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Abstract—The LLL algorithm is strong algorithm that de-
crypts the additional type Knapsack cryptosystem. However, the
LLL algorithm is not applicable in the addition in the group that
rational points of elliptic curves on finite fields do. Therefore, we
think the Knapsack cryptosystem constructed on elliptic curves.
By using the pairing for the decryption, it is shown to be
able to make the computational complexity of the decryption
a polynomial time by making the decryption function by the
pairing value.

I. I NTRODUCTION

The additional knapsack cryptosystem can be encrypted at
high speed. However, there is a problem in safety because
of being often decrypted by the LLL algorithm. The LLL
algorithm is an algorithm to which the approximation solution
of the shortest vector contained in the lattice is obtained.
Ciphertexts of the additional type knapsack cryptosystem are
uniting of integers of the public key and the plaintext vector.
When we think about the lattice including the ciphertext and
compute the short vector in this lattice by the LLL algorithm,
the vector corresponding to the plaintext vector appears. As
a result ciphertexts is decrypted in the output of the LLL
algorithm.

The ciphertext is not uniting of integers of the public
key and the plaintext vector if the addition on the knapsack
cryptosystem is replaced with the additive group that rational
points of elliptic curves on finite fields do.The knapsack
cryptosystem on elliptic curve cannot be decrypted by the LLL
algorithm because it becomes an output considered the integer
uniting the public key with the plaintext vector when the LLL
algorithm is applied in this way.

In this paper, we propose the construction of the knapsack
cryptosystem on elliptic curves. We describe that by using the
pairing for the decryption, it is shown to be able to make the
computational complexity of the decryption a polynomial time
by making the decryption function by the pairing value. And
we show the example of the numerical value.

II. K NAPSACK CRYPTOSYSTEM BY USING PAIRING

A. Pairing on elliptic curves

In this paper the pairing is computed by using the Tate
pairing, and the pairing value by rational pointP, Q on elliptic
curve is shown withe(P,Q). Embedding degree in the pairing
is shown byl.

B. Key generation

Let p be a prime number in 1024 bits or more. We think
an elliptic curve onF p as follows:

y2 = x3 + ax + b (1)

We denote this elliptic curve byE(F p). The prime numberp
is chosen such that big prime numbern in 160 bits or more
appear to factorization on prime numbers of order of elliptic
curve#E(F p). This elliptic curveE(F p) has torsion group
E(F p)[n] of order n, and we take arbitrary a rational point
P ∈ E(F p)[n]. Here,

E(F p)[n]={P ∈E(F p)|nP =O}, (2)

and O is point at infinity. Next we take arbitrary pointQ ∈
E(F pl). By these two pointsP, Q we computee(P,Q).

Next, we take constantk(k ∈ N ) at random. However, in
the following super-increase sequence

ai = k · 2i−1 (i = 1, 2, 3, · · · , ur), (3)

k is chosen to satisfy the following condition
ur∑

i=1

(k · 2i−1) <
n− 1

2
. (4)

Rational pointaiP (i = 1, 2, 3, · · · , ur) is opened to the public
as a vector of knapsack. However, as described later, to decrypt
efficiently, u ciphertexts are sent, and each of them is sum of
r ratinal pointsaiP . Hence, the number ofai is ur. Here, we
takesur > 100 so that the ciphertexts may have the tolerance
enough in brute force attack.

Then, rational points

a1P, · · · , aurP, (5)

the elliptic curveE(F p), arbitrary point

R(6= a1P, · · · , aurP ) ∈ E(F p)[n], (6)

and
S = dR (7)

whered ∈ Zn taken at random are opened to the public.
Next, for eachCi(i = 1, · · · , u) which are transmitted as

ciphertext, the decryption functions are made as follows. First,
we compute

b11 = e(P, Q)k, (8)



and compute

b1j = (e(P,Q)k)j (j = 1, 2, 3, · · · , 2r−1). (9)

Hereafter,bij are made as follows:

b2j = (b1j)2
r

= ((e(P, Q)k)j)2
r

= ((e(P, Q)k)2
r

)j (10)

b3j = (b2j)2
r

= (((e(P,Q)k)2
r

)j)2
r

= ((e(P, Q)k)2
2r

)j (11)

