
1024 - A High Se
urity Software Oriented

Blo
k Cipher

�

Dieter S
hmidt

y

Mar
h 27, 2009

Abstra
t

A 
ryptographer with week algorithms gets his feedba
k almost in-

stantly by the open 
rypto 
ommunity. But what about government


ryptanalysis ? Given the fa
t that there is a 
onsiderable amount of


ryptanalysis behind 
losed doors, what is to be done to get COMINT

deaf ? The NSA, as the most 
losely examined SIGINT agen
y, has

a workfor
e of 38,000 [2℄, among them several thousand 
ryptologists.

The a
tual wiretapping is done by the Central Se
urity Servi
e with

25,000 women and men. Other industrialised states have also thou-

sands 
ryptologists at their wage role.

The blo
k 
ipher 1024 is an attempt to make 
ryptanalysis more

diÆ
ult espe
ially with di�erential (DC) and linear 
ryptanalysis (LC).

The assumption is that the in
reased se
urity will defeat other 
rypt-

analyti
al methods not yet known by the open 
rypto 
ommunity.

1024 has a blo
k size of 1024 bits und key length of 2048 bits.

1 Introdu
tion

From the beginning of open 
ryptography in the 70's unease has taken

on government 
ryptographers. They felt that open 
ryptographi
 re-

sear
h, espe
ially 
ryptanalysis, would make their work more diÆ
ult.

On the other hand open 
ryptographi
 works from ATM to the Ger-

man Health Card and have shown that there is a market for 
omputer

se
urity software.

In the 80's Admiral Bobby Inman, Dire
tor of the NSA, established

a 
ommittee [1℄ that should 
ensor all 
ryptographi
 publi
ations. But

�

Revised Mar
h 27, 2009 and Mar
h 26, 2009

y

Denkmalstrasse 16, D-57567 Daaden, Germany, dieters
hmidt�usa.
om

1



when s
ientists did not follow up, he warned that legislative a
tion

would be taken. But that has not been the pla
e and open 
ryptog-

raphy has been a su

ess story.

It should be 
lear whi
h stand I support, but there is a pla
e where

government 
ensorship is the right thing: Ultra, the de
ryption of the

German Enigma during World War II. Knowledge of that would have

the Germans to develope a new 
ipher ma
hine. That would be a


atastrophy for the Allied war e�ort and would lengthen the war by

approx. a year [7℄.

Nevertheless government 
ryptography has proven that they are

more advan
ed than open resear
h. Di�erential 
ryptanalysis was

known by Don Coppersmith in 1974 when he and others designed the

Data En
ryption Standard. Open resear
h followed up 18 years later

[3℄. Di�erential 
ryptanalysis was a powerful tool and the government

asked IBM to be silent for national se
urity reasons (see prefa
e of [3℄).

Intriguingly di�erential 
ryptanalysis is a 
hosen plaintext atta
k and

you need an insider to mount this atta
k.

Another point is publi
 key en
ryption. It is known the a s
ientist

of the UK's Government Communi
ation Head Quarter (GCHQ) knew

in 1967 about this. That is approx. ten earlier year then open resear
h.

But sti
ing open resear
h on 
ryptology is not the only sin that the

NSA has 
ommitted. There were the operations Minaret und Sham-

ro
k. While Minaret were dire
ted against the leaders of the student

revolt in the 60's and took away their tele
ommuni
ation data without

due pro
ess, Shamro
k was dire
ted against non US governments and

the 
able operators were asked to hand over tele
ommuni
ation data.

But don't think here in Germany everything is all right. However,

in his verdi
t on data retention the Constitutional Court in Germany

ruled that 
itizens have the right to priva
y (i.e. among others en
ryp-

tion). Given the fa
t that intelligen
e agen
ies in Germany are in the

business of wiretapping, one must admit that the right to en
ryption

is also the right to 
hoose the algorithm freely and with maximum

se
urity.

Here in Germany in 1998 the minister of interior, a 
onservative,

tried to ban all en
ryption the government 
ould not read. But the


onservatives lost the ele
tions und today en
ryption is so ubiquitous

that even the 
onservatives don't dare it to outlaw it.

But ba
k to the algorithm. 1024 has a blo
k size of 1024 bits and

keylength of 2048 bits. It takes as building blo
ks the 
iphers MMB [5℄

und SAFER [8℄. While MMB has bilding blo
ks words of 32 bits, the

building blo
k of SAFER is a byte. So SAFER has to be adapted to

use 4 bytes. Also SAFER [9℄ has a problem with the di�usion. Thats

why the rotation has been used. However SAFER has an advantage:

2



Its di�usion layer was built around the Cooley-Tukey-Fast-Fourier-

Transform with 
omplexity O(n ln n). AES (Rijndael) has a di�usion

layer built around MDS-Codes with 
omplexity O(n

2

).

The rest of the paper is organized as follows: Se
tion 2 des
ribes

the algorithm, Se
tion 3 relates to se
urity with linear 
ryptanalysis.

Se
tion 4 gives implementation details. We 
on
lude in Se
tion 5 and

Appendix A gives the referen
e implementation in C. Appendix B


ontains a program in C for multipermutation on a byte level [14, 15,

16℄. Appendix C gives a program to 
al
ulate the maximum bias for

linear 
ryptanalysis.

