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Abstract. This paper describes new methods in pairing-based signature schemes for identifying
the invalid digital signatures in a batch, after batch verification has failed. These methods effi-
ciently identify non-trivial numbers of invalid signatures in batches of (potentially large) numbers
of signatures.
Our methods use “divide-and-conquer” search to identify the invalid signatures within a batch,
but prune the search tree to substantially reduce the number of pairing computations required.
The methods presented in this paper require computing on average O(w) products of pairings to
identify w invalid signatures within a batch of size N , compared with the O(w(log2(N/w)+1)) [for
w < N/2] that traditional divide-and-conquer methods require. Our methods avoid the problem of
exponential growth in expected computational cost that affect earlier proposals which, on average,
require computing O(w) products of pairings.
We compare the expected performance of our batch verification methods with previously published
divide-and-conquer and exponential cost methods for Cha-Cheon identity-based signatures [6].
However, our methods also apply to a number of short signature schemes and as well as to other
identity-based signature schemes.
Keywords Pairing-based signatures, Identity-based signatures, Batch verification, Short signa-
tures, Wireless networks

1 Introduction

Public-key digital signatures have frequently been used in proposals for securing wireless net-
work protocols. Proposals include methods for performing the following: combating SPAM [11];
securing routing protocols [19, 30]; providing secure accounting and charging for use of the wire-
less network, or securely giving incentives to nodes for desirable (to the network) behavior [22,
4]; protecting location and safety messages in vehicular networks [23, 21]; and securely trans-
porting ordinary messages in delay (or disruption) tolerant networks [7, 26]. Even in wireless
networks that have significant performance constraints such as sensor networks, it has been
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argued on efficiency grounds that signature schemes should be used for message authentication
rather than symmetric cryptographic techniques [10, 27].

When protocol designers need to select a bandwidth efficient signature scheme, they will be
drawn to schemes based on bilinear pairings, such as the short signature schemes [2, 5] or the
bandwidth efficient identity-based signature schemes [6, 5]. However, the computational cost
of such schemes, especially the cost of their verification algorithms, can negatively impact the
performance of wireless networks (e.g., increased delay, CPU utilization, energy consumption).
Therefore, whenever circumstances allow, designers will employ batch verification methods
for such pairing-based signature schemes [29, 5, 14]. Adversaries can attempt to negate the
advantages of batch verification by corrupting messages or signatures within a batch. To counter
such attacks, efficient methods are needed to identify the valid signatures within a batch that
has failed initial batch verification.

To discover the valid signatures in an invalid batch, rather than verifying each signature
individually, “divide-and-conquer” (DQ) techniques have been proposed [20, 14]. These meth-
ods can be significantly faster than verifying individually whenever the ratio of the number of
invalid signatures to the batch size is low. These methods require only O(w(log2(N/w) + 1))
batch verifications and, for pairing-based signatures, product of pairings computations [13].
Recent methods for identification of invalid pairing-based signatures require O(w) batch verifi-
cations [14]. When the ratio w/N is very low these methods can provide significant performance
improvements over DQ methods; however, the cost of performing the batch verifications used
in these methods grows exponentially, limiting their use to very small batches, and to batches
with only very few invalid signatures.

Our contribution. In this paper, we present two new methods for finding invalid signatures
in pairing-based schemes. These methods are based on divide-and-conquer searching, but differ
from previous methods in how the (sub-)batches are verified. The average number of product
of pairings computations required in our methods is O(w), which is a substantial improvement
over previous divide-and-conquer methods when the ratio w/N is low, and is the same complex-
ity as the exponential cost methods. The expected number of multiplications in Fqd required

of the new methods is O(w
√

N), and O(wN), compared to estimates of the cost of the two

exponential cost methods, O(Nw−1/(w− 1)!) and O(ww−1N
w−1

2 /(w− 1)!) [14]. We have spec-
ified these methods and compared their performance for Cha-Cheon signatures [6]; however,
these methods can be applied to several other pairing-based signature schemes, specifically the
batched identity-based and batched short signature schemes discussed in [8].

2 Notation

In this paper we assume that pairing-based schemes use bilinear pairings on an elliptic curve
E, defined over Fq, where q is a large prime. G1 and G2 are distinct subgroups of prime order
r on this curve, where G1 is a subset of the points on E with coordinates in Fq, and G2 is a
subset of the points on E with coordinates in Fqd , for a small integer d (the embedding degree).
The pairing e is a map from G1×G2 into GT where GT is a multiplicative group of order r in
the field Fqd .

We use the following notation for the components of the costs of (batch) signature verifica-
tion and invalid signature identification methods for Cha-Cheon signatures. CstDblPair is the

2



cost of a double product of pairings computation [13]. CstMultG1(t1) is the cost of multiplying
an element of G1 by a scalar s of size |s| and t1 = ⌈log2(|s|)⌉; likewise CstDlbMultG1(t1, t2) is
the cost of a pair of multiplications of elements of G1 by scalars of size t1 and t2 simultaneously.
CstAddG1 is the cost of adding two elements of G1, and CstSubG1 is the cost of subtracting
an element of G1 from another element. CstInvGT is the cost of computing an inverse of an
element in GT ; CstMultGT is the cost of multiplying two elements of GT ; and CstExptGT(t1)
is the cost of raising an element of GT to the power s.

3 Background

Batch cryptography was introduced by Fiat [9], and the first batch signature scheme was that
of Naccache et al. [18] for a variant of DSA signatures. Bellare et al. [1] presented three generic
methods for batching modular exponentiations: the random subset test, the small exponents
test (SET), and the bucket test, which are related to techniques in [18, 28].

The inputs to the small exponents test are a security parameter l, a generator g of the
group G of prime order q, and (x1, y1), (x2, y2), . . . , (xN , yN ) with xi ∈ Zq and yi ∈ G. The
verifier 1) checks that gxi = yi for all i, 1 ≤ i ≤ N ; 2) chooses n random integers r1, . . . , rN

in the range [0, 2l − 1]; 3) computes x =
N
∑

i=1
xiri and y =

N
∏

i=1
yi

ri ; and 4) tests whether gx = y

and accepts the batch if true, else rejects. If the test rejects a batch, then there is at least one
invalid pair (xi, yi); the probability that the test accepts a batch containing invalid signatures
is at most 2−l [1], if the order of G is a prime [3]. One of the r’s can be set to one without loss
of security [14]. The small exponents test has appeared in pairing-based signature schemes [2,
5] including, in [14], as the batch verifier for the Cha-Cheon signature scheme [6].1

Cha-Cheon identity-based signature scheme. H(m, U) is a cryptographic hash that maps a bit
string m and a point U ∈ G1 to an integer between 1 and r.

1. Setup: The system manager selects an order r point T ∈ G2 and randomly selects an integer
s in the range [1, r−1]. The manager computes S = sT . The public system parameters are
T and S. The system manager’s secret key is s.

