
Cryptanalysis of Stream Cipher Grain Family ?

Haina Zhang1, and Xiaoyun Wang1,2

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan 250100, China

hnzhang.cn@gmail.com
2 Center for Advanced Study, Tsinghua University, Beijing 100084, China

xiaoyunwang@mail.tsinghua.edu.cn

Abstract. Grain v1 is one of the 7 final candidates of ECRYPT eStream
project, which involves in the 80-bit secret key. Grain-128 is a variant
version with 128-bit secret key, and Grain v0 is the original version in the
first evaluation phase. Firstly, we describe a distinguishing attack against
the Grain family with weak Key-IVs. Utilizing the second Walsh spec-
tra of the nonlinear functions, we show that there are 264/264/296 weak
Key-IVs among total 2144/2144/2224 Key-IVs, and to distinguish a weak
Key-IV needs about 212.6/244.2/286 keystream bits and 215.8/247.5/ 2104.2

operations for Grain v0, Grain v1 and Grain-128 respectively. Secondly,
we apply algebraic attacks to the Grain family with a weak Key-IV, and
can recover the secret key in about 2 seconds and 150 keystream bits for
Grain v0 and Grain v1, and reveal the key of Grain-128 with about 100
keystream bits and 293.8 operations. Furthermore, we discuss the period
of the keystream with a weak Key-IV for any Grain-like structure which
can lead in self-sliding attack.

Key Words: ECRYPT, eStream, stream cipher, Grain, Walsh spectra,
algebraic attack.

1 Introduction

In the past ten years, many cryptographers focus on the development of stream
ciphers because of two arresting projects which call for stream cipher primitives.
The first one is the NESSIE [14] project launched in 1999, and no available
stream cipher candidate to be selected as the final winner among 8 proposals. In
2004, the European Network of Excellence in Cryptology (ECRYPT) started a
new call for stream cipher proposals named eStream project [5], there are total 34
candidates were submitted in the first evaluation phase. After three evaluation
phases, there are 7 candidates left, and turned into the portfolio at September
9 in 2008. Grain v1 [8] is one of the 7 final algorithms, and Grain-128 [8] is a
variant version with 128-bit secret key, and Grain v0 [9] is its original proposal
in the first phase.
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Grain family is oriented to hardware applications, maintains a very low hard-
ware cost. The design is based on two shift registers, one is a linear feedback
shift register (LFSR), and the other is a nonlinear feedback shift register (NFSR).
The LFSR guarantees a minimum period for the keystream. The NFSR, together
with a nonlinear filter provides the nonlinearity to the cipher. Both for Grain v0
and Grain v1, the secret key is 80 bits, and the IV is specified to be 64 bits. For
Grain-128, the key and IV are selected as 128 and 96 bits respectively.

In 2005, Khazaei, Hassanzadeh and Kiaei presented a distinguishing attack
on Grain v0 [11]. At FSE 2006, Berbain, Gilbert and Maximov showed two
key recovery attacks against Grain v0 [3]. The proposed key recovery attacks
exploit 16 linear approximations of the filter function. The first one requires 255

operations, 249 bits memory and 251 keystream bits, and the second requires 243

operations, 242 bits memory and 238 keystream bits. In response to the attacks,
the designers improved the algorithm, and submitted the new version Grain v1
and its 128-bit key variant Grain-128 to the second evaluation phase.

Based on the slide resynchronization attack, ö. Küçük presented a related
key attack on Grain v1. Then two research groups extended the attack in [10]
and proposed related-key chosen IV attacks on Grain-v1 and Grain-128 [4, 12].
All the attacks on Grain-v1 and Grain-128 are related-key settings. The alge-
braic attacks on two algorithms were proposed in [1], however the total time
complexity exceeds the exhaustive attack.

In this paper, we describe a distinguishing and key recovery attack against
the weak Key-IVs of Grain family. Utilizing the second Walsh spectra of the
nonlinear functions, we present that there are 264, 264 and 296 weak Key-Ivs
for Grain v0, Grain v1 and Grain-128 respectively. For Grain v0, to distinguish
the weak Key-IVs only need 212.6 keystream bits, the time complexity is about
215.8. For Grain v1, the distinguishing attack needs 244.2 keystream bits, and
the time complexity is about 247.5. For Grain-128, 286 keystream bits and 2104.2

operations are required. Secondly, we apply algebraic attacks against the weak
Key-Ivs of the Grain family, and show that the weak Key-IVs of Grain v0 and
Grain v1 can be broken in about 2 second with about 150 keystream bits. To
break the weak Key-IVs of Grain-128, 100 keystream bits and 293.8 operations
are required. Furthermore, we discuss the periods of the weak Key-IVs which
lead to generalized distinguishing attacks against the Grain-like structure.

