic node does not modify f and the adversary is

not activated, f ′
i+1 = f ′

i = β ◦ fC
i = β ◦ fC

i+1 and si = s′i. Hence the invariant holds for i + 1 if ν′
i

is a nondeterministic node.
If ν′

i is a computation node with constructor or destructor F , we have that f ′
i+1(ν

′
i) =

AF (f ′
i(ν̄1), . . . , f

′
i(ν̄n)) = AF (β(fC

i (ν̄1)), . . . , β(fC
i (ν̄n))) for some nodes ν̄s depending on the

label of ν′
i. And fC

i+1(ν
′
i) = fC

i+1(ν
C
i ) = evalF (fC

i (ν̄1), . . . , f
C
i (ν̄n)). From Claim 4 it follows that

β(fC
i+1(ν

′
i)) = f ′

i+1(ν
′
i) where the lhs is defined iff the rhs is. Hence β ◦ fC

i+1 = f ′
i+1.

By Claim 2, β(fC
i+1(ν

C
i )) is defined if fC

i+1(ν
′
i) is. Hence fC

i+1(ν
C
i ) is defined iff f ′

i+1(ν
′
i) is.

If fC
i+1(ν

C
i ) is defined, then νC

i+1 is the yes-successor of νC
i and the no-successor otherwise. If

f ′
i+1(ν

′
i) is defined, then ν′

i+1 is the yes-successor of ν′
i = νC

i and the no-successor otherwise. Thus

νC
i+1 = ν′

i+1.

The adversary E is not invoked, hence s′i+1 = sC
i+1. So the invariant holds for i + 1 if ν′

i is a
computation node with a constructor or destructor.

If ν′
i is a computation node with nonce N ∈ NP , we have that f ′

i+1(ν
′
i) = rN = β(N) =

β(fC
i+1(ν

′
i)). Hence β ◦ fC

i+1 = f ′
i+1. By Definition 9, the ν′

i+1 is the yes-successor of ν′
i. Since

N ∈ T, νC
i+1 is the yes-successor of νC

i = ν′
i. Thus ν′

i+1 = νC
i+1. The adversary E is not invoked,

hence s′i+1 = sC
i+1. So the invariant holds for i + 1 if ν′

i is a computation node with a nonce.
In the case of a control node, the adversary E in the computational execution and the simulator

in the hybrid execution get the out-metadata l of the node ν′
i or νC

i , respectively. The simulator
passes l on to the simulated adversary. Thus, since s′i = sC

i , we have that s′i+1 = sC
i+1, and

in the computational and the hybrid execution, E answer with the same in-metadata l′. Thus
ν′

i+1 = νC
i+1. Since a control node does not modify f we have f ′

i+1 = f ′
i = β ◦ fC

i = β ◦ fC
i+1.

Hence the invariant holds for i + 1 if ν′
i is a control node.

In the case of an input node, the adversary E in the computational execution and the simulator
in the hybrid execution is asked for a bitstring m′ or bitstring tC , respectively. The simulator
produces this string by asking the simulated adversary E for a bitstring mC and setting tC :=
τ(mC). Since s′i = sC

i , m′ = mC . Then by definition of the computational and hybrid executions,

f ′
i+1(ν

′
i) = m′ and fC

i+1(ν
′
i) = tC = τ(m′). Thus f ′

i+1(ν
′
i) = m′ (∗)

= β(τ(m′)) = β(fC
i+1(ν

′
i)) where

(∗) follows from Claim 1. Since f ′
i+1 = f ′

i and fC
i+1 = fC everywhere else, we have f ′

i+1 = β ◦fC
i+1.

Furthermore, since input nodes have only one successor, ν′
i+1 = νC

i+1. Thus the invariant holds
for i + 1 in the case of an input node.

In the case of an output node, the adversary E in the computational execution gets m′ :=
f ′

i(ν̄1) where the node ν̄1 depends on the label of ν′
i. In the hybrid execution, the simulator gets

tC := fC
i (ν̄1) and sends mC := β(tC) to the simulated adversary E. By induction hypothesis we

then have m′ = mC , so the adversary gets the same input in both executions. Thus s′i+1 = sC
i+1.

Furthermore, since output nodes have only one successor, ν′
i+1 = νC

i+1. And f ′
i+1 = f ′

i and

fC
i+1 = fC , so f ′

i+1 = β ◦ fC
i+1. Thus the invariant holds for i + 1 in the case of an output node.

From the invariant it follows, that the node trace is the same in both executions.
Since random choices with all nonces, keys, encryptions, and signatures being pairwise distinct

occur with overwhelming probability (as discussed above), the node traces of the real and the
hybrid execution are indistinguishable. �

Lemma 5 In a given step of the hybrid execution with Simf , let S be the set of messages sent
from Πc to Simf . Let u′ ∈ T be the message sent from Simf to Πc in that step. Let C be a
context and u ∈ T such that u′ = C[u] and S 0 u and C does not contain a subterm of the form
sig(�, ·, ·). (� denotes the hole of the context C.)
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Then there exists a term tbad and a context D such that D obeys the following grammar

D ::= � | pair (t,D) | pair (D, t) | E(ek(N),D, M)

| E(D, t, M) | sig(sk(M),D, M)

| garbageE (D, M) | garbageSig (D, M)

with N ∈ NP , M ∈ NE , t ∈ T

and such that u = D[tbad ] and such that S 0 tbad and such that one of the following holds:
tbad ∈ NP , or tbad = E(p, m, N) with N ∈ NP , or tbad = sig(k, m, N) with N ∈ NP , or
tbad = sig(sk(N), m, M) with N ∈ NP , M ∈ NE or tbad = ek(N) with N ∈ NP , or tbad = vk(N)
with N ∈ NP .

Proof. We prove the lemma by structural induction on M . We distinguish the following cases:

Case 1: “u = garbage(u1)”.
By protocol condition 9 the protocol does not contain garbage-computation nodes. Thus u
is not an honestly generated term. Hence it was produced by an invocation τ(m) for some
m ∈ {0, 1}∗, and hence u = garbage(Nm). Hence S ⊢ u in contradiction to the premise of the
lemma.

Case 2: “u = garbageE (u1, u2)”.
By protocol condition 9 the protocol does not contain garbageE -computation nodes. Thus
u is not an honestly generated term. Hence it was produced by an invocation τ(c) for some
c ∈ {0, 1}∗, and hence u = garbageE (u1, N

m). Since S ⊢ Nm and S 0 u, we have S 0 u1.
Hence by the induction hypothesis, there exists a subterm tbad of u1 and a context D satisfying
the conclusion of the lemma for u1. Then tbad and D′ := garbageE (D, Nm) satisfy the
conclusion of the lemma for u.

Case 3: “u = garbageSig(u1, u2)”.
By protocol condition 9 the protocol does not contain garbageSig -computation nodes. Thus
u is not an honestly generated term. Hence it was produced by an invocation τ(c) for some
c ∈ {0, 1}∗, and hence u = garbageSig(u1, N

m). Since S ⊢ Nm and S 0 u, we have S 0 u1.
Hence by the induction hypothesis, there exists a subterm tbad of u1 and a context D satisfying
the conclusion of the lemma for u1. Then tbad and D′ := garbageSig(D, Nm) satisfy the
conclusion of the lemma for u.

Case 4: “u = dk(u1)”.
By protocol condition 5, any dk -computation node occurs only as the first argument of a
D-destructor node. The output of the destructor D only contains a subterm dk (u1) if its
second argument already contained such a subterm. Hence a term dk(u1) cannot be honestly
generated. But subterms of the form dk(·) are not in the range of τ . (Except if dk (·) was
given as argument to a call to β. However, as β is only invoked with terms sent by Πc, this
can only occur if dk(·) was honestly generated or produced by τ .) Thus no term sent by Simf

contains dk (·). Hence u cannot be a subterm of u′.

Case 5: “u = ek(u1) with u1 /∈ NP ”.
By protocol condition 1, the argument of an ek -computation node is an N -computation node
with N ∈ NP . Hence u is not honestly generated. Hence it was produced by an invocation
τ(e) for some e ∈ {0, 1}∗, and hence u = ek (Ne). Hence S ⊢ u in contradiction to the premise
of the lemma.

Case 6: “u = ek(N) with N ∈ NP ”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.
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Case 7: “u = vk(u1) with u1 /∈ NP ”.
By protocol condition 1, the argument of a vk -computation node is an N -computation node
with N ∈ NP . Hence u is not honestly generated. Hence it was produced by an invocation
τ(e) for some e ∈ {0, 1}∗, and hence u = vk (Ne). Hence S ⊢ u in contradiction to the premise
of the lemma.

