
POINT COMPRESSION FOR KOBLITZ ELLIPTIC CURVES

P. N. J. EAGLE, STEVEN D. GALBRAITH, AND J. ONG

Abstract. Elliptic curves over finite fields have applications in public key cryptography. A Koblitz curve is
an elliptic curve E over F2; the group E(F2n ) has convenient features for efficient implementation of elliptic

curve cryptography.
Wiener and Zuccherato and Gallant, Lambert and Vanstone showed that one can accelerate the Pollard

rho algorithm for the discrete logarithm problem on Koblitz curves. This implies that when using Koblitz

curves, one has a lower security per bit than when using general elliptic curves defined over the same field.
Hence for a fixed security level, systems using Koblitz curves require slightly more bandwidth.

We present a method to reduce this bandwidth when a normal basis representation for F2n is used. Our

method is appropriate for applications such as Diffie-Hellman key exchange or Elgamal encryption. We show
that, with a low probability of failure, our method gives the expected bandwidth for a given security level.

Keywords: Elliptic curve cryptography, Koblitz curves, point compression.

AMS Classifications: 94A60 11T71

1. Introduction

Let E be an elliptic curve over Fq. The elliptic curve discrete logarithm problem (ECDLP) is: Given
a point P ∈ E(Fq) of large prime order ` and Q ∈ 〈P 〉, find an integer 0 ≤ a < ` such that Q = [a]P .
Pollard [8] gave algorithms to solve the DLP in a generic group of prime order ` using pseudorandom walks.
Van Oorschot and Wiener [12] showed how to use distinguished points so that the DLP can be solved in
close to the expected

√
π`/2 group operations.

A Koblitz curve is an ordinary elliptic curve E : y2 + xy = x3 + a2x
2 + 1 over F2. We consider the group

E(F2n) where n is prime. For certain values of n one obtains group orders of the form c · ` where c is a small
even cofactor and ` is a large prime. Koblitz [5] demonstrated the performance benefits of using the group
E(F2n). The advantage is that point multiplication can be accelerated using the 2-power Frobenius map
ψ(x, y) = (x2, y2) (see Solinas [11] for more details). Throughout the paper we assume that `2 - #E(F2n) so
that if P ∈ E(F2n)[`] then ψ(P ) ∈ 〈P 〉.

Wiener and Zuccherato [13] and Gallant, Lambert and Vanstone [2] showed that one can accelerate the
Pollard rho method using equivalence classes. For general elliptic curves one can always use the equivalence
relation P ≡ −P (i.e., the equivalence classes {P,−P}) and therefore solve the ECDLP in a group of order
` in expected

√
π`/4 group operations. For Koblitz curves one can define the equivalence relation

P ≡ ±ψi(P )

for 0 ≤ i < n. The equivalence classes are of size 2n. It follows that one can solve the ECDLP in a subgroup
of E(F2n) of order ` in expected

√
π`/4n group operations.

Definition 1. An elliptic curve E over Fq has a k–bit security level if the expected running time of the
Pollard rho algorithm to solve the ECDLP is 2k group operations1. For convenience we often round k to the
nearest integer.

When working modulo a large prime q one can find elliptic curves E over Fq such that #E(Fq) = ` is
prime. It follows that one has k-bit security level when

√
πl/4 ≈ 0.886

√
q > 2k. This certainly holds if

q ≥ 22k+1. When working with ordinary elliptic curves over F2n (this is the setting of our paper) the group
order is always even so one hopes for #E(F2n) = 2 · ` where ` is prime. It is not proven that there exist
elliptic curves over every field F2n whose number of points is twice a prime, but this conjecture is widely
believed. For k-bit security, by the argument above, one therefore takes n ≥ 2k + 2.

1Some authors might define ‘security level’ to be 2k bit operations, or 2k operations of the AES function.