This paper is organized as follows. We first describe three algorithms in
the Grain family in Section 2. We discuss the existence of the weak Key-IVs in
Section 3, and propose a distinguishing attack against the weak Key-IVs of Grain
family respectively in Section 4. Section 5 presents the key recovery of the weak
Key-IVs by algebraic attacks. In Section 6, we further discuss the distinguishing
attacks with the periods of the NFSRs. Finally, we conclude the paper in Section
7.
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2 A Brief Description of Grain Family

Grain is based upon three main building blocks: a k-bit linear feedback shift reg-
ister (LFSR), a k-bit nonlinear feedback shift register (NFSR), and a nonlinear
filtering function, where k = 80, or 128. Grain is initialized with the k-bit key
K and the l-bit initialization value IV . The cipher output is an L-bit keystream
sequence (zt)t=0,··· ,L−1. The structure is illustrated in Fig.1. The content of the
LFSR is denoted by si, si+1, · · · , si+k−1 and the content of the NSFR is denoted
by bi, bi+1, · · · , bi+k−1.

NFSR LFSR

h(x)

g(x) f(x)

keystream bit

Fig. 1. The cipher body of Grain

2.1 The Functions of Grain Family

The Functions of Grain v0: For Grain v0, k = 80, l = 64. The feedback
polynomial f0(x) of the LFSR is a primitive polynomial of degree 80. It is defined
as

f0(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80.

i.e.,
st+80 = st+62 + st+51 + st+38 + st+23 + st+13 + st.

The feedback polynomial g0(x) of the NFSR is defined as

g0(x) = 1 + x17 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x65 + x71 + x80 +
x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71 +
x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71 +
x28x35x43x47x52x59.
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The NFSR feedback is disturbed by the output of the LFSR, so that the
NFSR is governed by the recurrence:

bt+80 = st + bt+63 + bt+60 + bt+52 + bt+45 + bt+37 + bt+33 + bt+28 + bt+21 + bt+15

+bt+9 + bt + bt+63bt+60 + bt+37bt+33 + bt+15bt+9 + bt+60bt+52bt+45

+bt+33bt+28bt+21 + bt+63bt+45bt+28bt+9 + bt+60bt+52bt+37bt+33

+bt+63bt+60bt+21bt+15 + bt+63bt+60bt+52bt+45bt+37

+bt+33bt+28bt+21bt+15bt+9 + bt+52bt+45bt+37bt+33bt+28bt+21.

The contents of the two shift registers compose of the cipher state. The cipher
output bit z0

t is derived from the current LFSR and NFSR states by a filter
function h0(x0, · · · , x4) as follows,

z0
t = bt + h0(st+3, st+25, st+46, st+64, bt+63),

where the filter boolean function h0(x0, · · · , x4) is defined as

h0(x0, · · · , x4) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4

+x1x2x4 + x2x3x4.

The Functions of Grain v1: For Grain v1, k = 80, l = 64. The LFSR
feedback polynomial f1(x) is the same as f0(x). The NFSR feedback polynomial
g1(x) is defined as

g1(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66 + x71 + x80 +
+x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71 +
+x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71 +
+x28x35x43x47x52x59.

The filter function h1(x0, · · · , x4) is also the same as h0(x0, · · · , x4), but the
cipher output bit z1

t is derived as

z1
t =

∑

i∈A1

bt+i + h1(st+3, st+25, st+46, st+64, bt+63),

where A1 = {1, 2, 4, 10, 31, 43, 56}.

The Functions of Grain-128: For Grain-128, k = 128, l = 96. The LFSR
feedback polynomial f128(x) is a primitive polynomial of degree 128, defined as

f128(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

The NFSR feedback polynomial g128(x) is as follows,

g128(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125

+x63x67 + x69x101 + x80x88 + x110x111 + x115x117.
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The filter function h128(x0, · · · , x8) is given as

h128(x0, · · · , x8) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8.

