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Abstract

A cryptographer with week algorithms gets his feedback almost in-
stantly by the open crypto community. But what about government
cryptanalysis 7 Given the fact that there is a considerable amount of
cryptanalysis behind closed doors, what is to be done to get COMINT
deaf 7 The NSA, as the most closely examined SIGINT agency, has
a workforce of 38,000 [2], among them several thousand cryptologists.
The actual wiretapping is done by the Central Security Service with
25,000 women and men. Other industrialised states have also thou-
sands cryptologists at their wage role.

The block cipher 1024 is an attempt to make cryptanalysis more
difficult especially with differential (DC) and linear cryptanalysis (LC).
The assumption is that the increased security will defeat other crypt-
analytical methods not yet known by the open crypto community.

1024 has a block size of 1024 bits und key length of 2048 bits.

1 Introduction

From the beginning of open cryptography in the 70’s unease has taken
on government cryptographers. They felt that open cryptographic re-
search, especially cryptanalysis, would make their work more difficult.
On the other hand open cryptographic works from ATM to the Ger-
man Health Card and have shown that there is a market for computer
security software.

In the 80’s Admiral Bobby Inman, Director of the NSA, established
a committee [1] that should censor all cryptographic publications. But
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when scientists did not follow up, he warned that legislative action
would be taken. But that has not been the place and open cryptog-
raphy has been a success story.

It should be clear which stand I support, but there is a place where
government censorship is the right thing: Ultra, the decryption of the
German Enigma during World War II. Knowledge of that would have
the Germans to develope a new cipher machine. That would be a
catastrophy for the Allied war effort and would lengthen the war by
approx. a year [7].

Nevertheless government cryptography has proven that they are
more advanced than open research. Differential cryptanalysis was
known by Don Coppersmith in 1974 when he and others designed the
Data Encryption Standard. Open research followed up 18 years later
[3]. Differential cryptanalysis was a powerful tool and the government
asked IBM to be silent for national security reasons (see preface of [3]).
Intriguingly differential cryptanalysis is a chosen plaintext attack and
you need an insider to mount this attack.

Another point is public key encryption. It is known the a scientist
of the UK’s Government Communication Head Quarter (GCHQ) knew
in 1967 about this. That is approx. ten earlier year then open research.

But stifling open research on cryptology is not the only sin that the
NSA has committed. There were the operations Minaret und Sham-
rock. While Minaret were directed against the leaders of the student
revolt in the 60’s and took away their telecommunication data without
due process, Shamrock was directed against non US governments and
the cable operators were asked to hand over telecommunication data.

But don’t think here in Germany everything is all right. However,
in his verdict on data retention the Constitutional Court in Germany
ruled that citizens have the right to privacy (i.e. among others encryp-
tion). Given the fact that intelligence agencies in Germany are in the
business of wiretapping, one must admit that the right to encryption
is also the right to choose the algorithm freely and with maximum
security.

Here in Germany in 1998 the minister of interior, a conservative,
tried to ban all encryption the government could not read. But the
conservatives lost the elections und today encryption is so ubiquitous
that even the conservatives don’t dare it to outlaw it.

But back to the algorithm. 1024 has a block size of 1024 bits and
keylength of 2048 bits. It takes as building blocks the ciphers MMB [5]
und SAFER [8]. While MMB has bilding blocks words of 32 bits, the
building block of SAFER is a byte. So SAFER. has to be adapted to
use 4 bytes. Also SAFER [9] has a problem with the diffusion. Thats
why the rotation has been used. However SAFER has an advantage:



Its diffusion layer was built around the Cooley-Tukey-Fast-Fourier-
Transform with complexity O(n In n). AES (Rijndael) has a diffusion
layer built around MDS-Codes with complexity O(n?).

The rest of the paper is organized as follows: Section 2 describes
the algorithm, Section 3 relates to security with linear cryptanalysis.
Section 4 gives implementation details. We conclude in Section 5 and
Appendix A gives the reference implementation in C. Appendix B
contains a program in C for multipermutation on a byte level [14, 15,
16]. Appendix C gives a program to calculate the maximum bias for
linear cryptanalysis.

