
Attacking Cryptographic Schemes Based on

“Perturbation Polynomials”

Martin Albrecht∗ Craig Gentry† Shai Halevi‡ Jonathan Katz§

Abstract

We show attacks on several cryptographic schemes that have recently been proposed for
achieving various security goals in sensor networks. Roughly speaking, these schemes all use
“perturbation polynomials” to add “noise” to polynomial-based systems that offer information-
theoretic security, in an attempt to increase the resilience threshold while maintaining efficiency.
We show that the heuristic security arguments given for these modified schemes do not hold,
and that they can be completely broken once we allow even a slight extension of the parameters
beyond those achieved by the underlying information-theoretic schemes.

Our attacks apply to the key predistribution scheme of Zhang et al. (MobiHoc 2007), the
access-control schemes of Subramanian et al. (PerCom 2007), and the authentication schemes
of Zhang et al. (INFOCOM 2008).

1 Introduction

Implementing standard security mechanisms in sensor networks is often challenging due to the
constrained nature of sensor nodes: they have limited battery life, relatively low computational
power, and limited memory. As such, a significant body of research has focused on the design of
special-purpose, highly efficient cryptographic schemes for sensor network applications.

Here, we examine an approach based on “perturbation polynomials” that has been used to
construct several recent schemes [7, 5, 6]. This approach, initiated by Zhang, Tran, Zhu, and Cao [7]
and Subramanian, Yang, and Zhang [5], takes a polynomial-based scheme that offers information-
theoretic (i.e., perfect) security for some “resilience parameter” t — e.g., a bound on the number of
compromised nodes or the number of messages authenticated — and then modifies this underlying
scheme so that the resilience is supposedly increased against a computationally bounded attacker.
The common idea is to add a small amount of “noise” to the low-degree polynomials used in the
original scheme; the claim is that the presence of this noise makes breaking the scheme infeasible
even in regimes well beyond the original resilience parameter. Unfortunately, we show here that
this naive view is unfounded.

∗Royal Holloway University. Work supported by a Royal Holloway Valerie Myerscough scholarship and NSF
grant #0821725. Email: M.R.Albrecht@rhul.ac.uk

†Stanford University. Work done while visiting IBM. Email: cgentry@cs.stanford.edu
‡IBM T.J. Watson Research Center. Work supported by the US Army Research Laboratory and the UK Ministry

of Defence under agreement number W911NF-06-3-0001. Email: shaih@alum.mit.edu
§University of Maryland. Work done while visiting IBM. Work supported by NSF Trusted Computing

grant #0627306, the U.S. DoD/ARO MURI program, and the US Army Research Laboratory and the UK Min-
istry of Defence under agreement number W911NF-06-3-0001. Email: jkatz@cs.umd.edu

1

We describe efficient attacks against the schemes from [7, 5, 6], demonstrating that these scheme
do not offer any better resilience than the original, information-theoretic schemes on which they
are based. We provide theoretical justification as to why our attacks work, as well as experimental
evidence that convincingly illustrates their effectiveness. Our results cast strong doubt on the
viability of the “perturbation polynomials” approach for the design of secure cryptographic schemes.

1.1 Organization of the Paper

We focus the bulk of our attention on the initial paper of Zhang et al. [7], which concerns key
predistribution in sensor networks. A description of their scheme, and details of our attack, are
given in Section 2. In Section 3 we show how to apply our attack to a set of message authentication
schemes suggested by Zhang et al. [6], and in Section 4 we show the same for a system for secure
data storage/retrieval proposed by Subramanian et al. [5].

2 The Key Predistribution Scheme of Zhang et al.

2.1 Background

Schemes for key predistribution enable nodes in a large network to agree on pairwise secret keys.
Before deployment, a central authority loads some secret information si onto each node i, for
i ∈ {1, . . . , N} (where N is the network size). Later, any two nodes i and j can agree on a shared
key ki,j of length κ using their respective secret information. (Probabilistic schemes, where two
nodes are only able to compute a shared key with high probability, have also been considered but
will not concern us here.) The security goal is to offer resilience as large as possible, where a scheme
has resilience t if an adversary who compromises t nodes I = {i1, . . . , it} is still unable to derive
any information about the shared key ki,j for any i, j such that i, j 6∈ I. Efficiency considerations
require computation of the shared keys to be fast, thus ruling out standard public-key approaches,
and dictate that the storage (i.e., the size of the keying information si) should be minimized.

One simple approach is for all nodes to share a single key k (i.e., set si = k for all i) that is
used also as the pairwise key for any pair of nodes. While having minimal storage, this scheme has
resilience t = 0 since it is completely broken after only one node is compromised. A second trivial
approach is for each pair of nodes to store an independent key. This has optimal resilience t = N ,
but the storage requirement of

(
N
2

)
· κ is unacceptably high.

Blundo et al. [3] show that resilience t requires storage (t+1) ·κ if information-theoretic security
is desired; Blom [2] and Blundo et al. show schemes meeting this bound. Let F be a field whose
elements can be used as pairwise keys. To achieve resilience t using the scheme of Blundo et al., the
authority chooses a random symmetric, bivariate polynomial F ∈ F[x, y] of degree t in each variable
as the master secret key; a node with identity i ∈ F is given the univariate polynomial si(y) = F (i, y)
as its secret information. The shared key ki,j between nodes i, j is si(j) = F (i, j) = sj(i), which
both parties can compute (using the fact that F is symmetric). It is not hard to see that an attacker
who compromises at most t nodes learns no information about any key that is shared between non-
compromised nodes. However, an attacker who compromises t + 1 nodes can use interpolation to
recover the master polynomial and thus recover all the keys in the system.

2

2.2 The Scheme of Zhang et al.

Zhang et al. [7] suggested a “noisy” version of the above scheme, and claimed that the new scheme
has improved resilience for some fixed amount of storage. Roughly, their idea is to give node i a
polynomial si(y) that is “close”, but not exactly equal, to F (i, y). Nodes i and j can compute si(j)
and sj(i) as before; these results will no longer be equal, but because they are close they can still
be used to derive a shared key (by, e.g., using the high-order bits). The hope was that the addition
of noise to the nodes’ secret information would prevent reconstruction of the master secret F even
if an adversary corrupts many more than t + 1 nodes; in fact, Zhang et al. claim optimal resilience
t = N as long as the adversary is computationally bounded. (Of course, for a computationally
unbounded adversary the lower bound from [3] applies.) We show that this is not the case.

We first describe their scheme in further detail. Let p be a prime, and let r < p be a “noise
bound”. Elements in Zp are represented as integers in [0, p − 1] in the natural way and we freely
interchange between the two representations (so, e.g., a < b means that the integer representation
of a is smaller than the integer representation of b). Their scheme operates as follows:

Pre-distribution: The authority chooses a random symmetric, bivariate polynomial F ∈ Zp[x, y]
of degree t in each variable. It also chooses at random two univariate degree-t “noise poly-
nomials” g(y), h(y) over Zp. Let Small be the set of points for which both g(y) and h(y) are
small; that is:

Small
def= {y ∈ Zp : g(y), h(y) ∈ [0, r]}.