2 The Algorithm

2.1 The S-Boxes

1024 is a Substitution-Permutation-Network (SPN). It uses as building

blo
ks multipli
ation modulo 2

32

�1 as s-box and a modi�ed di�usion

layer from SAFER. Keys are applied before and after the s-boxes. 1024

has 32 s-boxes (multipli
ation modulo 2

32

� 1). Let us denote in this

subse
tion addition, subtra
tion and multipli
ation modulo 2

n

� 1 by

respe
tively +,- and �, ordinary multipli
ation by �, integer divison

by b�
 ,XOR by �, rotation by a bits to the left byna, rotation by

a bits to the right byoa and addition modulo 2

256

by �. .

Multipli
ation modulo 2

n

� 1 as s-box was �rst used by Daemen

et. al. [4, 5, 6℄. The studied fun
tion is:

f

a

(x) =

(

a� x if x < 2

n

� 1

2

n

� 1 if x = 2

n

� 1

(1)

The 
al
ulation is easy:

a � b mod(2

n

� 1) = (a � b mod(2

n

) + b

a � b

2

n


)(1 + b

1

2

n


) (2)

The �rst righthand term is obtained by taking the least signi�
ant

bits of the produ
t, the se
ond term by taking the remaining bits and

shifting them to the right by n bits and add that to the �rst term.

If a 
arry (i.e. bit 32 is set) results from that addition the result is

in
remented by 1. Note that [4℄ gives a wrong formula. It has been


orre
ted in 
hapter 11 of Joan Daemens Ph.D. thesis [6℄. Note that

the last fa
tor of the righthandside of the equation is not distributive.

Multipli
ation modulo 2

n

� 1 has interesting properties. A multi-

pli
ation by 2 modulo 2

n

�1 is equivalent by a rotation to left by one.

Similarly 2

k

� a = an k. Further material 
an be found in [4℄.

3



In [5℄ multipli
ation fa
tors modulo 2

32

�1 are given. In the 
ipher

MMB a en
ryption (in hex. 0x025F1CDB) and de
ryption (in hex.

0x0DAD4694) fa
tors are introdu
ed. The en
ryption fa
tor by MMB

is in 1024 rotated left from 0 to 31. The left most blo
k is assigned

the en
ryption fa
tor without rotation. The next blo
k is assigned

the en
ryption fa
tors n 1 and so on. The last blo
k (right most)

is assigned the en
ryption fa
torsn 31. That is why the number of

blo
ks with 32 bits is 32 (see referen
e implementation WIDTH).

The de
ryption fa
tor from MMB is treated almost the same way.

The de
ryption fa
tor from MMB is the de
ryption fa
tor from 1024

in left most blo
k. The de
ryption fa
tor is rotated to the right from

0 to 31 and assigned from left most blo
k to right most blo
k. The

left most blo
k is assigned the de
ryption fa
toro 0, the right most

blo
k is assigned the de
ryption fa
torso 31.

The 
riti
al probability of the s-boxes with regard to di�erential


ryptanalysis is 2

�9

.

2.2 Di�usion Layer

The di�usion layer has as parent the di�usion layer from SAFER [8, 9℄.

However, there are four modi�
ations:

1. 32 blo
ks instead of eight.

2. Four bytes instead of one byte as primitive unit. See [13℄.

3. Before the addition primitive units are beeing rotated.

4. One additional layer

Point two is 
lear. In a modern PC the CPU has a register size

of four bytes, sometimes eight bytes. Obviously this will in
rease the

speed.

The Pseudo-Hadamard-Transform is de�ned as:

b

1

= 2a

1

+ a

2

(3)

b

2

= a

1

+ a

2

(4)

It 
an be rewritten:

b

2

= a

1

+ a

2

(5)

b

1

= a

1

+ b

2

(6)

The Pseudo-Hadamard-Transform has one disadvantage. The least

signi�
ant bit of b

1

is not dependent on a

1

. S
hneier et. al. [13℄ were

4



aware that b

1

is not dependent on the most signi�
ant bit of a

1

. But

there is no word on the least signi�
ant bit of a

1

(or at least I did

not see it). Be
ause b

1

= 2a

1

+ a

2

the least signi�
ant bit of b

1

is a

fun
tion of a

2

and not of a

1

. Thus the least signi�
ant bit of b

1

is

in
omplete.

In [12℄ a bran
h number for invertible linear mappings was intro-

du
ed. It is de�ned as

B(�) = min

a6=0

(!

h

(a) + !

h

(�(a))) (7)

where !

h

denotes the Hamming weight of a, i.e. the number of nonzero


ompenents of a. For example a = 0x0F has the Hamming weight of 4.

� is the linear mapping. The bran
h number of the linear mapping � is

at least B. A linear mapping with optimal bran
h number B = n+ 1


an be 
onstru
ted by a maximum distan
e separable 
ode. I 
an

see no reason why this 
an not be done on a non linear transform.

Bearing that in mind, the bran
h number of Two�sh [13℄ is two, 2

31

in left most blo
k and the other blo
ks 0 as input. The output is 2

31

on the right most blo
k, 0 else. The same holds for my di�usion layer

(a bran
h number of 2). An input of 2

31

on the left most blo
k, 0

else, gets an output of the right most blo
k of 2

31

, the other blo
ks 0.