2 The Algorithm

2.1 The S-Boxes

1024 is a Substitution-Permutation-Network (SPN). It uses as building
blocks multiplication modulo 232 — 1 as s-box and a modified diffusion
layer from SAFER. Keys are applied before and after the s-boxes. 1024
has 32 s-boxes (multiplication modulo 232 — 1). Let us denote in this
subsection addition, subtraction and multiplication modulo 2" — 1 by
respectively +,- and X, ordinary multiplication by *, integer divison
by |+]| ,XOR by @, rotation by a bits to the left by <a, rotation by
a bits to the right by >>a and addition modulo 22°¢ by H. .

Multiplication modulo 2" — 1 as s-box was first used by Daemen
et. al. [4, 5, 6]. The studied function is:

axz if z<2" -1

f(z) = { (1)

2" —1 if z=2"-1

The calculation is easy:

)0+l @

The first righthand term is obtained by taking the least significant
bits of the product, the second term by taking the remaining bits and
shifting them to the right by n bits and add that to the first term.
If a carry (i.e. bit 32 is set) results from that addition the result is
incremented by 1. Note that [4] gives a wrong formula. It has been
corrected in chapter 11 of Joan Daemens Ph.D. thesis [6]. Note that
the last factor of the righthandside of the equation is not distributive.

Multiplication modulo 2" — 1 has interesting properties. A multi-
plication by 2 modulo 2™ — 1 is equivalent by a rotation to left by one.
Similarly 2% x @ = a << k. Further material can be found in [4].

a*xb mod(2" —1) = (axb mod(2") + |
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In [5] multiplication factors modulo 232 — 1 are given. In the cipher

MMB a encryption (in hex. 0x025F1CDB) and decryption (in hex.
0x0DAD4694) factors are introduced. The encryption factor by MMB
is in 1024 rotated left from 0 to 31. The left most block is assigned
the encryption factor without rotation. The next block is assigned
the encryption_factors << 1 and so on. The last block (right most)
is assigned the encryption_factors <« 31. That is why the number of
blocks with 32 bits is 32 (see reference implementation WIDTH).

The decryption factor from MMB is treated almost the same way.
The decryption factor from MMB is the decryption factor from 1024
in left most block. The decryption factor is rotated to the right from
0 to 31 and assigned from left most block to right most block. The
left most block is assigned the decryption_factor > 0, the right most
block is assigned the decryption_factors >> 31.

The critical probability of the s-boxes with regard to differential
cryptanalysis is 27°.

2.2 Diffusion Layer

The diffusion layer has as parent the diffusion layer from SAFER 8, 9].
However, there are four modifications:

1. 32 blocks instead of eight.

2. Four bytes instead of one byte as primitive unit. See [13].
3. Before the addition primitive units are beeing rotated.
4

. One additional layer

Point two is clear. In a modern PC the CPU has a register size
of four bytes, sometimes eight bytes. Obviously this will increase the
speed.

The Pseudo-Hadamard-Transform is defined as:

by = 2a1 + as (3)

bg = a1 + a9 (4)
It can be rewritten:

by = a1 + a2 (5)

b1 = a1+ by (6)

The Pseudo-Hadamard-Transform has one disadvantage. The least
significant bit of by is not dependent on a;. Schneier et. al. [13] were

4



aware that b; is not dependent on the most significant bit of a;. But
there is no word on the least significant bit of a; (or at least T did
not see it). Because by = 2a1 + ag the least significant bit of by is a
function of as and not of ay. Thus the least significant bit of by is
incomplete.

In [12] a branch number for invertible linear mappings was intro-
duced. It is defined as

B(6) = min(wn(a) +wn(0(a))) (7)
where wy, denotes the Hamming weight of a, i.e. the number of nonzero
compenents of a. For example ¢ = 0z0F has the Hamming weight of 4.
0 is the linear mapping. The branch number of the linear mapping 6 is
at least B. A linear mapping with optimal branch number B =n + 1
can be constructed by a maximum distance separable code. I can
see no reason why this can not be done on a non linear transform.
Bearing that in mind, the branch number of Twofish [13] is two, 23!
in left most block and the other blocks 0 as input. The output is 23!
on the right most block, 0 else. The same holds for my diffusion layer
(a branch number of 2). An input of 23! on the left most block, 0
else, gets an output of the right most block of 23!, the other blocks 0.
Obviously this is a poor performance.