For any fixed y ∈ Zp, the probability (over choice of g, h) that y ∈ Small is r2/p2. The
authority finds (in time O

(
N · p2/r2

)
) a set of N points x1, . . . , xN in Small. For each node

i, the authority chooses a random bit bi and gives node i the point xi and the univariate
polynomial

si(y) = F (xi, y) + bi · g(y) + (1− bi) · h(y) .

Namely, the noise polynomial is chosen as either g(y) or h(y), depending on the random bit bi.

Key agreement: To compute a shared secret key, nodes i and j exchange their points xi, xj and
then node i computes si(xj) mod p and node j computes sj(xi) mod p. Since

si(xj), sj(xi) ∈ {F (xi, xj), F (xi, xj) + 1, . . . , F (xi, xj) + r} ,

the points computed by the two parties are close enough that they can be used to obtain
a shared key by taking, e.g, the high-order bits of their respective results. (Zhang et al.
describe an interactive protocol to handle wraparound, but this is irrelevant for the attacks
we describe.)

Suggested parameters. The expected size of Small (over random choice of g, h) is r2/p, so we
require r2/p ≥ N . (Zhang et al. suggest a way to guarantee that the size of Small is at least r2/p,
but this still requires r2/p ≥ N .) The shared key has length roughly log(p/r), but p/r cannot be
too large since the predistribution phase requires O

(
N · p2/r2

)
work. If a larger key is desired,

multiple instances of the scheme can be run in parallel and the derived pairwise keys concatenated.
In Table 1 we list the parameters suggested by Zhang et al. We note that with these parameters,

each node must store a secret key of size ≈ 250κ bits in order to compute κ-bit shared keys. For
the same amount of storage, the original scheme of Blundo et al. would give information-theoretic

3

modulus noise # of nodes degree storage per node
p r N t (per key-bit)

232 − 5 222 212 76 246 bits
236 − 5 224 212 77 246 bits
240 − 87 226 212 77 234 bits
240 − 87 228 216 77 273 bits

Table 1: The suggested parameters for the key predistribution scheme of Zhang et al.

resilience to compromise of about 250 nodes. In contrast, Zhang et al. claim (computational)
resilience t = N , an improvement of 1–2 orders of magnitude. As we will see, this claim is unfounded
and the scheme can be broken by an attacker who compromises t+3 ≤ 80 nodes. Thus the scheme
of Zhang et al. is less resilient (as well as less efficient) than the original scheme of Blundo et al.

2.3 Warm-Up: A Simple Attack Using Error Correction

We begin by describing a relatively simple attack on the scheme as described above. We discuss
two variants: a very efficient attack that requires corruption of ≈ 4t nodes, and an attack that runs
in time O(r) but requires corruption of only ≈ 3t nodes. Both attacks rely on the error-correction
algorithm of Ar, Lipton, Rubinfeld, and Sudan [1].

The first attack works as follows: Compromise n = 4t+1 nodes with points x1, x2, . . . , xn to ob-
tain the n polynomials s1(·), . . . , sn(·). Choose a point x∗ ∈ Zp belonging to any non-compromised
node v∗, and compute yi = si(x∗) for i = 1, . . . , n. By construction of the si we have

si(x∗) = F (xi, x
∗) + bi · g(x∗) + (1− bi) · h(x∗) = f∗(xi) + noisebi

,

where f∗(·) def= F (·, x∗), noise0
def= h(x∗), and noise1

def= g(x∗).
Define f∗

b (x) def= f∗(x) + noiseb. Considering the set of pairs {(xi, yi) : i = 1, . . . , n}, we have
that for all i either yi = f∗

0 (xi) or yi = f∗
1 (xi). Hence, for at least one of b = 0 or b = 1 we have

yi = f∗
b (xi) for at least 2t + 1 values of i. Applying the error-correction algorithm of Ar et al. [1],

we can recover at least one of the polynomials f∗
0 (·) or f∗

1 (·).
Once we have either of these polynomials, we can compute the shared key between the node v∗

(that is associated with the point x∗) and any other node in the network: to get the shared
key between v∗ and another node v′ associated with the point x′, we compute y = f∗

b (x′) =
f∗(x′) + noiseb. Since noiseb ∈ [0, r], we see that y is close to f∗(x′) = F (x′, x∗). Hence the
high-order bits of y are (essentially) equal to the shared key between the two nodes.

A variant of the attack, which requires corrupting only ≈ 3t nodes, is as follows. Define
x∗, f∗, f∗

b , and noiseb as above; here, set n = 3t + 1. Assume without loss of generality that

noise1 > noise0, and treat the value δ
def= noise1 − noise0 as known. (Enumerating over all possible

values of δ increases the running time by a multiplicative factor of r.)
Corrupt n nodes and compute the set S = {(xi, yi) : i = 1, . . . , n} as above. Construct S′ by

adding to S an additional n tuples {(xn+i, yn+i)} where xn+i = xi and yn+i = yi− δ. Observe that
for every tuple (xi, yi) ∈ S′ it holds that either f∗

0 (xi) = yi, or f∗
1 (xi) = yi, or f∗

0 (xi) − δ = y1.
Moreover, for 1 ≤ i ≤ n, either f∗

0 (xi) = yi or else f∗
0 (xn+i) = yn+i; thus, for exactly n tuples

4

(xi, yi) ∈ S′ it holds that f∗
0 (xi) = yi. The error-correction algorithm of Ar et al. can thus be used

to recover f∗
0 . (The rest of the attack proceeds as before.)

For the parameters in Table 1 it always holds that 3t + 1 < 233 and so this already shows
that the scheme performs worse than the original, perfectly secure scheme of Blundo et al. In the
following section we show that even a generalized version of the scheme that uses more noise (and is
not susceptible to the attack described in this section) is vulnerable to attack, and moreover using
only ≈ t corruptions.

2.4 A Generalized Scheme

The attack described in the previous section relies strongly on the fact that the same noise poly-
nomial is used half the time. This suggests an easy patch that foils the attack described in the
previous section: Let g, h, and Small be as in Section 2.2, and let u be “small” relative to p (we
will see exactly how small below). Now for each node i choose random αi, βi ∈ [−u, u], and give to
node i (with identity xi) the univariate polynomial

si(y) = F (xi, y) + αi · g(y) + βi · h(y).

This generalizes the scheme of Zhang et al., since their scheme can be obtained by setting αi = bi,
βi = 1 − bi. The “error polynomial” αig(y) + βih(y) still evaluates to a value in a small range
(namely, [−2ur, 2ur]) on every point in Small, and so this still allows every pair of parties to
compute a shared key.