Case 8: “u = vk(N) with N ∈ NP ”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 9: “u = sk(N)”.
Say a subterm sk(N) occurs free in some term t′ if an occurrence of sk(N) in t′ is not the
first argument of a sig-constructor in t′. Since C is not of the form sig(�, ·, ·), we have that u
occurs free in u′. However, by protocol condition 7, Πc only sends a free sk(N) if Simf first
sends one. And by construction of τ , Simf sends a free sk(N) only if sk(N) was given as an
argument to a call to β. And sk(N) is given as an argument to β only if it is sent by Πc.
Hence Simf cannot have sent u′ in contradiction to the premise of the lemma.

Case 10: “u = pair (u1, u2)”.
Since S 0 u, we have S 0 ui for some i ∈ {1, 2}. Hence by induction hypothesis, there exists
a subterm tbad of ui and a context D satisfying the conclusion of the lemma for ui. Then tbad
and D′ = pair (D, u2) or D′ = pair (u1,D) satisfy the conclusion of the lemma for u.

Case 11: “u = stringi(u1) with i ∈ {0, 1} or u = empty”.
Then, since u ∈ T, u contains only the constructors string0, string1, empty . Hence S ⊢ u in
contradiction to the premise of the lemma.

Case 12: “u ∈ NP ”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 13: “u ∈ NE”.
Then S 0 u in contradiction to the premise of the lemma.

Case 14: “u = E(u1, u2, N) with N ∈ NP ”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 15: “u = E(u1, u2, u3) with S 0 u1 and u3 /∈ NP ”.
By protocol condition 1, the third argument of an E-computation node is a N -computation
node with N ∈ NP . Hence u is not honestly generated. Hence it was produced by an
invocation τ(c) for some c ∈ {0, 1}∗, and hence u = E(ek (N), u2, N

c) for some N ∈ NP . Since
S 0 u1, by induction hypothesis, there exists a subterm tbad of u1 = ek (N) and a context D
satisfying the conclusion of the lemma for ek(N). Then tbad and D′ = E(D, u2, N

c) satisfy
the conclusion of the lemma for u.

Case 16: “u = E(u1, u2, u3) with S ⊢ u1 and u3 /∈ NP ”.
Analogous to the previous case, u = E(ek (N), u2, N

c) for some N ∈ NP . From S ⊢ u1,
S ⊢ N c, and S 0 u we have S 0 u2. Hence by induction hyposthesis, there exists a subterm tbad
of u2 and a context D satisfying the conclusion of the lemma for u2. Then tbad and D′ =
E(ek(N),D, N c) satisfy the conclusion of the lemma for u.

Case 17: “u = sig(u1, u2, N) with N ∈ NP ”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 18: “u = sig(sk (N), u2, u3) with u3 /∈ NP and N ∈ NP ”.
Since u ∈ T we have u3 ∈ N, hence u3 ∈ NE . The conclusion of the lemma is fulfilled with
D := � and tbad := u.
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Case 19: “u = sig(u1, u2, u3) with S ⊢ u1 and u3 /∈ NP and u1 is not of the form sk (N) with
N ∈ NP ”.
By protocol condition 1, the third argument of an E-computation node is an N -computation
node with N ∈ NP . Hence u is not honestly generated. Hence it was produced by an
invocation τ(s) for some s ∈ {0, 1}∗, and hence u = sig(sk(N), u2, N

s) for some N ∈ N.
Since u1 is not of the form sk(N) with N ∈ NP , we have N ∈ NE . From S ⊢ u1, S ⊢ N c,
and S 0 u we have S 0 u2. Hence by induction hyposthesis, there exists a subterm tbad
of u2 and a context D satisfying the conclusion of the lemma for u2. Then Then tbad and
D′ = sig(sk(N),D, Ns) satisfy the conclusion of the lemma for u.

Case 20: “u = sig(u1, u2, N) with S 0 u1 and u3 /∈ NP ”.
As in the previous case, u = sig(sk (N), u2, N

s) for some N ∈ N. Since S 0 u1, N /∈ NE .
Hence N ∈ NP . Thus conclusion of the lemma is fulfilled with D := � and tbad := u.

�

Lemma 6 For any (direct or recursive) invocation of β(t) performed by Simf , we have that S ⊢ t
where S is the set of all terms sent by Πc to Simf up to that point.

Proof. We perform an induction on the point in time at which β(t) has been invoked. Thus,
assume that Lemma 6 holds for all invocations before the current invocation β(t). We distinguish
two cases: In the first case, β(t) is directly invoked by the simulator Simf (not through a recursive
invocation). In this case, t is a message the simulator received from the protocol, hence t ∈ S
and thus S ⊢ t.

In the second case, β(t) has not been directly invoked by Simf . Instead, β(t) has been invoked
as a subroutine from a call β(t′) for some term t′. By definition of β, this leaves the following
cases for t′:

t′ = E(t, u, M) or t′ = E(ek(Ne), t, M) or t′ = sig(sk(N), t, M) or t′ = pair (t, u) or t′ =
pair (u, t) or t′ = string0 (t) or t′ = string1 (t). Here N, M ∈ N , u ∈ T, and e ∈ {0, 1}∗.

(At the first glance it might seem that we are missing the case t′ = E(ek(N), t, M) with
N, M ∈ N here. However, in this case β(t) is not invoked by β(t′) because the simulator Simf

uses the plaintext 0|ℓ(t)| instead of β(t).)
In all cases except t′ = E(ek (Ne), t, M), from the definition of ⊢ and the fact that S ⊢ t′, we

have that S ⊢ t. Hence Lemma 6 holds in those cases.
In the case t′ = E(ek(Ne), t, M), we have that S ⊢ Ne since Ne ∈ NE, hence S ⊢ sk(Ne)

and thus S ⊢ t. This shows Lemma 6 in the remaining case. � �

Lemma 7 Simf is DY for M and Π.

Proof. Let a1, . . . , an be terms sent by the protocol to Simf . Let u1, . . . , un be the terms sent
by Simf to the protocol. Let Si := {a1, . . . , ai}. If Simf is not DY, then with non-negligible
probability there exists an i such that Si 0 ui. Fix the smallest such i0 and set S := Si0 and
u := ui0 . By Lemma 5 (with u′ := u and C := �), we have that there is a term tbad and a context
D obeying the grammar given in Lemma 5 and such that u = D[tbad ] and such that S 0 tbad and
such that one of the following holds: (a) tbad ∈ NP , or (b) tbad = E(p, m, N) with N ∈ NP , or
(c) tbad = sig(k, m, N) with N ∈ NP , or (d) tbad = sig(sk(N), m, M) with N ∈ NP , M ∈ NE or
(e) tbad = ek(N) with N ∈ NP , or (f) tbad = vk(N) with N ∈ NP .

By construction of the simulator, if the simulator outputs u, we know that the simulated
adversary E has produced a bitstring m such that τ(m) = u = D[tbad ]. By definition of τ , during
the computation of τ(m), some recursive invocation of τ has returned tbad . Hence the simulator
has computed a bitstring mbad with τ(mbad ) = tbad .

We are left to show that such a bitstring mbad can be found only with negligible probability.
We distinguish the possible values for tbad (as listed in Lemma 5):
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Case 1: “tbad = N ∈ NP ”.
By definition of β and using the fact that Simf uses the signing and encryption oracle for
all invocations of β except β(N) that involve rN (such as β(dk(N))), we have that Simf

accesses rN only when computing β(N) and in τ . Since S 0 tbad = N , by Lemma 6 we have
that β(N) is never invoked, thus rN is never accessed through β. In τ , rN is only used in
comparisons. More precisely, τ(r) checks for all N ∈ N whether r = rN . Such checks do not
help in guessing rN since when such a check succeeds, rN has already been guessed. Thus the
probability that mbad = rN occurs as input of τ is negligible.

Case 2: “tbad = E(p, m, N) with N ∈ NP ”.
Then τ(mbad ) returns tbad only if mbad was the output of an invocation of β(E(p, m, N)) =
β(tbad). But by Lemma 6, β(tbad) is never invoked, so this case does not occur.

Case 3: “tbad = sig(k, m, N) with N ∈ NP ”.
Then τ(mbad ) returns tbad only if mbad was the output of an invocation of β(sig(k, m, N)) =
β(tbad). But by Lemma 6, β(tbad) is never invoked, so this case does not occur.

Case 4: “tbad = sig(sk(N), m, M) with N ∈ NP , M ∈ NE”.
Then τ(mbad ) returns tbad only if mbad was not the output of an invocation of β. In particular,
mbad was not produced by the signing oracle. Furthermore, τ(mbad ) returns tbad only if
mbad is a valid signature with respect to the verification key vkN . Hence mbad is a valid
signature that was not produced by the signing oracle. Such a bitstring mbad can only be
produced with negligible probability by E because of the strong existential unforgeability of
(SKeyGen, Sig, Verify) (implementation condition 20).