That is why the rotation was introduced. To the b a rotated value
of a; is added. Similarly to the b; a rotated value of by is added. The
rotation values are pseudo-random and it is the assumption that the
branch number is higher. For more details, see the function pht in the
reference implementation. The function ipht does the opposite of the
function pht, i.e. the rotation is invertible.

On the original diffusion layer of SAFER rotations were intro-
duced. The result is that an odd rotation from the "left” to the
"right” and even rotation from the "right” to ”left” is a multipermu-
tation [14, 15, 16]. Note the the natural unit of the diffusion layer of
SAFER is the byte. My vintage computer of 1997 was able to calcu-
late this, but not 16 bit or 32 bit. A modern computer could calculate
16 bit, but not 32 bit. However, it is conjectured that the multiper-
mutation through rotation and addition is valid for 32 bit. For more
details, see appendix B.

2.3 Addition modulo 22°6

Addition modulo 22°6 was introduced to give an upper bound for linear
cryptanalysis. If we take [11], we can have an upper bound for linear
cryptanalysis without being forced to examine the diffusion layer or
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Figure 1: The left quarter of a primary round
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the s-boxes. See subsection Key Schedule and section Linear Crypt-
analysis for further details.

1024 has a bit length of 1024 bits. This means addition modulo
2256 ig applied four times, from left to right, sometimes after the s-
boxes, sometimes before the s-boxes. Since there are 32 s-boxes of 32
bits the input or output of one addition modulo 226 is eight s-boxes.

One can argue that all the keys should be applied by addition
modulo 2%, so one can use less rounds. But the XOR. of some keys
is there to make the cryptanalysis more difficult by using different
groups or to avoid symmetry attacks.

2.4 Primary Round

1024 consists of eight primary rounds, a middle transform and eight
secondary rounds. The number of primary rounds und secondary
rounds must be equal. A secondary round is the inversion of a pri-
mary round, except for the key and the encryption/decryption factors.
Figure 1 shows the left quarter of a primary round.

A primary round starts with XORing the first half of the round
key. Since 1024 consists of 32 blocks of 32 bits, a 32 bit CPU will do
that in 32 steps.

The s-boxes (multiplication modulo 232 — 1) follow. Note that each
of the s-boxes has its own multiplication factor. (see subsection s-box).
As 1024 consists of 32 blocks of 32 bits, one has 32 multiplications and
32 encryption factors, since the s-boxes should have no symmetry.

Addition modulo 22°6 of the second half of the round key follows.
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As 1024 has 1024 bits, there are four additions. The left most addition
consists of the output of left most eight s-boxes and so on.

Finally the Pseudo-Hadamard-Transform (see function pht in the
reference implementation) is done. Note that the least significant four
bytes of the addition modulo 22°% are least significant unit of the
Pseudo-Hadamard-Transform.

2.5 The Middle Transform

The middle transform is the only part of 1024 that comes with no
Pseudo-Hadamard-Transform. Instead the data output from the eighth
primary round comes as input for the middle transform. First there
is addition modulo 226 of the first half of the round key. Again the
least significant four byte output by the eighth primary round is the
least significant input to the left most addition modulo 2?°¢. Figure 2
shows one quarter of the middle transform.

After addition modulo 2?°% is completed, the data (1024 bit) is
partitioned in 32 blocks of 32 bits. This data is now input to the
s-boxes (multiplication modulo 232 — 1). The s-boxes are the same as
in the primary rounds.

The output by the s-boxes are now input to second addition mod-
ulo 22°6 of the second half the round key. This is the same as in
subsection primary round.