The cipher output bit z128
t is derived as

z128
t =

∑

i∈A128

bt+i + st+93

+h128(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+95).

where A128 = {2, 15, 36, 45, 64, 73, 89}.

2.2 Key Initialization

Before the generation of the cipher keystream, the cipher is initialized with the
secret key and a selected IV. Let Ki be the i-th bit of the key K, 0 ≤ i ≤ k− 1.
IVi is the i-th bit of the IV, 0 ≤ i ≤ l−1. The initialization of the key is done as
follows. First load the NFSR with the key bits, bi = Ki, 0 ≤ i ≤ k−1, then load
the first l bits of the LFSR with the IV, si = IVi, 0 ≤ i ≤ l − 1. The remaining
bits of the LFSR are filled with ones, i.e., si = 1, l ≤ i ≤ k − 1. Then the
cipher is clocked 2k times without producing any running key. It is noted that,
during the key initialization, the output of the filter function is fed back both
to the LFSR and the NFSR, see Fig.2. In the next section, we show that the
feedback operation will produce some weak key and IV pairs which are called
weak Key-IVs.

NFSR LFSR

f(x)

h(x)

g(x)

Fig. 2. The key initialization of Grain

3 The Existence of the Weak Key-IVs

Grain family uses a linear feedback shift register not only to ensure good statical
properties, but also to guarantee a lower bound for the period of the keystream.
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To introduce nonlinearity, a nonlinear feedback shift register is used together
with a nonlinear filter, and the nonlinear filter takes inputs from both shift
registers. However, if the initial states of the LFSR are all zeros after the initial-
ization process, NFSR is the only active block of the cipher body. As well known,
keystream sequences generated by a single NFSR are vulnerable to distinguish-
ing attacks, such as short period, and linear approximation etc. Consequently, if
the key and IV pair results in the all zero LFSR state, we define the key and IV
pair as a weak Key-IV. In fact, in order to avoid weak Key-IVs, the designers
set k − l bits as ones which are loaded to the LFSR before key initialization.
Unfortunately, our cryptanalysis reveals that, after 2k clocks, the state of the
LFSR has the possibility to be zero state.

Now we take Grain v1 as an example to reveal the existence of the weak
Key-IVs. Denote the internal state of the NFSR as Bt = (bt, bt+1, · · · , bt+79),
and the internal state of the LFSR as St = (st, st+1, · · · , st+79). Let G and F
be the state transform functions as Bt+1 = G (Bt) and St+1 = F (St). Then the
key initialization can be regarded as the process that B0 and S0 transfer into
B160 and S160. For a weak Key-IV, the state S160 is the zero state (0, 0, · · · , 0).
Then our following purpose is to obtain an available (B0, S0) from known B160

and S160 in reverse. According to the structure of Grain v1, we present a simple
algorithm to compute the weak Key-IVs.

Algorithm 1.

1. Set S160 be the zero state (0, 0, · · · , 0), and select B160 randomly.
2. From t = 159 to t = 0 do

(a) Compute z1
t =

∑
i∈A1

bt+i + h1(st+3, st+25, st+46, st+64, bt+63).
(b) Compute st = z1

t + st+80 + st+62 + st+51 + st+38 + st+23 + st+13.
(c) Compute bt = z1

t + b80+t + st + P (Bt), where P (Bt) is a expression of
79 variables bt+1, bt+2, · · · , bt+79.

3. For j = 64, · · · , 79, if sj = 1 always holds, terminate; else, go to step 1.

After executing the above algorithm 220 times, we obtain 16 weak Key-IVs.
Similarly, we can find the weak Key-IVs of Grain v0 and Grain-128. Some ex-
amples are illustrated in Table 1. The most significant bits correspond to the
first bits K0 and IV0 in the weak Key-IV respectively.

Because of the feedback operation of filter function to LFSR and NFSR, the
internal state with 2k bits of the NFSR and LFSR is uniformly distributed after
the key initialization. Thus there are 2l weak Key-IVs among total 2k+l Key-IVs
for any Grain version.

4 Distinguishing the Weak Key-IVs

In order to detect a weak Key-IV, we apply the second Walsh spectra to the
NFSR, and obtain its best linear approximation.
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Table 1. Weak Key-IVs of Grain Family.

