
On the Security of Stream Cipher CryptMT v3 ?

Haina Zhang1, and Xiaoyun Wang1,2

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan 250100, China

hnzhang.cn@gmail.com
2 Center for Advanced Study, Tsinghua University, Beijing 100084, China

xiaoyunwang@mail.tsinghua.edu.cn

Abstract. CryptMT v3 is a stream cipher submitted to eStream project,
and has entered the third evaluation phase. Any attack has not been
found until now. In this paper, we mainly discuss the security of the state
initialization process of CryptMT v3. For the key and IV setup function
fK , we can construct a probabilistic testing algorithm AfK with a dis-
tinguishing probability 1, which indicates that for each key K, fK is a
non-PRF. However, we have not found any non-randomness about the
keystream output.

Key Words. stream cipher, IV setup, CryptMT v3, PRF, PRNG.

1 Introduction

In the state initialization of many stream ciphers, there are two inputs; a se-
cret key K and a non-secret initialization vector IV. The IV has two main uses:
provides randomized encryption, and helps in synchronizing communication be-
tween sender and receiver. As it turns out, however, incorporating an IV into a
stream cipher is not an easy task. An important reason for this is that the IV is
an input parameter which is partially under the control of the adversary. Giving
the adversary control over an input parameter significantly increases the range
of available attacks he has. During the evaluation phase of eStream project, a
numbers of stream ciphers have been broken as a result of this, such as Po-
maranch [2], DECIM [5], WG [6], LEX [6], TSC-4 [3, 7], and so on.

At FSE 2007, Berbain and Gilbert proposed a sufficient conditions on the
security of IV dependent stream ciphers. For nearly all existing IV dependent
stream ciphers, they split the keystream derivation into two following separate
phases:

– Key and IV setup: an m-bit initial state value is derived from the key and
IV. Let the key size and the IV size be k bits and n bits respectively, then

? Supported by the National Natural Science Foundation of China (NSFC Grant
No.90604036) and 973 Project (No.2007CB807902).

we can consider the key and IV setup as a function generator, i.e., a function
family F = {fK : {0, 1}n −→ {0, 1}m} indexed by a key K randomly chosen
from {0, 1}k.

– Keystream generation: the keystream is derived from the m-bit initial
state obtained in the key and IV setup phase. For that purpose, the m-bit
initial state is taken as the seed input of a number generator which can be
defined as a function g : {0, 1}m −→ {0, 1}L, where L is the length of the
keystream output.

Consequently, an IV dependent stream cipher can be viewed as a composition
G of a function family F and a function g, i.e., G = {gK = g ◦ fK : {0, 1}n −→
{0, 1}L}. Furthermore, we can conclude that an IV dependent stream cipher
is secure if and only if gK is a Pseudo-Random Function (PRF). In order to
guarantee that, we generally require that fK is a PRF.

CryptMT v3 [4] is a stream cipher submitted to eStream project, and enters
the third evaluation phase. Any attack has not been found until now. In this
paper, we focus on the security of the state initialization process of CryptMT
v3. For the key and IV setup function fK , we can construct a probabilistic
testing algorithm AfK , which allows to distinguish a randomly chosen function
fK of F from a perfect random function f∗ with a distinguishing probability
1, which indicates that for each key K, fK is not a PRF, and which maybe
result in a potential attack to CryptMT v3. However, we have not found any
non-randomness about the keystream output.

This paper is organized as follows. In Section 2, a brief description of CryptMT
v3 is given. Section 3 presents that the key and IV setup function fK is not a
PRF. Section 4 discusses the security on the IV dependent stream cipher fur-
thermore. Finally, we conclude the paper in Section 5.

2 A Brief Description of CryptMT v3

CryptMT v3 [4] is composed of an F2-linear generator of a word-size-integer
sequence with a huge state space and a filter with one word-size memory, based
on the accumulative integer multiplication. In this paper, we omit the details of
the keystream generator.

2.1 Some Notations

Firstly, we introduce some notations for 128-bit integers. Denote X as a 128-bit
integer, which is concatenation of four 32-bit registers, each of which is denoted
by X[3], X[2], X[1], X[0], respectively. X[i3][i2][i1][i0] represents a 128-bit inte-
ger obtained from four 32-bit integers X[i3], X[i2], X[i1], X[i0], where (i3i2i1i0)
is a permutation of {3, 2, 1, 0}.

