
1024 - A High Seurity Software Oriented

Blok Cipher

�

Dieter Shmidt

y

Marh 27, 2009

Abstrat

A ryptographer with week algorithms gets his feedbak almost in-

stantly by the open rypto ommunity. But what about government

ryptanalysis ? Given the fat that there is a onsiderable amount of

ryptanalysis behind losed doors, what is to be done to get COMINT

deaf ? The NSA, as the most losely examined SIGINT ageny, has

a workfore of 38,000 [2℄, among them several thousand ryptologists.

The atual wiretapping is done by the Central Seurity Servie with

25,000 women and men. Other industrialised states have also thou-

sands ryptologists at their wage role.

The blok ipher 1024 is an attempt to make ryptanalysis more

diÆult espeially with di�erential (DC) and linear ryptanalysis (LC).

The assumption is that the inreased seurity will defeat other rypt-

analytial methods not yet known by the open rypto ommunity.

1024 has a blok size of 1024 bits und key length of 2048 bits.

1 Introdution

From the beginning of open ryptography in the 70's unease has taken

on government ryptographers. They felt that open ryptographi re-

searh, espeially ryptanalysis, would make their work more diÆult.

On the other hand open ryptographi works from ATM to the Ger-

man Health Card and have shown that there is a market for omputer

seurity software.

In the 80's Admiral Bobby Inman, Diretor of the NSA, established

a ommittee [1℄ that should ensor all ryptographi publiations. But

�

Revised Marh 27, 2009 and Marh 26, 2009

y

Denkmalstrasse 16, D-57567 Daaden, Germany, dietershmidt�usa.om

1



when sientists did not follow up, he warned that legislative ation

would be taken. But that has not been the plae and open ryptog-

raphy has been a suess story.

It should be lear whih stand I support, but there is a plae where

government ensorship is the right thing: Ultra, the deryption of the

German Enigma during World War II. Knowledge of that would have

the Germans to develope a new ipher mahine. That would be a

atastrophy for the Allied war e�ort and would lengthen the war by

approx. a year [7℄.

Nevertheless government ryptography has proven that they are

more advaned than open researh. Di�erential ryptanalysis was

known by Don Coppersmith in 1974 when he and others designed the

Data Enryption Standard. Open researh followed up 18 years later

[3℄. Di�erential ryptanalysis was a powerful tool and the government

asked IBM to be silent for national seurity reasons (see prefae of [3℄).

Intriguingly di�erential ryptanalysis is a hosen plaintext attak and

you need an insider to mount this attak.

Another point is publi key enryption. It is known the a sientist

of the UK's Government Communiation Head Quarter (GCHQ) knew

in 1967 about this. That is approx. ten earlier year then open researh.

But stiing open researh on ryptology is not the only sin that the

NSA has ommitted. There were the operations Minaret und Sham-

rok. While Minaret were direted against the leaders of the student

revolt in the 60's and took away their teleommuniation data without

due proess, Shamrok was direted against non US governments and

the able operators were asked to hand over teleommuniation data.

But don't think here in Germany everything is all right. However,

in his verdit on data retention the Constitutional Court in Germany

ruled that itizens have the right to privay (i.e. among others enryp-

tion). Given the fat that intelligene agenies in Germany are in the

business of wiretapping, one must admit that the right to enryption

is also the right to hoose the algorithm freely and with maximum

seurity.

Here in Germany in 1998 the minister of interior, a onservative,

tried to ban all enryption the government ould not read. But the

onservatives lost the eletions und today enryption is so ubiquitous

that even the onservatives don't dare it to outlaw it.

But bak to the algorithm. 1024 has a blok size of 1024 bits and

keylength of 2048 bits. It takes as building bloks the iphers MMB [5℄

und SAFER [8℄. While MMB has bilding bloks words of 32 bits, the

building blok of SAFER is a byte. So SAFER has to be adapted to

use 4 bytes. Also SAFER [9℄ has a problem with the di�usion. Thats

why the rotation has been used. However SAFER has an advantage:

2



Its di�usion layer was built around the Cooley-Tukey-Fast-Fourier-

Transform with omplexity O(n ln n). AES (Rijndael) has a di�usion

layer built around MDS-Codes with omplexity O(n

2

).

The rest of the paper is organized as follows: Setion 2 desribes

the algorithm, Setion 3 relates to seurity with linear ryptanalysis.

Setion 4 gives implementation details. We onlude in Setion 5 and

Appendix A gives the referene implementation in C. Appendix B

ontains a program in C for multipermutation on a byte level [14, 15,

16℄. Appendix C gives a program to alulate the maximum bias for

linear ryptanalysis.