· · · · · · · · ·
buj = (bu−1,j)2

r

= ((e(P, Q)k)2
(u−1)r

)j . (12)

These are computed as follows: first we compute

bi1 = b2r

i−1,1 (i = 2, 3, · · · , u), (13)

and next we compute

bij = bi,j−1bi1 (i=1,· · ·,u, j =2,3,· · ·,2r−1). (14)

Finally, we make the polynomial as follows:

fi(x)=(x− bi1)· · ·(x− bi2r−1)(x− 1) (i=1,· · · ,u). (15)

The public key and the secret key are as follows:

PublicKey : a1P, · · · , aurP, E(F p), R, S, r (16)

SecretKey : d, fi(x), e(P, Q), a1, · · · , aur (17)

C. Encryption

The plaintext is assumed to be binary vectorM =
(m1,m2, · · · ,mur),
mi ∈ {0, 1}, (i = 1, 2, · · · , ur), and ciphertext C is provided
as follows:

C = m1(a1P ) + m2(a2P ) + · · ·+ mur(aurP ). (18)

Next, C1, · · · , Cu−1 that is the sum of r pieces are made as
follows:

C1 = m1(a1P ) + · · ·+ mr(arP ) (19)

C2 = mr+1(ar+1P ) + · · ·+ m2r(a2rP ) (20)

· · · · · · · · ·
Cu−1 = m(u−2)r+1(a(u−2)r+1P ) + · · ·

+m(u−1)r(a(u−1)rP ). (21)

Next, t1, t2, · · · , tu−1 are generated at random, and

C11 = t1R, C12 = C1 + t1S (22)

C21 = t2R, C22 = C2 + t2S (23)

· · · · · · · · ·
Cu−1,1 = tu−1R, Cu−1,2 = Cu−1 + tu−1S (24)

are computed. And,C,C11, C12, · · · , Cu−1,1, Cu−1,2 are
transmitted.

D. Decryption

First, we decryptC1, · · · , Cu−1 from C11, C12, · · · , Cu−1,1,
Cu−1,2 by secret keyd as follows:

Ci2 − dCi1 = Ci + tiS − dtiR

= Ci + tidR− dtiR

= Ci. (25)

Next, we compute pairing valuee(C, Q) with the rational
point C.

Next, we compute pairing valuee(c1, Q). From this value,
m1, · · · ,mr are decrypted as follows:
First of all, let

X = e(C1, Q), (26)

and we compute

f1(X/e(P, Q)ar ). (27)

If this value is0, mr = 1, and let

X = X/e(P,Q)ar . (28)

Otherwise,mr = 0, and we compute

f1(X/e(P, Q)ar−1). (29)

In the same way, if

f1(X/e(P, Q)ai) = 0, (30)

mi = 1, and let

X = X/e(P, Q)ai . (31)

Otherwise,mi = 0, and we compute

f1(X/e(P, Q)ai−1). (32)

By repeating untilr = 1 in the same way, we can decryptC1.
And in the same way, we can decryptC2, · · · , Cu−1.

Finally, Cu is decrypted as follows. Let

Xu = e(C, Q)/(e(C1, Q) · · · e(Cu−1, Q)), (33)

and we compute

fu(Xu/e(P, Q)aur ). (34)

If this value is 0,mur = 1, and let

Xu = Xu/e(P, Q)aur . (35)

Otherwise,mur = 0, and we compute

fu(Xu/e(P, Q)aur−1). (36)

By repeating untilu(r−1)+1 in the same way, we can decrypt
Cu. Then decryption ofM is completed.



E. Validity of decryption

First, we explains the decryption ofC1. Let

Y = e(C1, Q)/e(P, Q)ar

= e(m1(a1P ) + · · ·+ mr(arP ), Q)/e(arP, Q)
= e(m1(a1P ) + · · ·+ mr(arP )− arP, Q)
= e((m1a1 + · · ·+ mrar − ar)P, Q)
= e(k(m1 + · · ·+ mr2r−1 − 2r−1)P,Q)

= (e(P,Q)k)(m1+···+mr2r−1−2r−1). (37)

If
m1 + · · ·+ mr2r−1 − 2r−1 ≥ 0, (38)

we call it positive pairing value. Otherwise we call it negative
pairing value. In equation

b1j = (e(P, Q)k)j (j = 1, 2, 3, · · · , 2r−1), (39)

b1j are all distinct values because

k · 2r−1 <
n− 1

2
< n (40)

and pairing values are primitive root of unity. Since
1, 2, · · · , 2r−1 has super increasing, so