Obviously this is a poor performan
e.

That is why the rotation was introdu
ed. To the b

2

a rotated value

of a

1

is added. Similarly to the b

1

a rotated value of b

2

is added. The

rotation values are pseudo-random and it is the assumption that the

bran
h number is higher. For more details, see the fun
tion pht in the

referen
e implementation. The fun
tion ipht does the opposite of the

fun
tion pht, i.e. the rotation is invertible.

On the original di�usion layer of SAFER rotations were intro-

du
ed. The result is that an odd rotation from the "left" to the

"right" and even rotation from the "right" to "left" is a multipermu-

tation [14, 15, 16℄. Note the the natural unit of the di�usion layer of

SAFER is the byte. My vintage 
omputer of 1997 was able to 
al
u-

late this, but not 16 bit or 32 bit. A modern 
omputer 
ould 
al
ulate

16 bit, but not 32 bit. However, it is 
onje
tured that the multiper-

mutation through rotation and addition is valid for 32 bit. For more

details, see appendix B.

2.3 Addition modulo 2

256

Addition modulo 2

256

was introdu
ed to give an upper bound for linear


ryptanalysis. If we take [11℄, we 
an have an upper bound for linear


ryptanalysis without being for
ed to examine the di�usion layer or

5



XOR KEYS

S−BOXES

KEY ADDITION MODULO 2^{256}

DIFFUSION LAYER

Figure 1: The left quarter of a primary round

the s-boxes. See subse
tion Key S
hedule and se
tion Linear Crypt-

analysis for further details.

1024 has a bit length of 1024 bits. This means addition modulo

2

256

is applied four times, from left to right, sometimes after the s-

boxes, sometimes before the s-boxes. Sin
e there are 32 s-boxes of 32

bits the input or output of one addition modulo 2

256

is eight s-boxes.

One 
an argue that all the keys should be applied by addition

modulo 2

256

, so one 
an use less rounds. But the XOR of some keys

is there to make the 
ryptanalysis more diÆ
ult by using di�erent

groups or to avoid symmetry atta
ks.

2.4 Primary Round

1024 
onsists of eight primary rounds, a middle transform and eight

se
ondary rounds. The number of primary rounds und se
ondary

rounds must be equal. A se
ondary round is the inversion of a pri-

mary round, ex
ept for the key and the en
ryption/de
ryption fa
tors.

Figure 1 shows the left quarter of a primary round.

A primary round starts with XORing the �rst half of the round

key. Sin
e 1024 
onsists of 32 blo
ks of 32 bits, a 32 bit CPU will do

that in 32 steps.

The s-boxes (multipli
ation modulo 2

32

�1) follow. Note that ea
h

of the s-boxes has its own multipli
ation fa
tor. (see subse
tion s-box).

As 1024 
onsists of 32 blo
ks of 32 bits, one has 32 multipli
ations and

32 en
ryption fa
tors, sin
e the s-boxes should have no symmetry.

Addition modulo 2

256

of the se
ond half of the round key follows.

6



S−BOXES

KEY ADDITION MODULO 2^{256}

KEY ADDITION MODULO 2^{256}

Figure 2: A left quarter of the middle transform

As 1024 has 1024 bits, there are four additions. The left most addition


onsists of the output of left most eight s-boxes and so on.

Finally the Pseudo-Hadamard-Transform (see fun
tion pht in the

referen
e implementation) is done. Note that the least signi�
ant four

bytes of the addition modulo 2

256

are least signi�
ant unit of the

Pseudo-Hadamard-Transform.

2.5 The Middle Transform

The middle transform is the only part of 1024 that 
omes with no

Pseudo-Hadamard-Transform. Instead the data output from the eighth

primary round 
omes as input for the middle transform. First there

is addition modulo 2

256

of the �rst half of the round key. Again the

least signi�
ant four byte output by the eighth primary round is the

least signi�
ant input to the left most addition modulo 2

256

. Figure 2

shows one quarter of the middle transform.

After addition modulo 2

256

is 
ompleted, the data (1024 bit) is

partitioned in 32 blo
ks of 32 bits. This data is now input to the

s-boxes (multipli
ation modulo 2

32

� 1). The s-boxes are the same as

in the primary rounds.

The output by the s-boxes are now input to se
ond addition mod-

ulo 2

256

of the se
ond half the round key. This is the same as in

subse
tion primary round.

2.6 The Se
ondary Rounds

The input to the �rst se
ondary round is the output from the middle

transform. At �rst there is an inverse di�usion layer (see fun
tion ipht

in the referen
e implementation). Se
ond there is addition modulo

7



INVERSE DIFFUSION LAYER

KEY ADDITION MODULO 2^{256}

S−BOXES

XOR KEYS

Figure 3: The left quarter of a se
ondary round

2

256

with the �rst half of the round key. Third there are the s-boxes.

The s-boxes have the same fa
tors as the s-boxes in the primary round

and in the middle transform. Finally there is XOR with the se
ond

half of the round key. Figure 3 shows the left quarter of one se
ondary

round.