2.6 The Secondary Rounds

The input to the first secondary round is the output from the middle
transform. At first there is an inverse diffusion layer (see function ipht
in the reference implementation). Second there is addition modulo
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Figure 3: The left quarter of a secondary round

2256 with the first half of the round key. Third there are the s-boxes.
The s-boxes have the same factors as the s-boxes in the primary round
and in the middle transform. Finally there is XOR with the second
half of the round key. Figure 3 shows the left quarter of one secondary
round.

2.7 Key Schedule

The first round key is the user key (see function key_schedule in the
reference implementation). The next round key is the predecessor
rotated by 455 bits to the left and so on. Note that a round key and
the key to middle transform are applied before and after the s-boxes.
For the eight primary rounds one half of the key is applied before the
s-boxes (XOR, low bits), the other half of the key is applied after the
s-boxes (addition modulo 2%, high bits). For the middle transform
one half of the key is applied before the s-boxes (addition modulo 22°6,
low bits), and one half of the key is applied after the s-boxes (addition
modulo 225 high bits). For the eight secondary rounds one half of
the key is applied before the s-boxes (addition modulo 22°¢, low bits),
the other half of the key is applied after the s-boxes (XOR, high bits).

Why is the rotation 455 bits to the left? This is linear cryptanalysis
and the so called bias or the so called effectiveness [10, 11]. When we
take into account that addition modulo 225 of the keys in the rounds
and the middle transform we have nine additions of round keys and
middle transform. If we take into account [10, 11] we have as average
bias € = 279128 = 271152 (piling up lemma not considered). The



rotation of the round keys was so determined that the maximum bias
was as low as possible. This can be done via exhausive search and
takes on a modern PC a few secounds. The result is that a rotation to
the left of 455 bits is desired one. It has a maximum bias of e = 271018
(raw data 1024, piling up lemma 7, bit position 1591). Tt should be
noted that a rotation to the left of 1593 bits has the same bias and
same data except the bit position. Note that 4554+1593=2048 is the
key length. However, a rotation by 1593 bit can not be used by the
reference implementation (maximum rotation is 1023). Appendix C
gives a program to calculate maximum bias.

For the decryption process the XOR-keys simply swap their posi-
tion on the primary and secondary rounds. If we want an algorithm
to be the same for encryption and decryption we need to have the
inverse of addition modulo 22°6. The inverse of an integer value, be it
signed or unsigned, is to invert the bits of that integer and to add 1.
When this is done, the key values swap their position on the primary
and secondary rounds and on the middle transform. For details, see
the function invert_keys of the reference implementation.

2.8 Decryption

For encryption and decryption the same algorithm is used. For the
s-boxes the decryption factors are used. The are the inverse of the
encryption keys modulo 232 — 1. [5] gives one of them. The rest is
calculated by rotating this one key to the right from 1...31. See
the function decryption_factors of the reference implementation for
details.

Also the keys have to be inverted. While XOR is self-inverse you
will need only to mirror them at the s-boxes of the middle transform.
Addition modulo 226 is slightly more difficult: you will need the bit
complement and add 1. Having that done you will have to mirror at
the s-boxes of the middle transform.

The functions key_schedule and invert_keys of the reference imple-
mentation will give you further insight.

3 Linear Cryptanalysis

Linear cryptanalysis is a known plaintext attack and was first pub-
lished by Matsui [10]. It looks for an effective linear expression for a
given cipher, i.e. it looks for plaintext bits P;, a ciphertext bits C}
and key bits K} so that

P169P2@...69Pi@01@02@...690j:Kl@KQGB...@Kk (8)



holds with probability p # 1/2. The magnitude € = |p — 1/2]| is called
the bias or the effectiveness of the equation (8).

Matsui showed that the bias of the linear equation is closely related
to the number of plaintext N needed, i.e. roughly speaking N = 1/(€?).
In the subsection key schedule it is shown that the highest bias is
e = 271018 Hence the number of plaintext for a successful attack is
N = 22936 Since there are only 2192 different plaintext available we
can conclude that 1024 is immune from linear cryptanalysis. Please
note that the e was only derived using the key addition modulo 2256
making use of [11]. The nonlinearity obtained by the s-boxes and the
diffusions layer was not considered, i.e. the limit is an upper bound.