1 + 2 + · · ·+ 2r−2 < 2r−1. (41)

Hence, since

m1 + · · ·+ mr2r−1 − 2r−1 < 2r−1, (42)

if mr = 1, thenf1(Y ) = 0, becauseY is positive pairing value
and is equal to one ofb1j . Otherwisef1(Y ) 6= 0, becauseY
is negative pairing value and is not equal to any ofb1j . By
repeating this process, we can decryptC1 from mr to m1.

In a similar way, we can decryptCi as follows, let

Y = e(Ci, Q)/e(P, Q)air

= e(m(i−1)r+1(a(i−1)r+1P ) +
· · ·+ mir(airP ), Q)/e(airP, Q)

= e(m(i−1)r+1(a(i−1)r+1P ) +
· · ·+ mir(airP )− airP, Q)

= e((m(i−1)r+1a(i−1)r+1 +
· · ·+ mirair − air)P,Q)

= e(k(m(i−1)r+12(i−1)r +

· · ·+ mir2ir−1 − 2ir−1)P, Q)

= (e(P, Q)k)m(i−1)r+12
(i−1)r+···+mir2ir−1−2ir−1

= (e(P, Q)k)2
(i−1)r(m(i−1)r+1+···+mir2r−1−2r−1). (43)

Since

bij =((e(P,Q)k)2
(i−1)r

)j (j =1,2,3,· · · ,2r−1), (44)

if mir = 1, fi(Y ) = 0, becauseY is positive pairing value
and is equal to one ofbij . Otherwisefi(Y ) 6= 0, because
Y is negative pairing value and is not equal to any ofbij .
By repeating this process, we can decryptCi from mir to
m(i−1)r+1.

Finally, Since

Xu = e(C,Q)/(e(C1, Q) · · · e(Cu−1, Q))
= e(C − C1 − · · · − Cu−1, Q)
= e(Cu, Q), (45)

we can decryptCu in a similar way with decryption ofCi.

F. Computational Complexity

Computational complexity of pairing is polynomial time in
log p[4]. In encryption, computational complexity of addition
on elliptic curves is also polynomial time inlog p. In de-
cryption, computational complexity of quotient pairing values
is also polynomial time since they are computed inmodp.
Although we judge whether the pairing value is positive or
negative by decryption functions, it computed in polynomial
time since it is computed in finite times of subtractions and
multiplications inmodp.

G. Security consideration

ChipertextsC11, C12, · · · , Cu−1,1, Cu−1,2 are encrypted by
ElGamal encryption on elliptic curve. Hence, since to decrypt
Ci(i = 1, · · · , u − 1) from them is to solve the elliptic curve
discrete logarithm problem, it is secured by takingp in 1024
bits or more, andn which is order of torsion group in 160 bits
or more. And sinceC is consisted of100 or more dimensions
knapsack vector, it is difficult to decryptC by brute force
attack.

H. Example of the numerical value

We show the example of the numerical value. Consider the
supersingular elliptic curve

E(F p) : y2 = x3 − x (46)

andp=1020213065766829380286510327794694206093068
3196983(163bits).
#E(F p) = p + 1 = 23 × 33 × 59× 113× 70844587337774
04048453899025845195282548847, so we can taken =
7084458733777404048453899025845195282548847(143bits).
And embedding degree in the pairing on supersingular elliptic
curves is2[1].

1) Key generation:We chooseP ∈ E(F p)[n] at random
as follows:
P = (x0, y0),
x0 = 50122003464126168477270238741552412205358
45164053,
y0 = 10193077176661676509098171306797171300537
063989881.

Let F p2 ∼= F p[α]/(α2+1). By Distortion map, we compute
Q ∈ E(F p2) as follows:
Q = (x1, y1),
x1 = −1766812744814253651192235073902080733833
549100228,
y1 = 724764949293510575316812579395594723417696
0970278α.

By Tate pairing, we computee(P,Q) as follows:
e(P, Q) = 8475497648993092975335009347858163770



014603729939α + 9913604526190110896292215516390
296267756985968335.