2.7 Key S
hedule

The �rst round key is the user key (see fun
tion key s
hedule in the

referen
e implementation). The next round key is the prede
essor

rotated by 455 bits to the left and so on. Note that a round key and

the key to middle transform are applied before and after the s-boxes.

For the eight primary rounds one half of the key is applied before the

s-boxes (XOR, low bits), the other half of the key is applied after the

s-boxes (addition modulo 2

256

, high bits). For the middle transform

one half of the key is applied before the s-boxes (addition modulo 2

256

,

low bits), and one half of the key is applied after the s-boxes (addition

modulo 2

256

, high bits). For the eight se
ondary rounds one half of

the key is applied before the s-boxes (addition modulo 2

256

, low bits),

the other half of the key is applied after the s-boxes (XOR, high bits).

Why is the rotation 455 bits to the left? This is linear 
ryptanalysis

and the so 
alled bias or the so 
alled e�e
tiveness [10, 11℄. When we

take into a

ount that addition modulo 2

256

of the keys in the rounds

and the middle transform we have nine additions of round keys and

middle transform. If we take into a

ount [10, 11℄ we have as average

bias � = 2

�9�128

= 2

�1152

(piling up lemma not 
onsidered). The

8



rotation of the round keys was so determined that the maximum bias

was as low as possible. This 
an be done via exhausive sear
h and

takes on a modern PC a few se
ounds. The result is that a rotation to

the left of 455 bits is desired one. It has a maximum bias of � = 2

�1018

(raw data 1024, piling up lemma 7, bit position 1591). It should be

noted that a rotation to the left of 1593 bits has the same bias and

same data ex
ept the bit position. Note that 455+1593=2048 is the

key length. However, a rotation by 1593 bit 
an not be used by the

referen
e implementation (maximum rotation is 1023). Appendix C

gives a program to 
al
ulate maximum bias.

For the de
ryption pro
ess the XOR-keys simply swap their posi-

tion on the primary and se
ondary rounds. If we want an algorithm

to be the same for en
ryption and de
ryption we need to have the

inverse of addition modulo 2

256

. The inverse of an integer value, be it

signed or unsigned, is to invert the bits of that integer and to add 1.

When this is done, the key values swap their position on the primary

and se
ondary rounds and on the middle transform. For details, see

the fun
tion invert keys of the referen
e implementation.

2.8 De
ryption

For en
ryption and de
ryption the same algorithm is used. For the

s-boxes the de
ryption fa
tors are used. The are the inverse of the

en
ryption keys modulo 2

32

� 1. [5℄ gives one of them. The rest is


al
ulated by rotating this one key to the right from 1 : : : 31. See

the fun
tion de
ryption fa
tors of the referen
e implementation for

details.

Also the keys have to be inverted. While XOR is self-inverse you

will need only to mirror them at the s-boxes of the middle transform.

Addition modulo 2

256

is slightly more diÆ
ult: you will need the bit


omplement and add 1. Having that done you will have to mirror at

the s-boxes of the middle transform.

The fun
tions key s
hedule and invert keys of the referen
e imple-

mentation will give you further insight.

3 Linear Cryptanalysis

Linear 
ryptanalysis is a known plaintext atta
k and was �rst pub-

lished by Matsui [10℄. It looks for an e�e
tive linear expression for a

given 
ipher, i.e. it looks for plaintext bits P

i

, a 
iphertext bits C

j

and key bits K

k

so that

P

1

� P

2

� : : :� P

i

� C

1

� C

2

� : : :� C

j

= K

1

�K

2

� : : :�K

k

(8)

9



holds with probability p 6= 1=2. The magnitude � = jp� 1=2j is 
alled

the bias or the e�e
tiveness of the equation (8).

Matsui showed that the bias of the linear equation is 
losely related

to the number of plaintext N needed, i.e. roughly speakingN = 1=(�

2

).

In the subse
tion key s
hedule it is shown that the highest bias is

� = 2

�1018

.Hen
e the number of plaintext for a su

essful atta
k is

N = 2

2036

. Sin
e there are only 2

1024

di�erent plaintext available we


an 
on
lude that 1024 is immune from linear 
ryptanalysis. Please

note that the � was only derived using the key addition modulo 2

256

making use of [11℄. The nonlinearity obtained by the s-boxes and the

di�usions layer was not 
onsidered, i.e. the limit is an upper bound.

4 Implementation

Modern Central Pro
essing Units (CPU) 
ome with several Arithmeti


Logi
 Units (ALU). The ALUs are the heart of the CPU. All the

integer arithmeti
 ist done here. A Pentium IV has four ALUs and

it is 
lear, that this will in
rease performan
e, if the program 
ode

allows for parallel exe
utions. Modern 
omputers have several ALUs,

and sometimes with several 
ores. A 
ore is a CPU and a multiple


ores on a 
omputer will in
rease the performan
e. Again the program


ode is faster, if it allows parallel exe
utions.