Case 5: “tbad = ek(N) with N ∈ NP ”.
Then by Lemma 6, β(ek (N)) is never computed and hence ekN never requested from the
encryption oracle. Furthermore, from protocol conditions 5 and 2, we have that no term
sent by Πc contains dk (N), and all occurrences of N in terms sent by Πc are of the form
ek(N). Thus S 0 dk (N). Hence by Lemma 6, β(dk (N)) is never computed and dkN is never
requested from the encryption oracle. Furthermore, since S 0 ek (N), for all terms of the
form t = E(ek(N), . . . , . . . ), we have that S 0 t. Thus β(t) is never computed and hence
no encryption using ekN is ever requested from the encryption oracle. However, decryption
queries with respect to dkN may still be sent to the encryption oracle. Yet, by implementation
condition 11, these will always fail unless the ciphertext to be decrypted already satisfies
Aekof (m) = ekN , i.e., if ekN has already been guessed. Hence the probability that ekN = mbad

occurs as input of τ is negligible.

Case 6: “tbad = vk(N) with N ∈ NP ”.
Then by Lemma 6, β(vk (N)) is never computed and hence vkN is never requested from
the signing oracle. Furthermore, since S 0 vk(N), we also have S 0 sk(N) and S 0 t for
t = sig(sk (N), . . . , . . . ). Thus β(sk (N)) and β(t) never computed and hence neither skN nor
a signature with respect to skN is requested from the signing oracle. Hence the probability
that vkN = mbad occurs as output of τ is negligible.

Summarizing, we have shown that if the simulator Simf is not DY, then with non-negligible
probability Simf performs the computation τ(mbad ), but mbad can only occur with negligible
probability as an argument of τ . Hence we have a contradiction to the assumption that Simf is
not DY. �

Theorem 2 The implementation A (satisfying the implementation conditions given on page 16)
is a computationally sound implementation of the symbolic model M (defined on page 14) for the
class of key-safe protocols.
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Proof. By Lemma 7, Simf is DY for key-safe protocols. Whether a full trace satisfies the
conditions from Definition 14 can be efficiently verified (since ⊢ is efficiently decidable). Hence
Lemma 3 implies that Sim is DY for key-safe protocol, too. By Lemma 4, Sim is indistinguishable.
Hence Sim is a good simulator for M, key-safe Π, A, and polynomials p. By Theorem 1, the
computational soundness of A for key-safe protocols follows. �

4 Computational soundness of the applied π-calculus

In this section we show how to use CoSP to establish the first computational soundness result for
the full-fledged applied π-calculus, including arbitrary equational theories, under active attacks.
We consider the process calculus proposed in [BAF08] additionally augmented with events; the
calculus in [BAF08] itself is a combination of the original applied π-calculus [AF01] with one
of its dialects [Bla04]. This combination offers the richness of the original applied π-calculus
while additionally being accessible to state-of-the-art verification tools such as ProVerif [Bla01];
in particular, we allow arbitrary equational theories. Our result hence yields computational
soundness guarantees for ProVerif.

We first syntactically embed the applied π-calculus into CoSP. This embedding is particu-
larly instructive because the applied π-calculus differs significantly from CoSP, e.g., the applied
π-calculus models secrecy of nonces via restrictions, it does not rely on a labeled transition sys-
tem, but it considers an equational theory. We then show that computational soundness of the
embedding entails computational soundness of the applied π-calculus (in the sense of preservation
of trace properties). Second, we provide a computational implementation of the embedding, and
we prove it sound within CoSP.

4.1 Overview of this section

We first give a brief overview over the steps in our proof. This overview can be seen as a general
guideline on how to embed other calculi into CoSP, and how to derive computational soundness
guarantees for them.

First, we fix an (arbitrary) set of constructors and destructors for the applied π-calculus, as
well as a computational implementation for these. These give rise to a symbolic model M and
a computational implementation A in the sense of the CoSP framework. In the following, we
assume that A is in fact a computationally sound implementation of M.

Then we define a computational semantics of the applied π-calculus, called the computational
π-execution, as well as trace properties in the applied π-calculus, called π-trace properties. This is
only necessary since the applied π-calculus does not come with its own computational semantics;
for calculi that already come with natural semantics for the computational case, this step is not
necessary.

Then we define an alternative symbolic semantics of applied π-calculus, called the symbolic
π-execution. The symbolic execution has the property that it is an exact analogue of the computa-
tional π-execution. That is, whenever the computational π-execution performs a certain operation
on bitstrings (e.g., encrypting them or sending them to the symbolic adversary), the symbolic
π-execution performs the analog symbolic operation on terms (e.g., applying the encryption-
constructor or sending the terms to the symbolic adversary). We prove that the symbolic π-
execution is equivalent to the original semantics of the applied π-calculus in the following sense:
If a trace property is fulfilled in the original semantics, then it is also fulfilled in the symbolic
π-execution.

Since the symbolic π-execution and the computational π-execution are exact analogues to
each other, we can use the CoSP framework to prove computational soundness for the symbolic
π-execution: We can express the symbolic execution of a process P0 as a CoSP protocol ΠP0 . The
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M, N ::= terms

x, y, z variables

a, b, c names

f(M1, . . . , Mn) constructor application

D ::= destructor terms

M terms

d(D1, . . . , Dn) destructor application

f(D1, . . . , Dn) constructor application

P, Q ::= processes

M̄〈N〉.P output

M(x).P input

0 nil

P | Q parallel composition

!P replication

νa.P restriction

let x = D let

in P else Q

event(e).P event

Figure 3: Syntax of the applied π-calculus.

traces of the symbolic execution of ΠP0 are the same as the traces in the symbolic π-execution.
Furthermore, since the computational π-execution results from replacing all symbolic operations
in the symbolic π-execution by the corresponding computational operations, the computational
execution of ΠP0 has the same traces as the computational π-execution.

Since A is a computationally sound implementation, we have that all trace properties that
hold for the symbolic execution of ΠP0 also hold for the computational execution of ΠP0 . Thus
all trace properties that hold for the symbolic π-execution also hold for the computational π-
execution. Altogether, then, we have that all trace properties that hold in the original semantics
of the applied π-calculus also hold in the computational π-execution. In other words, we have
computational soundness of the applied π-calculus.

4.2 Review of the calculus’ syntax and semantics

The syntax of the process calculus that we consider is provided in Figure 3. (We do not explicitly
include an if-statement, but instead emulate it using destructor applications, see below.) Techni-
cally, it corresponds to the one considered in [BAF08], except that we add processes of the form
event(e).P for a string e. The intuitive meaning of such a process is that it raises an event e
and then proceeds to execute P . For brevity, in the following we call that variant of the applied
π-calculus simply the applied π-calculus.

In the following, we often call terms in the applied π-calculus π-terms and terms in CoSP, i.e.,
in the sense of Section 2.2, CoSP-terms, in order to avoid ambiguities. We proceed similarly for
other homonyms, such as π-constructors, π-traces, etc. The set of ground π-terms is denoted Tπ.
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By fn(P ) we denote the set of free names of P , i.e., the names n not protected by a restriction.
By fv(P ) we denote the free variables of P , i.e., the variables that are not protected by a let or
an input. We call a process closed if it has no free variables (but it may have free names).

The applied calculus is parametrized over a (possibly infinite) set of π-constructors Cπ, a (pos-
sibly infinite) set of π-destructors Dπ (such as the constructors and destructors from Section 3),
and an arbitrary equivalence relation ≈ over ground π-terms (describing, e.g., cancellations of
certain terms). We call ≈ the equational theory. A destructor d of arity n is a partial func-
tion T n

π → Tπ. We require that the equational theory is compatible with the π-destructors and
π-constructors in the following sense: For all π-constructors f and π-destructors d of arity n,
for all ground π-terms M1, . . . , Mn, M ′

1, . . . , M
′
n with Mi ≈ M ′

i for i = 1, . . . , n, we have that
f(M) ≈ f(M ′), that d(M) = ⊥ iff d(M ′) = ⊥, and that d(M) ≈ d(M ′). We also require
d(Mτ) = d(M)τ for any renaming τ of names.

We did not explicitly include an if-statement in the syntax of the applied π-calculus since
such a statement can be expressed using an additional destructor equals : Let equals(x, y) = x
for x ≈ y and define if M = N then P else Q as let x = equals(M, N) in P else Q for some
x /∈ fv (P ). In the following, we will assume equals ∈ Dπ. Furthermore, we write let x = D in P
for let x = D in P else 0 and analogously for if .