2 The Algorithm

2.1 The S-Boxes

1024 is a Substitution-Permutation-Network (SPN). It uses as building

bloks multipliation modulo 2

32

�1 as s-box and a modi�ed di�usion

layer from SAFER. Keys are applied before and after the s-boxes. 1024

has 32 s-boxes (multipliation modulo 2

32

� 1). Let us denote in this

subsetion addition, subtration and multipliation modulo 2

n

� 1 by

respetively +,- and �, ordinary multipliation by �, integer divison

by b� ,XOR by �, rotation by a bits to the left byna, rotation by

a bits to the right byoa and addition modulo 2

256

by �. .

Multipliation modulo 2

n

� 1 as s-box was �rst used by Daemen

et. al. [4, 5, 6℄. The studied funtion is:

f

a

(x) =

(

a� x if x < 2

n

� 1

2

n

� 1 if x = 2

n

� 1

(1)

The alulation is easy:

a � b mod(2

n

� 1) = (a � b mod(2

n

) + b

a � b

2

n

)(1 + b

1

2

n

) (2)

The �rst righthand term is obtained by taking the least signi�ant

bits of the produt, the seond term by taking the remaining bits and

shifting them to the right by n bits and add that to the �rst term.

If a arry (i.e. bit 32 is set) results from that addition the result is

inremented by 1. Note that [4℄ gives a wrong formula. It has been

orreted in hapter 11 of Joan Daemens Ph.D. thesis [6℄. Note that

the last fator of the righthandside of the equation is not distributive.

Multipliation modulo 2

n

� 1 has interesting properties. A multi-

pliation by 2 modulo 2

n

�1 is equivalent by a rotation to left by one.

Similarly 2

k

� a = an k. Further material an be found in [4℄.

3



In [5℄ multipliation fators modulo 2

32

�1 are given. In the ipher

MMB a enryption (in hex. 0x025F1CDB) and deryption (in hex.

0x0DAD4694) fators are introdued. The enryption fator by MMB

is in 1024 rotated left from 0 to 31. The left most blok is assigned

the enryption fator without rotation. The next blok is assigned

the enryption fators n 1 and so on. The last blok (right most)

is assigned the enryption fatorsn 31. That is why the number of

bloks with 32 bits is 32 (see referene implementation WIDTH).

The deryption fator from MMB is treated almost the same way.

The deryption fator from MMB is the deryption fator from 1024

in left most blok. The deryption fator is rotated to the right from

0 to 31 and assigned from left most blok to right most blok. The

left most blok is assigned the deryption fatoro 0, the right most

blok is assigned the deryption fatorso 31.

The ritial probability of the s-boxes with regard to di�erential

ryptanalysis is 2

�9

.

2.2 Di�usion Layer

The di�usion layer has as parent the di�usion layer from SAFER [8, 9℄.

However, there are four modi�ations:

1. 32 bloks instead of eight.

2. Four bytes instead of one byte as primitive unit. See [13℄.

3. Before the addition primitive units are beeing rotated.

4. One additional layer

Point two is lear. In a modern PC the CPU has a register size

of four bytes, sometimes eight bytes. Obviously this will inrease the

speed.

The Pseudo-Hadamard-Transform is de�ned as:

b

1

= 2a

1

+ a

2

(3)

b

2

= a

1

+ a

2

(4)

It an be rewritten:

b

2

= a

1

+ a

2

(5)

b

1

= a

1

+ b

2

(6)

The Pseudo-Hadamard-Transform has one disadvantage. The least

signi�ant bit of b

1

is not dependent on a

1

. Shneier et. al. [13℄ were

4



aware that b

1

is not dependent on the most signi�ant bit of a

1

. But

there is no word on the least signi�ant bit of a

1

(or at least I did

not see it). Beause b

1

= 2a

1

+ a

2

the least signi�ant bit of b

1

is a

funtion of a

2

and not of a

1

. Thus the least signi�ant bit of b

1

is

inomplete.

In [12℄ a branh number for invertible linear mappings was intro-

dued. It is de�ned as

B(�) = min

a6=0

(!

h

(a) + !

h

(�(a))) (7)

where !

h

denotes the Hamming weight of a, i.e. the number of nonzero

ompenents of a. For example a = 0x0F has the Hamming weight of 4.

� is the linear mapping. The branh number of the linear mapping � is

at least B. A linear mapping with optimal branh number B = n+ 1

an be onstruted by a maximum distane separable ode. I an

see no reason why this an not be done on a non linear transform.

Bearing that in mind, the branh number of Two�sh [13℄ is two, 2

31

in left most blok and the other bloks 0 as input. The output is 2

31

on the right most blok, 0 else. The same holds for my di�usion layer

(a branh number of 2). An input of 2

31

on the left most blok, 0

else, gets an output of the right most blok of 2

31

, the other bloks 0.

Obviously this is a poor performane.

That is why the rotation was introdued. To the b

2

a rotated value

of a

1

is added. Similarly to the b

1

a rotated value of b

2

is added. The

rotation values are pseudo-random and it is the assumption that the

branh number is higher. For more details, see the funtion pht in the

referene implementation. The funtion ipht does the opposite of the

funtion pht, i.e. the rotation is invertible.