It is estimated that the program 
ode of 1024 in assembler (ma-


hine language) on a 32-bit 
omputer , 2.5 Gigahertz 
lo
k, one 
ore

and one ALU results in a performan
e of approx. 15 MByte/s. Al-

though the referen
e implementation in C of 1024 is working, one

might ask whether performan
e 
an be in
reased. A C implementa-

tion is about 3 to 5 slower then in assembler. One 
an do the whole

implementation in assembler, but I guess the fun
tion that have to do

with en
ryption and de
ryption are enough (fun
tion 
rypt, modmult,

pht, ipht).

4.1 Fun
tion modmult

Espe
ially modmult is the most promising 
andidate for assembler

programing. In C one has to de
lare several unsigned long long (8

byte) to 
at
h the high bits and shift them by 32 to the right and add,

and to 
at
h the 
arry and shift it to the right by 32 bits and in
rement

the result. If an integer hardware multiplier is present (most 32 bit

CPU have it) the multipli
ation is done in 3 
lo
ks. The Intel 
ompat-

ible CPUs have another point of interest. The 64 bit multipli
ation

result is stored in the registers EDX:EAX. So the addition is simple

ADD EAX,EDX. If in this addition a 
arry is set, you simply add to

10



EAX the 
arry with the 
ommand ADC EAX,0x00000000. The whole

fun
tion modmult in assembler is here:

MOV EBX,fa
tor1

MOV EAX,fa
tor2

MUL EBX

ADD EAX,EDX

ADC EAX,0x00000000

MOV modmult,EAX

All registers are 32 bit so far. You 
an see that the assembler

program has no 
onditional jumps and is not sus
eptible to timing

atta
ks.

4.2 Fun
tion 
rypt and Fun
tions pht/ipht

The programing of the fun
tion 
rypt in the referen
e inplementation

is somewhat awkward. If one 
an see the pertinent �gures in the arti-


le, she/he �nds out, that the programing is "verti
al". For example:

if you take �gure 1 (one quarter of a primary round) and the referen
e

implementation one 
an see that �rst I have done one XOR with the

key, then one fun
tion modmult, then one blo
k key addition modulo

2

256

. I should have done it "horizontal", i.e. �rst all the key XOR,

se
ond all the fun
tions modmult and third key addition modulo 2

256

.

Note that addition modulo 2

256

will only be 
ompleted, if all the 
om-

ponents are there. Otherwise the the CPU pipeline will be stalled.

The addition modulo 2

256

has two addition 
ommands: �rst the usual

addition (ADD, one time) and then addition with 
arry (ADC, seven

times). In assembler it looks like this:

MOV EAX,data1

MOV EBX,key1

ADD EAX,EBX

MOV data1,EAX

MOV EAX,data2

MOV EBX,key2

ADC EAX,EBX

MOV data2,EAX

.

.

.

MOV EAX,data8

MOV EBX,key8

ADC EAX,EBX

11



MOV data8,EAX

The same is true for the fun
tions pht respe
tively ipht. First

the rotation and the adding are done and then the de
imation-by-2-

permutation (see Cooley-Tukey-FFT).

If all of the fun
tion 
rypt and the fun
tions pht/ipht are to be

programed in assembler, the performan
e of 1024 will be greatly en-

han
ed. If you are not tired yet, you 
an unroll the loops and program

the fun
tions inline. This is a tedious task, but I guess it is worth it.

5 Con
lusion

The blo
k 
ipher 1024 was introdu
ed. It has a blo
k size of 1024

bits and a key length of 2048 bits. While 1024 is immune from linear


ryptanalysis, further work is needed to prove that 1024 is immune to

other atta
ks, espe
ially against di�erential 
ryptanalysis.

Referen
es

[1℄ Bamford, James: The Puzzle Pala
e, Penguin Books, New York,

1983

[2℄ Bamford, James: Body of Se
rets, Doubleday, New York, 2001

[3℄ Biham, Eli and Adi Shamir: Di�erential Cryptanalysis of the

Data En
ryption Standard, Springer Verlag, Berlin, 1993

[4℄ Daemen, Joan; Lu
 van Linden, Rene Govaerts and

Joos Vandewalle: Propagation Properties of Multipli
a-

tion Modulo 2

n

� 1, Pro
eedings of 13th Symposium on

Information Theory in the Benelux. Werkgemeens
haft

vaar Informatie- en Communi
atietheorie. available from

http://www.
osi
.esat.kuleuven.be/publi
ation/stati
/1992.html,

1992

[5℄ Daemen, Joan; Rene Govaerts and Joos Vandevalle: Blo
k Cipher

based on Modular Arithmeti
, Pro
eedings of the 3rd Symposium

on State and Progress of Resear
h in Cryptography, W. Wol-

fowi
z (ed.), Fondazione Ugo Bordoni, Rome, Italy available from

http://www.
osi
.esat.kuleuven.be/publi
ation/stati
/1993.html,

1993

[6℄ Daemen, Joan: Cipher and Hash Fun
tion Design,

Strategies based on linear and di�erential Cryptanaly-

sis, Ph.D. thesis, KU Leuven, Belgium, available from

12



http://homes.esat.kuleuven.be/~
osi
art/ps/JD-9500,

1995

[7℄ Koza
zuk, Wladyslaw: Geheimoperation Wi
her, Bernard &

Graefe Verlag, Koblenz, 1989.