The noise is now larger than in the scheme of Zhang et al. by a factor of 4u, so for the same
values of p, r, t the pairwise keys will have roughly log(4u) fewer bits. Still one might hope that
this modification would make the scheme more secure, even for small values of u. Unfortunately
this is not the case, and below we present an attack that breaks also this more general scheme
in time (roughly) O

(
t3 + t · (2u)3

)
using only t + 3 compromised nodes. Note that u = 1 for the

original scheme of Zhang et al., and so this gives a very efficient attack on their scheme (using
fewer compromised nodes than the attack of the previous section). Furthermore, u cannot be too
large: we need 4ur < p in order for even a single-bit shared key to be derived, meaning that in the
worst case (for the attacker) the running time of the attack is O

(
t3 + t · (p/2r)3

)
. Unfortunately,

the time required to initialize the scheme is O
(
N · (p/r)2

)
, so p/r cannot be too large.

2.5 Outline of the Attack

In will be helpful in what follows to identify univariate polynomials of degree-t with vectors of
length t + 1. Specifically, we will identify the degree-t polynomial p(y) = a0 + a1y + · · ·+ aty

t with
its coefficient vector ~p = (a0, a1, . . . , at).

Let fi(y) = F (xi, y), where F is the bivariate polynomial chosen by the authority and xi is the
point associated with node i. The polynomial si given to node i is thus identified with the vector

~si = ~fi + αi · ~g + βi · ~h .

The crucial observation underlying our attack is that the “noise” added to ~fi is drawn from a
low-dimensional linear subspace spanned by the two vectors ~g and ~h. The attack proceeds by first
identifying this “noise space”, then finding the noise polynomials g and h, and finally solving for
the bivariate polynomial F . We describe these steps in the three sections that follow.

5

2.6 Identifying the Noise Space

The attack begins by corrupting n = t + 3 nodes with associated points x0, . . . , xt+2. This gives a
set of n vectors {~si}t+2

i=0 with
~si = ~fi + αi · ~g + βi · ~h .

The “noise space” is the vector space spanned by ~g and ~h, and we now show how to identify this
space. We use the fact that the ~fi are all derived from the same bivariate polynomial F . Thus, if
we write F (x, y) as F (x, y) =

∑t
j=0 Fj(x) · yj (where each Fj is a univariate degree-t polynomial),

then for every node i we have
~fi = (F0(xi), . . . , Ft(xi)) .

Recall now the Lagrange interpolation formula: If P is a degree-t polynomial, then for any set
of t + 1 points X = {x0, x1, . . . , xt} and any point x, it holds that

P (x) =
t∑

i=0

P (xi) ·
∏
j 6=i

x− xj

xi − xj︸ ︷︷ ︸
L(X,x,i)

.

In particular, this formula applies to each of the polynomials Fj . If we compromise t + 3 nodes
with points x0, x1, . . . , xt, xt+1, xt+2 and set X = {x0, x1, . . . , xt}, then we have

~ft+1 −
t∑

i=0

L(X, xt+1, i) · ~fi = 0 and ~ft+2 −
t∑

i=0

L(X, xt+2, i) · ~fi = 0. (1)

Note that we can compute explicitly all the coefficients L(X, x, i) in the equations above. Taking
the same linear combinations of the {~si} we get

~v
def= ~st+1 −

t∑
i=0

L(X, xt+1, i) · ~si

=

(
αt+1 −

t∑
i=0

αi · L(X, xt+1, i)

)
~g +

(
βt+1 −

t∑
i=0

βi · L(X, xt+1, i)

)
~h

∈ span(~g,~h) ,

and similarly ~v ′ def= ~st+2 −
∑t

i=0 L(X, xt+2, i) · ~si ∈ span(~g,~h). Since the α’s and the β’s are chosen
independently and uniformly from [−u, u], it is easy to prove that ~v and ~v ′ span the entire space
span(~g,~h) except with probability at most 1/2u. Experimentally, we find that ~v and ~v ′ span the
entire space almost surely.

2.7 Finding g and h

Having computed two polynomials v, v′ whose associated vectors ~v′, ~v ′ span the noise space, we
now set out to find the original polynomials g and h. Here we use the fact that g, h are such that
g(xi), h(xi) are “small” (namely, in [0, r]) for all the xi’s.

6

Consider the n′-dimensional integer lattice Λ spanned by the rows of the following matrix:

v(x0) v(x1) · · · v(xn′−1)
v′(x0) v′(x1) · · · v′(xn′−1)

p 0 · · · 0
0 p · · · 0
...

...
. . .

...
0 0 · · · p


, (2)

where n′ ≤ t will be fixed later. Define g∗
def= (g(x0), . . . , g(xn′−1)) and h∗ def= (h(x0), . . . , h(xn′−1))

(where the polynomial evaluation is done modulo p), and note that these are both short vectors
(of length at most r ·

√
n′) in this lattice.

We argue in Appendix A.1 (and verified experimentally) that when n′ is large enough so that
p2 · (4r/p)n′ < 1, then with high probability the two shortest (independent and non-zero) vectors in
the lattice Λ are ±(g∗−h∗) and the smaller of g∗ or h∗. This allows us to recover g∗, h∗ (and hence
the polynomials g and h) using lattice-basis reduction, as described next. Observe that to ensure
p2 · (4r/p)n′ < 1, it is sufficient to set n′ >

⌈
2 log p

log p−log 4r

⌉
, which is independent of the degree t. For

the parameters suggested in [7] using n′ = 11 is always enough. For this small dimension, standard
lattice-reduction algorithms can exactly compute all the small vectors in the lattice, including the
two shortest vectors that we need.

Denote by `1, `2 the two shortest (independent and non-zero) vectors in Λ. As we said above,
with high probability one of these vectors is ±(g∗− h∗) and the other is the shorter of g∗ or h∗. In
other words, with high probability the original vectors g∗, h∗ belong to the set {`1, `2,±(`1 ± `2)}.
We can identify g∗, h∗ using the fact that g∗, h∗ ∈ [0, r]n

′
. (In fact, g∗, h∗ are uniform in [0, r]n

′
since

the polynomials g, h are random and the xi’s are chosen subject to the constraint g(xi), h(xi) ∈ [0, r].
Thus, with high probability the only vectors in the set {`1, `2,±(`1± `2)} that belong to [0, r]n

′
are

the original g∗ and h∗.) So, given `1, `2 the original vectors g∗, h∗ can be easily found.

2.8 Solving for F

Once we have recovered g and h, we can solve for F itself. Recall that each of the si obtained from
a compromised node satisfies

~si = ~fi + αi · ~g + βi · ~h ,

where αi, βi ∈ [−u, u]. Using the fact that F is symmetric, we have

si(xj)− αi · g(xj)− βi · h(xj) = fi(xj) = fj(xi) = sj(xi)− αj · g(xi)− βj · h(xi) (3)

for all i 6= j. Having compromised n = t+3 nodes, this gives a set of
(
n
2

)
linear equations in the 2n

unknowns {αi, βi}n−1
i=0 . Naively, we would expect this system to have full rank when

(
n
2

)
≥ 2n, in

which case we could solve for all the αi, βi and then recover the fi and F itself. However, this is not
the case: the system is under-defined, even if we add to the system the constraints from Eq. (1). In
fact, the space of solutions to this system of equations turns out to have dimension exactly three,
irrespective of t or n. (See Appendix A.2 for an explanation.)