On the original di�usion layer of SAFER rotations were intro-

dued. The result is that an odd rotation from the "left" to the

"right" and even rotation from the "right" to "left" is a multipermu-

tation [14, 15, 16℄. Note the the natural unit of the di�usion layer of

SAFER is the byte. My vintage omputer of 1997 was able to alu-

late this, but not 16 bit or 32 bit. A modern omputer ould alulate

16 bit, but not 32 bit. However, it is onjetured that the multiper-

mutation through rotation and addition is valid for 32 bit. For more

details, see appendix B.

2.3 Addition modulo 2

256

Addition modulo 2

256

was introdued to give an upper bound for linear

ryptanalysis. If we take [11℄, we an have an upper bound for linear

ryptanalysis without being fored to examine the di�usion layer or

5



XOR KEYS

S−BOXES

KEY ADDITION MODULO 2^{256}

DIFFUSION LAYER

Figure 1: The left quarter of a primary round

the s-boxes. See subsetion Key Shedule and setion Linear Crypt-

analysis for further details.

1024 has a bit length of 1024 bits. This means addition modulo

2

256

is applied four times, from left to right, sometimes after the s-

boxes, sometimes before the s-boxes. Sine there are 32 s-boxes of 32

bits the input or output of one addition modulo 2

256

is eight s-boxes.

One an argue that all the keys should be applied by addition

modulo 2

256

, so one an use less rounds. But the XOR of some keys

is there to make the ryptanalysis more diÆult by using di�erent

groups or to avoid symmetry attaks.

2.4 Primary Round

1024 onsists of eight primary rounds, a middle transform and eight

seondary rounds. The number of primary rounds und seondary

rounds must be equal. A seondary round is the inversion of a pri-

mary round, exept for the key and the enryption/deryption fators.

Figure 1 shows the left quarter of a primary round.

A primary round starts with XORing the �rst half of the round

key. Sine 1024 onsists of 32 bloks of 32 bits, a 32 bit CPU will do

that in 32 steps.

The s-boxes (multipliation modulo 2

32

�1) follow. Note that eah

of the s-boxes has its own multipliation fator. (see subsetion s-box).

As 1024 onsists of 32 bloks of 32 bits, one has 32 multipliations and

32 enryption fators, sine the s-boxes should have no symmetry.

Addition modulo 2

256

of the seond half of the round key follows.

6



S−BOXES

KEY ADDITION MODULO 2^{256}

KEY ADDITION MODULO 2^{256}

Figure 2: A left quarter of the middle transform

As 1024 has 1024 bits, there are four additions. The left most addition

onsists of the output of left most eight s-boxes and so on.

Finally the Pseudo-Hadamard-Transform (see funtion pht in the

referene implementation) is done. Note that the least signi�ant four

bytes of the addition modulo 2

256

are least signi�ant unit of the

Pseudo-Hadamard-Transform.

2.5 The Middle Transform

The middle transform is the only part of 1024 that omes with no

Pseudo-Hadamard-Transform. Instead the data output from the eighth

primary round omes as input for the middle transform. First there

is addition modulo 2

256

of the �rst half of the round key. Again the

least signi�ant four byte output by the eighth primary round is the

least signi�ant input to the left most addition modulo 2

256

. Figure 2

shows one quarter of the middle transform.

After addition modulo 2

256

is ompleted, the data (1024 bit) is

partitioned in 32 bloks of 32 bits. This data is now input to the

s-boxes (multipliation modulo 2

32

� 1). The s-boxes are the same as

in the primary rounds.

The output by the s-boxes are now input to seond addition mod-

ulo 2

256

of the seond half the round key. This is the same as in

subsetion primary round.

2.6 The Seondary Rounds

The input to the �rst seondary round is the output from the middle

transform. At �rst there is an inverse di�usion layer (see funtion ipht

in the referene implementation). Seond there is addition modulo

7



INVERSE DIFFUSION LAYER

KEY ADDITION MODULO 2^{256}

S−BOXES

XOR KEYS

Figure 3: The left quarter of a seondary round

2

256

with the �rst half of the round key. Third there are the s-boxes.

The s-boxes have the same fators as the s-boxes in the primary round

and in the middle transform. Finally there is XOR with the seond

half of the round key. Figure 3 shows the left quarter of one seondary

round.

2.7 Key Shedule

The �rst round key is the user key (see funtion key shedule in the

referene implementation). The next round key is the predeessor

rotated by 455 bits to the left and so on. Note that a round key and

the key to middle transform are applied before and after the s-boxes.

For the eight primary rounds one half of the key is applied before the

s-boxes (XOR, low bits), the other half of the key is applied after the

s-boxes (addition modulo 2

256

, high bits). For the middle transform

one half of the key is applied before the s-boxes (addition modulo 2

256

,

low bits), and one half of the key is applied after the s-boxes (addition

modulo 2

256

, high bits). For the eight seondary rounds one half of

the key is applied before the s-boxes (addition modulo 2

256

, low bits),

the other half of the key is applied after the s-boxes (XOR, high bits).