Version Grain v0 Grain v1

Key 0x6f22a2a70e1c363b62af 0xf57e358ecae6b3dc683d

IV 0x44b604a4d4479eb4 0x97652a7f1a112415

B160 0xc2ced7db3189a9ad94b8 0xd99ea5abb8d0129212c7

S160 0x00000000000000000000 0x00000000000000000000

Version Grain-128

Key 0xfd6af0ff0ad9bdad7037b91ef1b9cc13

IV 0x014d3e274f8d3528ddad4310

B160 0xc1bc1c087a79b533f9018d230df2e744

S160 0x00000000000000000000000000000000

Suppose that x = (x0, · · · , xn−1), ω = (ω0, · · · , ωn−1) ∈ GF (2)n. The dot
production of x and ω is defined as

x ◦ ω = x0ω0 + · · ·+ xn−1ωn−1 ∈ GF (2).

Given any value w, it is easy to compute the second Walsh spectra of boolean
function f(x) as follows:

S(f)(ω) =
1
2n

2n−1∑
x=0

(−1)f(x)(−1)x◦ω.

It is well known that the linear approximation of function f(x) can be charac-
terized by Lemma 1.

Lemma 1. Given x = (x0, · · · , xn−1), ω = (ω0, · · · , ωn−1) ∈ GF(2)n, and f(x)
is a boolean function, there are

Prob(f(x) = ω ◦ x) =
1 + S(f)(ω)

2
,

Prob(f(x) 6= ω ◦ x) =
1− S(f)(ω)

2
.

By searching all the values w, we can get the best linear approximation for
the boolean function f(x).

4.1 Distinguishing the Weak Key-IVs of Grain v0

It is obvious that for the Grain v0 with a weak Key-IV, the NFSR runs only by
itself. So we can utilize the second Walsh spectra to obtain the best linear approx-
imation of function g0(x). Firstly, we transform g0(x) into multi-variable form as
G0(y0, · · · , y10), where (y0, · · · , y10) = (x80, x71, x65, x59, x52, x47, x43, x35, x28,
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x20, x17). Then we can obtain the maximum second Walsh spectra value of G0

is
S(G0)(u) = max

ω∈GF(2)11
S(G0)(ω) =

328
211

,

here u = (1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1). Consequently, the NFSR can be approxi-
mated by the following linear recursion:

bt+80 = bt+63 + bt+52 + bt+45 + bt+37 + bt+28 + bt+21 + bt+15 + bt+9 + bt, (1)

and by Lemma 1, the probability that the recursion holds is

p0 =
1 + S(G0)(u)

2
=

1
2

+
164
211

. (2)

For the Grain v0 with a weak Key-IV, the internal states of LFSR are all
zeroes. Consequently, the equations st+3=st+25=st+46 =st+64 = 0 always hold.
Then the filter function h0 is simplified as

h0(st+3, st+25, st+46, st+64, bt+63) = bt+63.

Therefore, the keystream sequence satisfies the following equation:

z0
t = bt + bt+63. (3)

Provided that the equation (1) holds at both the clock t and clock t + 63,
then, ∑

i∈B0

z0
t+i =

∑

i∈B0

bt+i +
∑

i∈B0

bt+63+i, (4)

where B0 = {0, 9, 15, 21, 28, 37, 45, 52, 63, 80}.
Because the equation (1) holds with a probability bias 41

29 , the following
equation also holds with a probability bias.

∑

i∈B0

bt+i +
∑

i∈B0

bt+63+i = 0, (5)

where B0 = {0, 9, 15, 21, 28, 37, 45, 52, 63, 80}.
By Piling-up Lemma and the probability (2), the equation (5) holds with

probability
1
2

+ 2× 164
211

× 164
211

=
1
2

+ 2−6.3.