1



For Koblitz curves over F2n , due to the equivalence classes, one needs n ≥ 2k + 2 + log2(n) ≥ 2k +
2 + log2(2k). It follows that when using Koblitz curves one needs more bits of storage and communication
compared with general elliptic curves. An alternative way to view this is that we have lower security per bit
than when using general curves over the same field. A natural problem is to achieve bandwidth for Koblitz
curves which matches the case of more general curves. This problem does not seem to have been considered
previously in the literature.

For a given security level k there may not be a prime n close to 2k+ 2 + log2(n) such that #E(F2n) = 2 · `
for a large prime `. If the next useful value for n is much larger than 2k+2+log2(n) then one may prefer not
use Koblitz curves and our methods give no improvement (though one might be able to use subfield curves
over a different field, e.g., F22 and obtain a very small amount of compression using our approach).

Given a point P = (xP , yP ) ∈ E(Fq) one can transmit P by sending xP and a single bit to determine
yP . As pointed out by Miller [7], in many applications it is possible to ignore yP altogether and perform
cryptography using the equivalence classes {P,−P}. This often goes under the name of elliptic curve
cryptography using x-coordinates only. In other words, when using elliptic curves over prime fields one
usually expects 2k + 1 bits or d(2k + 1)/8e bytes bandwidth for k bits of security.

When using elliptic curves over F2n there is further potential for compression. From now on we assume that
a normal basis representation for F2n is used. Alternatively, one could convert to normal basis representation
just for the compression process. Seroussi [10] gave a method to save one bit of the x-coordinate (we recall
the details in §4.1). It follows that one can transmit P ∈ E(F2n) using n bits, or n − 1 bits if one ignores
yP and works with the equivalence classes {P,−P}. The minimal bandwidth for elliptic curve cryptography
over F2n for security level k is therefore 2k + 1 bits or d(2k + 1)/8e bytes. When using Koblitz curves this
becomes n = 2k + 1 + log2(n) bits or d(2k + 1 + log2(n))/8e bytes.

King [4] gives an alternative method to compress points on elliptic curves which applies when Tr(a2) = 0.
His method requires n− 1 bits to send (x, y) (i.e., allowing unique recovery of the y-coordinate). While this
is better than Seroussi (who needs n bits to send (x, y)) it is not better for our application since we discard
y.

The main result of this paper is to give a method to reduce the bandwidth when using Koblitz curves and
normal basis representation for finite fields. Our method is a generalisation of working with the equivalence
class {P,−P}. Recall that the reason for the overhead is that one can attack the system using the Pollard
rho algorithm on a set of equivalence classes

[P ] = {±ψi(P ) : 0 ≤ i < n}.
Hence it is natural to do cryptography using these equivalence classes. We show that, with a low probability
of failure, one can obtain the desired bandwidth for certain applications. We deal with the ± by discarding
yP . The equivalence class is then determined by the n-bit string representing xP (with respect to a normal
basis for F2n) up to rotation. The idea is to rotate this binary string so that a certain pattern of bits appears
at one end (our proposal looks for a pattern of the form 011 · · · 110). This pattern can then be deleted and
just the remaining string sent. An extra bit is saved by using the Seroussi trick.

The plan of the paper is as follows. Section 2 makes the notion of bandwidth overhead more precise and
gives some targets to achieve. Section 3 explains how to perform Diffie-Hellman key exchange on equivalence
classes. Section 4 gives a technical description and justification of the method. Section 5 analyses how well
the method is expected to work in practice. Section 6 mentions some other ideas for compression which do
not seem to have any advantages over the method we propose. Section 7 discusses security implications and
possible generalisations.

2. Overhead in Koblitz Curve Cryptosystems

To make the problem precise we need to consider how elliptic curve points are transmitted. We consider
three communication models for transmitting binary data.

