
Attacks on AURORA-512 and the Double-MIX
Merkle-Damg̊ard Transform

Niels Ferguson1 and Stefan Lucks2

1 Microsoft Corp., niels@microsoft.com
2 Bauhaus-Universität Weimar, Germany 〈http://medsec.medien.uni-weimar.de/〉

Abstract. We analyse the Double-Mix Merkle-Damg̊ard construction (DMMD) used in the AU-
RORA family of hash functions. We show that DMMD falls short of providing the expected level
of security. Specifically, we are able to find 2nd pre-images for AURORA-512 in time 2291, and
collisions in time 2234.4. A limited-memory variant finds collisions in time 2249.

1 Introduction and Overview

AURORA is a family of cryptographic hash functions submitted to the NIST SHA-3 hash
function competition [2]. For m ∈ {224, 256, 384, 512}, AURORA-m represents a hash function
with m bits of output size, for which the authors make the following security claims:

– pre-image resistance of approximately m bits,
– 2nd pre-image resistance of approximately m− k bits, for any message of length ≤ 2k, and
– collision resistance of approximately m/2 bits.

Internally, all the members of the AURORA family employ compression functions which
map a 256-bit chaining value and a 512-bit message block to generate a new 256-bit chaining
value. AURORA-224 and AURORA-256 use the classic Merkle-Damg̊ard construction and are
not affected by our attacks.

AURORA-512 maintains an internal state of 512 bit. To use the 256-bit compression function
it employs a novel construction called Double-MIX Merkle-Damg̊ard Transform (DMMD) to
build a 512-bit compression function out of a 256-bit compression function. In general, DMMD
turns an n-bit compression function in to a 2n-bit compression function.

Unfortunately, DMMD fails to provide the level of security one would expect from a 2n-bit
hash function. In this paper we describe

– a collision attack in time � 2n, and
– a 2nd pre-image attack for short pre-images in time � 22n.

In Section 3, we exploit these weaknesses to attack AURORA-512:

– We create collisions in time 2234.4 � 2256 (or time 2249 � 2256 with limited memory).
– We create 2nd pre-images in time 2291.

In Section 4, we discuss the applicability of our attacks to two other members of the
AURORA-family, which have the same DMMD structure. The 2nd pre-image attack applies to
AURORA-384, and our collision attack can be used to find multi-collisions for AURORA-256M,
which, unlike other members of the AURORA-family, has been claimed to resist multi-collision
attacks.



2 Attacking the Double-MIX Merkle-Damg̊ard (DMMD) Structure

The goal of DMMD is to define a 2n-bit hash function using compression functions which use
an n bit chaining value. We first describe the DMMD construction.

Let n the number of bits in a single chaining value, m the number of bits in a message block,
and s be the number of message blocks processed between the extra mixing steps. AURORA-512
uses n = 256, m = 512, and s = 8.

DMMD uses 2s different compression functions that each map an n-bit chaining input and
an m-bit message input to an n-bit chaining output.

f0, . . . , fs−1, g0, . . . , gs−1 : {0, 1}n × {0, 1}m → {0, 1}n,

It also uses two additional mix functions that mix two n-bit chaining values to produce two new
chaining values.

MF,MFF : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n.

Our attacks are generic; we model all of these functions as independent random functions.
Given initial values K0, L0 ∈ {0, 1}n and a padded message M = (M0, . . . ,Mt−1) ∈ {0, 1}m,

DMMD works as follows:

for i in {0, . . . , t− 1} do
j := i mod s
K ′i+1 := fj(Ki,Mi)
L′i+1 := gj(Li,Mi)
if j < s− 1 ∨ i = t− 1 then

(Ki+1, Li+1) := (K ′i+1, L
′
i+1)

else
(Ki+1, Li+1) := MF(K ′i+1, L

′
i+1);

return MFF(Kt, Lt).

Essentially, DMMD runs two Merkle-Damg̊ard chains in parallel and applies a mixing function
MF to mix the chaining state of the two chains every s message blocks.

2.1 A 2nd pre-image attack

Assume a padded original message of at least 2s + 1 blocks. After hashing 2s of these blocks,
and before applying the MF operation, we have an internal state of the form (K∗, L∗) =
(K ′2s, L

′
2s). For a 2nd pre-image attack we need to find an arbitrary (2s)-block message fragment

(M0, . . . ,M2s−1) which hashes to the same internal target (K∗, L∗). The only restriction is that
these 2s blocks must be different from those in the original message.

For the actual attack, we fix some parameter r. Then we proceed as follows:

– Fix M0, . . . ,Ms−2 ∈ {0, 1}m and compute Ks−1 and Ls−1 accordingly.
– Choose Ks ∈ {0, 1}n and find r message blocks M1

s−1, . . . , M r
s−1 which lead to the chosen

value Ks. [Expected time: r ∗ 2n calls to each fs−1, gs−1, and MF.]
– Choose Ks+1 ∈ {0, 1}n and find r message blocks M1

s , . . . , M r
s with f0(Ks,M

j
s ) = Ks+1.

[Expected time: r ∗ 2n calls to f0.]
– . . .
– ChooseK2s−1 ∈ {0, 1}n and find r message blocksM1

2s−2, . . . ,M r
2s−2 with fs−2(K2s−2,M

j
2s−2) =

K2s−1. [Expected time: r ∗ 2n calls to fs−2.]
– Find r message blocks M1

2s−1, . . . , M r
2s−1 with fs−1(K2s−1,M

j
2s−1) = K∗. [Expected time:

r ∗ 2n calls to fs−1.]