[8℄ Massey, James: SAFER K-64: A Byte-Oriented Blo
k-Cipher

Algorithm, in Anderson Ross (Ed.): Fast Software En
ryption,

Springer Verlag, Berlin, 1994

[9℄ Massey, James: SAFER K-64: One year later in Preneel, Bart

(Ed.): Fast Software En
ryption, Springer Verlag, Berlin, 1995

[10℄ Matsui, Mitsuru: Linear Cryptanalysis Method for DES Cipher,

in Tor Helleseth (Ed.): Advan
es in Cryptology - EUROCRYPT

'93, Springer Verlag, Berlin, 1993

[11℄ Mukhopadhyay, Debdeep and Dipanwita RoyChowdhury: Key

Mixing in Blo
k Cipher through Addition modulo 2

n

, available

from http.//eprint.ia
r.org/2005/383.pdf

[12℄ Rijmen, Vin
ent; Joan Daemen et. al.: The 
ipher SHARK, in

Gollmann, Dieter (Ed.): Fast Software En
ryption, Springer Ver-

lag, Berlin, 1996

[13℄ S
hneier, Bru
e; John Kelsey, Doug Whiting, David Wagner,

Chris Hall and Niels Ferguson: Two�sh: A 128-Bit Blo
k Cipher,

1998, available from http://www.s
hneier.
om/twofish.html

[14℄ Vaudenay, Serge: On the Need for Multipermutation: Cryptanal-

ysis of MD4 and SAFER, in Preneel, Bart (Ed.): Fast Software

En
ryption, Springer Verlag, Berlin, 1995

[15℄ Vaudenay, Serge and Ja
ques Stern: CS-Cipher, in Vaudenay,

Serge (Ed.): Fast Software En
ryption, Springer Verlag, Berlin,

1998

[16℄ Vaudenay, Serge: On the Se
urity of CS-Cipher, in Knudsen, Lars

(Ed.): Fast Software En
ryption, Springer Verlag, Berlin,1999

A Referen
e Implementation

#in
lude<stdio.h>

#define NUM_ROUNDS 8

#define INT_LENGTH 32

#define ROL(x,a) (((x)<<(a))|((x)>>(INT_LENGTH-(a))))

#define ROR(x,a) (((x)<<(INT_LENGTH-(a))|((x)>>(a))))

#define WIDTH 32

13



#define ROTROUND 455

void en
ryption_fa
tors(unsigned long e_fa
tors[WIDTH℄){

unsigned long i;

e_fa
tors[0℄=0x025F1CDB;

for(i=1;i<WIDTH;i++){

e_fa
tors[i℄=ROL(e_fa
tors[0℄,i);

}

}

void de
ryption_fa
tors(unsigned long d_fa
tors[WIDTH℄){

unsigned long i;

d_fa
tors[0℄=229459604;

for(i=1;i<WIDTH;i++){

d_fa
tors[i℄=ROR(d_fa
tors[0℄,i);

}

}

unsigned long modmult(unsigned long fa
tor1,unsigned long fa
tor2){

unsigned long long f1,f2,ergebnis,k;

f1=(unsigned long long) fa
tor1;

f2=(unsigned long long) fa
tor2;

ergebnis=f1*f2;

k=(ergebnis>>INT_LENGTH);

ergebnis&=0xFFFFFFFF;

ergebnis+=k;

ergebnis+=(ergebnis>>INT_LENGTH) & 1;

return(ergebnis & 0xFFFFFFFF);

}

void invert_keys(unsigned long keys[4*NUM_ROUNDS+2℄[WIDTH℄){

unsigned long i,j,help;

unsigned long long h1,h2,
arry1,
arry2;

for(i=0;i<NUM_ROUNDS;i++){

for(j=0;j<WIDTH;j++){

help=keys[2*i℄[j℄;

keys[2*i℄[j℄=keys[4*NUM_ROUNDS-2*i+1℄[j℄;

keys[4*NUM_ROUNDS-2*i+1℄[j℄=help;

}

14



}

for(i=0;i<(NUM_ROUNDS+1);i++){


arry1=1;


arry2=1;

for(j=0;j<WIDTH;j++){

h2=(unsigned long long) keys[4*NUM_ROUNDS-2*i℄[j℄;

h1=(unsigned long long) keys[2*i+1℄[j℄;

h1^=0xFFFFFFFF;

h2^=0xFFFFFFFF;

h1+=
arry1;

h2+=
arry2;


arry2=(h2>>INT_LENGTH) & 1;


arry1=(h1>>INT_LENGTH) & 1;

if((j & 7)==7){


arry1=1;


arry2=1;

}

keys[4*NUM_ROUNDS-2*i℄[j℄=h1 & 0xFFFFFFFF;

keys[2*i+1℄[j℄=h2 & 0xFFFFFFFF;

}

}

}

void key_s
hedule(unsigned long user_key[2℄[WIDTH℄,\

unsigned long key[4*NUM_ROUNDS+2℄[WIDTH℄){

unsigned long i,j;

for(i=0;i<2;i++){

for(j=0;j<WIDTH;j++){

key[i℄[j℄=user_key[i℄[j℄;