• (Fixed length bitstring) The receiver expects to get an m–bit string;
• (Fixed length bytestring) The receiver expects to get an m–byte string (this is a special case of the

previous one);
• (Variable length bitstring) The receiver expects to get a bit–string of variable length ≤ m terminated

by an end–of–transmission (EOT) symbol.
2



Parameters n a2 c Security level k rbit rbyte

sect163k1 163 1 2 77 7 1
sect233k1 233 0 4 111 9 1
sect239k1 239 0 4 114 9 1
sect283k1 283 0 4 136 9 1
sect409k1 409 0 4 199 9 1
sect571k1 571 0 4 280 9 1

Table 1. Bandwidth overhead when using Koblitz curves.

The additional bandwidth required to send a point using a Koblitz curve system, compared with using
general curves over F2n , for an equivalent security level k, is called the overhead. We denote by rbit the
number of additional bits required to be sent (this is the overhead in a bitstring communication model), and
rbyte the number of additional bytes (the overhead in a bytestring communication model). When it is clear
from the context we will simply refer to these as bit and byte overheads.

Table 1 lists the values of n for which there is a Koblitz curve over F2 such that #E(F2n) = c` where `
is a large prime and c ∈ {2, 4}. The security level is k = log2(

√
π2n/4cn) (which we round to the nearest

integer). One expects to achieve this security level using a general elliptic curve over F2m with m = 2k + 2
(ignoring the possibility of Weil descent attacks for this value of m [3]). We therefore have

rbit = n− (2k + 2)

(for example, with n = 163 we have k = 77 and so m = 2 · 77 + 2 = 156 and rbit = 7). Applying the Seroussi
trick for both Koblitz curves and general curves over F2n gives rbit = (n − 1) − (2k + 1) which is the same
overhead. Similarly, the number of extra bytes to be transmitted (when using the Seroussi trick) is

rbyte = d(n− 1)/8e − d(2k + 1)/8e .
For example, with n = 163, we have d(n− 1)/8e = 21 while d(2 · 77 + 1)/8e = 20 so rbyte = 1. Similarly, for
n = 233 we have d(n− 1)/8e = 29 while d(2 · 111 + 1)/8e = 28, which again means we are sending one byte
more than could be achieved using other curves. Even worse, if we didn’t use the Seroussi trick we would
be sending dn/8e = 30 bytes.

The reason why 9 bits of overhead can mean only one byte of overhead is that 2k+ 1 is not necessarily a
multiple of 8 and so there are already some spare bits in the byte representation.

3. Cryptography using Equivalence Classes

As mentioned in the introduction, one can perform elliptic curve cryptography using x-coordinates only
(i.e., using equivalence classes of the form {P,−P}). Our proposal is to extend this idea to equivalence
classes of the form {±ψi(P )} for 0 ≤ i < n. The goal of this section is to explain, using Diffie-Hellman key
exchange as an example, that one can do cryptography with these equivalence classes. The crucial fact is
that one can define point multiplication on equivalence classes: For a ∈ N, one defines [a][P ] = [[a]P ].

Lemma 1. The operation [a][P ] is well-defined.

Proof. Let P1 ∈ [P ] so that P1 = ±ψi(P ) for some i. Since ±ψi is a group homomorphism we have
[a]P1 = ±ψi([a]P ) and so [[a]P1] = [[a]P ]. �

Definition 2. Let S be the set of equivalence classes of points in E(F2n)[`]. Let r > 0 be an integer. Let
C : S → {0, 1}n−r and D : {0, 1}n−r → S be functions.

Let P ∈ E(F2n)[`] and write [P ] for the equivalence class of P . If

D
(
C
(
[P ]
))

= [P ]

then we call C and D compression and decompression functions.

We now show that one can use compression and decompression functions to obtain a compressed Diffie-
Hellman key exchange protocol. We assume the system parameters include a Koblitz curve E(F2n) with
point P ∈ E(F2n) of prime order `.

3



Alice picks a random 1 ≤ a < `, computes QA = [a]P and sends x′A = C
(
[QA]

)
to Bob. Similarly, Bob picks

1 ≤ b < `, computes QB = [b]P and sends x′B = C
(
[QB ]

)
to Alice. Alice computes

kA = C
(
[a]D(x′B)

)
and Bob computes

kB = C
(
[b]D(x′A)

)
.