128-bit Oriented Operations. In this subsection, we define some 128-bit ori-
ented operations.

2

The operation ‘+32’ on 128-bit registers which is executed for each 32-bit
integer is denoted as follows:

X +32 Y := [(X[3] + Y [3]), (X[2] + Y [2]), (X[1] + Y [1]), (X[0] + Y [0])]mod232 ,

here, the first 32-bit part is the addition of X[3] and Y [3] modulo 232, the second
32-bit part is that of X[2] and Y [2] (without the carry from the second 32-bit
part to the first 32-bit part, differently from the addition of 128-bit integers).
The outer most [] in the right side is to emphasize that they are concatenated
to give a 128-bit integer.

The operation ‘−32’is defined similarly to ‘+32’.
For an integer s (0 ≤ s ≤ 31),

X >>32 s := [(X[3] >> s), (X[2] >> s), (X[1] >> s), (X[0] >> s)]

means that the shift right by s bits are applied to each of the four 32-bit integers.
The product of a constant c ∈ Z/(232) multiplying a 128-bit register modulo

232 can be represented as

c×32 X := [c×X[3], c×X[2], c×X[1], c×X[0]]mod232 ,

and the product of two 128-bit register modulo 232 is denoted as

X ×32 Y := [(X[3]× Y [3]), (X[2]× Y [2]), (X[1]× Y [1]), (X[0]× Y [0])]mod232 .

Based on the operations described above, we can define two 128-bit oriented
functions as follows.

Function 1. For two 128-bit integers X and Y , we define

R(X, Y) = 2×32 X ×32 (Y [1][0][2][3]⊕ (Y >>32 11)
+32X +32 (Y [1][0][2][3]⊕ (Y >>32 11)).

Function 2. For three 128-bit integers X, Y and Z, we define

S(X, Y, Z) = (X +32 Y)[2][1][0][3]⊕ ((X +32 Y) >>32 13)−32 Z.

2.2 The Key and IV Setup Function fK

In this paper, we consider the case the sizes of key K and the initial vector IV
are both 128 bits. The key and IV setup function fK is constructed as follows.

Let Tj(j ≥ 0) be a 128-bit integer sequence. Then, the internal states of T0,
T1, T2, and T3 are initialed as

T0 = IV,

T1 = K,

T2 = IV,

T3 = (K +32 Con),

3

where Con is a 128-bit constant integer (846264, 979323, 265358, 314159)10.
Denote ai as a 128-bit integer sequence with initial state a0 = K|(1, 1, 1, 1),

that is, the least significant bit of each the 32-bit integer of a0 is set to 1. Then,
the internal state Ti+3 (i ≥ 1) can be transferred by the following two recursions
with Function 1 and Function 2 described in subsection 2.1:

For i = 1, 2, 3, · · · ,
ai = R(ai−1, Ti+2), (1)

Ti+3 = S(Ti−1, Ti+1). (2)

We call the combination of the recursions (1) and (2) as a booter.
The booter can be utilized to initialize the state of number generator. On

the other hand, it can be used to generate keystream output for the message in
small size case. We consider the 156 128-bit integers T10, · · · , T165 as the initial
state of the number generator, i.e., the key and IV setup function fK is a 128-bit
to 19968-bit initial state function parameterized by a 128-bit key:

fK : {0, 1}128 → {0, 1}19968.

3 The Security of the Function fK in CryptMT v3

Let us consider the function generator of CryptMT v3, i.e., a function family
F = {fK} of {0, 1}128 → {0, 1}19968 indexed by a key K randomly chosen from
{0, 1}128. In this section, we try to explore the security of the function fK .

We consider the differential with a same key K, and suppose that there is a
differential bit at the k-th least significant bit position of ∆IV [i] = IV [i]⊕IV ′[i],
which is denoted as ∆IV [i]k = IV [i]k ⊕ IV ′[i]k (0 ≤ i ≤ 3, 0 ≤ k ≤ 31).