Given a ground destructor π-term D, we can evaluate it to a ground π-term evalπ(D) by evalu-
ating all π-destructors. If one of the π-destructors returns ⊥, we set evalπ(D) := ⊥. Analogously,

we define evalCoSP(D) for terms D involving CoSP-destructors, -constructors, and -nonces.
The semantics of the applied π-calculus is standard and corresponds to the one defined in

[BAF08] except for the addition of events. The semantics hence consists of two possible transi-

tions: → and
e
→. The latter denotes that the event e occurred, and we can define trace properties

as properties over the sequence of events occurring in an execution of a process. Again, we prefix
some notions with π to distinguish them from their corresponding notions in Section 2.2. The
semantics is formally defined in Figure 4.

Definition 17 (π-trace properties) A list of strings e1, . . . , en is an event trace of P if there

is a process Q that does not contain events such that P | Q →∗ e1→→∗ e2→→∗ · · · →∗ en→. A π-trace
property is an efficiently decidable and prefix-closed set of strings. A process P symbolically
satisfies a π-trace property ℘ if we have e ∈ ℘ for all event traces e of P .

4.3 Defining a computational execution

A computational π-implementation assigns a partial deterministic polynomial-time algorithm
Aπ

f to each π-constructor f , and a partial deterministic polynomial-time algorithm Aπ
d to each

π-destructor d. We also fix an efficiently sampleable set Noncesk depending on a security pa-
rameter k. We require that Aπ

equals(1
k, x, x) = x and Aπ

equals(1
k, x, y) = ⊥ for x 6= y (i.e., the

computational interpretation of ≈ is the equality of bitstrings). Given an assignment µ from
names to bitstrings and an assignment η from variables to bitstrings for names and variables
occurring in a destructor term D, we can (computationally) evaluate D to a bitstring cevalη,µ D.
(Formally, the security parameter k is an additional input to ceval, but we omit k for readability.)
We set cevalη,µ D := ⊥ if the application of one of the algorithms Aπ

f or Aπ
d fails.

Given a computational implementation of the constructors and destructors, the computational
execution of a process P is already determined, except for the question how to model nondeter-
minism and which messages the adversary is allowed to observe. To resolve the nondeterminism
in the applied π-calculus, we let the adversary have total control over the scheduling. This is a
worst-case assumption and thus leads to the strongest result. An alternative would, e.g., be a
scheduling that uniformly chooses between different execution paths. Furthermore, we have to
reflect that the applied π-calculus allows the adversary to receive messages on any channel in his
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P | 0 ≡ P P ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

P ≡ Q Q ≡ R

P ≡ R νa.νb.P ≡ νb.νa.P

P ≡ Q

P | R ≡ Q | R

a /∈ fn(P )

νa.(P | Q) ≡ P | νa.Q

P ≡ Q

νa.P ≡ νa.Q

N ≈ N ′

N〈M〉.Q | N ′(x).P → Q | P{M/x}

evalπ D 6= ⊥

let x = D in P else Q→ P{evalπ D/x}

evalπ D = ⊥

let x = D in P else Q→ Q !P → P |!P

P → Q

P | R→ Q | R νa.P → νa.Q

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

event(e).P
e
→ P

P
e
→ Q

P | R
e
→ Q | R νa.P

e
→ νa.Q

P ′ ≡ P P
e
→ Q Q ≡ Q′

P ′ e
→ Q′

Figure 4: Semantics of the applied π-calculus with events.

knowledge. For this, we allow the adversary to request a message on a channel if he can produce
the bitstring corresponding to the channel’s name.

The computational implementation of a process is then defined using evaluation contexts: An
evaluation context is a context with either one hole, or with two (distinguished) holes where each
hole occurs only once and is located only below parallel compositions.6 In the case of two holes,
we write E[P ][Q] to denote the replacement of the first hole by P and of the second hole by Q.

The computational π-execution of a process is now defined as an interactive machine that exe-
cutes the process and communicates with an adversary. The computational π-execution maintains
a process P representing the current process, an environment η storing the bitstrings assigned to
the free variables in P , and an interpretation µ of the free names in P as bitstrings.

Definition 18 (Computational π-execution) Let P0 be a closed process, and let C be an
interactive machine called the adversary. We define the computational π-execution as an inter-
active machine ExecP0(1

k) that takes a security parameter k as argument and interacts with C:

• Start: Let P := P0 (where we rename all bound variables and names such that they are
pairwise distinct and distinct from all unbound ones). Let η be a totally undefined partial
function mapping variables to bitstrings, let µ be a totally undefined partial function mapping

6Traditionally, one considers evaluation contexts where the hole may also be protected by a restriction. However,
computationally the evaluation of a restriction has to be considered a proper reduction step (it corresponds to
choosing a nonce).
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m ∈ S

S ⊢ m

N ∈ NE

S ⊢ N

S ⊢M f ∈ C \N

S ⊢ f(M)

S ⊢M d ∈ D d(M) 6= ⊥

S ⊢ d(M)

Figure 5: Deduction rules for the symbolic model of the applied π-calculus

names to bitstrings. Let a1, . . . , an denote the free names in P0. For each i, pick ri ∈ Noncesk

at random. Set µ := µ(a1 := r1, . . . , an := rn). Send (r1, . . . , rn) to C.7

• Main loop: Send P to the adversary and expect an evaluation context E from the adversary.
Distinguish the following cases:

– P = E[M(x).P1]: Request two bitstrings c, m from the adversary. If c = cevalη,µ(M), set
η := η(x := m) and P := E[P1].

– P = E[νa.P1]: Pick r ∈ Noncesk at random, set P := E[P1] and µ := µ(a := r).

– P = E[M1〈N〉.P1][M2(x).P2]: If cevalη,µ(M1) = cevalη,µ(M2) then set P := E[P1][P2] and
η := η(x := cevalη,µ(N)).

– P = E[let x = D in P1 else P2]: If m := cevalη,µ(D) 6= ⊥, set η := η(x := m) and
P := E[P1]. Otherwise set P := E[P2].

– P = E[event(e).P1]: Let P := E[P1] and raise the event e.

– P = E[!P1]: Rename all bound variables of P1 such that they are pairwise distinct and
distinct from all variables and names in P and in the domains of η and µ, yielding a
process P̃1. Set P := E[P̃1 |!P1].

– P = E[M〈N〉.P1]: Request a bitstring c from the adversary. If c = cevalη,µ(M), set
P := E[P1] and send cevalη,µ(N) to the adversary.

– In all other cases, do nothing.

The execution of ExecP0(1
k) maintains the invariant that all bound variables and names in

P are pairwise distinct and that they are distinct from all variables and names in P and in the
domains of η and µ. For a given polynomial-time interactive machine C, a closed process P0, and
a polynomial p, we let EventsC,P0,p(k) the list of events e raised within the first p(k) computation
steps (jointly counted for C(1k) and ExecP0(1

k)).
We finally define the computational fulfillment of π-trace properties.

Definition 19 (Computational π-trace properties) Let P0 be a closed process, and p a poly-
nomial. We say that P0 computationally satisfies a π-trace property ℘ if for all polynomial-time
interactive machines C and all polynomials p, we have that Pr[EventsC,P0,p(1

k) ∈ ℘] is over-
whelming in k.

4.4 Computational soundness of the calculus

We will now derive the computational soundness of the applied π-calculus, i.e., we will show
that if its computational implementation is computationally sound in the sense of Definition 11,
then every symbolically satisfied π-trace property is also computationally satisfied. Applying

7In the applied π-calculus, free names occurring in the initial process represent nonces that are honestly chosen
but known to the attacker.
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P symb. satisfies ℘ SExecP0 satisfies ℘ ΠP0 symb. satisfies events−1(℘)

P comp. satisfies ℘ (ΠP0 , A) comp. satisfies events−1(℘)

Lemma 10 Lemma 8

Lemma 8

Lemma 9
A computationally sound

Figure 6: Overview of the proof of Theorem 3.

Definition 11 first requires us to specify a symbolic model of the applied π-calculus (in the sense
of Definition 3) and a computational implementation of this model (in the sense of Definition 8).

The symbolic model of the applied π-calculus contains all the π-constructors and π-destructors
from the applied π-calculus. We additionally add an infinite number of adversary nonces NE and
protocol nonces NP to represent names. The deduction relation allows the adversary to derive
all adversary nonces and everything derivable by application of constructors and destructors.

Definition 20 (Symbolic model of the applied π-calculus) For a π-destructor d, we de-
fine d′ by d′(t) := d(tρ)ρ−1 where ρ is any injective map from the nonces occurring in the CoSP-
terms t to names.8 Let NE and NP be countably infinite sets.

The symbolic model of the applied π-calculus is given by M = (C,N,T,D,⊢), where N :=
NE ∪NP , C := Cπ, D := {d′ : d ∈ Dπ}, and where T consists of all terms over C and N,9 and
where ⊢ is defined by the rules in Figure 5.