So, if the keystream sequence is generated by Grain v0 with a weak Key-
IV, the equation (5) with it’s probability bias 2−6.3 consists of a distinguisher.
Thus, to distinguish the Grian v0 with a weak Key-IV only need 26.3×2 = 212.6

keystream bits, and the time complexity is about 212.6 × 10 ≈ 215.8 XOR oper-
ations. For Grain v0, k = 80 and l = 64, so there are 264 weak Key-IVs among
2144 Key-IVs.
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4.2 Distinguishing the Weak Key-IVs of Grain v1

Similarly, we can distinguish a weak Key-IV of the Grain v1 as above. Firstly,
transform g1(x) into multivarible form as G1(y0, · · · , y12), where (y0, · · · , y12) =
(x80, x71, x66, x59, x52, x47, x43, x35, x28, x20, x18, x17, x65), the maximum second
Walsh spectra value of G1 is

S(G1)(u) = max
ω∈GF(2)13

S(G1)(ω) =
1312
213

,

here u = (1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0). The NFSR can be approximated by the
following linear recursion:

bt+80 = bt+62 + bt+60 + bt+52 + bt+45 + bt+37 + bt+28 + bt+21 + bt+14 + bt, (6)

and from Lemma 1, the probability that the recursion holds is

p1 =
1 + S(G1)(u)

2
=

1
2

+
656
213

. (7)

For a weak Key-IV of Grain v1, the keystream sequence is computed as

z1
t =

∑

i∈B1

bt+i, (8)

where B1 = {1, 2, 4, 10, 31, 43, 56, 63}. From (6) and (8), a distinguisher can be
established as follows:

∑

i∈B2

z1
t+i =

∑

i∈B2

∑

j∈B1

bt+i+j = 0, (9)

where B2 = {0, 14, 21, 28, 37, 45, 52, 60, 62, 80}.
According to Piling-up Lemma and the probability (7), the equation (9) will

holds with probability

1
2

+ 27 × (
656
213

)8 =
1
2

+ 2−22.1.

Thus, to detect a weak Key-IV of Grain v1 needs about 244.2 keystream bits,
and the time complexity is about 247.5 XOR operations. For Grain v1, k = 80
and l = 64, the number of weak Key-IVs is about 264 among 2144 Key-IVs.

4.3 Distinguishing the Weak Key-IVs of Grain-128

For Grain-128, the nonlinear terms of g128(x) implies a Bent Boolean function
gN
128(y0, · · · , y13). Therefore, given any ω ∈ GF(2)14, the second Walsh spectra

value S(gN
128)

(ω) will always be ± 128
214 . i.e., the Hamming distance between gN

128

and its any linear approximation function LgN
128 is all the same. The NFSR can

be approximated by the following linear recursion:

bt+128 = bt+96 + bt+91 + bt+56 + bt+26 + bt + LgN
128(bt+84, bt+68, bt+67, bt+3,

bt+65, bt+61, bt+59, bt+27, bt+28, bt+20, bt+18, bt+17, bt+13, bt+11),
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here LgN
128(bt+84, bt+68, ......, bt+11) is any linear expression of 14 variables (bt+84,

bt+68, bt+67, bt+3, bt+65, bt+61, bt+59, bt+27, bt+28, bt+20, bt+18, bt+17, bt+13,
bt+11). If a keystream sequence is generated by Grain-128 with a weak Key-IV,
the output keystream z128

t can be represented as

z128
t =

∑

i∈A128

bt+i. (10)

Furthermore, a distinguisher can be constructed as follows:
∑

i∈B128

z128
t+i =

∑

i∈B128

∑

j∈A128

bt+i+j = 0, (11)

where B128 = {0, 26, 56, 91, 96, 128}∪C128, C128 is an any subset of {3, 11, 13, 17, 18,
20, 27, 28, 59, 61, 65, 67, 68, 84}.

It is easy to know that the equation (11) will holds with probability

1
2
± 26 × (

64
214

)7 =
1
2
± 2−50.

Because the number of the subset C128 is 214, to distinguish a weak Key-IV of
Grain-128, 250×2−14 = 286 keystream bits are required, and the time complexity
is about 2104.2 XOR operations. For Grain-128 with k = 128 and l = 96, the
number of weak key-IVs is about 296 among total 2224 Key-IVs.

5 Recovering the NFSR Initial State of the Weak Key-IV

A weak Key-IV can be distinguished means that the LFSR initial state of the
weak Key-IV is the zero state. Consequently, the next task is to recover the
NFSR initial state.

For Grain v0, we firstly recall the recovering technique in [3]. To recover
all the bits of the NFSR initial state after the LFSR initial state is recovered,
they introduced a technique which consists of building chains of keystream bits.
The knowledge of the LFSR removes the nonlinearity of the output, and each
keystream bit z0

t can be expressed by one of the following four equations de-
pending on the initial state of the LFSR:

z0
t = bt,

z0
t = bt + 1,

z0
t = bt + bt+63,

z0
t = bt + bt+63 + 1.