Lemma 2. Alice and Bob compute the same key.

Proof. Alice computes

kA = C
(
[a]D(x′B)

)
= C

(
[a]D

(
C
(
[[b]P ]

)))
= C

(
[a][[b]P ]

)
= C

(
[[ab]P ]

)
using the property D(C([P ])) = [P ]. It is easy to check that Bob computes the same value. �

In practice (to avoid small subgroup or invalid point attacks) one should verify that the resulting point
does lie on the curve and that it has odd order. We discuss this later.

Obviously the same ideas can be used for any other cryptosystem which is fundamentally based on Diffie-
Hellman key exchange (for example, modern versions of Elgamal encryption, which use a bitstring derived
from [ab]P for a symmetric encryption key).

4. Short Representatives of Equivalence Classes

In the following subsections we explain the compression and decompression algorithms. Recall that a
normal basis for F2n over F2 is a vector space basis of the form {β, β2, β22

, . . . , β2n−1}. Theorem 2.35 of [6]
states that a normal basis exists for every finite extension of finite fields. One represents elements of F2n

with respect to the normal basis as an n-bit string. The action of the 2-power Frobenius map ψ is simply a
rotation of the binary string, which is fast to compute.

4.1. Seroussi’s Point Compression for Curves E/F2n . We describe Seroussi’s method [10] for saving
one bit in the representation of points in E(F2n); also see [1]. Recall that for α ∈ F2n the trace map is defined
to be Tr(α) =

∑n−1
i=0 α

2i

. It is well known that Tr(α) ∈ F2, Tr(α + γ) = Tr(α) + Tr(γ) and Tr(α2) = Tr(α)
for all α, γ ∈ F2n . Seroussi’s main result is the following.

Lemma 3. Let E/F2n be defined by the Weierstrass equation

E : y2 + xy = x3 + a2x
2 + a6

and let P = (xP , yP ) ∈ E(F2n) be of odd prime order `. Then one has

Tr(xP ) = Tr(a2).

The following result is standard, but we include a proof for completeness.

Lemma 4. Let F2n be represented using a normal basis {β, β2, β22
, . . . , β2n−1} over F2. Then Tr(β) = 1.

Let x ∈ F2n be represented by the vector (xn−1, xn−2, . . . , x0) in Fn
2 . Then

Tr(x) =
n−1∑
i=0

xi.

Proof. First note that α =
∑n−1

i=0 β
2i

= Tr(β) is an element of F2 and it is not zero since {β, . . . , β2n−1} is
a linearly independent set over F2. Hence α = 1. For xi ∈ {0, 1} it follows that Tr(xiβ

2i

) = xi. The result
follows from the additivity of the trace. �

4



It follows that given a point P = (xP , yP ) ∈ E(F2n) of odd order one can represent xP , with respect to
a fixed normal basis for F2n , as a binary string of length n. One can then remove any bit agreed between
sender and receiver (it is natural to use the most or least significant bit) before transmission. The receiver
obtains a bitstring of length n − 1 and can append the correct bit so that the sum of the bits is equal to
Tr(a2).

4.2. Compressing Abscissæ of Points on Koblitz Curves. As mentioned, to compress a point P =
(xP , yP ) we first throw away yP and then represent xP , with respect to a normal basis, as an n-bit string.
We consider all the rotations of this bitstring.

Definition 3. Let n ≥ 3 and let x = xn−1xn−2 · · · x1x0 be a binary string with xi ∈ {0, 1}. We say x contains
a right padded run of length t if and only if

x = xn−1 · · · xt+2011 · · · 110.
In other words, bit 0 and the (t+ 1)–th bit are 0 and the intermediate t bits are 1.

Lemma 5. Up to rotation only three strings of length ≥ 3 do not have a right padded run. Namely

11 · · · 11 = (1)n
, 00 · · · 00 = (0)n and (1)n−1 ‖ 0.