In the following, we fix M,C,N,D,⊢ as in Definition 20. The destructor equals ′ induces an
equivalence relation ∼= on the set of CoSP-terms with x ∼= y iff equals ′(x, y) 6= ⊥. The relation
∼= is the analogue to the equivalence relation ≈ describing the equational theory of the applied
π-calculus.

The computational implementation of this symbolic model is now specified by the computa-
tional π-implementations Af and Ad of the π-constructors and π-destructors, with nonces being
chosen uniformly at random.

Definition 21 (Computational implementation of Def. 20) The computational imple-
mentation A of the symbolic model M of the applied π-calculus is given by Af := Aπ

f for all
f ∈ C and Ad := Aπ

d for all d ∈ D. AN for N ∈ N picks r ∈ Noncesk uniformly at random and
returns r.

In order to relate the symbolic and the computational semantics of a process, we define an
additional symbolic execution for closed processes as a technical tool. This new semantics consti-
tutes a safe approximation of the original semantics of the applied π-calculus while at the same
time being a direct analogue of the computational semantics presented in Definition 18. The se-
mantics is defined by means of an interactive nondeterministic machine SExecP0 , analogous to the
machine ExecP0 from Definition 18. Intuitively, the only difference between ExecP0 and SExecP0

is that the latter operates immediately on terms whenever the former operates on computational
implementations of these terms.

In the following definition, note that for π-terms M , we have that evalCoSP Mηµ = Mηµ (this

does not hold for destructor terms D). In these cases, we write the redundant evalCoSP anyway
to emphasis the analogy to Definition 18.

8This is well-defined and independent of ρ since for any renaming of names τ , we have d(Mτ) = d(M)τ ;
intuitively d′ behaves as d except that it uses nonces instead of names.

9One can get a model with such a message type T using, e.g., Lemma 1.
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Definition 22 (Symbolic execution of a π-process) Let P0 be a closed process, and let C be
an interactive machine called the adversary. We define the symbolic π-execution as an interactive
machine SExecP0 that interacts with C:

• Start: Let P := P0 (where we rename all bound variables and names such that they are
pairwise distinct and distinct from all unbound ones). Let η be a totally undefined partial
function mapping variables to terms, let µ be a totally undefined partial function mapping
names to terms. Let a1, . . . , an denote the free names in P0. For each i, choose a different

ri ∈ NPri ∈ NPri ∈ NP Set µ := µ(a1 := r1, . . . , an := rn). Send (r1, . . . , rn) to C.

• Main loop: Send P to the adversary and expect an evaluation context E from the adversary.
Distinguish the following cases:

– P = E[M(x).P1]: Request two CoSP-termsCoSP-termsCoSP-terms c, m from the adversary. If c ∼= evalCoSP(Mηµ)c ∼= evalCoSP(Mηµ)c ∼= evalCoSP(Mηµ),
set η := η(x := m) and P := E[P1].

– P = E[νa.P1]: Choose r ∈ NP \ rangeµr ∈ NP \ rangeµr ∈ NP \ rangeµ, set P := E[P1] and µ := µ(a := r).

– P = E[M1〈N〉.P1][M2(x).P2]: If evalCoSP(M1)ηµ ∼= evalCoSP(M2ηµ)evalCoSP(M1)ηµ ∼= evalCoSP(M2ηµ)evalCoSP(M1)ηµ ∼= evalCoSP(M2ηµ) then set P :=

E[P1][P2] and η := η(x := evalCoSP(Nηµ)evalCoSP(Nηµ)evalCoSP(Nηµ)).

– P = E[let x = D in P1 else P2]: If m := evalCoSP(Dηµ)evalCoSP(Dηµ)evalCoSP(Dηµ) 6= ⊥, set η := η(x := m) and
P := E[P1]. Otherwise set P := E[P2].

– P = E[event(e).P1]: Let P := E[P1] and raise the event e.

– P = E[!P1]: Rename all bound variables of P1 such that they are pairwise distinct and
distinct from all variables and names in P and in the domains of η and µ, yielding a
process P̃1. Set P := E[P̃1 |!P1].

– P = E[M〈N〉.P1]: Request a CoSP-termCoSP-termCoSP-term c from the adversary. If c ∼= evalCoSP(Mηµ)c ∼= evalCoSP(Mηµ)c ∼= evalCoSP(Mηµ), set

P := E[P1] and send evalCoSP(Nηµ)evalCoSP(Nηµ)evalCoSP(Nηµ) to the adversary.

– In all other cases, do nothing.

The only differences between Definition 18 and Definition 22 are that the latter operates on
CoSP-terms instead of bitstrings, it computes evalCoSP Xηµ instead of cevalη,µ X , it compares
CoSP-terms using ∼= instead of checking for equality of bitstrings, and it chooses a fresh CoSP-
nonce r ∈ NP instead of choosing a random bitstring r as value for a restricted name.

The interactive machine SExecP0 performs only the following operations on CoSP-terms: Ap-
plying CoSP-constructors (this includes nonces) and CoSP-destructors, comparing using∼= (which
can be realized by an application of the destructor equals ′), and sending and receiving terms.
Hence this interactive machine can be realized as a CoSP protocol in the sense of Definition 4:
The state of the machine SExecP0 is used as a node identifier. However, CoSP-terms are not en-
coded directly into the node identifier; instead, the node in which they were created (or received)
is referenced instead.10 This is due to the fact that a CoSP protocol allows to treat CoSP-terms
only as black boxes. Note that the process P and the π-terms occurring within P will be encoded
in the node identifier (encoded as bitstrings). Operations on CoSP-terms can then be performed
by using constructor and destructor nodes, and the input and output of CoSP-terms is handled
using input/output nodes. Sending P to the adversary and receiving E is realized using control
nodes (assuming a suitable encoding of terms as bitstrings). If an event e is raised, we model
this by sending (event , e) to the adversary using a control node with one successor. We call
these nodes event nodes, and given a sequence of nodes ν, by events(ν) we denote the events e
raised by the event nodes in ν. We call the resulting protocol ΠP0 . Since ΠP0 does not contain
nondeterministic nodes, it is a CoSP protocol and a probabilistic protocol simultaneously.

Definition 23 A nondeterministic interactive machine C is a Dolev-Yao adversary if the fol-

10For technical reasons, we do not reference the nodes by their identifiers, but instead by their indexes in the
path from the root to the referring node. Otherwise, the size of node identifiers would grow exponentially.
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lowing holds in an interaction with any interactive machine M in each step of the interaction:
Let S be the set of all CoSP-terms sent by M up to the current step. Let m be the term sent by
C in the current step. Then S ⊢ m.

SExecP0 satisfies a π-trace property ℘ if in a finite interaction with any Dolev-Yao adversary,
the sequence of events raised by SExecP0 is contained in ℘.

Before we finally state and prove the soundness of the applied π-calculus, we provide three
lemmas that are used to relate P0, SExecP0 , ΠP0 , and the computational implementation A, and
to assert the efficiency of the protocol ΠP0 . Figure 6 illustrates the use of these lemmas in the
overall proof.

Lemma 8 Let ℘ be a trace property. Then SExecP0 satisfies ℘ iff ΠP0 symbolically satisfies
events−1(℘) (in the sense of Definition 10). Moreover, P0 computationally satisfies ℘ iff (ΠP0 , A)
computationally satisfies events−1(℘) (in the sense of Definition 10).

Proof. The symbolic case is immediate from the construction of ΠP0 . For the computational
case, note the fact that the computational implementation of P0 is defined like the symbolic one,
except that it uses the implementations of the CoSP-constructors and CoSP-destructors instead
of the operating on abstractly on terms (and the implementation of equals uses the identity on
bitstrings). �

Lemma 9 The probabilistic CoSP protocol ΠP0 is efficient.

Proof. By construction, there are efficient algorithms for computing the labels and successors of
a node given its node identifier. It is left to show that the length of the node identifier of a node
p is polynomial in the length of the path leading to that node. This is equivalent to showing that
the state of SExecP0 is of polynomial-length (when not counting the length of the representations
of the CoSP-terms). For the variables η and µ, this is immediately satisfied because they grow
by at most one entry in each activation of SExecP0 . To show that the length of P is polynomially
bounded, note the following facts: In each activation of SExecP0 , P either gets smaller, or we
have P = E[!P1] and P grows by the size of P1. If P = E[!P1], then !P1 is also a subterm of P0

(up to renaming of names and variables). Hence in each activation, P grows at most by the size
of P0. Thus the size of P is linear in the number of activations of SExecP0 . �

Lemma 10 If a closed process P0 symbolically satisfies a π-trace property ℘, then SExecP0 sat-
isfies ℘.