The equation involving only one bit allows them to instantly recover the value
of the corresponding bit of the initial state. This is the core the technique works
efficiently. However, if the LFSR initial state is all zeroes, only the equation
z0
t = bt + bt+63 holds. There are two bits involved in the equation, then the
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technique can not be applied to the Key-IVs. This implies that there are 264

Key-IVs can not be recovered successfully by the technique in [3]. The resolvent
is to apply the algebraic attack as follows.

Solving system of multivariate polynomial equations is NP-complete even if
all the equations are quadratic. Only a limited number of distinct methods ex-
ist for solving system of polynomial equations over a finite field and they can
be grouped as follows: Gröbner bases method, XL method, Zhuang-Zi method.
The first one is the most important method of the three. It was introduced by
Buchberger in the 1970s and it has been refined since then [2]. F4 and F5 algo-
rithm [6, 7], proposed by Faugère, are the fastest implementations of algorithm
for finding Gröbner bases so far.

The internal state of Grain v1 is of 160 bits, with 80 bits each of LFSR
and NFSR. Some internal states, at each clock, are updated with nonlinear
expressions. And succeeding equations which involve these state bits have even
more higher degree. We can know that after almost 80 equations, the degree
of the equations become as high as 160, which is the maximum possible degree
here. Solving such high degree equations for all 160 variables is beyond the
available resources. In [1], a number of experiments are performed to find out
the maximum number of bits that can be recovered while other are guessed.
Experiments show that out of all 160 bits no more than 77 bits can be recovered,
while remaining 83 are guessed, and only the situation when all bits of LFSR are
guessed and 3 last bits of NFSR are guessed, results in solution of the equations
to give 77 unknown bits. For Grain-128, after a number of experiments with
different number of guessed bits, it is construed that not more than 64 bits can
be recovered from the algebraic equations within the available resources, and 128
LFSR initial state bits must be guessed. Furthermore, M. Afzal and A. Masood
generated algebraic equations of Grain v1 and Grain-128 in Maple 10, and solved
the nonlinear equations with Magma V 2.13-5 [13] on a PC with CPU at 1.73
GHz and 1 GB RAM. The summary of simulation results of algebraic analysis
of Grain v1 and Grain-128 is illustrated in Table 2.

Table 2. Simulation results of algebraic analysis of two versions of Grain

Version Unknown Degree Degree No. of bits No. of bits Time to find Keystream
bits of g(x) of h(x) guessed recovered solution bits used

Grain v1 160 6 3 83 77 0.204 sec 150

Grain-128 256 2 3 192 64 0.906 sec 100

For the weak Key-IV of Grain v1, the LFSR initial state is the zero state,
and the degree of h(x) degenerates into 1, so only a total of 80 internal state
bits are unknown. Similarly, for the weak Key-IV of Grain-128, the degree of
h(x) becomes 0, and there are 128 unknown NFSR initial state bits. So, we can
directly utilize the result in Table 2, and the attack result of the weak Key-IVs
can be illustrated in Table 3.
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Table 3. Simulation results of algebraic analysis of the weak Key-IVs of Grain

Version Unknown Degree Degree No. of bits No. of bits Time to find Keystream
bits of g(x) of h(x) guessed recovered solution bits used

Grain v1 80 6 1 3 77 0.204 sec 150

Grain-128 128 2 0 64 64 0.906 sec 100

Suppose that one operation acts per frequency of the CPU, 1.73 × 109 =
229.9 operations execute by one second for 1.73 GHz PC. From Table 3, we can
conclude that the weak Key-IVs of Grain v1 can be broken with 229.9 × 0.204×
23 = 230.7 operations and 150 keystream bits, and the weak Key-IVs of Grain-
128 can be broken with 229.9×0.906×264 = 293.8 operations and 100 keystream
bits. The result of Grain v0 is similar to that of Grain v1.

6 Self-sliding Attack on the Weak Key-IVs of Grain-like
Structure

In this section, we try to generalize the attack against the weak Key-IVs of
Grain-like structure which consists of a LFSR, a NFSR and a filter like Grain
family. The attack can be divided into two steps:

– Utilizing the best linear approximation of g(x) and h(x), distinguish the
weak Key-IVs.