2. Extract: Each user is given a key pair. The user’s public key, Q, is a point in G1 that is
derived from the user’s identity using a public algorithm. The user’s private key is C = sQ.

3. Sign: To sign a message m, the signer randomly generates an integer t in the range [1, r−1]
and outputs a signature (U, V ) where U = tQ and V = (t + H(m, U))C

4. Verify: To verify a signature (U, V ) of message m, the verifier derives the signer’s public key
Q from the alleged signer’s identity and computes h = H(m, U). If e(U +hQ, S) = e(V, T )
then the signature is accepted. Otherwise, the signature is rejected. This test can be
rewritten as 1 = e(U + hQ, S) · e(V,−T ) which can be computed more efficiently [13].

In [14] the following batch verifier was presented. The verifier obtains N messages mi, for i = 1
to N , and the signatures (Ui, Vi) and signer’s identity for each message. The verifier derives
each public key Qi from the signer’s identity and checks that Ui and Vi are elements of G1.

1 For Cha-Cheon signatures with the cost parameters in Section 5, SET always verifies a valid batch more
efficiently than the random subset test, and the bucket test verifies a valid batch more efficiently than SET
when the batch size exceeds 512.

3



The verifier sets r1 = 1 and generates random values ri from [0, 2l − 1], for i = 2 to N . The
batch is valid if

1 = α0 = e

(

N
∑

i=1

Bi, S

)

· e
(

N
∑

i=1

Di,−T

)

where Bi = ri (Ui + H(mi, Ui) ·Qi), Di = riVi, and 1 is the identity in Fqd .

3.1 Identifying Invalid Signatures

The problem of identifying invalid signatures within a batch has only recently been investigated.
Work in this area generally falls into three categories: divide-and-conquer methods [20, 14],
identification code based methods [20], and expo-nent testing methods [15, 16, 25, 14].

Divide-and-Conquer Methods Pastuszak et al. [20] first investigated methods for iden-
tifying invalid signatures within a batch. They explored “divide-and-conquer” methods for
generic batch verifiers, i.e., methods that work with any of the three batch verifiers studied by
Ballare et al. In these methods the set of signatures in an invalid batch is repeatedly divided
into d ≥ 2 smaller sub-batches to verify. The most efficient of their techniques, the Fast DC
Verifier method, exploits knowledge of the results of the first d − 1 sub-batch verifications to
determine whether the verification of the dth sub-batch is necessary, i.e., if a (sub-)batch batch
is invalid and the first d−1 sub-batches of batch are all valid, then the d’th sub-batch must be
invalid, and the batch verifier for that sub-batch is not computed. Performance measurements
of one of the methods of [20] for the Boneh, Lynn and Shacham (BLS) [2] signature scheme
have been reported [8]. The authors observed that the divide-and-conquer method they studied
outperformed verifying each signature individually when w/N < .15 in batches of 1024 BLS
signatures using 160-bit MNT curves.

In [14] a more efficient divide-and-conquer method called Binary Quick Search (BQS) was
presented; BQS is applicable to small exponents test based verifiers. In this method a batch
verifier that compares two quantities, X and Y , is replaced with an equivalent test A = XY −1,
and the batch is accepted if A = 1.2 The BQS algorithm is always3 more efficient than any
d = 2nary DC Verifier; When it is necessary to verify the dth child sub-batch, in BQS the
sub-batch can be verified by simply computing a single inverse operation and a single multi-
term multiplication (or d − 1 ordinary multiplications) rather than the much more expensive
batch verification required by the Fast DC verifier. The upper bound of the number of batch
verifications required by BQS is half that of the Fast DC Verifier for d = 2 [14].

Identification Code based Methods Pastuszak et al. [20] investigated using a Hamming
identification code and a two-layer Hamming identification code for identifying invalid signa-
tures in generic batch verification. The Hamming code verifier can identify a single error in a
batch of size 2n − 1 using n + 2 batch verifications, and the two-layer verifier can identify 2
invalid signatures in a batch of 2n − 2 signatures using 3n + 3 batch verifications.
2 For the initial batch verification, if it is more efficient to do so compute X and Y , compare them, and compute

A = XY −1 if the comparison fails; otherwise A is computed directly, e.g., in Cha-Cheon where A = α0.
3 Except when w = 1 and the invalid signature is located in the rightmost position in the batch then Fast DC

verifier and BQS have equal costs.
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Exponent Testing Methods The first exponent testing method, developed by Lee et al. [15],
was capable of finding a single invalid signature within a batch of “DSA-type” signatures.
Signatures of this type have verification equations of the form “gm = s mod p” where m is the
message, s is the signature, the generator g has order q, and p and q are primes where q | (p−1).

To identity an invalid signature, compute X =
∏N

i=1 si/g
∑N

i=1 mi and Y =
∏N

i=1 si
i/g

∑N
i=1 i·mi

and test whether Y = Xz for z ∈ [1, N ]. The Exponentiation method of Law and Matt [14],
for the special case of identifying a single invalid signature, is similar to the above method.

Lee et al. [16] applied their approach for DSA-type signatures to identifying a single invalid
signature in batches of RSA signatures. They addressed the problem of identifying multiple
invalid RSA signatures by using their RSA method in a divide-and-conquer method that is
somewhat similar to the Single Pruning Search we present in Section 4. However, Stanek
showed in [25] that their approach for RSA signatures is not secure.

In [14] two exponent testing methods for pairing-based batch signatures, the Exponenti-
ation method and the Exponentiation with Sectors method, were presented. Both methods
require computing a number of batch verifications that are proportional to the number of
invalid signatures w in the batch. The Exponentiation method requires w + 1 verifications
(including the initial batch verification) and the same number of product of pairings computa-
tions. Exponentiation with Sectors requires at most 2w + 1 product of pairings computations.
Both methods use exhaustive search during batch verification, resulting in exponential cost.

Exponentiation Method. For the Cha-Cheon signature scheme, compute α0 and test whether
α0 is equal to the identity. If so, the batch is valid. Otherwise compute αj , w ≥ j ≥ 1,

αj = e

(

N
∑

i=1

ijBi, S

)

e

(

N
∑

i=1

ijDi,−T

)

, (1)

and perform a test on the values αj , αj−1, . . . α0. For j = 1, test whether α1 = αz1
0 has a

solution for 1 ≤ z1 ≤ N using Shanks’ giant-step baby-step algorithm [24]. If successful, w = 1
and z1 is the position of the invalid signature. In general the method tests whether

αj =

j
∏

t=1

(αj−t)
(−1)t−1 pt (2)

has a solution where pt is the tth elementary symmetric polynomial in 1 ≤ z1 ≤ . . . ≤ zj ≤ N .
The authors show that the tests can be performed in O(

√
N) for j = 1 and O(N j−1/(j − 1)!)

for j ≥ 2 multiplications in Fqd . If a test fails increment j, compute αj , and test. When j = w
the test will succeed, and the values of z1, . . . , zw are the positions of the invalid signatures.