Proof. To show this lemma, it is sufficient to show that if SExecP0 raises events e1, . . . , en, then
e is an event π-trace of P0. Hence, for the following we fix an execution of SExecP0 in interaction
with a Dolev-Yao adversary E in which SExecP0 raises the events e1, . . . , en. We then prove the

lemma by constructing a process Q̃ (that does not raise events) such that Q̃ | P0 →∗ e1→→∗ e2→→∗

· · · →∗ en→→∗.
For a given iteration of the main loop of SExecP0 , let P, η, µ denote the corresponding variables

from the state of SExecP0 at the beginning of that iteration. Let E denote the evaluation context
chosen in that iteration. Let n be the domain of µ without the names r1, . . . , rn sent in the
message (r1, . . . , rn) in the very beginning of the execution of SExecP0 . P ′, η′, µ′, n′ are the
corresponding values after that iteration. Let fromadv be the list of terms received from the
adversary in that iteration, and toadv the list of terms sent to the adversary. By P̄0, η0, µ0, n0

we denote the corresponding values before the first iteration but after the sending of the message
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(r1, . . . , rn),11 and by P∗, η∗, µ∗, n∗ the values after the last iteration. We call a name or variable
used if it occurs in the domain of µ∗ or η∗, respectively. Note that µ0 = (a1 7→ r1, . . . , an 7→ rn)
where a are the free names in P0, but n0 = ∅. Note that P will never contain unused free
variables or names.

Let S denote the list of all CoSP-terms output by SExecP0 up to the current iteration. We
encode S = (s1, . . . , sn) as a substitution ϕ mapping xi 7→ si where xi are arbitrary unused
variables. We denote by S′, ϕ′ and S0, ϕ0 and S∗, ϕ∗ the values of S, ϕ after the current iteration,
before the first iteration (but after sending (r1, . . . , rn)), and after the last iteration, respectively.
Note that S0 = (r1, . . . , rn).

Let γ be an injective partial function that maps every N ∈ NE to an unused name, and every
N ∈ rangeµ∗ to µ−1

∗ (N). (This is possible because rangeµ∗ ⊆ NP and µ∗ is injective.) We
additionally require that all unused names are in rangeγ. (This is possible since both NE and
the set of unused names are countably infinite.)

Note that for any π-destructor d and any π-terms M with fv (M) ⊆ dom η and fn(M) ⊆ domµ,
we have that Mηµ are CoSP-terms and d′(Mηµ)γ = d(Mηµγ) (where d′ is as in Defini-
tion 20). Hence for a destructor term D with fv(D) ⊆ dom η and fn(D) ⊆ domµ, we have

evalCoSP(Dηµ)γ = evalπ(Dηµγ). Since aµγ = a for all names a ∈ domµ, Dηµγ = Dηγ. Since

evalCoSP(Dηµ) does not contain variables, evalCoSP(Dηµ) = evalCoSP(Dηµ)η. Thus for D with
fv (D) ⊆ dom η and fn(D) ⊆ domµ we have

evalCoSP(Dηµ)ηγ = evalπ(Dηγ) (2)

where the left hand side is defined iff the right hand side is.
Similarly to (2), if fv (D) ⊆ domϕ and fn(D) ⊆ dom γ−1, we have evalCoSP(Dϕγ−1)γ =

evalπ(Dϕγ). For a CoSP-term t with S ⊢ t, from the definition of ⊢ it follows that t =

evalCoSP(Dtϕγ−1) for some destructor π-term Dt containing only unused names and variables
in domϕ (note that every N ∈ NE can be expressed as aγ−1 for some unused a). Since all
unused names are in domγ−1, we have

tγ = evalCoSP(Dtϕγ−1)γ = evalπ(Dtϕγ). (3)

Given two CoSP-terms t ∼= u such that t and u only contain nonces N ∈ NE ∪ rangeµ∗, we
have that equals ′(t, u) 6= ⊥ by definition of ∼=. By definition of equals ′ (Definition 20) and using
that γ is injective and defined on NE ∪ rangeµ∗, we have equals ′(t, u) = equals(tγ, uγ)γ−1 and
hence equals(tγ, uγ) 6= ⊥. Hence, for t, u only containing nonces N ∈ NE ∪ rangeµ∗, we have

t ∼= u =⇒ tγ ≈ uγ (4)

We call a process Q valid for ϕ if it does not contain events, all its free names are unused
names, and all its free variables are in the domain of ϕ.

Claim: For all Q′ valid for ϕ′, there is a Q valid for ϕ such that νn.(Qϕγ|Pηγ)  

νn′.(Q′ϕ′γ|P ′η′γ). Here  denotes
e
→ if an event e is raised in the current iteration, and →∗

otherwise.
Assuming that we have shown this claim, it follows that for all Q∗ valid for ϕ∗, there is a Q0

valid for ϕ0 such that νn0.(Q0ϕ0γ|P̄0η0γ)→∗ e1→→∗ e2→→∗ · · · →∗ en→→∗ νn.(Q∗ϕ∗γ|P∗η∗γ). Since
η0 = ∅ and since P̄0 does not contain N ∈ N (being a π-term) and since P̄0 is a renaming of

P0, we have P̄0η0γ = P̄0γ = P̄0 ≡ P0. Then, with Q̃ := Q0ϕ0γ and using n0 = ∅ we have

Q̃ | P0 ≡ νn0.(Q0ϕ0γ|P̄0η0γ)→∗ e1→→∗ e2→→∗ · · · →∗ en→→∗. Since Q̃ does not contain events, this
implies that e is an event π-trace of P0. This shows the lemma.

It is left to prove the claim. We distinguish the following cases:

11We use the variable name P̄0 because P0 is already used for the input of SExecP0
. Note however that P̄0 ≡ P0.
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• P = E[M(x).P1] and fromadv = (c, m) and evalCoSP Mηµ ∼= c: Then P ′ = E[P1] and ϕ′ = ϕ
and n′ = n and η′ = η(x := m). Furthermore, since SExecP0 interacts with a Dolev-Yao
adversary, S ⊢ c, m. By Equation 3, there are destructor π-terms Dc, Dm containing only
unused names and variables in domϕ such that cγ = evalπ(Dcϕγ) and mγ = evalπ(Dmϕγ).
Since a Dolev-Yao adversary will never derive protocol nonces that have never been sent, we
have that only nonces N ∈ NE ∪ rangeµ occur in c and in Mηµ. Hence with (4), from

Mηµ = evalCoSP Mηµ ∼= c it follows that Mηγ = Mηµγ ≈ cγ.
Pick some y, z /∈ fv (Q′) ∪ domϕ′. Let Q := (let y = Dc in let z = Dm in y〈z〉.Q′). Then
Qϕγ →∗ cγ〈mγ〉.Q′ϕγ. Then

Qϕγ | Pηγ

= Qϕγ | (Eηγ)[Mηγ(x).P1ηγ]

→∗ cγ〈mγ〉.Q′ϕγ | (Eηγ)[Mηγ(x).P1ηγ]

→ Q′ϕγ | (Eηγ)[P1ηγ{mγ/x}].

Since we maintain the invariant that all bound variables in P are distinct from all other
variables in P or dom η, we have x /∈ fv (E) and x /∈ dom η. Hence Eηγ = Eη′γ and
P1ηγ = P1η{m/x}γ = P1η

′γ. Furthermore since ϕ = ϕ′ we have Q′ϕγ = Q′ϕ′γ. Thus
Q′ϕγ | (Eηγ)[P1ηγ{mγ/x}] = Q′ϕ′γ | (Eη′γ)[P1η

′γ] = Q′ϕ′γ | P ′η′γ. Thus Qϕγ | Pηγ →∗

Q′ϕ′γ | P ′η′γ and with n = n′ we have νn.(Qϕγ | Pηγ)→∗ νn′.(Q′ϕ′γ | P ′η′γ).
Since Q′ is valid and fv(Dc, Dm) ⊆ domϕ, we have that Q is valid.