Since we know that αi, βi ∈ [−u, u] for all i, we can exhaustively search for the desired solution
as follows: Set the values of three of the α’s and β’s to values in [−u, u]; then solve the linear system

7

p r t u setup time attack time successes/attempts
(minutes) (minutes)

232 − 5 222 76 2 60 10 7/7
236 − 5 224 77 2 1060 8 2/2

Table 2: Successful attacks on the scheme of Zhang et al. Timings reflect an implementation in
Sage, running on an Intel R© Xeon R© CPU X7460 @ 2.66GHz with 128GB RAM.

for the rest of the α’s and β’s and check whether they also lie in the desired range. (Heuristically,
we expect that will overwhelming probability there will be a unique solution to the system of linear
equations that also satisfies ∀i : αi, βi ∈ [−u, u], and this is confirmed by our experiments.) This
exhaustive search can be done in time O

(
t3 + t · (2u)3

)
by solving the system parametrically (in

time O
(
t3
)
) and then enumerating through (2u)3 settings of the first three α’s and β’s until the

desired solution is found.
For large u, one could also use lattice-reduction techniques to eliminate the exhaustive search

for the α’s and β’s. This follows from the observation that the set of solutions to our linear system
forms a dimension-three integer lattice, and the desired solution of α’s and β’s is a short vector in
that lattice.

2.9 Experimental Verification

We implemented our attack both in C++ using NTL (http://shoup.net/ntl) and in Sage [4]
using Damien Stehlé’s fpLLL implementation (http://perso.ens-lyon.fr/damien.stehle) to
carry out the LLL reduction. The source code of our attack (in Sage) is available on-line at
http://www.bitbucket.org/malb/algebraic_attacks/noise_poly.py. Our attack ran quickly,
and was successful the vast majority of the time; see Table 2 for representative results. Note that
what prevented us from carrying out our attack on larger parameter sets was not the time required
for the attack, but the time required to initialize the system!

2.10 Adding More Noise in The Free Term

A further generalization of the scheme of Zhang et al. would be to add more noise in the free term
of the secret polynomials, setting

si(y) = F (xi, y) + αi · g(y) + βi · h(y) + γi,

where αi, βi ∈R [−u, u] and γi ∈R [−ur, ur]. Our attack can be easily adapted to break this variant:

• In the first stage, we recover the noise space but ignore the free term. That is, we recover the
same two polynomials v, v′, but instead of having ~g = a · ~v + b · ~v ′ for some scalars a, b, we
would have ~g = a · ~v + b · ~v ′ + c · 〈1, 0, . . . , 0〉 for some a, b, c (and similarly for h).

• Instead of the lattice from Eq. (2), we use the lattice that is spanned by the rows of the

8

following matrix:

v(x1)− v(x0) v(x2)− v(x1) · · · v(xn′)− v(xn′−1)
v′(x1)− v′(x0) v′(x2)− v′(x1) · · · v′(xn′)− v′(xn′−1)

p 0 · · · 0
0 p · · · 0
...

...
. . .

...
0 0 · · · p


Note that the values v(xi) − v(xi−1) are independent of the free term of v (and similarly
for v′), and that the short vectors in this lattice correspond to the vectors

g̃ = 〈g(x0)− g(x1), . . . , g(xn′)− g(xn′−1)〉 and h̃ = 〈h(x0)− h(x1), . . . , h(xn′)− h(xn′−1)〉 .

For this lattice, the two shortest vectors (that can be obtained using lattice reduction) are ±g̃
and ±h̃ themselves, which allow recovery of the polynomials ±g and ±h except for the free
terms. The free terms can then be approximated by any scalars that force g(xi), h(xi) ∈ [0, r]
for all the xi.

• The system of equations for the coefficients of F now includes the additional unknowns γi,
and the degree of the solution space would be six rather than three; see Appendix A.2. (It is
also possible to eliminate the γi’s from the system and arrive at a system that has only three
degrees of freedom as before.) Solving this system would not determine the free term of F ,
but the free term of F can be approximated by any scalar that makes F (xi, xj) close enough
to si(xj) for all i, j.

3 The Message Authentication Schemes of Zhang et al.

Zhang, Subramanian, and Wang [6] proposed schemes for message authentication in sensor net-
works. They begin by describing an initial scheme, called Scheme-I in their paper, that allows a
base station to authenticate a message for a set of nodes. This scheme is information-theoretically
secure as long as a bounded number of messages are authenticated, and a bounded number of nodes
are compromised. We describe this scheme here.

Let p be a prime. The master secret key, stored by the base station, is a bivariate polynomial
F ∈ Zp[x, y] of degree dn in x and degree dm in y. The secret key for a node i is the univariate

polynomial fi(·)
def= F (i, ·). The authentication tag for a message m ∈ F is the univariate polynomial

f ′
m(·) def= F (·,m). Node i can verify the tag f ′

m on a message m by checking whether f ′
m(i) ?= fi(m).

The master secret key can be recovered in its entirety if either dn + 1 nodes are compromised,
or if dm + 1 messages are authenticated by the base station. If no nodes are compromised and at
most dm messages are authenticated, or if no messages have been authenticated and at most dn

nodes have been compromised, the scheme is information-theoretically secure (with probability of
forgery 1/p).

Zhang et al. present a series of extensions to this basic scheme in their paper. Scheme-II, as
above, enables the base station to authenticate messages for the nodes (i.e., multicast), and Scheme-
IV allows for authentication of messages between the nodes (i.e., many-to-many communication).
Zhang et al. also propose a Scheme-III, but they themselves show that it is not secure.

9

3.1 Scheme-II and How to Break it

To enhance the security of Scheme-I, Zhang et al. suggest to add noise in the free term of the
various polynomials. Specifically, fix a noise parameter r < p/2. The secret key of a node i is now
the univariate polynomial si(·) = F (i, ·) + γi, where γi is chosen uniformly in [0, r]. Similarly, the
authentication tag for a message m is now the univariate polynomial tm(·) = F (·,m)+γm, where γu

is chosen uniformly in [0, r]. Node i verifies the authentication tag tm on a message m by checking
whether |si(m)− tm(i)| ≤ r, where elements of Zp are viewed as being in the range [−bp/2c, bp/2c].
Zhang et al. claim that an attack on this scheme requires complexity at least rmin{dm,dn}+1, even if an
arbitrary number of nodes are compromised and an arbitrary number of messages are authenticated
(cf. Theorems 3.2 and 3.3 in [6]).

This scheme is, in fact, easy to break. Noise is only introduced in the free term, so most of
the coefficients of the master polynomial can be recovered by simple interpolation. If F (x, y) =∑

i,j F j
i xiyj , then by compromising dn+1 nodes an attacker can recover all the F j

i ’s with j > 0, and
after seeing dm+1 authentication tags an attacker can recover all the F j

i ’s with i > 0. Compromising
dn + 1 nodes and seeing dm + 1 authentication tags thus allows the attacker to recover all the
coefficients of F except for the free term. The free term can then approximated by finding any
element of Zp for which the resulting polynomial F (x, y) gives node keys and authentication tags
whose free term is close to the free term of the keys and tags already observed.