Exponentiation with Sectors Method. The Exponentiation with Sectors Method uses two stages.
In the first stage, the batch is divided into approximately

√
N sectors of approximately equal

size and the Exponentiation method is used, where each Bi, and Di within a sector is multiplied
by the same constant, to identify the v invalid sectors. In the second stage, the Exponentiation
method is used to find the invalid signatures within a batch consisting of the signatures from the
v invalid sectors. This method requires w+v+1 product of pairings computations, including the
initial verification, where v ≤ min(w,

√
N). During the first stage the tests can be performed
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in O(N
1
4 ) for j = 1 and O(

√
N

j−1
/(j−1)!) for j ≥ 2 multiplications in Fqd . During the second

stage the number of multiplications required for w ≤ j ≥ v is O(
√

v
√

N) for j = 1, and

O(v
√

N
j−1

/(j − 1)!) for each j ≥ 2.

4 An Alternate Approach to Divide-and-Conquer Methods

Divide-and-conquer methods can be viewed as operating on (for simplicity) a binary tree T
with w ≥ 1 invalid signatures whose root node, rootT , is the batch, and each pair of child nodes
represents the two nearly equal size sub-batches of their parent. Previously published methods
such as Binary DC Verifier and BQS identify the invalid signatures within the initial batch
by descending through the tree, performing verifications on the sub-batches of the nodes they
encounter. When one of the methods reaches a node whose sub-batch is valid, the methods
do not visit its descendants, if any. The methods identify the invalid signatures by identifying
those nodes that are either the ancestors of the leaf nodes of T that represent invalid signatures,
or the leaf nodes themselves. The difference between the published methods are 1) the degree
of the tree and 2) how efficiently the nodes of the tree are verified.

The methods we propose view T as consisting of a parent sub-tree PT with root node
rootPT = rootT , and the leaves of PT are the roots of the w maximal sub-trees STi, i = 1, .., w,
of T which represent sub-batches that have a single invalid signature. If the w = 1, then
T = ST1 and PT is the node rootT . The new methods identify invalid signatures by descending
through PT and identifying its leaves, and concurrently identifying the single invalid signature
in each of the sub-batches these leaves represent.

For signature schemes such as the Cha-Cheon, node of T is the root of some STi if there
exists a value z, lb ≤ z ≤ ub, that is a solution to α1,node = αz

0,node. The values lb and ub are
the lower and upper bounds of the sub-batch represented by node within B, and αj,node =

e
(

∑ub
i=lb ijBi, S

)

· e
(

∑ub
i=lb ijDi,−T

)

. Shanks’ giant-step baby-step algorithm can determine

if such a solution exists in time (multiplications in Fqd) proportional to the square root of the
size of the sub-batch. If no solution is found, then node is in PT but is not a leaf; hence its
children must be tested. We refer to this approach as single pruning.

When the children of an interior node p in PT , l and its sibling r, are leaves of PT , there
exist values zl in the range of indexes of the signatures in the left sub-batch and zr in the range
of signatures in the right sub-batch, such that α1,p = αzl

0,l · α
zr
0,r. The values zl and zr can be

determined using an algorithm, PairSolver(Left, Right), with cost proportional to the size of
the (sub-)batch represented by p, see Appendix A.1. If the algorithm fails, then at least one of
the child nodes is not a leaf of PT and they are tested individually using Shanks’ algorithm.
We refer to this approach as paired single pruning.

4.1 Single Pruning Search (SPS) Method.

The recursive algorithm below describes the Single Pruning Search (SPS) method on a batch B
which is a list of N = 2h, h ≥ 1, randomly ordered message / signature pairs ((m1, s1), . . . , (mN , sN ))
where the signature components for Cha-Cheon are verified elements of G1. On the initial call
to SPS(X, α0,P , α1,P ), X = B, α0,P = 1, α1,P = 1. SPS uses the following algorithms:
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1. Get0(X) – checks whether α0 has been computed for X and if so returns it; otherwise
it computes α0 by the most efficient method available, and it may compute
α−1

0 . See Appendix A.
2. Get1(X) – checks whether α1 has been computed for X and if so returns it; otherwise

it computes α1 by the most efficient method available,and it may compute
α−1

1 . See Appendix A.
3. Shanks(X) – if X has a single invalid signature, the algorithm returns the position of the

invalid signature; otherwise the algorithm returns 0. See Appendix A.1.
4. Left(X) – returns a sub-batch with the first len/2 pairs in X, or ∅ if X = ∅.
5. Right(X) – returns a sub-batch with the later len/2 pairs in X, or ∅ if X = ∅.
6. Len(X) – returns the number of pairs in X, or 0 if X = ∅.

Algorithm SPS(X, α0,P , α1,P ) (Single Pruning Search)

Input: X a list of message / signature pairs, α0,P and α1,P in GT .
Output: A list of the invalid pairs in the batch.
Return: A boolean.

if (Len(X) = 1) then
output X //The signature pair X = (mi, si)

return (true)

else
α0,N ← Get0(X)

if (α0,N = 1) then
return (true)

elseif (X = B) then
invα0,[B] ← α−1

0,N // Since α0 of B is not equal to 1, compute and store α−1
0

endif
α1,N ← Get1(X) // If α0,N = α0,P then Get1 only copies values
if (α0,N 6= α0,P ) then

z ← Shanks(X)

if (z 6= 0) then
output (mz, sz)

return (true)

elseif (X = B) then
invα1,[B] ← α−1

1,N // Since Shanks(B) failed, compute and store α−1
1

endif
endif
if (SPS(Left(X), α0,N , α1,N )) then

SPS(Right(X), α0,N , α1,N )

endif
return (α0,N 6= α0,P )

endif

Get0(X) computes products of pairings only for the root node and left children nodes that
are tested by SPS. Get1(X) only computes products of pairings for the root and for each left
child X tested by SPS when the α0 of X is not equal to α0 of the parent of X.
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4.2 Paired Single Pruning Search Method

The recursive algorithm below describes the Paired Single Pruning Search (PSPS) method on
a batch B, which is a list of N = 2h, h ≥ 1, randomly ordered message / signature pairs
((m1, s1), . . . , (mN , sN )) where the signature components for Cha-Cheon are verified elements
of G1. On the initial call to PSPS(X, α0,P , α1,P ), X = B, α0,P = 1, α1,P = 1.