The first two of these do not correspond to points over F2n of odd order on a Koblitz curve. The third also
does not correspond to a point of odd order when a2 = 1 and n is odd.

Proof. The first claim is obvious. For the later claim first note the all zero and all one strings correspond to
x = 0, 1 ∈ F2. Such values satisfy the equation y2 + xy = x3 + a2x

2 + 1 for y ∈ F2 or y ∈ F22 , and either
way correspond to points of even order. The last statement follows from Lemma 3 since, when n is odd,
Tr(x) = 0 and Tr(a2) = 1. �

The compression algorithm can now be described. Given P = (xP , yP ) of odd order on a Koblitz curve
consider all n rotations of the binary string representing xP and determine which has the longest right
padded run. In the case there are two or more runs of the same length we choose the binary string with
lowest lexicographical ordering (i.e., smallest value when the bitstring is interpreted as an integer). Call the
binary string x and let t be the length of the run of ones. One has x = xn−1 · · · xt+2011 · · · 10. In Section 5
we discuss the expected size of t. Applying the Seroussi trick one can delete xn−1.

We first consider the variable length bit string communication model. It is only necessary to send the
n − t − 3 bits xn−2 · · · xt+2. When the receiver is given these n − t − 3 bits, knowing n, she can compute
t and thus append the length t + 2 pattern 01 · · · 10. Finally, the receiver obtains the most significant bit
using the Seroussi method.

More realistically, we are in a fixed bit or byte communication model. The receiver expects to get a fixed
number m of bits (or a fixed number of bytes) and must determine the n −m missing bits. One subtlety
here is that the receiver cannot determine the length t of the run of ones by the data sent to them (since
the run of ones could be very long, or only just the minimum length, and the difference is whether or not to
include a zero). Hence the receiver must assume that the missing bits include only a substring of 011 · · · 110.
If n − t − 3 ≥ m then the sender fails to obtain the desired level of compression and the algorithm must
terminate (the sender can perhaps repeat the cryptographic protocol with different random choices). Hence
the receiver assumes m ≥ n− t− 2. The sender sends xn−2 · · · xt+2 and an initial segment of the run 011 · · ·
to make up the m bits. The receiver then adds n −m − 2 ones, followed by a zero, and then adds the bit
coming from the Seroussi trick.

One easily checks that the compression and decompression functions satisfy Definition 2. In particular,
D(C([P ])) = [P ] for any equivalence class [P ].

As noted earlier, one should verify that the resulting point does lie on the curve and that it has odd order.
Since we are using the Seroussi trick it is automatic that Tr(xP ) = Tr(a2). To check that the point lies on
the curve one should check that TrF2n /F2(xP + a2 + 1/x2

P ) = 0 (which simplifies to TrF2n /F2(1/x2
P ) = 0 in

this case). If the number of points on the curve is 2` where ` is prime then no further checks are necessary.
If the number of points is 4` then one should compute yP , perform point halving of P = (xP , yP ), and check
whether the resulting point Q = (xQ, yQ) satisfies Tr(xQ) = Tr(a2); we refer to Section 5 of King [4] for the
details.

5



bit–size n
t t+ 3 163 233 239 283 409 571 2047
3 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 7 0.99 1.00 1.00 1.00 1.00 1.00 1.00
5 8 0.94 0.98 0.98 0.99 1.00 1.00 1.00
6 9 0.74 0.86 0.86 0.90 0.97 0.99 1.00
7 10 0.48 0.62 0.62 0.68 0.81 0.90 1.00
8 11 0.28 0.38 0.38 0.43 0.56 0.68 0.98
9 12 0.15 0.22 0.21 0.24 0.33 0.43 0.86

Table 2. Estimated probability that the binary representation of the x-coordinate of a
randomly chosen point on a Koblitz curve has, up to rotation, a run of at least t ones.