4 Implementation

Modern Central Processing Units (CPU) come with several Arithmetic
Logic Units (ALU). The ALUs are the heart of the CPU. All the
integer arithmetic ist done here. A Pentium IV has four ALUs and
it is clear, that this will increase performance, if the program code
allows for parallel executions. Modern computers have several ALUs,
and sometimes with several cores. A core is a CPU and a multiple
cores on a computer will increase the performance. Again the program
code is faster, if it allows parallel executions.

It is estimated that the program code of 1024 in assembler (ma-
chine language) on a 32-bit computer , 2.5 Gigahertz clock, one core
and one ALU results in a performance of approx. 15 MByte/s. Al-
though the reference implementation in C of 1024 is working, one
might ask whether performance can be increased. A C implementa-
tion is about 3 to 5 slower then in assembler. One can do the whole
implementation in assembler, but I guess the function that have to do
with encryption and decryption are enough (function crypt, modmult,
pht, ipht).

4.1 Function modmult

Especially modmult is the most promising candidate for assembler
programing. In C one has to declare several unsigned long long (8
byte) to catch the high bits and shift them by 32 to the right and add,
and to catch the carry and shift it to the right by 32 bits and increment
the result. If an integer hardware multiplier is present (most 32 bit
CPU have it) the multiplication is done in 3 clocks. The Intel compat-
ible CPUs have another point of interest. The 64 bit multiplication
result is stored in the registers EDX:EAX. So the addition is simple
ADD EAX,EDX. If in this addition a carry is set, you simply add to

10



EAX the carry with the command ADC EAX,0x00000000. The whole

function modmult in assembler is here:

MOV EBX,factoril
MOV EAX,factor?2
MUL EBX

ADD EAX,EDX

ADC EAX,0x00000000
MOV modmult ,EAX

All registers are 32 bit so far. You can see that the assembler
program has no conditional jumps and is not susceptible to timing
attacks.

4.2 Function crypt and Functions pht/ipht

The programing of the function crypt in the reference inplementation
is somewhat awkward. If one can see the pertinent figures in the arti-
cle, she/he finds out, that the programing is ”vertical”. For example:
if you take figure 1 (one quarter of a primary round) and the reference
implementation one can see that first I have done one XOR with the
key, then one function modmult, then one block key addition modulo
2256 T should have done it ”horizontal”, i.e. first all the key XOR,
second all the functions modmult and third key addition modulo 22°6.
Note that addition modulo 22°¢ will only be completed, if all the com-
ponents are there. Otherwise the the CPU pipeline will be stalled.
The addition modulo 2?°6 has two addition commands: first the usual
addition (ADD, one time) and then addition with carry (ADC, seven
times). In assembler it looks like this:

MOV EAX,datal

MOV EBX,keyl

ADD EAX,EBX

MOV datal,EAX

MOV EAX,data2

MOV EBX,key2

ADC EAX,EBX

MOV data2,EAX

MOV EAX,data8
MOV EBX,key8
ADC EAX,EBX
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MOV data8,EAX

The same is true for the functions pht respectively ipht. First
the rotation and the adding are done and then the decimation-by-2-
permutation (see Cooley-Tukey-FFT).

If all of the function crypt and the functions pht/ipht are to be
programed in assembler, the performance of 1024 will be greatly en-
hanced. If you are not tired yet, you can unroll the loops and program
the functions inline. This is a tedious task, but I guess it is worth it.