Algorithm PSPS(X, α0,P , α1,P ) (Paired Single Pruning Search)

Input: X a list of message / signature pairs, α0,P and α1,P in GT .
Output: A list of the invalid pairs in the batch.
Return: A boolean.

if (Len(X) = 1) then
output X //The signature pair X = (mi, si)

return (true)

else
α0,N ← Get0(X)

if α0,N = 1 then
return (true)

elseif (X = B) then
invα0,[B] ← α−1

0,N // Since α0 of B is not equal to 1, compute and store α−1
0

endif
if (α0,N = α0,P ) then

α1,N ← Get1(X) // If α0,N = α0,P then Get1 only copies values
else

if (X 6= B and X = Left(Parent(X))) then // X is a left child node
(zl, zr)← PairSolver(X, Right(Parent(X)))

if zl 6= 0 then
output (mzl

, szl
), (mzr , szr ); return (false)

end
end
α1,N ← Get1(X)

z ← Shanks(X)

if z 6= 0 then
output (mz, sz); return (true)

elseif (X = B) then
invα1,[B] ← α−1

1,N // Since Shanks(B) failed, compute and store α−1
1

endif
endif
if (PSPS(Left(X), α0,N , α1,N )) then

PSPS(Right(X), α0,N , α1,N )

endif
return (α0,N 6= α0,P )

endif
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PSPS uses the following algorithms:

1. PairSolver(Left, Right) – uses the double pruning technique to return the positions of
two invalid signatures, one in Left and one in Right, or returns
(0, 0). PairSolver(Left, Right) alternately computes a value
from one of two series, and terminates when a newly computed
value from one series is equal to one of the values already com-
puted for the other series, or when both series have been com-
puted. See Appendix A.1.

2. Parent(X) – returns the parent of X, or ∅ if X is the initial batch B.

5 Performance

For Cha-Cheon signatures, the divide-and-conquer methods and the exponentiation methods
batch verify by first checking that the signature components are in G1, then computing α0 for B,
and testing whether α0 = 1. With the exception of BQS and the DC Verifiers, they compute
their α0s, as shown in Get0(B) in Appendix A. The cost (not including the membership
tests) is N · CstDlbMultG1(t1, t2) + N · CstMultG1(t1)+ 2(N − 1)CstAddG1 + CstDblPair with
t1 = ⌈log2(r)/2⌉ and t2 = ⌈log2(r)⌉.

BQS and the DC Verifiers can compute α0 with the same cost. In BQS the Bis and Dis of
sibling leaf nodes in T are added together to obtain the corresponding values for their parent
nodes. This process is repeated for the interior nodes until the corresponding values for the

root node of T ,
N
∑

i=1
Bi and

N
∑

i=1
Di are obtained, see Appendix B.1.

5.1 Cost of the New Methods when w ≥ 1

Single Pruning Search Performance If w = 1, the cost of SPS increases by the cost of
computing α−1

0 (CstInvGT) and α1 for B (2(N − 1)CstAddG1 + CstDblPair), plus the expected
cost of a successful Shanks(B) call, which is approximately 4

3

√
N CstMultGT. Shanks(X) tests

whether the equation α1,n = αz
0,n has a solution z in the range of l up to u, the bounds of the

(sub-)batch X within the original batch. The algorithm alternately computes a value from the
series α1 · (α−1

0 )i and the series (αs
0)

j ·αl
0, s = ⌊

√

|X|⌋, stopping when a match is found (single
invalid signature) or when both series have been computed.

If w ≥ 2, the average cost of SPS is the sum of the costs of computing α0, α−1
0 , α1, a

failed Shanks(B) call (2
√

N CstMultGT), α−1
1 , plus the sum of the costs generated as SPS

investigates the descendents of rootT .

The following recurrence relation generates these costs:
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w−2
∑

i=2

(

M/2
w−i

)(

M/2
i

)

(R(S)(w − i, M/2) + R(S)(i, M/2) + C(S)(w − i, i, M/2))





















(M
w)

, w ≥ 3,

where for Cha-Cheon:

Costs

Argument CstDblPair CstInvGT CstMultGT

C(S)(2, 0, M/2) 1

C(S)(1, 1, M/2) 2 2 8
3

√

M/2

C(S)(w, 0, M/2) 1

C(S)(w − 1, 1, M/2) 2 2 10
3

√

M/2

C(S)(w − i, i, M/2) 2 2 4
√

M/2

For C(S)(2, 0, M/2) and C(S)(w, 0, M/2), Get0(X) is called for the left child node and no inverse
is computed, with cost CstDblPair. For C(S)(1, 1, M/2), both Get0(X) and Get1(X) are called
for the left child, combined cost is 2CstDblPair + 2CstInvGT; for the right child, cost is zero,
and two successful calls are made to Shanks(X) with combined cost of 8

3

√

M/2 CstMultGT.
C(S)(w−1, 1, M/2) is similar to C(S)(1, 1, M/2) except that one of the calls to Shanks(X) fails
to find a solution. Both calls to Shanks(X) fail for C(S)(w − i, i, M/2).

Paired Single Pruning Search Performance If w ≤ 1, PSPS has the same average cost
as SPS. If w ≥ 2, the average cost of PSPS is the sum of the costs of computing α0, α−1

0 , α1,
α−1

1 , the cost of the failed Shanks test on the batch B, and the sum of the costs generated as

10



PSPS investigates the descendants of rootT . The following recurrence relation generates these
costs:

R(P)(w, M) =







































































































































0, w = 0, 1,

w > M or

w = 2 and M = 2;











2
(

M/2
2

)

(R(P)(2, M/2) + C(P)(2, 0, M/2))+
(

M/2
1

)2
(C(P)(1, 1, M/2))











(M
2
)

, w = 2 and M > 2;





















2
(

M/2
w

)

(R(P)(w, M/2) + C(P)(w, 0, M/2))+

2
(

M/2
w−1

)(

M/2
1

)

(R(P)(w − 1, M/2) + C(P)(w − 1, 1, M/2))+
w−2
∑

i=2

(

M/2
w−i

)(

M/2
i

)

(R(P)(w − i, M/2) + R(P)(i, M/2) + C(P)(w − i, i, M/2))





















(M
w)

, w ≥ 3,

where for Cha-Cheon:

Costs

Argument CstDblPair CstInvGT CstMultGT

C(P)(2, 0, M/2) 1

C(P)(1, 1, M/2) 1 1 M/2

C(P)(w, 0, M/2) 1

C(P)(w − 1, 1, M/2) 2 2 M + 10
3

√

M/2

C(P)(w − i, i, M/2) 2 2 M + 4
√

M/2

For C(P)(2, 0, M/2) and C(P)(w, 0, M/2), Get0(X) is called for the left child node and no inverse
is computed. For C(P)(1, 1, M/2), Get0(X) is called for the left child, the cost is CstDblPair +
CstInvGT, and a successful call is made to PairSolver(Left, Right) with expected cost of
M/2 CstMultGT. For the argument C(P)(w− 1, 1, M/2), both Get0(X) and Get1(X) are called
for both the left and right child, one failed call is made to PairSolver(Left, Right) with cost
M CstMultGT, and one successful and one failed call are made to Shanks(X). C(P)(w−i, i, M/2)
is similar to C(P)(w − 1, 1, M/2) except that both calls to Shanks(X) fail.
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5.2 Number of Product of Pairings Computations of SPS and PSPS