Next, let r = 16 and u = 7, we takek = 495540812 at
random, and compute

ai = k · 2i−1 (i = 1, 2, 3, · · · , 112). (47)

From ai, we compute rational points onE as follows:
a1P = (54910832104370815995695158256676168526
33005560207, 4025572442589594681926119686744008
800428809714792),
a2P = (180209257450109121769902515159285593805
509924677, 670405865740600571402656994868358832
6450019877997),
· · · · · ·
a112P = (5025036658071352263843448462309167469
114957886607, 101563851789198583954141695262046
40543217797744294).

Next, we chooseR ∈ E(F p)[n] andd ∈ Zn as follows:
R = (x2, y2),
x2 = 15977861504122639304746438455726035897159
14691929,
y2 = 35159678482991999296428241713288298345641
98507251,
d=1542457417324392617238920679364826279643599.
Then we computeS = dR = (x3, y3) as follows:
x3 = 30892847378225032337078307153530837342122
44071544,
y3 = 76067139317283093505712611484224672311665
11389087.
Therefor, we open

a1P, · · · , a112P,E(F p), R, S, r = 16 (48)

to public.
Next, we make the decryption functions. First,we compute

b11 = e(P, Q)495540812

= 204644773925020202318596749420000485558
2062699506α + 1893390592785342031390828694
290636869161269658646.

From b11, we compute

bi1 = b216

i−1,1 (i = 2, 3, · · · , 7) (49)

as follows:
b21 = b216

11

= 249295882696590526717063497645004926050
6966497445α + 3096406794428485916253064706
822894588235634310596,

b31 = b216

21

= 419441457463406332325494779066060804386
4914019810α + 1668301750391457173155401348
785986938587464921959,

b41 = b216

31

= 579648851215306691726766456179198179469
0895405971α + 4762054763668270870125119671
808442942344163062911,

b51 = b216

41

= 983851080304178402974497500898505073917
6603852714α + 7081851039691060023307304438
875406145543366318557,

b61 = b216

51

= 384345293632587191647003388974153441885
1864554252α51238865732823992044723984312
71101608697075466005,

b71 = b216

61

= 864625145749454569047591063678175407803
6242139036α + 6327343816385856500935416540
342904135888857559210.

Furthermore from these values, we compute

bij = bi,j−1bi1 (i=1,· · ·,7, j =2,3,· · ·,215). (50)

For example, we compute as follws:
b12 = b11b11

= 249295882696590526717063497645004926050
6966497445α + 3096406794428485916253064706
822894588235634310596,

b13 = b12b11

= 419441457463406332325494779066060804386
4914019810α + 1668301750391457173155401348
785986938587464921959,

b14 = b13b11

= 579648851215306691726766456179198179469
0895405971α + 4762054763668270870125119671
808442942344163062911,
· · · · · ·

Finally, we make the functions such that

fi(x)=(x− bi1)· · ·(x− bi215)(x− 1) (i=1,· · · ,7). (51)

2) Encryotion:The plaintext is assumed to be binary vector
M = (m1,m2, · · · ,m112) as follows:
M = (1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0,
1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0).
And ciphertextC is computed as follows:
C = m1(a1P ) + m2(a2P ) + · · ·+ m112(a112P )

= (432815421429335651845328135968456201372
1437714221, 1529610515731906113393822990423
207816468085214837).

Next, C1, · · · , C6 which are sums of every16 of mi is
computed, andt1, · · · , t6 are generated at random.
By C1, · · · , C6, t1, · · · , t6,
C11 = (17822230467493299962641706173989566840
41646577761, 67826164108166767152537590493674
67811067149115502),
C12 = (85476271021581708779812433027109681769
64571821002, 74434429843837282608448806991870
21412941961387365),
C21 = (28824148122354302892459707791319772695
2892571787, 830125564685652199920363896689282
5577913729867808),
C22 = (39107150071401322340884408555191945215



96600570488, 75620241436522889585781134393494
86570343195706173),
C31 = (98435789479500059274879828208427433116
27191091089, 22162205160985094296355426769093
30122074972818978),
C32 = (15517492452279509074207406614349816913
23087232174, 48056188893927851787720808887470
15402732808675863),
C41 = (13932425920449395062198868138506476670
87688107336, 16179628659902359763909366455075
02503501339833535),
C42 = (73408528010378380949334563136247988294
34090499261, 65884394786484204231938410927098
49980979498739062),
C51 = (11195349987381019384588104470465987850
86306752817, 36761666041709818906186833553065
37530939027662534),
C52 = (34362962511590730097211482441834861350
41652820542, 16781515151061422020057957239916
88234601957501385),
C61 = (10083856998953238764023285654124841812
86140016712, 26725922581055779624672990233688
55518445847788876),
C62 = (93166021473708513048434271480163984618
17145422991, 62832463037745179647524820158753
0335736133590164)
are computed.
Finally, C,C11, C12, · · · , C61, C62 is transmited.