3.2 Scheme-IV and How to Break It

Scheme-III and Scheme-IV in [6] were designed to authenticate many-to-many communication.
These schemes extend Scheme-I by using a tri-variate master polynomial whose three variables
correspond to senders, receivers, and messages. Namely, the master key of the underlying scheme
is a polynomial F (x, y, z). A node i is given two secret keys: the bivariate polynomial F (i, ·, ·)
(to be used when it acts as a sender), and the bivariate polynomial F (·, i, ·) (for when it acts as
a receiver). The tag for a message m sent by node i is the univariate polynomial F (i, ·,m); and a
receiver j verifies this tag in the obvious way. Scheme-III is obtained from this underlying scheme
by adding noise to the free term, but Zhang et al. observe that the resulting scheme is not secure.
Hence, in Scheme-IV they adopt the perturbation polynomial technique from [7] as described next.

In Scheme-IV there are noise parameters u, r with u < r < p/4. The master secret is again a tri-
variate polynomial F ∈ Zp[x, y, z] of degree ds (the “sender degree”) in x, degree dr (the “receiver
degree”) in y, and degree dm (the “message degree”) in z. Two univariate “noise polynomials” g(x)
(of degree ds) and h(y) (of degree dr) are also chosen. These define the sender ID-space SmallS
(resp., the receiver ID-space SmallR), which contains all the points on which the value of g (resp., h)
is “small”; i.e.,

SmallS
def= {x : g(x) ∈ [0, r/u]} and SmallR

def= {y : h(y) ∈ [0, r/u]}.

The scheme works as follows:

• Each node is given two keys: one for when it acts as a sender, and one for when it acts as a
receiver.

The sender secret key consists of an identity i ∈ SmallS and the bivariate polynomial ai(·, ·) =
F (i, y, z)+αi ·h(y)+βi, with αi chosen uniformly in [0, u] and βi chosen uniformly in [0, r/2].

10

Similarly, the receiver secret key consists of an identity j ∈ SmallR and the bivariate poly-
nomial bj(x, z) = F (x, j, z) + γj · g(x) + δj with γj chosen uniformly in [0, u] and δj chosen
uniformly in [0, r].

• The authentication tag computed by a node with sender-ID i on the message m consists of
the identity i and the univariate polynomial

ti,m(y) def= ai(y, m) + ηm = F (i, y, m) + αi · h(y) + βi + ηm,

where ηm is chosen uniformly in [0, r/2]. A node with receiver-ID j verifies this tag by checking
that |bj(i,m)− ti,m(j)| ≤ 2r.

This scheme can be broken much as in the case of Scheme-II. A key observation is that noise
is only introduced in the coefficients that are independent of the message-variable z. Partition the
master polynomial into one polynomial that depends on z and another that does not:

F (x, y, z) =
∑
i,j,k

F
i,j,k

xiyjzk =
dz∑

k=1

zk
∑
i,j

F
i,j,k

xiyj

︸ ︷︷ ︸
F1(x,y,z)

+
∑
i,j

Fi,j,0x
iyj

︸ ︷︷ ︸
F2(x,y)

.

Let h(y) =
∑

j hj · yj . Then the secret key for node with sender-ID w is

aw(y, z) =
dy∑

j=0

dz∑
k=1

(
dx∑
i=0

F
i,j,k

wi

)
yjzk+

dy∑
j=1

(
αwhj +

dx∑
i=0

Fi,j,0w
i

)
yj+

(
αwh0 + βw +

dx∑
i=0

Fi,0,0w
i

)
.

Observe that for k > 0, the coefficient of yjzk in aw depends only on F1 and not on the noise.
Similarly, for k > 0 the coefficient of xizk in the receiver polynomial bw(x, z) depends only on F1
and not on the noise. This means that once the attacker compromises dx + 1 senders or dy + 1
receivers, it can fully recover the polynomial F1. Then, the only part of the master secret key that
the attacker is missing is F2(x, y), which is independent of the message variable z. This allows
easy forgery, as described next.

Given a tag tx∗,m(y) computed by a non-compromised sender x∗ on a message m, the attacker
(who knows F1) can compute the polynomial

∆(y) def= tx∗,m(y)− F1(x∗, y,m) = F2(x∗, y) + αx∗h(y) + βx∗ + ηm .

The attacker can now forge the tag of any message m′ as sent by the same x∗, by setting

t̃x∗,m′(y) def= F1(x∗, y,m′) + ∆(y)
(

= F1(x∗, y,m′) + F2(x∗, y) + αx∗h(y) + βx∗ + ηm∗

)
.

Note that this is exactly the tag that the sender x∗ would have sent if it chose ηm′ = ηm∗ , which
means that this is a valid tag for m′ and would therefore be accepted by all the receivers.

Alternatively, the attacker can apply an attack similar to the one from Section 2 (using the fact
that g, h have “small values” on all the identities) to recover also the remaining master polynomial
F2(x, y), and thereafter it can forge messages for any sender. We omit the details.

11

4 The Storage/Retrieval Schemes of Subramanian et al.

Subramanian, Yang, and Zhang [5] presented three schemes for the management of encryption
(and decryption) keys, which can in turn be used for protecting sensitive information stored in
sensor nodes. Below we consider the third scheme from [5], which uses a variant of perturbation
polynomials. That scheme is quite involved and contains many details that are not relevant to our
attacks. Hence, we first present a simplified scheme and show how to attack it (cf. Section 4.1),
and then explain why the same attacks apply to the full scheme of Subramanian et al.

Roughly speaking, Subramanian et al. assume a network where nodes are initialized before
deployment, and then deployed to the field where they operate unattended, collecting information
from their environment and then encrypting it and storing it locally. The nodes are willing to send
their encrypted data to users who request it, but only users with the appropriate keys can decrypt
the information.

The lifetime of the system is partitioned in a series of phases, and nodes update their keys from
one phase to the next. The goal of the third scheme from [5] is to be able to provide a user with
keys that can be used to decrypt the data from all the nodes in phase i but not any other phase,
while minimizing the storage and communication requirements and maximizing the resilience to
node compromise and/or user compromise.

Underlying the third scheme from [5] is the following polynomial-based solution: The master
key is a bivariate polynomial F ∈ F[x, y]. The secret key of node u is the polynomial fu(·) = F (u, ·),
and the encryption key used by node u in phase v is Ku,v = fu(v) = F (u, v). A user that needs
the keys for phase v is given the polynomial gv(·) = F (·, v) that can be used to compute the keys
for all the nodes at this phase as gv(u) = F (u, v) = Ku,v.