5 Conclusion

The block cipher 1024 was introduced. It has a block size of 1024
bits and a key length of 2048 bits. While 1024 is immune from linear
cryptanalysis, further work is needed to prove that 1024 is immune to
other attacks, especially against differential cryptanalysis.
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A Reference Implementation

#include<stdio.h>

#define NUM_ROUNDS 8

#tdefine INT_LENGTH 32

#define ROL(x,a) (((x)<<(a))|((x)>>(INT_LENGTH-(a))))
#define ROR(x,a) (((x)<<(INT_LENGTH-(a))|((x)>>(a))))
#tdefine WIDTH 32
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#define ROTROUND 455

void encryption_factors(unsigned long e_factors[WIDTH]){
unsigned long i;

e_factors[0]=0x025F1CDB;
for(i=1;i<WIDTH;i++){
e_factors[i]=ROL(e_factors[0],1);
}
}

void decryption_factors(unsigned long d_factors[WIDTH]){
unsigned long i;

d_factors[0]1=229459604;
for(i=1;i<WIDTH;i++){
d_factors[i]=ROR(d_factors[0],1);
}
}

unsigned long modmult(unsigned long factorl,unsigned long factor2){
unsigned long long f1,f2,ergebnis,k;

f1=(unsigned long long) factorl;
f2=(unsigned long long) factor2;
ergebnis=f1*f2;
k=(ergebnis>>INT_LENGTH) ;
ergebnis&=0xFFFFFFFF;

ergebnis+=k;
ergebnis+=(ergebnis>>INT_LENGTH) & 1;
return(ergebnis & OxFFFFFFFF) ;

void invert_keys(unsigned long keys[4*NUM_ROUNDS+2] [WIDTH]){
unsigned long 1i,j,help;
unsigned long long hl,h2,carryl,carry2;

for (i=0;i<NUM_ROUNDS;i++){
for(j=0; j<WIDTH; j++){
help=keys[2xi] [j];
keys [2*i] [j]=keys [4*NUM_ROUNDS-2%i+1][j];
keys [4*NUM_ROUNDS-2x*i+1] [j]1=help;
}
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}
for(i=0;i<(NUM_ROUNDS+1) ;i++){
carryl=1;
carry2=1;
for (j=0; j<WIDTH; j++) {
h2=(unsigned long long) keys[4*NUM_ROUNDS-2*i] [j];
hi=(unsigned long long) keys[2*i+1][j];
h1~=0xFFFFFFFF;
h2~°=0xFFFFFFFF;
hl+=carryl;
h2+=carry2;
carry2=(h2>>INT_LENGTH) & 1;
carryl=(h1>>INT_LENGTH) & 1;
if((G & T)==7){
carryl=1;
carry2=1;
¥
keys [4xNUM_ROUNDS-2*i] [j1=h1 & OxFFFFFFFF;
keys[2*i+1] [j]1=h2 & OxFFFFFFFF;

void key_schedule(unsigned long user_key[2] [WIDTH],\
unsigned long key[4*NUM_ROUNDS+2] [WIDTH]){
unsigned long 1i,j;

for(i=0;i<2;i++){
for(j=0; j<WIDTH; j++){
key[i] [j]1=user_key[il [j];
}
}
for (i=0;i<(2*NUM_ROUNDS) ;i++){
for(j=0;j<WIDTH;j++) {
key [2*i+3] [j]=(key [2*i+(j+((WIDTH*INT_LENGTH-ROTROUND)\
/INT_LENGTH) ) /WIDTH]\
[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\
%WIDTH] << (ROTROUND%INT _LENGTH)) |\
(key [2*i+(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)/WIDTH]\
[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUND%INT_LENGTH)) ;

key [2*i+2] [j]=(key[2*i+1-(j+((WIDTH*INT_LENGTH-ROTROUND)\
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/INT_LENGTH) ) /WIDTH]\
[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\
%WIDTH] << (ROTROUND%INT_LENGTH))\
| (key [2*i+1-(j+(WIDTH*INT _LENGTH-ROTROUND) /INT_LENGTH+1)/WIDTH]\
[(j+(WIDTH*INT_LENGTH-ROTROUND) /INT_LENGTH+1)%WIDTH]>>\
(INT_LENGTH-ROTROUND%INT_LENGTH)) ;
}
}
}

void pht(unsigned long a[WIDTH]){
unsigned long i,b[WIDTH];