Let T be a perfect binary tree, and PT(2) be the sub-tree of PT , where each node represents
2 or more invalid signatures. For each node in PT(2), SPS computes an α0 for its left child,
unless the child is a leaf node of T . For each node in the PT(2) with both child nodes in PT ,
SPS also computes α1 for its left child, unless the child is a leaf node of T . This computation
occurs w−1 times. SPS also computes a pair of αs for the root. Therefore, including the initial
batch verification, SPS requires |PT(2) |+(w +1) product of pairings computations, if none of
the leaf nodes of PT are leaves of T . SPS requires two fewer α computations whenever a pair
of leaves of PT are leaves of T .

For a perfect binary tree, the number of ways j pairs leaves of PT can be leaves of T is
(

N/2
j

)

, and the number of ways the remaining w−2j invalid signatures can be in the remaining

N/2−j distinct 3 node subtrees at the lowest level of T is
(

N/2−j
w−2j

)

2w−2j . Therefore, the expected
number of occurrences of two sibling leaf nodes of T both representing invalid signatures is

1
(

N
w

)

⌊w/2⌋
∑

j=1

(

N/2

j

)(

N/2− j

w − 2j

)

2w−2j .

Since
(

N−2
w−2

)

=
∑⌊w/2⌋

j=1

(

N/2
j

)(

N/2−j
w−2j

)

2w−2j the expression simplifies to w(w−1)
2(N−1) , and the expected

number of αs computed by Single Pruning Search when the batch size is a power of 2 is

|PT(2) |+ (w + 1)− w(w − 1)

N − 1
.

In Appendix C we show that |PT(2) | < 2w − 1; therefore the expected number of product of
pairings computations required by SPS is less than 3w. Since the number of product of pairings
computations in the cost functions of PSPS are all less than or equal to the corresponding
functions of SPS , the average number of product of pairings used by PSPS is also O(w).

5.3 Number of Multiplications in Fq

Figure 1 and Figure 2 compare methods analyzed in Section 5.1 and Appendix B for finding
invalid signatures in a batch once the initial batch verification has failed for Cases A and C
of [12]. In Case A, the group order r is a 160-bit value, the elliptic curve E is defined over Fq,
where q is a 160-bit value, and the embedding degree d = 6. In Case C, the group order r is
a 256-bit value, q is a 256-bit value, and the embedding degree d = 12. All costs are given in
terms of the number of multiplications (m) in Fq, assuming that squaring has the same cost as
multiplication, using the following estimates from Granger, Page and Smart [12], and Granger
and Smart [13].

– For Case A, 1 double product of pairings = 16, 355m, 1 multiplication in Fq6 = 15m, 1
inverse in Fq6 = 44m (assuming 1 inverse in Fq = 10m), and 1 elliptic curve addition
= 11m.

– For Case C, 1 double product of pairings = 62, 797m, 1 multiplication in Fq12 = 45m, 1
inverse in Fq12 = 104m, and 1 elliptic curve addition = 11m.
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Fig. 1: Number of multiplies in Fq, where r and q are 160-bit values and d = 6.
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Fig. 2: Number of multiplies in Fq, where r and q are 256-bit values and d = 12.
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6 Conclusion

We have presented two new methods, Single Pruning Search and Paired Single Pruning Search,
for identifying invalid signatures in pairing-based batch signature schemes using the small
exponents test, and have analyzed their average case performance. These new methods require
O(w) product of pairings computations and O(w

√
N) and O(wN) number of multiplications

in Fqd . The methods are described for Cha-Cheon signatures, but are applicable to other batch
verified signature schemes such as the batch verifiers presented in [8].

These new methods, like BQS and earlier divide-and-conquer methods, can be used when
there is uncertainty in the number of invalid signatures in a batch. As shown in the figures in
Section 5.3, the new methods significantly outperform the Binary Quick Search method when
w ≪ N , and perform as well as or better than the exponentiation methods except when N
and w are small. Unlike the exponentiation methods, with the new methods a batch verifier is
not forced to switch methods when tests for small w fail.

In [14] the authors suggested that the exponentiation methods can be used with BQS to
provide improved performance after tests for small values of w fail. While this is certainly true,
the result can be expensive. For example, with N = 64, a batch verifier that assumes that the
number of invalid signature in the batch is small would start with the Exponentiation Method,
but if the tests for w = 1 and w = 2 both fail, the verifier would switch to Exponentiation
with Sectors Method to test if w = 3. If the test for w = 3 fails, then the verifier would
switch to BQS. If w = 4, the cost of this sequence for Case A (ignoring the common cost of
signature component validation and α0 computation) is at least ≈ 3.70 × 105 multiplications
in Fq, compared to ≈ 2.73 × 105 multiplications if only BQS was used, and ≈ 1.16 × 105

multiplications with the Paired Single Pruning Search Method.
Ideally, we would have a single efficient method for finding the invalid signatures in a batch

that always has the lowest expected cost no matter how many signatures are invalid. Such a
method would be especially useful when an adversary is occasionally able to inject bursts of
several invalid signatures into some batches. Short of that ideal, but a practical alternative,
would be a small set of methods, each of which for some range of batch sizes of interest always
provides the lowest expected cost. Currently the Paired Single Pruning Search, provides the
lowest expected cost when the batch size is in the range 128 to 512. For batches larger than 512,
we would expect batch verifiers to utilize the bucket test for Cha-Cheon and related signature
schemes rather than the small exponents test. Finding such a minimal cost method for batches
smaller than 128 is as an open problem. Another open problem is to find more efficient methods
than the generic DC verifiers of [20] for identifying the invalid signatures in a batch when an
initial bucket test verifier fails.
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A Auxiliary Algorithms for SPS and PSPS

The algorithms in Section 4 for the SPS and PSPS methods call Get0(X) to obtain α0 (and
α−1

0 ) for X, and Get1(X) to obtain α1 (and α−1
1 ) for X. In this section we describe these

algorithms for Cha-Cheon signatures. Get0(X) and Get1(X) use the following algorithms:

1. Lowerindex(X) – returns the index within the batch B of the message / signature pair in
the lowest position in X.

2. Upperindex(X) – returns the index in B of the pair in the highest position in X.

Algorithm Get0(X) (Obtain α0 (and α−1
0 ) for Cha-Cheon)

Input: X a list of message / signature pairs.
Output: None.
Return: The value α0,[X] for X.