Furthermore, we explore the behavior of the differential sequences

∆ai = ai −32 a′i = R(ai−1, Ti+2)−32 R(a′i−1, T
′
i+2),

∆Ti+3 = Ti+3 −32 T ′i+3 = S(Ti−1, Ti+1, ai−1)−32 S(T ′i−1, T
′
i+1, a

′
i−1),

where i = 1, 2, · · · .
It is obvious that T0 = T2 = IV . In order to eliminate the differential in T4,

from the characteristic of function S(X, Y, Z), we choose ∆IV satisfying that
IV and IV ′ are only different at the most significant bit position of ∆IV [3].
Then from the state initialization process, we can get

∆a0 = ∆T1 = ∆T3 = [0, 0, 0, 0],

∆T0 = ∆T2 = [0x80000000, 0, 0, 0].

We call running the booter once as a round operation in the state initialization.
Consequently, after the first round, we can obtain ∆a1 = [0, 0, 0, 0] and ∆T4 =
[0, 0, 0, 0].

Similarly, after the second round, we get ∆a2 = [0, 0, 0, 0] and ∆T5 =
[0, 0, 0, 0].

4

However, the differential occurs after the third round. In order to denote the
32-bit differential as a block similar to hex representation of a 32-bit integer, we
adopt following signs. ‘0’ means that the differential bit is zero, and ‘1’ represents
the differential bit is one. If a differential bit is uncertain, it is denoted as ‘·’, and
‘x’ is denoted as the combination of four successive uncertain differential bits,
i.e., [·, ·, ·, ·], and ‘4’ represents the combination [·, 1, 0, 0]. Then, “0xxxx40000”
represents 32 successive differential bits

·, ·, ·, ·, ||·, ·, ·, ·, ||·, ·, ·, ·, || · 1, 0, 0, ||0, 0, 0, 0, ||0, 0, 0, 0, ||0, 0, 0, 0, ||0, 0, 0, 0.

After that, we can calculate the differentials after the third round as follows.

∆a3 = [0, 0, 0, 0],∆T6 = [0xxxx40000, 0, 0, 0x80000000].

In the same way, we can obtain the differentials of ∆a4 to ∆a7 and ∆T7 to ∆T10,
and the results are listed in Table 1.

Table 1. The differential path of CryptMT v3

3 2 1 0

∆T0 80000000 0 0 0
∆T1 0 0 0 0
∆T2 80000000 0 0 0
∆T3 0 0 0 0
∆a0 0 0 0 0

∆a1 0 0 0 0
∆T4 0 0 0 0

∆a2 0 0 0 0
∆T5 0 0 0 0

∆a3 0 0 0 0
∆T6 xxx40000 0 0 80000000

∆a4 xxxxxx80 80000000 0 xxx40000
∆T7 xxxxxx80 80000000 0 xxx40000

∆a5 xxxxxxxx xxx40000 80000000 xxxxxx00
∆T8 xxxxxxxx xxx40000 0 xxxxxx00

∆a6 xxxxxxxx xxxxxx80 xxx40000 xxxxxxxx
∆T9 xxxxxxxx xxxxxx80 xxx40000 xxxxxxxx

∆a7 xxxxxxxx xxxxxxxx xxxxxxx8 xxxxxxxx
∆T10 xxxxxxxx xxxxxxxx xxxxxxx8 xxxxxxxx

Denote the k-th least significant bit of T [10] as T [10]k. Then for the chosen
pair (IV, IV ′) which satisfies that ∆IV = [0x80000000, 0, 0, 0] with a same key,
from Table 1, we can obtain that

Pr(∆T [10]k = 0) = 1, for k = 0, 1, 2.

Pr(∆T [10]3 = 0) = 1.

5

We call the chosen IV attack to the function fK described above as a prob-
abilistic testing algorithm AfK .

It is clear that we have constructed a probabilistic testing algorithm AfK ,
and such algorithm allows to distinguish a randomly chosen function fK from
a perfect random function f∗ randomly chosen in the set F ∗ of all {0, 1}128 →
{0, 1}19968 functions with a distinguishing advantage 1.

Consequently, each function fK is not a PRF, for each random key K.