– Recover the internal state of the NFSR by the algebraic attack.

For Grain-like structure, the keystream bit zt can be represented as the out-
put of the boolean function h′(x) which input variables taken from both the
LFSR and NFSR, i.e., zt = h′(x). Let the function Ag(x) be a linear approx-
imation of the function g(x), and Ah′(x) be a linear approximation of the the
function h′(x). Suppose that wN (Ag) is the the number of variables taken from
the NFSR, and wN (Ah′) also is the number of variables from the NFSR. Then
Lemma 2 is given as follows.

Lemma 2. There always exists a linear relation in terms of bits from the state
of the LFSR and the keystream, which have the bias:

ε = 2(wN (Ah′ )+wN (Ag)−1) · εwN (Ah′ )
g · εwN (Ag))

h′ ,

where Pr{Ag(·) = g(·)}= 1
2 + εg and Pr{Ah′(·) = h′(·)}= 1

2 + εh′ .

See Theorem 1 in Section 3.2 in [3].

Because in the case of Grain v0 the functions g(x) and h′(x) are improperly
chosen, Grain v0 is broken. There are two ways to avoid the attack on Grain v0,
one is to increase the number wN (Ag) and wN (Ah′), the other is to decrease the
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bias εg and εh′ . The bias ε in Grain v1 and Grain-128 is low enough to the strong
Key-IVs, however it is still vulnerable to the weak Key-IVs discussed above.

In a general way, let g(x) and h′(x) be random functions such that ε is
extremely close to 0. In this case, any linear approximation distinguishing attack
is disabled. Considering the LFSR initial state of the weak Key-IVs is the zero
state, the keystream output bits only depend on the initial state of the NFSR.

The cycle structure of random functions was studied by Knuth in connection
with random number generators and by Brent and Pollard in connection with
factorization. Knuth obtains an average cycle length, for a random function
over L values, of (πL

8 )
1
2 + 1

3 and an average tail length of (πL
8 )

1
2 − 2

3 . The L
1
2

relationship is related to the ‘birthday problem’. Consequently, we can utilize the
self-sliding attack to distinguish the weak Key-IVs. The average data complexity
is about

(
πL

8
)

1
2

+
1
3

+ (
πL

8
)

1
2

− 2
3

= 2(
πL

8
)

1
2

− 1
3
.

Concretely, the average data complexities are 239.7 and 263.7 with corresponding
to Grain-like structure with k being 80 and 128.

To avoid the self-sliding attack, the cycle of g(x) should be 2k, i.e., the se-
quence generated by g(x) is a M-sequence. N. G. de Bruijn proved that there are
22k−1−k different M-sequences among total 22k

boolean functions. Thus, ran-
domly choose a k variables function, the probability that its cycle will be 2k

is
22k−1−k

22k = 2−2k−1−k.

This implied that the self-sliding attack may be applied with extremely high
probability in the case of g(x) being a random function. Thus, the simple re-
solvent is to modify the key initialization process which should guarantee the
initial LFSR state always being no-zero.

7 Conclusion

In this paper, we described a distinguishing attack against the weak Key-IVs of
Grain family. Utilizing the second Walsh spectra of the nonlinear functions, we
present that there are 264/264/296 weak Key-IVs, and to distinguish a weak Key-
IV needs 212.6/244.2/286 keystream bits and about 215.8/247.5/ 2104.2 operations
for Grain v0, Grain v1 and Grain-128 respectively.

Secondly, we apply algebraic attacks against the Key-IVs of the Grain family,
and show that the weak Key-IVs can be broken in about 2 seconds utilizing about
150 keystream bits for Grain v0 and Grain v1. To break the weak Key-IVs of
Grain-128, 100 keystream bits and 293.8 operations are required. Furthermore,
we discuss the periods of the weak Key-IVs which lead in self-sliding attacks
against the Grain-like structure. Our results show that the key initialization
process of Grain family should be modified.
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2. B. buchberger, Gröbner Base: An Algorithm Method in Polynomial Ideal Theory,
Multideimension System Theory. Dordrecht, pp. 184-232, 1985.

3. C. Berbain, H. Gilbert, and A. Maximov. Cryptanalysis of Grain. In M. J. B.
Robshaw Editor, FSE 2006, LNCS 4047, pp. 15-29, 2006.
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