P ← Parent(X); L← Left(P ); R← Right(P )

if (α0,[X]) then // True if α0,[X] has been computed
return (α0,[X])

elseif (X = R) then // Right child
α0,[R] ← α0,[P ] · invα0,[L]

invα0,[R] ← invα0,[P ] · α0,[L]

return (α0,[R])
elseif (X = L) then // Left child

l← Lowerindex(X); u← Upperindex(X)

α0,[L] ← e (V Bl − V Bu+1, S) · e (V Dl − V Du+1,−T )

if ( α0,[L] 6= α0,[P ]) then
invα0,[L] ← α−1

0,[L]

else
invα0,[L] ← invα0,[P ]

endif
return (α0,[L])

else // Root node, compute V Bs, V Ds, and α0,[B]

V Blen(X) ← Blen(X)

V Dlen(X) ← Dlen(X)

for i = Len(X)− 1 downto 1 do
V Bi ← V Bi+1 + Bi

V Di ← V Di+1 + Di

endfor
α0,[B] ← e (V B1, S) · e (V D1,−T )

return (α0,[B])
endif

When X is a left child, the cost is at most 2 · CstSubG1 + CstDblPair + CstInvGT. If X is a
right child, the cost is at most 2CstMultGT. Since CstDblPair≫ CstSubG1 and CstDblPair≫
CstMultGT, we estimate the cost of Get0 for the siblings as CstDblPair + CstInvGT in Section 5.
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Algorithm Get1(X) (Obtain α1 (and α−1
1 ) for Cha-Cheon)

Input: X a list of message / signature pairs.
Output: None.
Return: The value α1,[X] for X.

P ← Parent(X); L← Left(P ); R← Right(P )

if (α1,[X]) then // True if α1,[X] has been computed
return (α1,[X])

elseif (α0,[X] = α0,[P ]) then
α1,[X] ← α1,[P ]

invα1,[X] ← invα1,[P ]

return (α1,[X])
elseif (X = R) then // Right child

α1,[R] ← α1,[P ] · invα1,[L]

invα1,[R] ← invα1,[P ] · α1,[L]

return (α1,[R])
elseif (X = L) then // Left child

l← Lowerindex(X); u← Upperindex(X)

WBl,u ← UBu − (u · V Bu+1 + WB1,l−1)

WDl,u ← UDu − (u · V Du+1 + WD1,l−1)

if (l 6= 1) then
WB1,u ←WB1,l−1 + WBl,u

WD1,u ←WD1,l−1 + WDl,u

endif
α1,[L] ← e (WBl,u, S) · e (WDl,u,−T )

if ( α1,[L] 6= α1,[P ]) then
invα1,[L] ← α−1

1,[L]

else
invα1,[L] ← invα1,[P ]

endif
return (α1,[L])

else // Root node, compute α1,[B]

WB1,0 ←∞
WD1,0 ←∞
UB1 ← V B1

UD1 ← V D1

for i = 2 upto len(X) do
UBi ← UBi−1 + V Bi

UDi ← UDi−1 + V Di

endfor
α1,[B] ← e

(

UBlen(X), S
)

· e
(

UDlen(X),−T
)

return (α1,[B])
endif
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To compute α1 and its inverse for a left child costs no more than 4 ·CstAddG1 + 2 ·CstSubG1 +
2 · CstMultG1(t1)+ CstInvGT + CstDblPair with t1 = ⌈log2(Len(X))⌉ < ⌈log2(N)⌉. If X is a
right child, the cost is at most 2CstMultGT. We estimate the cost of Get1 for the pair of
siblings as CstDblPair + CstInvGT in Section 5.4

A.1 Testing functions for SPS and PSPS

Algorithm Shanks(X) (Test whether there is a single invalid signature in X)

Input: X a list of message / signature pairs.
Output: None.
Return: The index in B of the invalid signature or 0

l← Lowerindex(X); u← Upperindex(X); s← ⌊
√

u− l + 1⌋; t← ⌈(u− l + 1)/s⌉
sqrtα0 ← αs

0,[X]; leftside[0]← α1,[X]; rightside[0]← αl
0,[X]

if (leftsize[0] = rightside[0]) then
return (l)

endif
for i = 1 upto s− 1 do

leftside[i]← leftside[i− 1] · invα0,[X]

for j = 0 upto i− 1 do
if (leftside[i] = rightside[j]) then

return (i + j ∗ s + l)
endif

endfor
rightside[i]← rightside[i− 1] · sqrtα0

for j = 0 upto i do
if (leftsize[j] = rightside[i]) then

return (j + i ∗ s + l)
endif

endfor
endfor
i← s

while (j + i ∗ s + l ≤ u + 1) do
rightside[i]← rightside[i− 1] · sqrtα0

for j = 0 upto s do
if (leftsize[j] = rightside[i]) then

return (j + i ∗ s + l)
endif

endfor
i← i + 1

endwhile
return (0)

4 Since CstDblPair + CstInvGT ≫ 4 · CstAddG1 +2 · CstSubG1 +2 · CstMultG1(t1) +2 CstMultGT for N ≤ 1024.
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The algorithm Shanks(X) shown above tests whether the equation α1,n = αz
0,n has a

solution z in the range of l up to u, the bounds of the (sub-)batch X within the original batch.
If X has a single invalid signature the algorithm returns the position of the invalid signature,
otherwise the algorithm returns 0. The algorithm checks for a solution of

α1 · (α−1
0 )d = (αs

0)
c · αl

0

with either 0 ≤ d < s and 0 ≤ c < t or d = s and c = t−1 where s = ⌊
√

u− l⌋, t = ⌈(u−l+1)/s⌉.
This version of Shanks baby-step giant-step algorithm has better average performance than
the textbook version [17], ≈ 4

3s vs ≈ 3
2s multiplications. For simplicity’s sake we do not sort

the values of leftside and rightside.
When there is single invalid signature in X the average cost of the algorithm is at most

2 CstExptGT(t1),
5 and mShank(m) multiplications in GT where m = u − l + 1. When t = s,

i.e., when M is a square number

mShank(m) =
4

3

√
m− 3

2
+

1

6
√

m
=

1

m
·





√
m−2
∑

i=0

(4i2 + 3i + 1) +

√
m−1
∑

i=0

(2i2 + 2i)



 .

The approximation mShank(m) = 4
3

√
m is used in Section 5. When lowerindex(X) = 1

only one exponentiation is required. When the test fails the cost is at most 2 CstExptGT(t1)+
2
√

mCstMultGT. Since CstDblPair >> CstExptGT(t1) we can ignore the contribution of the
CstExptGT(t1)s to the costs.