Why is the rotation 455 bits to the left? This is linear ryptanalysis

and the so alled bias or the so alled e�etiveness [10, 11℄. When we

take into aount that addition modulo 2

256

of the keys in the rounds

and the middle transform we have nine additions of round keys and

middle transform. If we take into aount [10, 11℄ we have as average

bias � = 2

�9�128

= 2

�1152

(piling up lemma not onsidered). The

8



rotation of the round keys was so determined that the maximum bias

was as low as possible. This an be done via exhausive searh and

takes on a modern PC a few seounds. The result is that a rotation to

the left of 455 bits is desired one. It has a maximum bias of � = 2

�1018

(raw data 1024, piling up lemma 7, bit position 1591). It should be

noted that a rotation to the left of 1593 bits has the same bias and

same data exept the bit position. Note that 455+1593=2048 is the

key length. However, a rotation by 1593 bit an not be used by the

referene implementation (maximum rotation is 1023). Appendix C

gives a program to alulate maximum bias.

For the deryption proess the XOR-keys simply swap their posi-

tion on the primary and seondary rounds. If we want an algorithm

to be the same for enryption and deryption we need to have the

inverse of addition modulo 2

256

. The inverse of an integer value, be it

signed or unsigned, is to invert the bits of that integer and to add 1.

When this is done, the key values swap their position on the primary

and seondary rounds and on the middle transform. For details, see

the funtion invert keys of the referene implementation.

2.8 Deryption

For enryption and deryption the same algorithm is used. For the

s-boxes the deryption fators are used. The are the inverse of the

enryption keys modulo 2

32

� 1. [5℄ gives one of them. The rest is

alulated by rotating this one key to the right from 1 : : : 31. See

the funtion deryption fators of the referene implementation for

details.

Also the keys have to be inverted. While XOR is self-inverse you

will need only to mirror them at the s-boxes of the middle transform.

Addition modulo 2

256

is slightly more diÆult: you will need the bit

omplement and add 1. Having that done you will have to mirror at

the s-boxes of the middle transform.

The funtions key shedule and invert keys of the referene imple-

mentation will give you further insight.

3 Linear Cryptanalysis

Linear ryptanalysis is a known plaintext attak and was �rst pub-

lished by Matsui [10℄. It looks for an e�etive linear expression for a

given ipher, i.e. it looks for plaintext bits P

i

, a iphertext bits C

j

and key bits K

k

so that

P

1

� P

2

� : : :� P

i

� C

1

� C

2

� : : :� C

j

= K

1

�K

2

� : : :�K

k

(8)

9



holds with probability p 6= 1=2. The magnitude � = jp� 1=2j is alled

the bias or the e�etiveness of the equation (8).

Matsui showed that the bias of the linear equation is losely related

to the number of plaintext N needed, i.e. roughly speakingN = 1=(�

2

).

In the subsetion key shedule it is shown that the highest bias is

� = 2

�1018

.Hene the number of plaintext for a suessful attak is

N = 2

2036

. Sine there are only 2

1024

di�erent plaintext available we

an onlude that 1024 is immune from linear ryptanalysis. Please

note that the � was only derived using the key addition modulo 2

256

making use of [11℄. The nonlinearity obtained by the s-boxes and the

di�usions layer was not onsidered, i.e. the limit is an upper bound.

4 Implementation

Modern Central Proessing Units (CPU) ome with several Arithmeti

Logi Units (ALU). The ALUs are the heart of the CPU. All the

integer arithmeti ist done here. A Pentium IV has four ALUs and

it is lear, that this will inrease performane, if the program ode

allows for parallel exeutions. Modern omputers have several ALUs,

and sometimes with several ores. A ore is a CPU and a multiple

ores on a omputer will inrease the performane. Again the program

ode is faster, if it allows parallel exeutions.

It is estimated that the program ode of 1024 in assembler (ma-

hine language) on a 32-bit omputer , 2.5 Gigahertz lok, one ore

and one ALU results in a performane of approx. 15 MByte/s. Al-

though the referene implementation in C of 1024 is working, one

might ask whether performane an be inreased. A C implementa-

tion is about 3 to 5 slower then in assembler. One an do the whole

implementation in assembler, but I guess the funtion that have to do

with enryption and deryption are enough (funtion rypt, modmult,

pht, ipht).