al[1]+=ROL(a[0],1);
a[0]+=R0OL(al1],2);
a[3]+=ROL(al[2],7);
a[2]+=R0OL(a[3],16);
a[5]+=ROL(a[4],13),
a[4]+=R0OL(a[5],30);
a[7]1+=ROL(a[6],19);
a[6]+=R0OL(a[7],12);
a[9]+=ROL(a[8],25);
a[8]+=R0OL(a[9],26);
a[11]+=R0OL(a[10],31);
a[10]+=R0OL(a[11],8);
al[13]+=R0OL(a[12],5);
a[12]+=R0OL(a[13],22);
a[15]+=ROL(a[14],11);
a[14]+=ROL(a[15],4);
a[17]+=R0OL(a[16],17);
a[16]+=R0OL(a[17],18),
a[19]+=R0OL(a[18],23);
al[18]+=a[19];
a[21]+=R0OL(a[20],29);
a[20]+=ROL(a[21],14);
a[23]+=R0OL(a[22],3);
a[22]+=R0OL(a[23],28);
a[25]+=R0OL(a[24],9);
a[24]+=R0OL(a[25],10);
a[27]+=R0OL(a[26],15);
a[26]+=R0OL(a[27],24);
a[29]+=ROL(a[28],21);
a[28]+=R0OL(a[29],6);
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a[31]1+=R0OL(a[30],27);
a[30]+=R0OL(a[31],20);
for(i=0;i<(WIDTH/2) ;i++){
blil=a[2*i];
b[i+(WIDTH/2)]=al[2%i+1];
}

b[1]+=ROL(b[0],1);
b[0]+=ROL(b[1],2);
b[3]+=ROL(b[2],11);
b[2]+=ROL(b[3],20);
b[5]+=ROL(b[4],21);
b[4]1+=ROL(b[5],6);
b[7]+=ROL(b[6],31);
b[6]+=ROL(b[7],24);
b[9]+=ROL(b[8],9);
b[8]+=ROL(b[9],10);
b[11]1+=ROL(b[10],19);
b[10]+=ROL(b[11],28);
b[13]+=ROL(b[12],29);
b[12]+=ROL(b[13],14);
b[15]1+=ROL(b[14],7);
b[14]1+=b[15];
b[17]1+=ROL(b[16],17);
b[16]+=ROL(b[17],18);
b[19]1+=ROL(b[18],27);
b[18]+=ROL(b[19],4);
b[21]+=ROL(b[20],5);
b[20]+=ROL(b[21],22);
b[23]+=ROL(b[22],15);
b[22]+=ROL(b[23],8);
b[25]+=ROL(b[24],25);
b[24]1+=ROL(b[25],26);
b[27]+=ROL(b[26],3);
b[26]1+=ROL(b[27],12);
b[29]+=ROL(b[28],13);
b[28]+=ROL(b[29],30);
b[31]+=ROL(b[30],23);
b[30]+=ROL(b[31],16);
for(i=0;i<(WIDTH/2);i++){

alil=b[2%*i];