The algorithm PairSolver(Left, Right) shown below tests whether the equation α1,parent =
α

zleft

0,left ·α
zright

0,right has a solution zleft, zright in the range of lleft up to uleft and lright up to uright,
the bounds of the Left and Right sub-batches. If both Left and Right have a single invalid
signature the algorithm returns the positions of the invalid signatures, otherwise the algorithm
returns the pair 0, 0. The algorithm searches for a solution of

α1,parent · (α−1
0,left)

lleft · (α−1
0,left)

d = (α0,right)
c · αlright

0,right

with 0 ≤ d ≤ s, and 0 ≤ c ≤ t where s = uleft − lleft + 1, t = uright − lright + 1 and t = s
(N = 2h). For simplicity’s sake we do not sort the values of leftside and rightside.

When there is single invalid signature in both Left and Right the average cost of the
algorithm is at most 2CstExptGT(t1),

6 plus sCstMultGT. When lowerindex(Left) = 1 only one
exponentiation is required. Otherwise the cost is at most 2CstExptGT(t1) and 2sCstMultGT.
Since CstDblPair >> CstExptGT(t1), in Section 5 we use sCstMultGT as the cost of a successful
call and as 2sCstMultGT for a failed call.

5 With t1 = ⌈log2(s)⌉ and when l > 0, t1 = ⌈log2(l)⌉.
6 With t1 = ⌈log2(lright)⌉ and when lleft > 0, t1 = ⌈log2(lleft)⌉.
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Algorithm PairSolver(Left, Right)

Input: A pair of lists Left and Right where lenleft ≥ lenright.
Output: None.
Return: The index in B of the invalid signature in Left and in Right or the pair 0, 0

P ← Parent(Left)

lleft ← Lowerindex(Left); uleft ← Upperindex(Left)

s← uleft − lleft + 1

lright ← Lowerindex(Right); uright ← Upperindex(Right)

t← uright − lright + 1

leftside[0]← α1,[P ] · invα
lleft

0,[Left]

rightside[0]← Get0(Right)

rightside[0]← rightside[0]lright

if (leftsize[0] = rightside[0]) then
return (lleft, lright)

endif
for i = 1 upto t do

leftside[i]← leftside[i− 1] · invα0,[Left]

for j = 0 upto i− 1 do
if (leftside[i] = rightside[j]) then

return (i + lleft, j + lright)

endif
endfor
rightside[i]← rightside[i− 1] · α0,[Right]

for j = 0 upto i do
if (leftsize[j] = rightside[i]) then

return (j + lleft, i + lright)

endif
endfor

endfor
return (0, 0)
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B Expected Costs of Earlier Methods

B.1 Binary Quick Search

The Binary Quick Search Method can compute the can compute the values
N
∑

i=1

Bi and
N
∑

i=1

Di

for Cha-Cheon signatures by using the following algorithm (assuming N = 2h).

for i = 1 to N do // This loop computes the N Bis and Dis
B[h,i] ← Bi; D[h,i]← Di

endfor
for j = h downto 1 do

for i = 1 upto 2j by 2 do
B[j − 1, i+1

2 ] ← B[j,i] + B[j,i + 1]
D[j − 1, i+1

2 ] ← D[j,i] + D[j,i + 1]
endfor

endfor

For Cha-Cheon signatures the cost to compute α0 is the sum of 1) the cost to compute
the Bis and Dis which is N · CstDlbMultG1(t1, t2) +N · CstMultG1(t1) with t1 = ⌈log2(r)/2⌉
and t2 = ⌈log2(r)⌉, 2) the cost of the algorithm above, 2(N − 1)CstAddG1, and 3) a double
product of pairings computation. If w ≥ 1 the average cost of BQS is increased by the sum
of the costs generated as BQS investigates the descendants of rootT . The following recurrence
relation generates these costs.

R(B)(w, M) =







































































0, w = 0 or

w > M ;

(M/2
1 )

(M
1 )

2(R(B)(1, M/2) + C(B)(l)), w = 1;











(

M/2
w

)

2(R(B)(w, M/2) + C(B)(b))+
w−1
∑

i=1

(

M/2
w−i

)(

M/2
i

)

(R(B)(w − i, M/2) + R(B)(i, M/2) + C(B)(b))











(M
w)

, w ≥ 2;

where for Cha-Cheon C(B)(l) = CstDblPair and C(B)(b) = CstDblPair + CstInvGT.

B.2 Exponentiation Method

The algorithms used to compute the components of the Exponentiation Method are described
in [14]. The authors’ analysis of the algorithms focused on bounding their worse case perfor-
mance when w << N . In this section we examine their average case performance after an
initial batch verification has failed. When w ≥ 1 the expected additional cost is sum of the
cost of each additional αj for B, 1 ≤ j ≤ w, plus the cost of the failed tests for a solution to
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equation (2) for 1 ≤ j < w and the expected cost of a successful test for j = w. Note that
the Exponentiation Method only computes at most w inverses in Fqd , α−1

0 , α−1
1 , ..., α−1

w−1, when
performing these tests.

Computing αj, j ≥ 1. The cost of computing each αj of equation (1) for j ≥ 1 is approxi-
mately CstDblPair +(2(N − 1) + j)CstAddG1 +j CstSubG1 plus 2j CstMultG1(t1), where each
t1 = ⌈log2(k)⌉ for 1 ≤ k ≤ j, plus an additional 2j CstMultG1(t1), t1 = ⌈log2(sj,k⌋)⌉ where each
sj,k for 1 ≤ k ≤ j is a Stirling number of the second kind. However, since the exponentiation
methods are only useful for very small w and both the ks and the Stirling numbers are very
small when w is small, we approximate this cost by CstDblPair +2N CstAddG1 in Section 5.

Testing equation (2) for w = 1. The method searches for a solution to α1 = αx1
0 , for

1 ≤ x1 ≤ N . If a solution exists then w = 1. Textbook Shank’s giant-step baby-step algo-
rithm [17] is used in [14], it has an average cost for a successful test of about 3

2

√
N CstMultGT +

CstExptGT(t1) + CstInvGT where t1 ≈ log2(
√

N). Since the number of multiplications in
GT used in CstExptGT(t1) is small compared to 3

2

√
N CstMultGT, we use 3

2

√
N CstMultGT +

CstInvGT as the average cost of a successful test, and 2
√

N CstMultGT + CstInvGT when the
test fails in Section 5 .

