
Reducing RFID Reader Load with the Meet-in-the-Middle Strategy

Jung Hee Cheon, Jeongdae Hong and Gene Tsudik ∗

Abstract

In almost any RFID system, a reader needs to identify, and optionally authenticate, a mul-

titude of tags. If each tag has a unique secret, identification and authentication are trivial,

however, the reader (or a back-end server) needs to perform a brute-force search for each tag-

reader interaction. In this paper, we suggest a simple, efficient and secure technique that reduces

reader computation to O(
√
N · logN). Our technique is based on the well-known “meet-in-the-

middle” strategy used in the past to attack certain symmetric ciphers.

Keywords: RFID Identification, Authentication, Meet-in-the-Middle Strategy, PRF.

1 Introduction

A general Radio Frequency IDentification (RFID) system consists of a back-end database (or simply

database), multiple readers, and a multitude of tags. The database maintains all system data. A

reader relays data between the database and tags by wireless communication with multiple tags in

the same period. A tag is typically attached to an object or a set of objects. A tag usually contains

a unique identification number and some object-related data. We skip the technical details of a

general RFID architecture and refer to [5] for a good introduction to RFID technology.

In a typical RFID system, the reader and the tags communicate wirelessly. Wireless com-

munication prompts the same set of security threats encountered in a general wireless system.

Eavesdropping on tag-reader communication might allow the adversary to track tags. A malicious

reader can likewise track tags. A fraudulent (e.g., cloned) tag can convince a reader that it is

genuine by supplying fake information. Last but not least, compromised tags and readers need

to be promptly revoked. Various solutions to some these threats have been proposed, e.g., in [4]

and [6].
∗J. Cheon and J. Hong are with Seoul National University, Seoul, Korea. (e-mail: jhcheon@snu.ac.kr, jd-

hong@theory.snu.ac.kr) G. Tsudik is with University of California, Irvine (e-mail: gts@ics.uci.edu)

1

In this paper, we focus on tag identification using keyed Pseudo-Random Functions (PRF-s).

(See [3] for definitions and a theoretical background on PRF-s.) Usage of PRF-s for identification

prompts a key management problem. If a single secret key is used for all tags, compromise of a

single tag breaks the entire system. If a unique per-tag secret key is used, privacy concerns preclude

the tag from identifying itself explicitly during reader-tag interaction; therefore, the reader has to

“guess” the tag’s identity and determine it via brute force. Since modern RFID systems can involve

upwards of 1010 tags and require readers to scan as many tags as possible as fast as possible, a

brute force search for each tag-reader interaction is very inefficient. This triggers our motivation

for reducing tag identification complexity on the reader side.

Contribution Summary We propose a secure and efficient RFID tag identification technique

using PRF-s. The distinctive feature of our technique is that the reader identifies the tag with only

2
√
N PRF-s, where N is the number of tags in the entire RFID system. Whereas, an adversary,

who does not know the keys, needs to exhaustively search the entire O(2`+1) key-space, even if it

uses the meet-in-the-middle attack strategy, where 2` is the key bit-size. We also propose some

extensions to the basic technique.

2 Efficient Key Searching Protocol

We now describe our technique for efficient tag identification. We assume that the following system

participants:

• Server (SRV): trusted entity that sets up the system.

• Reader (RDR): trusted device that interacts with tags.

• Tags (T1, ..., TN): set of RFID tags.

• Adversary (ADV): malicious entity that aims to subvert the system.

2.1 System Setup

We assume that each tag is equipped with a PRF and has enough memory for a unique secret

key shared with the reader. In the setup phase, SRV selects two global parameters: (1) security

parameter ` (e.g., ` = 80 for 280 security) and (2) sufficiently large integer N which represents the

2

maximum number of tags in the system (e.g., N = 1, 000, 000). For notational convenience and

without loss of generality, we assume that integer N is a square.1

Next, SRV constructs two key-sets:

K1 = {Kx | 1 ≤ x ≤
√
N}, K2 = {Ky | 1 ≤ y ≤

√
N}

such that K1 ∩ K2 = ∅. Then, for each tag Ti (1 ≤ i ≤ N), SRV generates a distinct (two-part)

secret key Ki = 〈Ki
1,K

i
2〉 where:

Ki
1 = Kx ∈ K1, x ∈R [1,

√
N], Ki

2 = Ky ∈ K2, y ∈R [1,
√
N].