ali+(WIDTH/2)1=b[2*i+1];
}

17



al[1]+=ROL(a[0],1);
a[0]+=R0OL(al1],2);
a[3]+=R0OL(a[2],15);
a[2]+=R0OL(al[3],24);
a[56]+=ROL(a[4],29);
a[4]+=ROL(a[5],14);
a[7]+=ROL(a[6],11);
a[6]+=ROL(al[7],4);
a[9]+=ROL(a[8],25);
a[8]+=R0OL(a[9],26);
al[11]+=ROL(a[101,7);
a[10]+=R0OL(a[11],16);
a[13]+=R0OL(a[12],21);
a[12]+=R0OL(a[13],6);
a[15]+=R0OL(a[14]1,3);
a[14]+=R0OL(a[15],28);
a[17]+=ROL(a[16],17);
a[16]+=R0OL(a[17],18);
a[19]+=R0OL(a[18],31);
a[18]+=R0OL(a[19],8);
a[21]+=R0OL(a[20],13);
a[20]+=R0OL(a[21],30);
a[23]+=R0OL(a[22],27);
a[22]+=R0OL(a[23],20);
a[25]1+=R0OL(a[24],9);
a[24]+=R0OL(a[25],10),
a[27]+=ROL(a[26],23);
a[26]+=a[27];
a[29]+=R0OL(a[28],5);
a[28]+=R0OL(a[29],22);
a[31]+=R0OL(a[30],19);
a[30]+=R0OL(a[31],12);
for(i=0;i<(WIDTH/2) ;i++){
b[i]l=a[2*i];
b[i+(WIDTH/2)]=a[2%i+1];
}
b[1]1+=ROL(b[0],1);
b[0]+=ROL(b[1],2);
b[3]1+=ROL(b[2],19);
b[2]+=ROL(b[3],12);
b[5]+=ROL(b[4],5);
b[4]+=ROL(b[5],22);
b[7]1+=ROL(b[6],23);
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b[6]+=b[7];
b[9]1+=ROL(b[8],9);
b[8]+=ROL(b[9],10);
b[11]1+=ROL(b[10],27);
b[10]+=ROL(b[11],20);
b[13]+=ROL(b[12],13);
b[12]1+=ROL(b[13],30);
b[15]+=ROL(b[14],31);
b[14]1+=ROL(b[15],8);
b[17]1+=ROL(b[16],17);
b[16]1+=ROL(b[17],18);
b[19]+=ROL(b[18],3);
b[18]1+=ROL(b[19],28);
b[21]+=ROL(b[20],21);
b[20]+=ROL(b[21],6);
b[23]+=ROL(b[22],7);
b[22]+=ROL(b[23],16);
b[25]1+=ROL(b[24],25);
b[24]1+=ROL(b[25],26);
b[27]1+=ROL(b[26],11);
b[26]1+=ROL(b[27],4);
b[29]+=ROL(b[28],29);
b[28]+=ROL(b[29],14);
b[31]1+=ROL(b[30],15);
b[30]+=ROL(b[31],24);
for(i=0;i<(WIDTH/2);i++){
alil=b[2%*i];
a[i+(WIDTH/2)]=b[2*i+1];
}
al[1]+=ROL(a[0],1);
a[0]+=R0OL(al1],2);
a[3]1+=ROL(a[2],23);
a[2]+=ROL(a[3],28);
a[5]+=R0OL(a[4],13);
a[4]+=R0OL(a[5],22);
a[7]+=R0OL(a[6],3);
a[6]+=ROL(al7],16);
a[9]+=R0OL(a[8],25);
a[8]+=R0OL(a[9],10);
a[11]1+=ROL(a[10],15);
a[10]+=R0OL(a[11],4);
al[13]+=R0OL(a[12],5);
a[12]1+=R0OL(a[13],30);
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a[15]1+=R0OL(a[14],27);
a[14]1+=ROL(a[15],24);
a[17]1+=R0OL(a[16],17);
a[16]+=ROL(a[17],18);
al[19]+=R0OL(a[181,7);
a[18]1+=R0OL(a[19],12);
a[21]1+=R0OL(a[20],29);
a[20]+=R0OL(a[21],6);
a[23]+=ROL(a[22],19);
a[22]+=a[23];
a[25]+=R0OL(a[24]1,9);
a[24]1+=R0OL(a[25],26),
a[27]1+=ROL(a[26],31);
a[26]1+=R0OL(a[27],20);
a[29]1+=R0OL(a[28],21);
a[28]1+=R0OL(a[29],14);
a[31]1+=ROL(a[30],11);
a[30]+=R0OL(a[31],8);
for(i=0;i<(WIDTH/2) ;i++){
bl[i]l=a[2*i];
bl[i+(WIDTH/2)]=a[2%i+1];
}
b[1]+=ROL(b[0],1);
b[0]+=ROL(b[1],2);
b[3]+=ROL(b[2],27);
b[2]+=ROL(b[3],8);
b[5]+=ROL(b[4],21);
b[4]+=ROL(b[5],14);
b[7]+=ROL(b[6],15);
b[6]+=ROL(b[7],20);
b[9]1+=ROL(b[8],9);
b[8]+=ROL(b[9],26);
b[11]1+=ROL(b[10],3);
b[10]+=b[11];
b[13]1+=ROL(b[12],29);
b[12]+=ROL(b[13],6);