• P = E[νa.P1]: Then P ′ = E[P1], ϕ′ = ϕ, η = η′, and n′ = n‖a for some r ∈ NP \rangeµ, and
µ′ = µ(a := r). Since a ∈ domµ′ ⊆ domµ∗, a is used. Since Q′ is valid for ϕ′, this implies
a /∈ fn(Q′). Set Q := Q′. Then Q is valid for ϕ = ϕ′. Since we maintain the invariant that
all bound names in P are pairwise distinct and distinct from all other names in P or domµ,
we have a /∈ fn(E) and a /∈ n. Furthermore, by the same invariant, we have a /∈ domµ. Note
that the execution of SExecP0 also maintains the following invariant: Any nonce N ∈ NP

occurring (as a subterm) in the range of η or ϕ is also in the range of µ. (This uses the
fact that the Dolev-Yao adversary cannot derive protocol nonces that have never been sent.)
Hence r ∈ NP \ rangeµ does not occur in the range of η or ϕ. Since µ∗(a) = r, γ(r) = a and
hence using the injectivity of γ, for N 6= r we have γ(N) 6= a. Thus for all variables x, xηγ
and xϕγ do not contain a, and hence a /∈ fn(Qϕγ) ∪ fn(Eηγ). Together with r /∈ n we get
νn.(Qϕγ | Pηγ) = νn.(Qϕγ | (Eηγ)[νa.P1ηγ]) ≡ νn.νa.(Qϕγ | (Eηγ)[P1ηγ]) = νn′.(Q′ϕ′γ |
(Eη′γ)[P1η

′γ]) = νn′.(Q′ϕ′γ | P ′η′γ).

• P = E[M1〈N〉.P1][M2(x).P2] with evalCoSP M1ηµ ∼= evalCoSP M2ηµ: Then P ′ = E[P1][P2]

and n′ = n and ϕ′ = ϕ and η′ = η(x := t) with t := evalCoSP Nηµ. Since we maintain the
invariant that all bound variables in P are distinct from all other variables in P or dom η, we
have x /∈ fv(E)∪ fv (P1) and x /∈ dom η. Hence Eηγ = Eη′γ and P1ηγ = P1η

′γ. Furthermore,
we have P2ηγ{Nηγ/x} = P2ηγ{Nηµγ/x} = P2η{Nηµ/x}γ = P2η{t/x}γ = P2η

′γ. Since a
Dolev-Yao adversary will never derive protocol nonces that have never been sent, we have that
only nonces N ∈ NE ∪ rangeµ∗ occur in M1ηµ and M2ηµ. With M1ηµ = evalCoSP M1ηµ ∼=
evalCoSP M2ηµ = M2ηµ and (4) we get M1ηγ = M1ηµγ ≈M2ηµγ = M2ηγ.
Hence with Q := Q′, we have

νn.(Qϕγ | Pηγ)

= νn.(Qϕγ | (Eηγ)[M1ηγ〈Nηγ〉.P1ηγ][M2ηγ(x).P2ηγ])

→ νn.(Qϕγ | (Eηγ)[P1ηγ][P2ηγ{Nηγ/x}])

= νn′.(Qϕ′γ | (Eη′γ)[P1η
′γ][P2η

′γ])

= νn′.(Q′ϕ′γ | P ′η′γ).
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Since Q′ is valid for ϕ′ = ϕ, Q = Q′ is valid for ϕ.

• P = E[let x = D in P1 else P2] and evalCoSP(Dηµ) = ⊥: Then P ′ = E[P2] and ϕ′ = ϕ, and
n′ = n and η′ = η. Set Q := Q′. Then Q is valid for ϕ = ϕ′. By (2), evalπ(Dηγ) = ⊥. Hence

νn.(Qϕγ | Pηγ)

= νn.(Qϕγ | (Eηγ)[let x = Dηγ in . . . else P2ηγ])

→ νn.(Qϕγ | (Eηγ)[P2ηγ])

= νn′.(Q′ϕ′γ | P ′η′γ).

• P = E[let x = D in P1 else P2] and evalCoSP(Dηµ) 6= ⊥: Then P ′ = E[P1] and ϕ′ = ϕ

and n′ = n and η′ = η(x := evalCoSP Dηµ). Set Q := Q′. Then Q is valid for ϕ = ϕ′.

By (2), t := evalπ(Dηγ) = evalCoSP(Dηµ)ηγ 6= ⊥. Since we maintain the invariant that all
bound variables in P are distinct from all other variables in P or dom η, we have x /∈ fv (E)
and x /∈ dom η. Hence Pηγ = (Eηγ)[let x = Dηγ in P1ηγ else . . . ] → (Eηγ)[P1ηγ{t/x}]).

Furthermore, P1ηγ{t/x} = P1ηγ{evalCoSP(Dηµ)ηγ/x} = P1{evalCoSP(Dηµ)/x}ηγ = P1η
′γ.

Since x /∈ fv (E), (Eηγ)[P1η
′γ] = E[P1]η

′γ = P ′η′γ. Hence Pηγ → P ′η′γ. Since Q = Q′,
ϕ = ϕ′, and n = n′, it follows that νn.(Qϕγ | Pηγ)→ νn′.(Q′ϕ′γ | P ′η′γ).

• P = E[event(e).P1]: Then P ′ = E[P1] and ϕ′ = ϕ and n′ = n and η′ = η and the event
e is raised. Let Q := Q′. Then Q is valid for ϕ. We have νn.(Qϕγ | Pηγ) = νn.(Qϕγ |

(Eηγ)[event(e).P1ηγ])
e
→ νn.(Qϕγ | (Eηγ)[P1ηγ]) = νn′.(Q′ϕ′γ | P ′η′γ).

• P = E[!P1]: Then P ′ = E[!P1 | P̃1] for some P̃1 ≡ P1 and ϕ′ = ϕ and n′ = n and η′ = η. Set
Q := Q′. Then Q is valid for ϕ = ϕ′. Hence

νn.(Qϕγ | Pηγ)

= νn.(Qϕγ | (Eηγ)[!P1ηγ])

→ νn.(Qϕγ | (Eηγ)[P1ηγ | !P1ηγ]

≡ νn.(Qϕγ | (Eηγ)[P̃1ηγ | !P1ηγ]

= νn′.(Q′ϕ′γ | P ′η′γ).

• P = E[M〈N〉.P1] with t′M := fromadv ∼= tM and toadv = tN where

tM := evalCoSP Mηµ and tN := evalCoSP Nηµ: Then P ′ = E[P1] and S′ = S‖tN and ϕ′ =
ϕ(xn+1 := tN ) where xn+1 /∈ domϕ is unused and n′ = n and η′ = η. Since t′M was sent
by the adversary, S ⊢ t′M . By (3), there is a destructor π-term DM containing only unused
names and variables in domϕ such that t′Mγ = evalπ(DMϕγ).
Since a Dolev-Yao adversary will never derive protocol nonces that have never been sent, we
have that only nonces N ∈ NE∪rangeµ occur in t′M and Mηµ. Hence with (4), from t′M

∼= tM
it follows that Mηγ = Mηµγ = tMγ ≈ t′Mγ.
Pick y /∈ fv (Q′) ∪ domϕ′. Let Q := (let y = DM in y(xn+1).Q

′). Then Qϕγ →
t′Mγ(xn+1).Q

′ϕγ. Then

Qϕγ | Pηγ = Qϕγ | (Eηγ)[Mηγ〈Nηγ〉.P1ηγ]

→ t′Mγ(xn+1).Q
′ϕγ | (Eηγ)[Mηγ〈Nηγ〉.P1ηγ]

→ Q′ϕγ{Nηγ/xn+1} | (Eηγ)[P1ηγ]

= Q′ϕ{Nηµ/xn+1}γ | P
′ηγ

Since xn+1 /∈ domϕ, Q′ϕ{Nηµ/xn+1}γ = Q′ϕ′γ. Hence Qϕγ | Pηγ →∗ Q′ϕ′γ | P ′ηγ =
Q′ϕ′γ | P ′η′γ. Since n = n′ we have νn.(Qϕγ | Pηγ)→∗ νn′.(Q′ϕ′γ | P ′η′γ).
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Since Q′ is valid, Q does not contain events, and its free names are unused names, and
fv(Q) ⊆ domϕ′ = domϕ ∪ {xn+1}. Since xn+1 is bound on top level in Q, xn+1 /∈ fv (Q),
thus fv (Q) ⊆ domϕ. Hence Q is valid.

• In all other cases we have P = P ′, ϕ = ϕ′, η = η′, and n = n′. Hence with Q := Q′, we have
νn.(Qϕγ | Pηγ) = νn′.(Q′ϕ′γ | P ′η′γ).

�

With these lemmas at hand, we are finally ready to state and prove the computational sound-
ness of the applied π-calculus as the main result of this section.

Theorem 3 (Comp. soundness in the applied π-calculus) Assume that the computational
implementation of the applied π-calculus (Definition 21) is a computationally sound implementa-
tion (in the sense of Definition 11) of the symbolic model of the applied π-calculus (Definition 20)
for a class P of protocols.

If a closed process P0 symbolically satisfies a π-trace property ℘, and ΠP0 ∈ P, then P0

computationally satisfies ℘.