5. Expected Bandwidth Saving

We now analyse what values t can be expected in practice, and thus how effective our method is. Our
compression function acts by finding the longest run of ones in the binary representation of the x-coordinate.
Hence, the question is to determine the probability of certain lengths of runs of ones. For random binary
strings of length n there is a large literature on this problem (for a survey see [9]). The basic result is that
the expected value for the longest run of ones in a random binary sequence of length n is approximately
log2(n)− 1.

Working with binary sequences of length n up to rotation can only increase the expected length of the
longest run of ones, but our experiments show that this effect is not noticeable for moderate values of
n. Also note that we are not studying random binary strings, but strings corresponding to normal basis
representations of x-coordinates of elliptic curve points of odd order (and hence with an imposed parity
condition Tr(x) = Tr(a2)). Our experiments suggest that the expected length of the longest run of ones is
the same (up to 2 decimal places) in this case as for random binary strings. In any case, it is clear that
r ≈ log2(n) is the best we can hope for, and is unlikely to be achievable for a large proportion of points.

One crucial feature of our method (in the variable length bitstring case at least) is that we do not just
look for a run of ones, but use the fact that a run of ones has zeroes on each end. This allows us to get closer
to the desired saving of log2(n) bits.

We now present the results of some simulations. We computed an approximation to the probability that
the x-coordinate of a random point of odd order on the Koblitz curves of Table 1 has a run of ones of length
at least t for 3 ≤ t ≤ 9. Our method allows us to omit t+ 3 bits when sending such a point in the variable
bitstring model.

The results are given in Table 2. The black coloured cells indicate when t+3 = blog2 ne and the grey cells
are when t + 3 = blog2 nc when these values are different. The case n = 211 − 1 = 2047 has been included
purely for theoretical interest.

5.1. Variable Length Bitstring Model. We first consider the case of variable length bitstrings. One
sees from the tables that, with high probability, 7 bits can be saved when n = 163, 8 bits saved when
233 ≤ n ≤ 283 and 9 bits saved when n ≥ 409. These savings are achieved in key exchange by an algorithm
which fails (in other words, has to be repeated) between 1 and 3 times in every 100 executions, on average.
Depending on the application, the saved bandwidth could be worth the added inconvenience of occasionally
having to repeat an exponentiation. Hence, we have a good solution to the original problem.

5.2. Fixed Length Bitstring Model. We now consider the more standard setting of fixed length bit or
byte communications. Note that the naive method sends dn/8e bytes. The results of Table 2 show how
successfully the number of bytes to be sent can be reduced. It follows that one can save one byte in all
cases with very high probability, and this achieves the expected number of bytes of communication for
n ∈ {163, 239, 283, 571}. The cases n ∈ {233, 409} are harder since 233 ≡ 409 ≡ 1 (mod 8) and we wish to
save 2 bytes for these cases. We give our results in Table 3.

6



n Number bits to remove Probability to save 1 byte Probability of full compression
163 3 1.00 1.00
233 9 1.00 0.62
239 7 1.00 1.00
283 3 1.00 1.00
409 9 1.00 0.81
571 3 1.00 1.00
Table 3. Experimental estimates for the probability of successful compression in the fixed
byte length model.

6. Alternative Methods

There are several other ways to approach this problem. We believe the one presented in the paper is the
most simple and efficient, but we briefly mention some of the other ideas that were considered.

• Search for the longest run of zeroes or ones, remove the run together with the bit to the right of it,
but keep the bit to the left of the run (this bit indicates whether the run was of zeroes or ones). This
seems to give no overall improvement. The expected length of the longest run is now one bit more,
but this saving is lost by having to keep a bit to specify whether the run is of ones or zeroes. Note
that this method deals with the third case of Lemma 5 (though of course one would still compress
this string by removing part of the run of ones).

• Consider a different property than runs of zeroes or ones, such as repeated patterns of bits, palin-
dromic patterns of bits etc. The problem with this approach is that such patterns are no more likely
than runs. Such patterns also do not have the crucial additional feature of runs, namely that the
adjacent bits have opposite value.