The problem with this noise-free solution is resilience. Specifically, Subramanian et al. identified
the following three attack scenarios:

• When a node u is compromised, the polynomial fu(·) is recovered and the attacker can
compute the key Ku,v used by u in every phase v. Ideally, we would like the encryption at
the nodes to be forward secure so that compromising node u at phase v will not allow the
attacker to decrypt the storage from any prior phases.

• If F has degree dx in x, then once the attacker compromise du + 1 nodes it can recover the
entire master polynomial.

• Similarly, if F has degree dy in y, then once a user is given gv for dv + 1 different phases it
can recover the entire master polynomial.

4.1 A Simple Noisy Scheme and How to Break it

To overcome the problems mentioned above, Subramanian et al. proposed to add noise to the free
terms of the relevant polynomials. The system is again defined over F = Zp for some prime p,
and we have a noise parameter r � p. The master key is a polynomial F (x, y) of degree dx in x
and degree dy in y; the secret key for node u is su(·) = F (u, ·) + αu; and the user secret key for
phase v is tv(·) = F (·, v)+βv, where αu, βv are scalars that are chosen uniformly at random in [0, r].
The encryption key for node u in phase v is taken to be the high-order bits of su(v), which are
essentially equal to the high-order bits of tv(u). (The exact mechanism by which a key is derived

12

are not important for our attack.) Subramanian et al. suggest to use p ≈ 264, r = 216, and a master
polynomial of degree 15 in each variable.

This simple scheme does not address the forward-secrecy concern, but it is supposed to provide
better resilience than the noise-free scheme from the previous section. Unfortunately, this is not the
case. Similar to the attack described in Section 3.1, compromising dx + 1 nodes allows an attacker
to reconstruct the coefficients of the master polynomial F (x, y) corresponding to all the terms xiyj

with j > 0, and learning user keys for dy + 1 different phases allows an attacker to reconstruct the
coefficients of the master polynomial F (x, y) corresponding to all the terms xiyj with i > 0. We
now exhibit two different attacks based on this:

Attack 1: A simple attack, similar to the one from Section 3.2, requires learning one user key and
compromising dx +1 nodes. Partition the master polynomial F (x, y) into the part that depends on
the phase-variable y and the part that does not; i.e., write F (x, y) = F1(x, y) + F2(x). As noted
above, an attacker that compromises dx + 1 nodes can fully recover F1(x, y). Given a user key
for one phase v (namely, the polynomial tv(·) = F (·, v) + βv), the attacker can then compute the
univariate polynomial

∆(x) def= tv(x)− F1(x, v)
(

= F (x, v) + βv − F1(x, v) = F2(x) + βv

)
.

This allows the attacker to derive a user key for any other phase v′ as

t̃v′(x) = F1(x, v′) + ∆(x)
(

= F (x, v′) + βv

)
.

As in the attack from Section 3.2, we observe that t̃v′(x) is a valid user key for phase v′ and can
thus be used to compute the encryption keys of all the nodes in this phase.

Attack 2: In this attack the attacker compromises n + 1 nodes for some n > dx, but does not
need to learn any user keys. Denote the IDs of the compromised nodes by u0, u1, . . . , un. As
before, the attacker uses the polynomials sui(·) to recover the bivariate polynomial F1(x, y) where
F (x, y) = F1(x, y) + F2(x). Then, choosing some arbitrary value v∗, the attacker can compute for
every ui a value

yi = sui(v
∗)− F1(ui, v

∗) = F2(ui) + αui . (4)

Next, the attacker can try to recover F2 using the fact that all the αui ’s are small (i.e., in [0, r]).
Consider the lattice defined by integer linear combinations of the rows of the following matrix:

Λ =



y1 − y0 y2 − y1 · · · yn − yn−1

u1 − u0 u2 − u1 · · · un − un−1

u2
1 − u2

0 u2
2 − u2

1 · · · u2
n − u2

n−1
...

...
. . .

...
udx

1 − udx
0 udx

2 − udx
1 · · · udx

n − udx
n−1

p 0 · · · 0
0 p · · · 0
...

...
. . .

...
0 0 · · · p


. (5)

13

(We also let Λ refer to the lattice itself.) Note that if we write F2 =
∑dx

i=0 fi · xi then there exist
integers k1, . . . , kn such that

(−1, f1, f2, . . . , fdx , k1, k2, . . . , kn) · Λ = (αu1 − αu0 , αu2 − αu1 , . . . , αun − αun−1),

which is a “short” vector in the lattice. The attacker can thus use lattice-reduction tools to find the
coefficients of F2 (except for the free term). A heuristic argument similar to the one in Appendix A.1
suggests that when n is large enough so that p(dx+1) · (4r/p)n < 1 then the vector corresponding to
the α’s is indeed the shortest vector in this lattice. With the parameters suggested by [5] (i.e., dx =
15, p ≈ 264, and r = 216), we need n > (dx +1) log(p)/(log(p)− log(4r)) = (16 · 64)/(64− 18) ≈ 22.
We verified experimentally that the attack works for those parameters even for n = 22.

Once the attacker recovers the coefficients f1, . . . , fdx of F2, it can approximate the free term
of F2 as in Section 3.1. This gives it a good enough approximation to the master polynomial F .

4.2 The Scheme of Subramanian et al. and How to Break it

The actual scheme from [5] has many additional components on top of the simple scheme from
the previous section, but these components have no real impact on the attacks that we have
described. Below we list these additional components and show how the attacks can be tweaked to
accommodate them.

Many copies of the scheme. As described in [5], each node stores several univariate node-
polynomials, corresponding to several copies of the scheme. At any time, one scheme is “active”
(i.e., used to encrypt data) while others are “dormant”. Every so often, the central key-distribution
center broadcasts some message that causes all the nodes to activate the next copy of the scheme,
and then erase all the keying material from the previously active copy. (Of course, user keys for
the current phase always correspond to the appropriate phase of the currently active copy.)

This has very little effect on the attacks: an attacker that compromises some nodes learns the
relevant information for all the copies that are stored on these nodes at the time of compromise.
By compromising sufficiently many nodes, it learns the node-key material corresponding to the
currently active scheme, as well as to all the schemes that are still dormant. The only thing that
the attacker cannot do is attack copies of the scheme that were already erased. Also, to mount
Attack 1 from the previous section against some copy of the scheme, the attacker must wait until
that scheme becomes active (since that attack requires the attacker to learn one user-key that
belongs to the copy under attack).

Forward secrecy between phases. As pointed out above, the simple scheme from Section 4.1
does not address forward secrecy. Subramanian et al. use the following simple trick to obtain
forward secrecy: when a copy of the scheme is activated, the center announces the interval of
phases (denoted [vs, ve]) to be used with that copy. Each node u then derives the keys for all these
phases, setting Ku,v as the high-order bits of su(v) for all v ∈ [vs, ve]; then the node u erases the
polynomial su corresponding to this copy of the scheme and stores only the keys Ku,v. Thereafter,
the key Ku,v is used during phase v and is erased when that phase is over.