3) Decryption: First, C1, C2, · · · , C6 are decrypted from
C11, C12, · · · , C61, C62 by secret keyd. Next, we compute the
pairing values as follows:
e(C1, Q) = 1307003222328132552562508997255016
302134270352159α + 8337579406038302479848920
027842507978718453779660,
e(C2, Q) = 1271464850955563633220936378410758
100644076617498α + 8756622456927197875457246
300155376821099989680714,
e(C3, Q) = 8462879925219901142125775948557598
095221183575760α + 2986234543325439708373224
268173418339245555733577,
e(C4, Q) = 5718549705464331953554413436541829
87212276166770α + 98237251776891869415098117
42264769268942224600045,
e(C5, Q) = 4485044147372337610820421036265475
518821131014810α + 6938936904028993630666509
913217567883066298206975,
e(C6, Q) = 3683799030140423223130178503178398
870547579645278α + 8414894691892071411638941
68310313968260836817793.
Let

X = e(C1, Q) (52)

and since

f1(X/e(P, Q)a16) = 0, (53)

m16 = 1, and letX = X/e(P, Q)a16 .
Since

f1(X/e(P, Q)a15) = 0, (54)

m15 = 1, and letX = X/e(P, Q)a15 .
Since

f1(X/e(P, Q)a14) = 0, (55)

m14 = 1, and letX = X/e(P, Q)a14 .
Since

f1(X/e(P, Q)a13) = 0, (56)

m13 = 1, and letX = X/e(P, Q)a13 .
Since

f1(X/e(P, Q)a12) 6= 0 (57)

m12 = 0, then we compute

f1(X/e(P, Q)a11). (58)

In the same way, if

f1(X/e(P, Q)ai) = 0, (59)

mi = 1, and let
X = X/e(P, Q)ai . (60)

Otherwise,mi = 0, and we compute

f1(X/e(P, Q)ai−1). (61)

By repeating untilr = 1 in the same way, we can decryptC1.
Furthermore, by usingf2, · · · , f6, mi are decrypted untilm96

in the same way. Finally, let

X7 = e(C, Q)/(e(C1, Q) · · · e(Cu−1, Q)), (62)

by using f7 we compute in the same way withCi, decrypt
m97, · · · ,m112. Then decryption ofM is completed.

III. C ONCLUSION

We proposed the knapsack cryptosystem on elliptic curves
which the computational complexity of the decryption is
a polynomial time by using the decryption function. This
cryptosystem is not decrypted by LLL algorithm because
we replace the addition on Knapsack cryptosystem with the
addition on elliptic curves. Although ciphertexts are rational
points on elliptic curves, they are not decrypted by difficulty of
elliptic curve discreat logarithm probrem since they are con-
sisted by ElGamal cryptosystem on ellptic curves. Although
ciphertexts are rational points on elliptic curves, since they
are constructed by ElGamal cryptosystem on elliptic curves,
they are not decrypted by difficulty of elliptic curve discrete
logarithm problem.

In this time, we used Tate pairing. But since in the study
of pairing more fast speed pairings have been being studied,
it is able to compute more fast by other pairing methods. The
more greatly we takes r, the more security increases. But then
the computational complexity and amount of needed memories
increase. In fact, in our present experiments, the max value of
r is 16, which is used in the section 2.8. This fact depends
on the environment that uses this cryptosystem. Hoever, the



way of the key generation such that even ifr is enlarged
as much as possible the computational complexity doesn’t
increase is an examination problem. In addition, though we
used elliptic curve Elgamal cryptosystem for the encryption,
whether another method of no dependence on the difficulty of
the elliptic curve discrete logarithm problem can be used is an
examination problem.
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