Proof. Assume that P0 symbolically satisfies ℘. By Lemma 10, SExecP0 satisfies ℘. By Lemma 8,
ΠP0 symbolically satisfies events−1(℘). Furthermore, since ℘ is an efficiently decidable, prefix
closed set, so is events−1(℘). So events−1(℘) is a CoSP-trace property in the sense of Definition 10.
From Lemma 9 we have that ΠP0 is an efficient protocol. By assumption, the computational imple-
mentation A of the applied π-calculus is computationally sound; hence (ΠP0 , A) computationally
satisfies events−1(℘). Using Lemma 8, we obtain that P0 computationally satisfies ℘. �

4.5 Computationally sound encryption and signatures in the applied

π-calculus

Consider an instantiation of the applied π-calculus with the constructors and destructors de-
scribed in Section 3. Assume an implementation A of the constructors or destructors satisfying
the implementation conditions given on page 16 in Section 3.

We call a process P̃ key-safe if it has the following grammar: Let x, xd, ks stand for different
sets of variables (general purpose, decryption key, and signing key variables). Let a and r stand
for two sets of names (general purpose and randomness names). Then the allowed terms are

M̃, Ñ ::= x | a | pair (M̃, Ñ) | S̃ with S̃ ::= string0 (S̃) | string1 (S̃) | empty , the allowed

destructor terms are D̃ ::= M̃ | isek (D̃) | isenc(D̃) | D(xd, D̃) | fst(D̃) | snd(D̃) | ekof (D̃) |
equals(D̃, D̃) | isvk (D̃) | issig(D̃) | verify(D̃, D̃) | vkof (D̃) | unstring0 (D̃) | unstring1 (D̃). The
allowed processes are

P̃ , Q̃ ::= M̃〈Ñ 〉.P̃ | M̃(x).P̃ | 0 | (P̃ | Q̃) | !P̃ | νa.P̃ |

let x = D̃ in P̃ else Q̃ | event(e).P̃ |

νr.let x = ek(r) in let xd = dk(r) in P̃ |

νr.let x = E(isek (D̃1), D̃2, r) in P̃ else Q̃ |

νr.let x = vk(r) in let xs = sk(r) in P̃ |

νr.let x = sig(xs, D̃1, r) in P̃ else Q̃

(Note that in the last four production rules for key generation and for encryption, all occurrences
of r denote the same name.)

Theorem 4 If a closed key-safe process P0 symbolically satisfies a π-trace property ℘, then P0

computationally satisfies ℘.
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fun E/3. fun ek/1. fun dk/1.

fun sig/3. fun vk/1. fun sk/1.

fun pair/2. fun garbage/1. fun garbageEnc/2. fun garbageSig/2.

fun string0/1. fun string1/1. fun empty/0.

reduc D(dk(t1),E(ek(t1),m,t2)) = m.

reduc isek(ek(t)) = ek(t).

reduc isenc(E(ek(t1),t2,t3)) = E(ek(t1),t2,t3);

isenc(garbageEnc(ek(t1),t2)) = garbageEnc(ek(t1),t2).

reduc fst(pair(x,y)) = x.

reduc snd(pair(x,y)) = y.

reduc ekof(E(ek(t1),m,t2)) = ek(t1);

ekof(garbageEnc(t1,t2)) = t1.

reduc equals(x,x) = x.

reduc verify(vk(t1),sig(sk(t1),t2,t3)) = t2.

reduc issig(sig(sk(t1),t2,t3)) = sig(sk(t1),t2,t3);

issig(garbageSig(t1,t2)) = garbageSig(t1,t2).

reduc vkof(sig(sk(t1),t2,t3)) = vk(t1);

vkof(garbageSig(t1,t2)) = garbageSig(t1,t2).

reduc isvk(vk(t1)) = vk(t1).

reduc unstring0(string0(s)) = s.

reduc unstring1(string0(s)) = s.

query evinj:endAB() ==> evinj:beginAB().

let A = !in(net,ekX); if ekX=ekB then event beginAB(); A’ else A’.

let A’ = new nA; out(net,nA); new r2; in(net,c); let m=D(dkA,c) in

if nA=fst(m) then if ekX=snd(snd(m)) then

let c’=E(isek(ekX),fst(snd(m)),r2) in out(net,c’).

let B = !in(net,ekX); in(net,nA); new nB;

new r1; let c=E(isek(ekX), pair(nA,pair(nB,ekB)), r1) in

out(net,c); in(net,c’); if nB=D(dkB,c’) then if ekX=ekA then event endAB().

process new rA; let ekA=ek(rA) in let dkA=dk(rA) in out(net,ekA);

new rB; let ekB=ek(rB) in let dkB=dk(rB) in out(net,ekB); A|B

Figure 7: Needham-Schroeder-Lowe in ProVerif syntax

Proof. Let ΠP0 be the protocol corresponding to SExecP0 (as in Section 4). From the definition
of key-safe processes, it is easy to see that ΠP0 is a key-safe CoSP protocol.

By assumption, A satisfies the implementation conditions given on page 16 in Section 3.
Hence by Theorem 2, A is a computationally sound implementation of the symbolic model M =
(C,N,T,D,⊢) defined on page 14 for the class P of key-safe CoSP protocols and hence in
particular for the CoSP protocol ΠP0 .

Let M′ := (C,N,T′,D,⊢′) where T ′ is the set of all terms over C∪D and ⊢′ is the reduction
relation defined by the rules in Figure 5.

From the definition of key-safe processes, it is easy to see that ΠP0 is T -conform in the sense
of Lemma 1. Hence, by Lemma 1, A is a computationally sound implementation of the symbolic
model M′ for the protocol ΠP0 . By Theorem 3 it follows that if P0 symbolically satisfies ℘, then
P0 computationally satisfies ℘. �

Analysis of Needham-Schroeder-Lowe. The Needham-Schroeder-Lowe protocol can be writ-
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ten as follows in the applied π-calculus (we use syntactic sugar (x, y) for pair (x, y)):

A := !net(ekX).

if ekX = ekB then event(beginAB).A′ else A′

A′ := νnA.net〈nA〉.net(c).let m = D(dkA, c) in

if nA = fst(m) then if ekX = snd(snd(m)) then

νr2.let c′ = E(isek (ekX), fst(snd(m)), r2) in

net〈c′〉.0

B := !net(ekX).net(nA).νnB .

νr1.let c = E(isek (ekX), (nA, (nB, ekB)), r1) in

net〈c〉.net(m).if nB = D(dkB, m) then

if ekX = ekA then event(endAB)

P := νrA.let ekA = dk (rA) in let dkA = dk (rA) in net〈ekA〉.

νrB .let ekB = dk (rB) in let dkB = dk(rB) in net〈ekB〉.

(A | B).

We model the participants A and B as processes with an unbounded number of sessions that
perform authentications with arbitrary participants (the adversary may control with which com-
munication partner an authentication is performed by sending a public key ekX over the public
channel net). If A believes to perform an authentication with B (ekX = ekB), it raises the event
beginAB . If B believes to have completed an authentication with A, it raises the event endAB .
Entity authentication can be expressed by requiring that every endAB event is preceded by a
beginAB event. The process P describing the whole protocol is an encryption-safe process (if
r1, r2, rA, rB are declared as randomness names and dkA, dkB as secret key variables).

We can encode the processes and the equational theory in ProVerif as shown in Figure 7. Note
that we moved νr2 in A′ up in front of the input net(c). Obviously, this leads to an equivalent
process (in terms of event traces), but it helps ProVerif to terminate.12 ProVerif verifies the
entity authentication property with no noticeable delay.

5 Conclusion and future work

We have described CoSP, a general framework for conducting computational soundness proofs of
symbolic models and for embedding these proofs into formal calculi. CoSP considers arbitrary
equational theories and computational implementations, and it abstracts away many details that
are not crucial for proving computational soundness, such as message scheduling, corruption
models, and even the internal structure of a protocol. CoSP enables soundness results, in the
sense of preservation of trace properties, to be proven in a conceptually modular and generic
way: proving x cryptographic primitives sound for y calculi only requires x + y proofs, and the
process of embedding calculi is conceptually decoupled from computational soundness proofs of
cryptographic primitives.

We have shown how to use CoSP to establish the first computational soundness result for the
full-fledged applied π-calculus under active attacks, by embedding the calculus into CoSP and by
particularly providing a sound implementation of public-key encryption and digital signatures.

CoSP currently only considers computational soundness in the sense of preservation of trace
properties. We plan to leverage existing definitions of the preservation of more sophisticated

12In general, when ProVerif does not terminate, it is helpful to move all restrictions upwards as far as possible.
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properties such as static or observational equivalence [KM07, CLC08] into CoSP. Moreover, we
plan to derive the computational soundness of additional calculi, especially those ones that strive
for analyzing security protocols in more realistic settings. Calculi for reasoning about implemen-
tations of security protocols such as RCF [BBF+08] are hence particularly promising targets for
this future work.
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