4.1 Funtion modmult

Espeially modmult is the most promising andidate for assembler

programing. In C one has to delare several unsigned long long (8

byte) to ath the high bits and shift them by 32 to the right and add,

and to ath the arry and shift it to the right by 32 bits and inrement

the result. If an integer hardware multiplier is present (most 32 bit

CPU have it) the multipliation is done in 3 loks. The Intel ompat-

ible CPUs have another point of interest. The 64 bit multipliation

result is stored in the registers EDX:EAX. So the addition is simple

ADD EAX,EDX. If in this addition a arry is set, you simply add to

10



EAX the arry with the ommand ADC EAX,0x00000000. The whole

funtion modmult in assembler is here:

MOV EBX,fator1

MOV EAX,fator2

MUL EBX

ADD EAX,EDX

ADC EAX,0x00000000

MOV modmult,EAX

All registers are 32 bit so far. You an see that the assembler

program has no onditional jumps and is not suseptible to timing

attaks.

4.2 Funtion rypt and Funtions pht/ipht

The programing of the funtion rypt in the referene inplementation

is somewhat awkward. If one an see the pertinent �gures in the arti-

le, she/he �nds out, that the programing is "vertial". For example:

if you take �gure 1 (one quarter of a primary round) and the referene

implementation one an see that �rst I have done one XOR with the

key, then one funtion modmult, then one blok key addition modulo

2

256

. I should have done it "horizontal", i.e. �rst all the key XOR,

seond all the funtions modmult and third key addition modulo 2

256

.

Note that addition modulo 2

256

will only be ompleted, if all the om-

ponents are there. Otherwise the the CPU pipeline will be stalled.

The addition modulo 2

256

has two addition ommands: �rst the usual

addition (ADD, one time) and then addition with arry (ADC, seven

times). In assembler it looks like this:

MOV EAX,data1

MOV EBX,key1

ADD EAX,EBX

MOV data1,EAX

MOV EAX,data2

MOV EBX,key2

ADC EAX,EBX

MOV data2,EAX

.

.

.

MOV EAX,data8

MOV EBX,key8

ADC EAX,EBX

11



MOV data8,EAX

The same is true for the funtions pht respetively ipht. First

the rotation and the adding are done and then the deimation-by-2-

permutation (see Cooley-Tukey-FFT).

If all of the funtion rypt and the funtions pht/ipht are to be

programed in assembler, the performane of 1024 will be greatly en-

haned. If you are not tired yet, you an unroll the loops and program

the funtions inline. This is a tedious task, but I guess it is worth it.

5 Conlusion

The blok ipher 1024 was introdued. It has a blok size of 1024

bits and a key length of 2048 bits. While 1024 is immune from linear

ryptanalysis, further work is needed to prove that 1024 is immune to

other attaks, espeially against di�erential ryptanalysis.

Referenes

[1℄ Bamford, James: The Puzzle Palae, Penguin Books, New York,

1983

[2℄ Bamford, James: Body of Serets, Doubleday, New York, 2001

[3℄ Biham, Eli and Adi Shamir: Di�erential Cryptanalysis of the

Data Enryption Standard, Springer Verlag, Berlin, 1993

[4℄ Daemen, Joan; Lu van Linden, Rene Govaerts and

Joos Vandewalle: Propagation Properties of Multiplia-

tion Modulo 2

n

� 1, Proeedings of 13th Symposium on

Information Theory in the Benelux. Werkgemeenshaft

vaar Informatie- en Communiatietheorie. available from

http://www.osi.esat.kuleuven.be/publiation/stati/1992.html,

1992

[5℄ Daemen, Joan; Rene Govaerts and Joos Vandevalle: Blok Cipher

based on Modular Arithmeti, Proeedings of the 3rd Symposium

on State and Progress of Researh in Cryptography, W. Wol-

fowiz (ed.), Fondazione Ugo Bordoni, Rome, Italy available from

http://www.osi.esat.kuleuven.be/publiation/stati/1993.html,

1993

[6℄ Daemen, Joan: Cipher and Hash Funtion Design,

Strategies based on linear and di�erential Cryptanaly-

sis, Ph.D. thesis, KU Leuven, Belgium, available from

12



http://homes.esat.kuleuven.be/~osiart/ps/JD-9500,

1995

[7℄ Kozazuk, Wladyslaw: Geheimoperation Wiher, Bernard &

Graefe Verlag, Koblenz, 1989.