The attacks from Section 4.1 can still be applied to all the dormant copies, since for these copies
the nodes must still store the polynomial su(·). As for the active copy of the scheme, depending on
the size of the interval [vs, ve] it may be possible to recover the polynomial su(·) from the Ku,v’s
by using techniques similar to Attack 2 above. Namely, after corrupting some node u we have
Ku,v = su(v) + ρv where su has degree dy and the ρv’s are all small (i.e., in [0, r]). As long as we

14

have sufficiently many of these v’s, we can use the same lattice reduction techniques as in Attack 2
to recover su.

Forward-secrecy within a phase. Instead of using the same key Ku,v to encrypt all the infor-
mation during phase v, Subramanian suggested using the hashed key H i(Ku,v) to encrypt the i’th
piece of information. The only effect of this on our attacks is that the key Ku,v is erased earlier
from the memory of node u.

Polynomial one-time pad. Another component of the scheme in [5] that is different from the
simple scheme described earlier is that the nodes do not store the node-polynomial su(·) explicitly.
Essentially, a node u stores for each copy of the scheme a “pad polynomial” pu(·) derived from a
“master pad polynomial” p(u, v) by setting pu(·) = p(u, ·)−αu for a random αu ∈ [0, r]. To activate
the next copy of the scheme, the center chooses at random the master polynomial F (x, y) for the
scheme and broadcasts to all the nodes the bivariate polynomial s(x, y) = p(x, y)+F (x, y); node u
then computes its node-polynomial as su(·) = s(u, ·)− pu(·).

It is clear that this has no real effect on our attacks. Upon compromising a node, the attacker
learns the pad polynomials used by that node. The attacker can apply Attack 2 directly, thus
recovering the “master pad polynomial” p(x, y). The attacker then waits until the center broadcasts
s(x, y) and recovers F (x, y) = s(x, y)− p(x, y). Alternatively, the attacker can wait until that copy
is activated, compute all the su(·)’s just as the nodes do, and recover F (x, y) directly using Attack 1
or Attack 2.

Miscellaneous. In the actual scheme that is described in [5], the handling of the pad polynomials
is slightly obfuscated as follows:

• The “master pad polynomials” for the different copies of the scheme are not necessarily
independent. Rather, they are all derived from the same tri-variate polynomial p∗(x, y, z),
where the master pad for the k’th copy of the scheme is set as p(·, ·) = p∗(·, ·, k). We did
not find in [5] a specification of the copy-degree of p∗ (i.e., the degree of the copy variable z).
Hence, we assume that it is taken as large as the number of copies, so that the copies are
truly independent. (This has no effect on any of the efficiency parameters that are discussed
in [5].) If the copy-degree is smaller, then it is likely that one can find more attacks, where
compromising some copies of the scheme allows the attacker to break also other copies.

• The noise in the free term is added in several steps rather than all at once (and is not quite
independent between the different copies of the scheme). Specifically, the pad polynomials
are computed by first setting p̃u(y, z) = p∗(u, y, z) − α′

u, and then the pad for the k’th copy
is set as p̄u,k(y) = p̃u(y, k)− α′′

u,k with α′
u, α′′

u,k all chosen uniformly in [0, r/4].1

• When activating the k’th copy, the center chooses a random master polynomial Fk(x, y) for
this copy and broadcasts a noisy bivariate polynomial sk(x, y) = p∗(x, y, k) + Fk(x, y) + γ,
where γ is uniform in [0, r/2]. Each node u computes its node-polynomial for this copy as
su,k(·) = sk(u, ·)− p̄u,k(·).

Obviously, these details have no bearing on our attacks.
1This means that the pad polynomials p̄u,k(y) introduce somewhat smaller noise of up to only r/2 in the free

term, which makes our Attack 2 from Section 4.1 marginally easier.

15

5 Conclusion

We have shown attacks on the schemes from [7, 5, 6], which are all based on “perturbation poly-
nomials”. Our attacks show that the modified schemes are no better — and may, in fact, be worse
— than the information-theoretically secure schemes they are based on. Our results cast doubt
on the viability of the “perturbation polynomials” technique as an approach for designing secure
cryptographic schemes.

Note: The views and conclusions contained in this document are those of the authors and should not be interpreted

as representing the official policies, either expressed or implied, of the US Army Research Laboratory, the US Gov-

ernment, the UK Ministry of Defense, or the UK Government. The US and UK Governments are authorized to

reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation herein.

References

[1] S. Ar, R. Lipton, R. Rubinfeld, and M. Sudan. Reconstructing Algebraic Functions from Mixed
Data. SIAM J. Computing 28(2): 487–510, 1998.

[2] R. Blom. An Optimal Class of Symmetric Key Generation Systems. Eurocrypt ’84.

[3] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and Moti Yung. Perfectly Secure
Key Distribution for Dynamic Conferences. Information and Computation 146(1): 1–23, 1998.

[4] W.A. Stein et al. Sage Mathematics Software (Version 3.3). The Sage Development Team,
2009, http://www.sagemath.org.

[5] N.V. Subramanian, C. Yang, and W. Zhang. Securing Distributed Data Storage and Re-
trieval in Sensor Networks. 5th IEEE International Conference on Pervasive Computing and
Communications (PerCom’07), 2007.

[6] W. Zhang, N. Subramanian, and G. Wang. Lightweight and Compromise-Resilient Message
Authentication in Sensor Networks. IEEE INFOCOM, 2008.

[7] W. Zhang, M. Tran, S. Zhu, and G. Cao. A Random Perturbation-based Scheme for Pairwise
Key Establishment in Sensor Networks. 8th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc’07), 2007.

A Technical Details

A.1 The Shortest Vectors in the Lattice from Eq. (2)

Here we justify the claims made in Section 2.7. Recall the setting: we have an integer lattice Λ
defined by taking integer linear combinations of the rows of the following matrix:

16



g(x0) g(x1) · · · g(xn′−1)
h(x0) h(x1) · · · h(xn′−1)

p 0 · · · 0
0 p · · · 0
...

...
. . .

...
0 0 · · · p


. (6)

(We have substituted g, h in place of v, v′; since v, v′ and g, h span the same space, the lattice is
unchanged.) Recall that g∗ (resp., h∗) denotes the first (resp., second) row of the lattice above,
and that the length of g∗, h∗ is at most r ·

√
n′. Let `1, `2 denote the two shortest (independent

and non-zero) vectors in Λ. We provide a heuristic argument that `1, `2 ∈ {g∗, h∗,±(g∗−h∗)} with
high probability over the initial choice of g∗, h∗.

The polynomials g and h are chosen during system set-up as random polynomials of degree t,
and the xi are chosen such that g(xi), h(xi) ∈ [0, r]. Since n′ ≤ t, the values of g(x0), . . . , g(xn′−1)
are independent and uniform in [0, r] (and similarly for h). That is, g∗ and h∗ are independent and
uniform in [0, r]n

′
.