In other words, Ki ∈R K1 × K2. Note that notation ∈R means “randomly chosen from”. Also,

selection is done without replacement, i.e., for all i 6= j ∈ [1, N], Ki 6= Kj . SRV then

initializes each tag Ti with Ki. Ki, in effect, represents a tag’s identity and its unique identifier.

The two key-sets K1,K2 are distributed to each reader.

In the end, each tag only stores a 2` -bit key Ki = Ki
1‖Ki

2. Although all tag keys are distinct,

RDR only needs to store set K1 and K2, which together amount to 2`
√
N bits.

2.2 Private Identification Protocol

We follow the protocol defined in the ISO/IEC 9798-2 standard. First, RDR sends a random

challenge r to a tag. The tag generates its own random number r′, computes:

C = PRFKi
1
(r, r′)⊕ PRFKi

2
(r, r′)

and sends 〈C, r′〉 back to RDR.

The reader searches for the tag key in two key-sets K1 and K2 by checking:

{C ⊕ PRF
Kj

2
(r, r′)} ?= PRF

Kj
1
(r, r′)

If there is a match, RDR identifies the tag.

Note that the protocol requires the tag to generate its own random number r′ and include it

in all PRF invocations. This is necessary in order to avoid tracking by malicious readers. If the

tag computed C = PRFKi
1
(r) ⊕ PRFKi

2
(r), it would be trivial for a malicious reader to track the

tag, since, given the same tag and the same reader challenge r, the tags replies (C-s) would be the

same. Moreover, it is difficult to imagine a realistic RFID usage scenario where malicious reader

attacks are not applicable.
1Otherwise, we would need to replace

√
N by d

√
Ne – the largest integer not exceeding

√
N .

3

Figure 1: Key Search Pseudocode

. .

Key Search Algorithm (r, r′, C)

for j = 1 to
√
N do

Compute X = PRFKj
1
(r, r′)

Set TABLE[j]← 〈Kj
1 , X〉

end for

SORT(TABLE)

for i = 1 to
√
N do

Compute Y = C ⊕ PRFKi
2
(r, r′)

Set Z = SEARCH(TABLE, Y)

If (Z > 0) THEN BREAK

end for

If (Z > 0) THEN RETURN(TABLE[Z],Ki
2)

. .

2.3 Search Algorithm

As described above, RDR finds the key-pair (Ki
1,K

i
2) using the key-set K1 × K2, which is much

smaller than the total 22` key-space. Upon receiving C, RDR computes a
√
N -sized table of

PRF
Kj

1
(r, r′) computed with all possible keys Kj

1 ∈ K1. Each entry in the table contains:

〈Kj
1 ,PRF

Kj
1
(r, r′)〉. Then, RDR sorts the table. Next, for each Ki

2 ∈ K2, RDR computes

C ⊕PRFKi
2
(r, r′) and searches for it in the table. If the search succeeds, RDR determines the key

pair (Kj
1 ,K

i
2) which uniquely identifies the tag.

The key search algorithm is shown in more detail in Fig. 1. The reader’s total computation cost

is O(
√
N · logN) since it requires O(

√
N · logN) for SORT(·) and SEARCH(·), and 2

√
N PRF(·)

operations.

2.4 Details and Measurements

Instead of a PRF, we can also use Pseudo-Random Permutation (PRP). Every PRP has an inverse

function PRP−1
K (·) which can be easily computed with the knowledge of K. In that case, the tag

would compute C = PRPKi
2
(PRFKi

1
(r, r′)). RDR would search for the tag by checking:

PRFKi
1
(r, r′) ?= PRP−1

Ki
2
(C).

4

Any efficient and secure symmetric cipher (e.g., AES) can be used as a PRF. In fact, AES can

be used as both PRP and PRF. For example, Feldhofer, et al. [2] proposed an implementation of

128-bit AES for RFID tags which requires only 3, 600 gates. If the cipher requires a 128-bit key,

we can add certain padding to `-bit keys. More compact hardware implementations are expected

in the near future.

Table 1 shows average run-time for our protocol using AES as the underlying PRF with N =

1, 000, 000. All experiments were conducted on a 1.86-GHz Intel Core-Duo processor with 2GB

memory, MS Windows Vista and VS.NET. All timings were obtained from averages over 100 runs

with randomly chosen K1,K2, r and r′. The search time is comparatively high since, in the worst

case, RDR invokes PRF |K2| times. Our search algorithm takes about 2.07ms per tag, which is

200 times faster than brute force search (433.52ms).