[8℄ Massey, James: SAFER K-64: A Byte-Oriented Blok-Cipher

Algorithm, in Anderson Ross (Ed.): Fast Software Enryption,

Springer Verlag, Berlin, 1994

[9℄ Massey, James: SAFER K-64: One year later in Preneel, Bart

(Ed.): Fast Software Enryption, Springer Verlag, Berlin, 1995

[10℄ Matsui, Mitsuru: Linear Cryptanalysis Method for DES Cipher,

in Tor Helleseth (Ed.): Advanes in Cryptology - EUROCRYPT

'93, Springer Verlag, Berlin, 1993

[11℄ Mukhopadhyay, Debdeep and Dipanwita RoyChowdhury: Key

Mixing in Blok Cipher through Addition modulo 2

n

, available

from http.//eprint.iar.org/2005/383.pdf

[12℄ Rijmen, Vinent; Joan Daemen et. al.: The ipher SHARK, in

Gollmann, Dieter (Ed.): Fast Software Enryption, Springer Ver-

lag, Berlin, 1996

[13℄ Shneier, Brue; John Kelsey, Doug Whiting, David Wagner,

Chris Hall and Niels Ferguson: Two�sh: A 128-Bit Blok Cipher,

1998, available from http://www.shneier.om/twofish.html

[14℄ Vaudenay, Serge: On the Need for Multipermutation: Cryptanal-

ysis of MD4 and SAFER, in Preneel, Bart (Ed.): Fast Software

Enryption, Springer Verlag, Berlin, 1995

[15℄ Vaudenay, Serge and Jaques Stern: CS-Cipher, in Vaudenay,

Serge (Ed.): Fast Software Enryption, Springer Verlag, Berlin,

1998

[16℄ Vaudenay, Serge: On the Seurity of CS-Cipher, in Knudsen, Lars

(Ed.): Fast Software Enryption, Springer Verlag, Berlin,1999

A Referene Implementation

#inlude<stdio.h>

#define NUM_ROUNDS 8

#define INT_LENGTH 32

#define ROL(x,a) (((x)<<(a))|((x)>>(INT_LENGTH-(a))))

#define ROR(x,a) (((x)<<(INT_LENGTH-(a))|((x)>>(a))))

#define WIDTH 32

13



#define ROTROUND 455

void enryption_fators(unsigned long e_fators[WIDTH℄){

unsigned long i;

e_fators[0℄=0x025F1CDB;

for(i=1;i<WIDTH;i++){

e_fators[i℄=ROL(e_fators[0℄,i);

}

}

void deryption_fators(unsigned long d_fators[WIDTH℄){

unsigned long i;

d_fators[0℄=229459604;

for(i=1;i<WIDTH;i++){

d_fators[i℄=ROR(d_fators[0℄,i);

}

}

unsigned long modmult(unsigned long fator1,unsigned long fator2){

unsigned long long f1,f2,ergebnis,k;

f1=(unsigned long long) fator1;

f2=(unsigned long long) fator2;

ergebnis=f1*f2;

k=(ergebnis>>INT_LENGTH);

ergebnis&=0xFFFFFFFF;

ergebnis+=k;

ergebnis+=(ergebnis>>INT_LENGTH) & 1;

return(ergebnis & 0xFFFFFFFF);

}

void invert_keys(unsigned long keys[4*NUM_ROUNDS+2℄[WIDTH℄){

unsigned long i,j,help;

unsigned long long h1,h2,arry1,arry2;

for(i=0;i<NUM_ROUNDS;i++){

for(j=0;j<WIDTH;j++){

help=keys[2*i℄[j℄;

keys[2*i℄[j℄=keys[4*NUM_ROUNDS-2*i+1℄[j℄;

keys[4*NUM_ROUNDS-2*i+1℄[j℄=help;

}

14



}

for(i=0;i<(NUM_ROUNDS+1);i++){

arry1=1;

arry2=1;

for(j=0;j<WIDTH;j++){

h2=(unsigned long long) keys[4*NUM_ROUNDS-2*i℄[j℄;

h1=(unsigned long long) keys[2*i+1℄[j℄;

h1^=0xFFFFFFFF;

h2^=0xFFFFFFFF;

h1+=arry1;

h2+=arry2;

arry2=(h2>>INT_LENGTH) & 1;

arry1=(h1>>INT_LENGTH) & 1;

if((j & 7)==7){

arry1=1;

arry2=1;

}

keys[4*NUM_ROUNDS-2*i℄[j℄=h1 & 0xFFFFFFFF;

keys[2*i+1℄[j℄=h2 & 0xFFFFFFFF;

}

}

}

void key_shedule(unsigned long user_key[2℄[WIDTH℄,\

unsigned long key[4*NUM_ROUNDS+2℄[WIDTH℄){

unsigned long i,j;

for(i=0;i<2;i++){

for(j=0;j<WIDTH;j++){

key[i℄[j℄=user_key[i℄[j℄;

}

}

for(i=0;i<(2*NUM_ROUNDS);i++){

for(j=0;j<WIDTH;j++) {

key[2*i+3℄[j℄=(key[2*i+(j+((WIDTH*INT_LENGTH-ROTROUND)\

/INT_LENGTH))/WIDTH℄\

[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\

%WIDTH℄<<(ROTROUND%INT_LENGTH))|\

(key[2*i+(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)/WIDTH℄\

[(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)%WIDTH℄>>\

(INT_LENGTH-ROTROUND%INT_LENGTH));

key[2*i+2℄[j℄=(key[2*i+1-(j+((WIDTH*INT_LENGTH-ROTROUND)\

15



/INT_LENGTH))/WIDTH℄\

[(j+((WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH))\

%WIDTH℄<<(ROTROUND%INT_LENGTH))\

|(key[2*i+1-(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)/WIDTH℄\

[(j+(WIDTH*INT_LENGTH-ROTROUND)/INT_LENGTH+1)%WIDTH℄>>\

(INT_LENGTH-ROTROUND%INT_LENGTH));