We note that we expect the vector g∗−h∗ to be shorter than both g∗, h∗ (since the expected size
of each entry in g∗ − h∗ is roughly r/3, as compared to r/2 for each entry in g∗, h∗). We ask what
is the probability that there exist some a, b ∈ Zp (with (a, b) /∈ {(0,±1), (±1, 0),±(1,−1)}) such
that the vector ag∗ + bh∗ mod p is shorter than both g∗ and h∗ (where the mod p operation maps
integers into the range [−bp/2c, bp/2c]). We distinguish between “small pairs” where |a|, |b| < p/4r
and “large pairs” where at least one of |a|, |b| is at least p/4r.

• For a “small pair”, we have no reduction mod p (since ag∗ + bh∗ is already in the range
[−p/2, p/2]). Hence, there exists a “small pair” as needed if and only if the integer lattice
that is spanned by only two vectors g∗, h∗ contains a vector other than ±(g∗ − h∗) which is
shorter than both g∗, h∗. When (a, b) /∈ {(0,±1), (±1, 0),±(1,−1)}, the expected size of each
entry in ag∗ + bh∗ is larger than r/2 and so we expect ag∗ + bh∗ to be longer than g∗, h∗.
Hence, we expect the two shortest vectors in the lattice spanned by g∗, h∗ to be in the set
{±g∗,±h∗,±(g∗ − h∗)} except with probability exponentially small in n′.

• For any fixed “large pair” (a, b), the distribution of the vector ag∗ + bh∗ mod p is rather close
to the uniform distribution over [−bp/2c, bp/2c]. To see this, assume |a| > p/4r. Fix b and h∗

to some arbitrary values, and consider the residual distribution on ag∗+bh∗ mod p induced by
choosing g∗ ∈ [0, r]n

′
. Consider a “simplified setting” where the entries of g∗ are chosen from

the real interval [0, r] (instead of only the integers in this interval). In this setting, each entry
of ag∗ + bh∗ mod p would be chosen from a distribution that has statistical distance at most
3/4 from the uniform distibution on [−p/2, p/2]. (When |a| is larger still, the distibution gets
even closer to uniform. For example, for |a| = Θ(p) the distance from uniform is O(1/r).) The
quantization to integers of course changes the distribution, but does not change substantially
the probability that the resulting vector is short.

Making the heuristic assumption that the length of ag∗ + bh∗ mod p is distributed as if that
vector were uniform in [−bp/2c, bp/2c]n′ , we can estimate the probability that this vector lies
in the ball of radius r

√
n′ around the origin. The volume of such a ball is

(r
√

n′)n′πn′/2

(n′/2)!
≈ rn′(2πe)n′/2 ≈ (4r)n′ .

17

Hence, the probability that a uniformly distributed vector in [−p/2, p/2]n
′
has length below

r
√

n′ is upper-bounded by (4r/p)n′ , and we can heuristically use the same bound also for
the length of ag∗ + bh∗ mod p for any fixed “large pair” (a, b). As there are fewer than
p2 “large pairs”, a union bound implies that when p2 · (4r/p)n′ � 1 we expect to have
|ag∗ + bh∗ mod p | ≥ r

√
n′ for every “large pair”.

Experimentally, we observe that for even moderate values of n′, the two smallest vectors in the
lattice are indeed ±(g∗−h∗) and the smaller of g∗, h∗. Specifically, we ran the following experiment:
generate g∗, h∗ uniformly in [0, r]n

′
and then run LLL on the lattice from Eq. (6) to compute the

shortest vectors `1, `2 of the resulting lattice. Call it a “success” if g∗, h∗ ∈ {±`1,±`2,±(`1 ± `2)}.
For each setting of p and r, we then determined the minimum value of n′ for which a success
occurred at least 95% of the time (in 200 trials). The results are in Table 3.

p r n′ p r n′

221 9 226 9
222 9 227 9

232 − 5 223 10 240 − 87 228 9
224 10 229 10
225 11 230 10

Table 3: Dimension n′ needed for recovery of g∗, h∗.

A.2 Solving for the α’s and β’s

Here we explain why the linear system of equations described in Section 2.8 is under-defined, and
why the vector space of solutions has dimension 3.

Every solution to our system of linear equations must correspond to a bivariate degree-t poly-
nomial F (due the the inclusion of Eq. (1)) which is symmetric (due to the equations from Eq. (3)).
Moreover, for each node associated with the point xi the polynomial F induces coefficients ~fi such
that ~si− ~fi belongs to the vector space spanned by ~g and ~h. Let F, F ′ be two polynomials satisfying
these constraints, and consider their difference polynomial D = F −F ′. This polynomial D satisfies
the following three conditions:

• D is a bivariate degree-t polynomial (since F and F ′ are);

• D is symmetric (since F and F ′ are);

• For every i, if we let ~di denote the coefficients of the univariate polynomial D(xi, ·), then all
the ~di’s belong to the vector space spanned by ~g and ~h.

We now show that there are exactly three degrees of freedom in choosing a polynomial D with
these properties. Denote the matrix of coefficients of D by [D], and denote by [d] the matrix whose

18

ith row is the vector ~di for i = 0, 1, . . . , t. Then [d] = V · [D], where V is a Vandermonde matrix:
d0,0 d0,1 . . . d0,t

d1,0 d1,1 . . . d1,t
...

...
. . .

...
dt,0 dt,1 . . . dt,t


︸ ︷︷ ︸

[d]

=


1 x0 . . . xt

0

1 x1 . . . xt
1

...
...

. . .
...

1 xt . . . xt
t


︸ ︷︷ ︸

V

·


D0,0 D0,1 . . . D0,t

D1,0 D1,1 . . . D1,t
...

...
. . .

...
Dt,0 Dt,1 . . . Dt,t


︸ ︷︷ ︸

[D]

The conditions on the polynomial D translate to the conditions that [D] is a (t + 1) × (t + 1)
symmetric matrix, and that the rows of [d] are in the vector space spanned by ~g and ~h. The last
condition can be expressed in matrix notation by saying that there exists a (t + 1) × 2 matrix X
such that

[d] = X ·
(

~g
~h

)
.

To obtain a D satisfying these conditions, choose an arbitrary symmetric 2× 2 matrix R and set

[D] :=
(
~gT |~hT

)
·R ·

(
~g
~h

)
,

where ~gT and ~hT (the transpose of ~g and ~h, respectively) are column vectors. This ensures that
[D] is a (t + 1)× (t + 1) symmetric matrix, and moreover

[d] = V · [D] = V ·
(
~gT |~hT

)
·R︸ ︷︷ ︸

X

·
(

~g
~h

)

as needed. Since there are three degrees of freedom in choosing a symmetric 2×2 symmetric matrix,
we get exactly three degrees of freedom for D.

We observe that if we had the additional noise in the free term (as in Section 2.10), then the
noise space would be spanned by the three vectors ~g, ~h, and ~e1 = 〈1, 0, . . . , 0〉. In this case, we can
use the exact same argument, except that the matrix R is a symmetric 3 × 3 matrix and so we
have six degrees of freedom in choosing it. (However, the lower-right t× t sub-matrix of D is still
rank-2, so once we eliminate the dependence on the free terms we can get back to a system with
only three degrees of freedom.)

19