• Use general data compression techniques (such as run-length coding or the Lempel-Ziv-Welch algo-
rithm). These methods do not exploit the fact that we consider the binary string up to rotation,
which is the main novelty of our proposal. The problem is that random binary strings are not com-
pressible. Hence, when applied to random x-coordinates these methods cannot be competitive with
our approach.

7. Conclusions

We have given a compression method and have given experimental results that show it works well in both
the fixed and variable length bit string communication models.

There can be no significant loss of security when using a compression method which succeeds with proba-
bility more than 0.95, since the potential key space is only reduced by a small amount. Even if it were possible
to modify the Pollard rho algorithm to take this information into account, the impact on the difficulty of
the discrete logarithm problem would be very small. For the same reason we believe the full compression for
n = 233 and n = 409 causes no loss in security.

We remark that similar ideas can be applied to obtain compression with other subfield curves but with
much less success. For example, with elliptic curves E over F22 with group E(F22n) the expected length of
the longest run is only ≈ log4(n) = log2(n)/2. Since there are four possible types of run we either focus only
on runs of ones (which could be shorter), or use two bits to specify which “digit” appears in the longest run.
A further impediment in this case is that n is now half as big for a given security level.

Acknowledgements

The second author was supported by EPSRC grant EP/D069904/1. We are grateful to Tanja Lange and
the anonymous referees for comments.

References

1. I.F. Blake and G. Seroussi and N.P. Smart, Elliptic Curves in Cryptography, Cambridge, 1999.
2. R. P. Gallant, R. Lambert, and S. A. Vanstone, Improving the Parallelized Pollard Lambda Search on Binary Anomalous

Curves, Mathematics of Computation, 69 (2000) 1699-1705.

7



3. P. Gaudry, F. Hess and N. Smart, Constructive and Destructive Facets of Weil Descent on Elliptic Curves, Journal of
Cryptology, 15 (2002) 19-46.

4. B. King, A Point Compression Method for Elliptic Curves Defined over GF (2n), in F. Bao, R. H. Deng and J. Zhou (eds.),

PKC 2004, Springer LNCS 2947 (2004) 333-345.
5. N. Koblitz, CM-Curves with Good Cryptographic Properties, in J. Feigenbaum (ed.), CRYPTO ’91, Springer LNCS 576,

(1992) 279-287.

6. R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge, 1994.
7. V. S. Miller, Use of Elliptic Curves in Cryptography, in H. C. Williams (ed), CRYPTO ’85, Springer LNCS 218 (1986)

417-426.
8. J. Pollard, Monte Carlo Methods for Index Computation mod p, Mathematics of Computation, 32 (1978) 918-924.

9. M. F. Schilling, The Longest Run of Heads, The College Mathematics Journal, Vol. 21, No. 3 (1990) 196-207.

10. G. Seroussi, Compact Representation of Elliptic Curve Points over F2n , Tech. report, HP Labs Tech. Report HPL-98-94R1,
September 1998.

11. J. A. Solinas, Efficient Arithmetic on Koblitz Curves, Designs, Codes and Cryptography, 19, nos. 2-3 (2000) 195-249.

12. P. C. van Oorschot and M. J. Wiener, Parallel Collision Search with Cryptanalytic Applications, Journal of Cryptology, 12
(1999) 1-28.

13. M. J. Wiener and R. J. Zuccherato, Faster Attacks on Elliptic Curve Cryptosystems, in S. E. Tavares and H. Meijer (eds.),

SAC 1998, Springer LNCS 1556 (1999) 190-200.

E-mail address: Philip.Eagle@hsbc.com.mx

Information Security Group, Mathematics Department, Royal Holloway University of London, Egham, Surrey

TW20 0EX, UK.

E-mail address: S.Galbraith@math.auckland.ac.nz

E-mail address: jong017@aucklanduni.ac.nz

Mathematics Department, The University of Auckland, Private Bag 92019 Auckland 1142 New Zealand.

8