}

}

}

void pht(unsigned long a[WIDTH℄){

unsigned long i,b[WIDTH℄;

a[1℄+=ROL(a[0℄,1);

a[0℄+=ROL(a[1℄,2);

a[3℄+=ROL(a[2℄,7);

a[2℄+=ROL(a[3℄,16);

a[5℄+=ROL(a[4℄,13),

a[4℄+=ROL(a[5℄,30);

a[7℄+=ROL(a[6℄,19);

a[6℄+=ROL(a[7℄,12);

a[9℄+=ROL(a[8℄,25);

a[8℄+=ROL(a[9℄,26);

a[11℄+=ROL(a[10℄,31);

a[10℄+=ROL(a[11℄,8);

a[13℄+=ROL(a[12℄,5);

a[12℄+=ROL(a[13℄,22);

a[15℄+=ROL(a[14℄,11);

a[14℄+=ROL(a[15℄,4);

a[17℄+=ROL(a[16℄,17);

a[16℄+=ROL(a[17℄,18),

a[19℄+=ROL(a[18℄,23);

a[18℄+=a[19℄;

a[21℄+=ROL(a[20℄,29);

a[20℄+=ROL(a[21℄,14);

a[23℄+=ROL(a[22℄,3);

a[22℄+=ROL(a[23℄,28);

a[25℄+=ROL(a[24℄,9);

a[24℄+=ROL(a[25℄,10);

a[27℄+=ROL(a[26℄,15);

a[26℄+=ROL(a[27℄,24);

a[29℄+=ROL(a[28℄,21);

a[28℄+=ROL(a[29℄,6);

16



a[31℄+=ROL(a[30℄,27);

a[30℄+=ROL(a[31℄,20);

for(i=0;i<(WIDTH/2);i++){

b[i℄=a[2*i℄;

b[i+(WIDTH/2)℄=a[2*i+1℄;

}

b[1℄+=ROL(b[0℄,1);

b[0℄+=ROL(b[1℄,2);

b[3℄+=ROL(b[2℄,11);

b[2℄+=ROL(b[3℄,20);

b[5℄+=ROL(b[4℄,21);

b[4℄+=ROL(b[5℄,6);

b[7℄+=ROL(b[6℄,31);

b[6℄+=ROL(b[7℄,24);

b[9℄+=ROL(b[8℄,9);

b[8℄+=ROL(b[9℄,10);

b[11℄+=ROL(b[10℄,19);

b[10℄+=ROL(b[11℄,28);

b[13℄+=ROL(b[12℄,29);

b[12℄+=ROL(b[13℄,14);

b[15℄+=ROL(b[14℄,7);

b[14℄+=b[15℄;

b[17℄+=ROL(b[16℄,17);

b[16℄+=ROL(b[17℄,18);

b[19℄+=ROL(b[18℄,27);

b[18℄+=ROL(b[19℄,4);

b[21℄+=ROL(b[20℄,5);

b[20℄+=ROL(b[21℄,22);

b[23℄+=ROL(b[22℄,15);

b[22℄+=ROL(b[23℄,8);

b[25℄+=ROL(b[24℄,25);

b[24℄+=ROL(b[25℄,26);

b[27℄+=ROL(b[26℄,3);

b[26℄+=ROL(b[27℄,12);

b[29℄+=ROL(b[28℄,13);

b[28℄+=ROL(b[29℄,30);

b[31℄+=ROL(b[30℄,23);

b[30℄+=ROL(b[31℄,16);

for(i=0;i<(WIDTH/2);i++){

a[i℄=b[2*i℄;

a[i+(WIDTH/2)℄=b[2*i+1℄;

}

17



a[1℄+=ROL(a[0℄,1);

a[0℄+=ROL(a[1℄,2);

a[3℄+=ROL(a[2℄,15);

a[2℄+=ROL(a[3℄,24);

a[5℄+=ROL(a[4℄,29);

a[4℄+=ROL(a[5℄,14);

a[7℄+=ROL(a[6℄,11);

a[6℄+=ROL(a[7℄,4);

a[9℄+=ROL(a[8℄,25);

a[8℄+=ROL(a[9℄,26);

a[11℄+=ROL(a[10℄,7);

a[10℄+=ROL(a[11℄,16);

a[13℄+=ROL(a[12℄,21);

a[12℄+=ROL(a[13℄,6);

a[15℄+=ROL(a[14℄,3);

a[14℄+=ROL(a[15℄,28);

a[17℄+=ROL(a[16℄,17);

a[16℄+=ROL(a[17℄,18);

a[19℄+=ROL(a[18℄,31);

a[18℄+=ROL(a[19℄,8);

a[21℄+=ROL(a[20℄,13);

a[20℄+=ROL(a[21℄,30);

a[23℄+=ROL(a[22℄,27);

a[22℄+=ROL(a[23℄,20);

a[25℄+=ROL(a[24℄,9);

a[24℄+=ROL(a[25℄,10),

a[27℄+=ROL(a[26℄,23);

a[26℄+=a[27℄;

a[29℄+=ROL(a[28℄,5);

a[28℄+=ROL(a[29℄,22);

a[31℄+=ROL(a[30℄,19);

a[30℄+=ROL(a[31℄,12);

for(i=0;i<(WIDTH/2);i++){

b[i℄=a[2*i℄;

b[i+(WIDTH/2)℄=a[2*i+1℄;