Table 1: Measurements (in milliseconds) with 128-bit AES

Operation:

Table Gen. Table Sort Search Total

0.671074 0.572694 0.832777 2.076545

3 Extensions

In the proposed protocol, if ADV directly compromises c tags, it can effectively impersonate and

track c2 − c other tags. For example, consider two compromised tags Ti and Tj . Given their keys:

〈Ki
1,K

i
2〉, 〈K

j
1 ,K

j
2〉, ADV can impersonate and track two other tags (say, Tx and Ty) corresponding

to key-pairs: 〈Ki
1,K

j
2〉 and 〈Kj

1 ,K
i
2〉, respectively. We call such tags (i.e., Tx and Ty) indirectly-

compromised.

We now construct two extensions to mitigate this problem. The first reduces ADV ’s probability

of tracking and impersonation of indirectly-compromised tags. The second extension completely

prevents impersonation (but not tracking) of indirectly-compromised tags via explicit authenti-

cation. In addition, we propose a protocol combining with tree-based protocol of Molnar and

Wagner [7].

5

3.1 Extension I: k-resilient Protocol

In the system setup phase, SRV selects a resiliency parameter k. Then, the maximum number of

tags is N0, where N = (kd
√
N0e)2. Since the probability of a key-pair being assigned to a real

tag is: N0/N ≤ 1/k2, the expected number of non-compromised tags whose keys are revealed is:

(c2−c)/k2 ≤ (c/k)2. For example, assuming k = N
1/4
0 , the reader’s computation is O(N3/4

0 · logN0)

and the expected number of indirectly compromised tags stays below one, until the number of

directly compromised tags grows to N1/4
0 . Considering compromised keys, the reader’s search cost

is: O(k
√
N0 · logN0).

3.2 Extension II: Authentication Protocol

At setup time, for each tag, we introduce an additional ` -bit key unique Ki
3 ∈r K3, i.e., each Ti

has a three-part key: Ki = Ki
1‖Ki

2‖Ki
3. For 0 ≤ α ≤ 1/2, we set |K1| = |K2| = Nα and |K3| = N

so that N1−2α tags have the same key pair 〈Ki
1,K

i
2〉.

For each interaction with RDR, in addition to C as described above, the tag also computes

C ′ = PRFKi
3
(r, r′) and sends 〈C,C ′〉 to RDR. Next, RDR performs key search using C as before

to determine 〈Ki
1,K

i
2〉. Then, RDR checks N1−2α candidates of Ki

3 to identify the correct Ki
3 using

C ′. This last step represents tag authentication, as opposed to plain key-search which corresponds

to (private) tag identification.

In this extension it might seem necessary for RDR to additionally store the entire N -element

set K3 as well as a way to associate each key in K3 with a tuple drawn from K1 × K2. This

would represent a heavy storage burden over the plain protocol where RDR stored only 2 ·
√
N

keys. However, one simple optimization which requires no extra storage is to generate each Ki
3

as a one-way trapdoor function of 〈Ki
1,K

i
2〉, some master secret key KK known only to SRV and

RDR. For example, we can set Ki
3 = AES CBC(KK,Ki

1,K
i
2, b), where (1 ≤ b ≤ N1−2α). Note

that the probability of randomly generated N 128-bit keys having a match is about N2/2128, which

is very small for a reasonably large N . Besides KK, this involves no storage overhead and the

computation overhead is clearly minimal.

It is easy to see that the use of Ki
3 prevents impersonation of indirectly-compromised tags.

However, it does not prevent their tracking completely since C is still computed as a function of

Ki
1 and Ki

2. However, a smaller value of α can further inhibit tracking, i.e. 〈Ki
1, Ki

2〉 pairs can be

used to identify a tag with probability 1/N1−2α.

6

3.3 Combination with Tree-based Protocol

Our basic protocol can be used with Molnar and Wagner’s tree-based protocol (MW protocol) [7].

The protocol considers tags as leaves in a tree, then associate each edge in the tree with a secret

(level key). Each tag should store the secrets corresponding to the path from the root to the tag.

RDR is required to store all secrets of which number is determined by branching factors of the tree.

In a d-ary tree, for identifying a tag, RDR needs O(logdN) rounds of interactions with the tag

and d · logdN PRF computations. If our protocol is used as a subprotocol for searching level keys,

then the tag’s computation is doubled up but the RDR’s computation is reduced to 2
√
d · logdN

PRF-s with the same communication cost.