}

}

for(i=0;i<(2*NUM_ROUNDS);i++){

for(j=0;j<WIDTH;j++) {

key[2*i+3℄[j℄=(key[2*i+(j+((WIDTH*INT_LENGTH-ROTROUND)\

/INT_LENGTH))/WIDTH℄\

[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\

%WIDTH℄<<(ROTROUND%INT_LENGTH))|\

(key[2*i+(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)/WIDTH℄\

[(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)%WIDTH℄>>\

(INT_LENGTH-ROTROUND%INT_LENGTH));

key[2*i+2℄[j℄=(key[2*i+1-(j+((WIDTH*INT_LENGTH-ROTROUND)\

15



/INT_LENGTH))/WIDTH℄\

[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\

%WIDTH℄<<(ROTROUND%INT_LENGTH))\

|(key[2*i+1-(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)/WIDTH℄\

[(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)%WIDTH℄>>\

(INT_LENGTH-ROTROUND%INT_LENGTH));

}

}

}

void pht(unsigned long a[WIDTH℄){

unsigned long i,b[WIDTH℄;

a[1℄+=ROL(a[0℄,1);

a[0℄+=ROL(a[1℄,2);

a[3℄+=ROL(a[2℄,7);

a[2℄+=ROL(a[3℄,16);

a[5℄+=ROL(a[4℄,13),

a[4℄+=ROL(a[5℄,30);

a[7℄+=ROL(a[6℄,19);

a[6℄+=ROL(a[7℄,12);

a[9℄+=ROL(a[8℄,25);

a[8℄+=ROL(a[9℄,26);

a[11℄+=ROL(a[10℄,31);

a[10℄+=ROL(a[11℄,8);

a[13℄+=ROL(a[12℄,5);

a[12℄+=ROL(a[13℄,22);

a[15℄+=ROL(a[14℄,11);

a[14℄+=ROL(a[15℄,4);

a[17℄+=ROL(a[16℄,17);

a[16℄+=ROL(a[17℄,18),

a[19℄+=ROL(a[18℄,23);

a[18℄+=a[19℄;

a[21℄+=ROL(a[20℄,29);

a[20℄+=ROL(a[21℄,14);

a[23℄+=ROL(a[22℄,3);

a[22℄+=ROL(a[23℄,28);

a[25℄+=ROL(a[24℄,9);

a[24℄+=ROL(a[25℄,10);

a[27℄+=ROL(a[26℄,15);

a[26℄+=ROL(a[27℄,24);

a[29℄+=ROL(a[28℄,21);

a[28℄+=ROL(a[29℄,6);

16



a[31℄+=ROL(a[30℄,27);

a[30℄+=ROL(a[31℄,20);

for(i=0;i<(WIDTH/2);i++){

b[i℄=a[2*i℄;

b[i+(WIDTH/2)℄=a[2*i+1℄;

}

b[1℄+=ROL(b[0℄,1);

b[0℄+=ROL(b[1℄,2);

b[3℄+=ROL(b[2℄,11);

b[2℄+=ROL(b[3℄,20);

b[5℄+=ROL(b[4℄,21);

b[4℄+=ROL(b[5℄,6);

b[7℄+=ROL(b[6℄,31);

b[6℄+=ROL(b[7℄,24);

b[9℄+=ROL(b[8℄,9);

b[8℄+=ROL(b[9℄,10);

b[11℄+=ROL(b[10℄,19);

b[10℄+=ROL(b[11℄,28);

b[13℄+=ROL(b[12℄,29);

b[12℄+=ROL(b[13℄,14);

b[15℄+=ROL(b[14℄,7);

b[14℄+=b[15℄;

b[17℄+=ROL(b[16℄,17);

b[16℄+=ROL(b[17℄,18);

b[19℄+=ROL(b[18℄,27);

b[18℄+=ROL(b[19℄,4);

b[21℄+=ROL(b[20℄,5);

b[20℄+=ROL(b[21℄,22);

b[23℄+=ROL(b[22℄,15);

b[22℄+=ROL(b[23℄,8);

b[25℄+=ROL(b[24℄,25);

b[24℄+=ROL(b[25℄,26);

b[27℄+=ROL(b[26℄,3);

b[26℄+=ROL(b[27℄,12);

b[29℄+=ROL(b[28℄,13);

b[28℄+=ROL(b[29℄,30);

b[31℄+=ROL(b[30℄,23);

b[30℄+=ROL(b[31℄,16);

for(i=0;i<(WIDTH/2);i++){

a[i℄=b[2*i℄;

a[i+(WIDTH/2)℄=b[2*i+1℄;