}

b[1℄+=ROL(b[0℄,1);

b[0℄+=ROL(b[1℄,2);

b[3℄+=ROL(b[2℄,19);

b[2℄+=ROL(b[3℄,12);

b[5℄+=ROL(b[4℄,5);

b[4℄+=ROL(b[5℄,22);

b[7℄+=ROL(b[6℄,23);

18



b[6℄+=b[7℄;

b[9℄+=ROL(b[8℄,9);

b[8℄+=ROL(b[9℄,10);

b[11℄+=ROL(b[10℄,27);

b[10℄+=ROL(b[11℄,20);

b[13℄+=ROL(b[12℄,13);

b[12℄+=ROL(b[13℄,30);

b[15℄+=ROL(b[14℄,31);

b[14℄+=ROL(b[15℄,8);

b[17℄+=ROL(b[16℄,17);

b[16℄+=ROL(b[17℄,18);

b[19℄+=ROL(b[18℄,3);

b[18℄+=ROL(b[19℄,28);

b[21℄+=ROL(b[20℄,21);

b[20℄+=ROL(b[21℄,6);

b[23℄+=ROL(b[22℄,7);

b[22℄+=ROL(b[23℄,16);

b[25℄+=ROL(b[24℄,25);

b[24℄+=ROL(b[25℄,26);

b[27℄+=ROL(b[26℄,11);

b[26℄+=ROL(b[27℄,4);

b[29℄+=ROL(b[28℄,29);

b[28℄+=ROL(b[29℄,14);

b[31℄+=ROL(b[30℄,15);

b[30℄+=ROL(b[31℄,24);

for(i=0;i<(WIDTH/2);i++){

a[i℄=b[2*i℄;

a[i+(WIDTH/2)℄=b[2*i+1℄;

}

a[1℄+=ROL(a[0℄,1);

a[0℄+=ROL(a[1℄,2);

a[3℄+=ROL(a[2℄,23);

a[2℄+=ROL(a[3℄,28);

a[5℄+=ROL(a[4℄,13);

a[4℄+=ROL(a[5℄,22);

a[7℄+=ROL(a[6℄,3);

a[6℄+=ROL(a[7℄,16);

a[9℄+=ROL(a[8℄,25);

a[8℄+=ROL(a[9℄,10);

a[11℄+=ROL(a[10℄,15);

a[10℄+=ROL(a[11℄,4);

a[13℄+=ROL(a[12℄,5);

a[12℄+=ROL(a[13℄,30);

19



a[15℄+=ROL(a[14℄,27);

a[14℄+=ROL(a[15℄,24);

a[17℄+=ROL(a[16℄,17);

a[16℄+=ROL(a[17℄,18);

a[19℄+=ROL(a[18℄,7);

a[18℄+=ROL(a[19℄,12);

a[21℄+=ROL(a[20℄,29);

a[20℄+=ROL(a[21℄,6);

a[23℄+=ROL(a[22℄,19);

a[22℄+=a[23℄;

a[25℄+=ROL(a[24℄,9);

a[24℄+=ROL(a[25℄,26),

a[27℄+=ROL(a[26℄,31);

a[26℄+=ROL(a[27℄,20);

a[29℄+=ROL(a[28℄,21);

a[28℄+=ROL(a[29℄,14);

a[31℄+=ROL(a[30℄,11);

a[30℄+=ROL(a[31℄,8);

for(i=0;i<(WIDTH/2);i++){

b[i℄=a[2*i℄;

b[i+(WIDTH/2)℄=a[2*i+1℄;

}

b[1℄+=ROL(b[0℄,1);

b[0℄+=ROL(b[1℄,2);

b[3℄+=ROL(b[2℄,27);

b[2℄+=ROL(b[3℄,8);

b[5℄+=ROL(b[4℄,21);

b[4℄+=ROL(b[5℄,14);

b[7℄+=ROL(b[6℄,15);

b[6℄+=ROL(b[7℄,20);

b[9℄+=ROL(b[8℄,9);

b[8℄+=ROL(b[9℄,26);

b[11℄+=ROL(b[10℄,3);

b[10℄+=b[11℄;

b[13℄+=ROL(b[12℄,29);

b[12℄+=ROL(b[13℄,6);