Testing equation (2) for w = 2. In [14] the Factor Method was developed to search for a
solution to α2 = αx1+x2

1 αx1x2
0 for 1 ≤ x1 < x2 ≤ N . The method searches for a solution to the

equation
α4

2(α
−4
1 )(x2+x1)(α−1

0 )(x2+x1)2 = (α−1
0 )(x2−x1)2 ,

which in the worse case costs 8N CstMultGT plus an inverse. The cost of computing the N − 1
values of the right hand side is 2N CstMultGT. Computing the values for the left side is done in
two stages the first stage uses an inverse computation followed by 2 multiplications to produce
each value of the left hand side for 3 ≤ (s = x2 + x1) ≤ N − 1 (except for s = 3). The
second stage computes the values N ≤ s ≤ 2N − 1. Computing each of these values requires
4 multiplications. If no solution is found then the cost of the left hand side is one inverse
computation and 6N multiplications. If each value for the left hand side is compared against
the values for the right hand side when it is computed, and the computations are halted if a
solution is found, then the average cost for the Factor Method is one inverse and mFM(N, 2)
multiplications where

mFM(N, 2) =
sLHS(N)
(

N
2

) + 2N (3)

and

sLHS(N) ≈
N−1
∑

s=3

(2s⌊s− 1

2
⌋) + (2N + 2)⌊N − 1

2
⌋+

2N−1
∑

s=N+1

(4(s−N) + (2N + 2))⌊2N + 1− s

2
⌋

(N even). sLHS(N)/(N
(

N
2

)

) = 2.827, 2.456, 2.364, and 2.341. for N = 16, 64, 256, and 1024;
compared to 6 for a failed test. The average cost of the multiplications in a successful test is
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77.23 CstMultGT, 285.2 CstMultGT, 1117CstMultGT, and 4445CstMultGT for N = 16, 64, 256,
and 1024.

Testing equation (2) for w ≥ 3. For j ≥ 3 the values αj through α0 and the inverses
of αj−1 through α0 are used to compute the quantities δ0, δ1, and δ2 for all possible values
of x3, . . . , xj and then the Factor Method is used to search for a solution an equation of the
following form

δ0 · δ(x2+x1)
1 δ

(x2+x1)2

2 = δ
(x2−x1)2

2 (4)

for some valid combination of values of the δs, where 1 ≤ z1 < z2 < z3 and 3 ≤ z3 ≤ N−(j−3).
In [14] the authors determined that the number of multiplications in GT required to com-

pute all of the δs is

cDeltas(N, j) = 3

(

j−2
∑

t=1

(

j − 2
t

)

N t + (j − 3)

(

N
j − 2

)

)

.

After the δs have been computed, the Factor method is executed repeatedly to test equation (4)
until a solution is found or all of the possible solutions have been tested. In [14] the authors
determined that if no solution is found the total number of multiplications used in the

(

N−2
j−2

)

calls to the Factor Method is

fFM(N, j) = 8

N−(j−3)
∑

z3=3

(

N − z3

j − 3

)

(z3 − 1) .

The efficiency of a execution of the Factor Method is the ratio of the number of possible
solutions tested to the number of multiplications used, which is z3/16 =

(

z3−1
2

)

/(8(z3 − 1)).
Since the efficiency increases as the value of z3 increases, it is more efficient to test for solutions
where z3 is maximal first, then proceed to test for smaller values of z3. This approach does not
alter the worse case performance of the algorithm.

If this approach is used, the expected number of multiplications in GT used by calls to the
Factor Method during a successful test when there are w ≥ 3 invalid signatures is:

mFM(N, w) =
1
(

N
w

)

N−(w−2)
∑

i=2

(

w + i− 5

w − 3

)

[

sLHS(N + 4− w − i)

+ 8

(

N + 4− w − i

2

)[

(N + 4− w − i)

4

+

i−2
∑

l=1

(

w + l − 4

w − 3

)

(N + 3− w − l) + (N + 4− w − i)

(

w+i−5
w−3

)

− 1

2

]

]

and the approximate number of multiplications in GT used to find the invalid signatures is

2
√

N + 8N + cDeltas(N, w) +
w−1
∑

j=3

fFM(N, j) + mFM(N, w). (5)

which plus w CstInvGT is the cost used in Section 5 for testing equation (2) when w ≥ 3.
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B.3 Exponentiation with Sectors Method

If the batch is divided into Z sectors each of size S, then the probability that ⌈w
S ⌉ ≤ l ≤

min(Z, w) sectors are invalid is

v(l) =
1
(

N
w

)

∑

pi(l,S)

S
∏

j=1

(

Z −
∑j−1

k=1 si,k

si,j

)

·
(

S

j

)si,j

where the partition pi(l, S) is an element of the set of partitions of w of length l, i.e., the number
of non-zero elements in the partition, and each part of pi(l, S) is less than or equal to S. si,k

is the number of parts of pi(l, S) with value k. w =
S
∑

k=1

si,k · k. The average number of pairing

computations, multiplications in GT , and elliptic curve operations used in the Exponentiation
with Sectors Method can be computed using the formulas for the Exponentiation Method
with the the appropriate substitution of variables. The average number of product of pairings

computations required is w +
min(Z,w)
∑

l=⌈w
S
⌉

v(l) l + 1.

In stage 1 of Exponentiation with Sectors, the number of sectors Z =
√

N and the values
of l are substituted for N and w in equation (1), in the average cost of the Shanks test (for
l = 1), in equation (3) plus the cost of a failed Shanks test (for l = 2), and in equation (5) (for
each l ≥ 3). The sum of the results, each weighted by the appropriate v(l), is the expected cost
of this stage.

During stage 2 the values of l
√

N , are substituted for N in the cost equations; w is un-
changed. The weighted sum of the results is the expected cost of this stage.

C | PT(2) | < 2w − 1

We show that |PT(2) | < 2w− 1 whenever N = 2i for i = 1, 2, . . .. Let S(2)(i, w) = |PT(2) | for
N = 2i and 0 ≤ w ≤ N . Note that S(2)(i, w) = 0 when w = 0, 1, and S(2)(1, 2) = 1. Assume
that S(2)(i, w) < 2w − 1.

For w = 2

S(2)(i + 1, 2) =

2
∑

j=0

(

2i

2−j

)(

2i

j

)

(

2i+1

2

)
(S(2)(i, 2− j) + S(2)(i, j) + 1)

<
2
(

2i

2

)(

2i

0

)

(

2i+1

2

)
(4) +

(

2i

1

)(

2i

1

)

(

2i+1

2

)
(1)

< 2 +
2i − 2

2i+1 − 1

< 3.
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For w ≥ 3

S(2)(i + 1, w) =
w
∑

j=0

(

2i

w−j

)(

2i

j

)

(

2i+1

w

)
(S(2)(i, w − j) + S(2)(i, j) + 1)

<
2
(

2i

w

)(

2i

0

)

(

2i+1

w

)
((2w) +

2
(

2i

w−1

)(

2i

1

)

(

2i+1

w

)
(2w − 2) +

w−2
∑

j=2

(

2i

w−j

)(

2i

j

)

(

2i+1

w

)
(2w − 1)

< 2w − 1−
2
(

2i

w−1

)

w
(

2i+1

w

)

(

(2i + 1)(w − 1)
)

< 2w − 1.
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