}

17



a[1℄+=ROL(a[0℄,1);

a[0℄+=ROL(a[1℄,2);

a[3℄+=ROL(a[2℄,15);

a[2℄+=ROL(a[3℄,24);

a[5℄+=ROL(a[4℄,29);

a[4℄+=ROL(a[5℄,14);

a[7℄+=ROL(a[6℄,11);

a[6℄+=ROL(a[7℄,4);

a[9℄+=ROL(a[8℄,25);

a[8℄+=ROL(a[9℄,26);

a[11℄+=ROL(a[10℄,7);

a[10℄+=ROL(a[11℄,16);

a[13℄+=ROL(a[12℄,21);

a[12℄+=ROL(a[13℄,6);

a[15℄+=ROL(a[14℄,3);

a[14℄+=ROL(a[15℄,28);

a[17℄+=ROL(a[16℄,17);

a[16℄+=ROL(a[17℄,18);

a[19℄+=ROL(a[18℄,31);

a[18℄+=ROL(a[19℄,8);

a[21℄+=ROL(a[20℄,13);

a[20℄+=ROL(a[21℄,30);

a[23℄+=ROL(a[22℄,27);

a[22℄+=ROL(a[23℄,20);

a[25℄+=ROL(a[24℄,9);

a[24℄+=ROL(a[25℄,10),

a[27℄+=ROL(a[26℄,23);

a[26℄+=a[27℄;

a[29℄+=ROL(a[28℄,5);

a[28℄+=ROL(a[29℄,22);

a[31℄+=ROL(a[30℄,19);

a[30℄+=ROL(a[31℄,12);

for(i=0;i<(WIDTH/2);i++){

b[i℄=a[2*i℄;

b[i+(WIDTH/2)℄=a[2*i+1℄;

}

b[1℄+=ROL(b[0℄,1);

b[0℄+=ROL(b[1℄,2);

b[3℄+=ROL(b[2℄,19);

b[2℄+=ROL(b[3℄,12);

b[5℄+=ROL(b[4℄,5);

b[4℄+=ROL(b[5℄,22);

b[7℄+=ROL(b[6℄,23);

18



b[6℄+=b[7℄;

b[9℄+=ROL(b[8℄,9);

b[8℄+=ROL(b[9℄,10);

b[11℄+=ROL(b[10℄,27);

b[10℄+=ROL(b[11℄,20);

b[13℄+=ROL(b[12℄,13);

b[12℄+=ROL(b[13℄,30);

b[15℄+=ROL(b[14℄,31);

b[14℄+=ROL(b[15℄,8);

b[17℄+=ROL(b[16℄,17);

b[16℄+=ROL(b[17℄,18);

b[19℄+=ROL(b[18℄,3);

b[18℄+=ROL(b[19℄,28);

b[21℄+=ROL(b[20℄,21);

b[20℄+=ROL(b[21℄,6);

b[23℄+=ROL(b[22℄,7);

b[22℄+=ROL(b[23℄,16);

b[25℄+=ROL(b[24℄,25);

b[24℄+=ROL(b[25℄,26);

b[27℄+=ROL(b[26℄,11);

b[26℄+=ROL(b[27℄,4);

b[29℄+=ROL(b[28℄,29);

b[28℄+=ROL(b[29℄,14);

b[31℄+=ROL(b[30℄,15);

b[30℄+=ROL(b[31℄,24);

for(i=0;i<(WIDTH/2);i++){

a[i℄=b[2*i℄;

a[i+(WIDTH/2)℄=b[2*i+1℄;

}

a[1℄+=ROL(a[0℄,1);

a[0℄+=ROL(a[1℄,2);

a[3℄+=ROL(a[2℄,23);

a[2℄+=ROL(a[3℄,28);

a[5℄+=ROL(a[4℄,13);

a[4℄+=ROL(a[5℄,22);

a[7℄+=ROL(a[6℄,3);

a[6℄+=ROL(a[7℄,16);

a[9℄+=ROL(a[8℄,25);

a[8℄+=ROL(a[9℄,10);

a[11℄+=ROL(a[10℄,15);

a[10℄+=ROL(a[11℄,4);

a[13℄+=ROL(a[12℄,5);

a[12℄+=ROL(a[13℄,30);

19



a[15℄+=ROL(a[14℄,27);

a[14℄+=ROL(a[15℄,24);

a[17℄+=ROL(a[16℄,17);

a[16℄+=ROL(a[17℄,18);

a[19℄+=ROL(a[18℄,7);

a[18℄+=ROL(a[19℄,12);

a[21℄+=ROL(a[20℄,29);

a[20℄+=ROL(a[21℄,6);

a[23℄+=ROL(a[22℄,19);

a[22℄+=a[23℄;

a[25℄+=ROL(a[24℄,9);

a[24℄+=ROL(a[25℄,26),

a[27℄+=ROL(a[26℄,31);

a[26℄+=ROL(a[27℄,20);

a[29℄+=ROL(a[28℄,21);

a[28℄+=ROL(a[29℄,14);

a[31℄+=ROL(a[30℄,11);

a[30℄+=ROL(a[31℄,8);

for(i=0;i<(WIDTH/2);i++){

b[i℄=a[2*i℄;

b[i+(WIDTH/2)℄=a[2*i+1℄;

}

b[1℄+=ROL(b[0℄,1);

b[0℄+=ROL(b[1℄,2);

b[3℄+=ROL(b[2℄,27);

b[2℄+=ROL(b[3℄,8);

b[5℄+=ROL(b[4℄,21);

b[4℄+=ROL(b[5℄,14);

b[7℄+=ROL(b[6℄,15);

b[6℄+=ROL(b[7℄,20);

b[9℄+=ROL(b[8℄,9);

b[8℄+=ROL(b[9℄,26);

b[11℄+=ROL(b[10℄,3);

b[10℄+=b[11℄;

b[13℄+=ROL(b[12℄,29);

b[12℄+=ROL(b[13℄,6);