In the example using two-level tree for N = 220 tags, presented in [7], the branching factor is

d = 1024. In this case, RDR needs to compute 210 · log210 220 = 2048 PRF-s for MW protocol, but

it is reduced to 2 · 25 · log210 220 = 128 PRF-s for our protocol.

4 Analysis

We now briefly discuss efficiency and security properties of the proposed protocol.

4.1 Efficiency

In our (non-extended) protocol, the reader requires O(|K1| + |K2|) operations for computing

PRFK1(r, r′) and PRFK2(r, r′) for K1 ∈ K1 and K2 ∈ K2 and O((|K1| + |K2|) · log|K1|) for

sorting ciphertexts and searching collisions. Therefore, when we take |K1| = |K2| = N1/2, a reader

requires only O(
√
N · logN) computation cost, where N is the maximum number of tag keys. For

an adversary who does not have an information on the sets K1 and K2, searching the key pair

requires exhaustive search over all 2`+1 keys even though “meet-in-the-middle” attack strategy is

used with a pair of plaintext and ciphertext. Our identification protocol requires only O(`) bits per

message (random number).

In the authentication protocol, when |K1| = |K2| = Nα, the verification time is about (2Nα +

N1−2α) PRF computations. We find that α = 1
3 is optimal with the time complexity O(N1/3·logN).

7

4.2 Security

If no tag is compromised, it is easy to see that the proposed protocols are resistant to both tracking

and impersonation. The former is because ADV can not link two different tag responses, and the

latter – because ADV can not impersonate a tag without knowing that tag’s key.

For example, consider the situation where c tags are compromised. In our basic protocol, this

translates into at most c2 − c indirectly compromised tags, i.e., for which (K1,K2) are revealed.

Aside from these tags, ADV can not tell if a tag has K1 or K2 as a part of his key. Therefore,

tags with partially compromised key are still secure in the sense that the exhaustive search for the

other key requires 2` computations.

In our k-resilient protocol, the number of indirectly-compromised tags can be made small by

increasing the computation cost. In our authentication protocol, even the indirectly compromised

tags can not be impersonated since their K3 values remain secret (since (K1,K2) is only used to

narrow down the candidates for K3). However, c2N1−2α indirectly compromised tags can be weakly

tracked in the sense that it can be determined only whether it is one of the N1−2α tags with the

same (K1,K2).

In summary, if the number of compromised tags is very small, both basic and k-resilient protocols

are appropriate; otherwise, our authentication protocol extension is preferable.

5 Conclusion

We proposed efficient and secure RFID tag identification and authentication technique using the

well-known meet-in-the-middle strategy. In it, the reader’s computation is reduced to O(
√
N ·logN)

where N is the maximal number of tags. For authentication, we need to add one more message

but the reader’s computation is reduced to O(N1/3 · logN).

References

[1] W. Diffie and M. Hellman, Exhaustive Cryptanalysis of the NBS Data Encryption Standard,

IEEE Computer, Vol. 10, No. 6, pp. 74-84, June 1977.

[2] M. Feldhofer, S. Dominikus and J. Wolkerstorfer, Strong Authentication for RFID Systems using

the AES Algorithm, Workshop on Cryptographic Hardware and Embedded Systems (CHES’04),

LNCS 3156, pp. 357-370, Springer, 2004.

8

[3] O. Goldreich, Foundations of Cryptography, Volume 1, Chapter 3. Cambridge University Press,

2004.

[4] A. Juels. RFID Security and Privacy: a Research Survey, IEEE Journal on Selected Areas in

Communications, 24(2):381–394, February 2006.

[5] T. Karygiannis, B. Eydt, E. Barber, L. Bunn, and T. Phillips, Guidelines for Securing Radio

Frequency Identification (RFID) Systems, NIST Special Publication 800-98, April. 2007.

[6] M. Lehtonen, T. Staake, F. Michahelles and E. Fleisch, From Identification to Authentication

– a Review of RFID Product Authentication Techniques, Workshop on RFID Security (RFID-

SEC’06), 2006.

[7] D. Molnar and D. Wagner, Privacy and Security in Library RFID: Issues, Practices, and Ar-

chitectures, ACM Conference on Computer and Communications Security (CCS’04), November

2004.

[8] International Organization for Standardization. ISO/IEC 9782-2: Information Technology –

Security Techniques – Entity Authentication Mechanisms Part 2: Entity Authentication using

Symmetric Techniques, 1993.

9