4 The Security of IV Dependent Stream Ciphers Whose
Function fK is a Non-PRF

In [1], Berbain and Gilbert present a composition lemma which results in a secure
construction allowing to derive a secure IV dependent stream cipher from a PRF
and a PRNG (Pseudo-Random Number Generator).

Definition 1. The composition G = g◦F of an n-bit to m-bit family of functions
F = {fK} and of an m-bit to L-bit function g is the n-bit to L-bit family of
functions

G = {g ◦ fK}.

Lemma 1. Let us consider a PRF family F = {fK} where fK : {0, 1}n →
{0, 1}m and a PRNG g : {0, 1}m → {0, 1}L that produces L bits in time TL

g .
The advantage in time t with q queries of G = g ◦ F = {g ◦ fK} can be upper
bounded as follows.

Advprf
G (t, q) 6 Advprf

F (t + qTL
g) + qAdvprng

g (t + qTL
g),

where Advprf
F (t + qTL

g) is the maximal advantage for distinguishing the fam-
ily F in time t + qTL

g , and Advprng
g (t + qTL

g) is the maximal advantage for
distinguishing the function g in time t + qTL

g .
The details can be referred in [1], and Lemma 1 provides a method to con-

struct a security IV dependent stream cipher.

Application to the Security of IV Dependent Stream Ciphers. An IV de-
pendent stream cipher can be considered secure if and only if the IV to keystream
function gK = g ◦ fK parameterized by the key is a PRF. Lemma 1 implies that
this is indeed the case, i.e., that the stream cipher is secure if:

1) the n-bit to m-bit IV to initial state function parameterized by the key
representing the IV setup of a stream cipher is a PRF;

2) the m-bit to L-bit initial state to keystream function is a PRNG;
3) the upper bounds on the advantage for distinguishing {gK} given by Lemma

1 guarantee a sufficient resistance against attacks.

6

However, Lemma 1 can not be applied for the case that the function fK is
non-PRF seriously, and it is hard to prove that the IV dependent steam ciphers
whose function fK is non-PRF are provable security. In this case, the only way to
estimate whether the stream ciphers are secure is to test whether the composition
function g ◦ fK is a PRF.

Therefore, although we can construct a probabilistic testing algorithm AfK

to distinguish the function fK with probability 1, we can not construct a prob-
abilistic testing algorithm Bg◦fK to distinguish the composition function g ◦ fK

so far. The security of CryptMT v3 need to be explored furthermore.

5 Conclusion

In this paper, we mainly discussed the security of the state initialization pro-
cess of CryptMT v3. For the key and IV setup function fK , we constructed a
probabilistic testing algorithm AfK with a distinguishing advantage 1, which
indicates that for each key K, fK is a non-PRF. However, we have not found
any non-randomness about the keystream output.

References

1. C. Berbain and H. Gilbert. On the Security of IV Dependent Stream Ciphers. In
A.Biryukov, editor, FSE 2007, LNCS 4593, pp.254-273. Springer, 2007.

2. C. Cid, H. Gilbert, and T. Johansson. Cryptanalysis of Pomaranch. IEE Informa-
tion Security, 153(2):51 - 53, June 2006.

3. S. Fischer, W. Meier, C. Berbain, etc. Non-randomness is eSTREAM Candidates
Salsa20 and TSC-4, INDOCRYPT 2006, LNCS 4329, pp. 2 - 16. Springer, 2006.

4. M. Matsumoto, M. Saito, T. Nishimura, and M. Hagita, CRYPTMT STREAM
CIPHER VERSION 3,
http://www.ecrypt.eu.org/stream/p3ciphers/cryptmt/cryptmt p3.pdf.

5. H. Wu and B. Preneel. Cryptanalysis of the stream cipher DECIM. In M. Robshaw,
editor, FSE 2006, LNCS 4047, pages 30 - 40. Springer, 2006.

6. H. Wu and B. Preneel. Resynchronization attacks on WG and LEX. In M. Rob-
shaw, editor, FSE 2006, LNCS 4047, pages 422 - 432. Springer, 2006.

7. H. Zhang, X. Wang, Differential Cryptanalysis of T-function Based Stream Cipher
TSC-4, In K.-H. Nam and G. Rhee (Eds.), ICISC 2007, LNCS 4817, pp. 227 - 238.
Springer, 2007.

7