2



– We now have rs+1 different messages, which all hash to the required internal half-state
K ′2s = K∗. If

rs+1 ≥ 2n, (1)

then we expect at least one of these messages to also hash to to the second half-state
L∗ = L′2s.

Constructing the rs+1 messages that give the right K∗ takes

(s+ 3)r2n

calls to fi, gi, or MF. The last stage of the attack requires (s + 1)2n calls and is insignificant.
Memory requirements are that the attacker must store r · s message blocks.

We are now free to choose r as long as we satisfy condition 1. If s = 1 we can choose r = 2n/2

leading to an attack in time 4 · 23n/2 which is much less than the generic 2nd pre-image attack
time of 2 · 22n. (The factor 2 is because each message block is involved in two calls tot the
compression functions.) For larger s we can shrink r and make the attack even faster.

We conclude that DMMD fails to provide the expected security against 2nd pre-image
attacks, irrespective of the choice of s.

2.2 A collision attack

Our collision attack is based on finding local multi-collisions. In general this requires a lot of
memory, but a limited-memory variation is described in Section 2.3.

As analysed in [4], the probability for an r-collision exceeds 0.5, if one chooses at least

γ(r, n) :=
(
r! ∗ 2(r−1)n

)1/r
random samples (2)

uniformly distributed from a set of size 2n.
Like before, we fix some parameter r and proceed as follows

– Fix M0, . . . ,Ms−2 ∈ {0, 1}m and compute Ks−1 and Ls−1 accordingly.
– Find an r-collision of messages M1

s−1, . . . , M r
s−1 that all collide on the same Ks. [Expected

time: γ(r, n) calls to each fs−1, gs−1, and MF.]
– Find an r-collision M1

s , . . . , M r
s with f0(Ks,M

j
s ) = Ks+1 for some Ks+1. [Expected time:

γ(r, n) calls to f0.]
– . . .
– Find an r-collision M1

2s−2, . . . , M r
2s−2 with fs−2(K2s−2,M

j
2s−2) = K2s−1 for some K2s−1.

[Expected time: γ(r, n) calls to fs−2.]

At this point of the attack, we actually have a rs-collision, i,e, we have rs different message
fragments (

M i0
0 ,M

i1
1 , . . . ,M

is−2

s−2

)
,

which all happen to hash to the same internal half-state K2s−1. But all of them hash to different
half-states L2s−1 (or we would already have a collision).

We now try values for message block M2s−1. We get the following two properties:

1. All messages (M i0
0 ,M

i1
1 , . . . ,M

is−2

s−2 ,M2s−1) collide on K ′2s.
2. By the birthday paradox, the chance that two of these messages also collides on L′2s is about

r2s−1

2n
.

3



Thus, we need to try some 2n/r2s−1 values for message block M2s−1 to find a collision on
the entire internal state. Each try requires rs calls to gs−1. Thus, the second part of the attack
has to make

2n ∗ rs

r2s−1
=

2n

rs−1
function calls.

The complete time for the collision attack is thus the time for

(s+ 2) ∗ γ(r, n) +
2n

rs−1
= (s+ 2) ∗

(
r! ∗ 2(r−1)n

)1/r
+

2n

rs−1
function calls (3)

to fi, gi, or MF. Note that the memory for finding multi-collisions is large: The attacker has to
store γ(r, n) message blocks.

This attack works for any s. For s = 1 and n ≥ 80 we can choose r = 16 and need fewer
than the 2n+1 compression function calls that the generic attack would require for a collision.
If s or n (or both) are larger, the advantage of our attack over the standard birthday attack
improves.

2.3 A Memoryless Variant of the Collision Attack

Standard techniques, such as Floyd or Brent cycle finding, allow us to find ordinary 2-collisions
with limited memory, while only marginally increasing the time (i.e., the number of function
calls). Thus, if we set r = 2, we get memory-efficient 2s collisions for K2s−1. To exploit this for
a collision on (K ′2s, L

′
2s), we still need 2n/22−1 = 2n−s+1 function calls. Equation 3 with r = 2

thus shows that the time for the memoryless collision attack is equivalent to

(s+ 2) ∗ 21/2 ∗ 2n/2 + 2n−s+1 function calls.

For moderate s this is dominated by the last term, and still beats the generic attack of 2n+1

function calls even for s = 1.

3 Attacking AURORA-512

In this section, we show how to apply the attacks from the previous section to AURORA-512.
This hash function has been designed according to the DMMD construction with n = 256 and
s = 8. For the 2nd pre-image attack, we suggest to use r = 365284285 ≈ 228.44, the smallest r
satisfying rs+1 = r9 > 2256. Finding a 2nd pre-image for AURORA-512 then requires

(s+ 3) ∗ r ∗ 2n ≈ 12 ∗ 228.44 ∗ 2256 ≈ 2288 function calls.

The memory required for the 2nd pre-image attack is very small: the attacker only needs to
store

s ∗ r < 231.5 message blocks.

Similarly, we can find collisions for Aurora-512. Recall Equation 3, describing the time for the
collision attack by

(s+ 2) ∗ γ(r, n) +
2n

rs−1
= 10 ∗ γ(r, 256) +

2256

r7
= 10 ∗

(
r! ∗ 2(r−1)256

)1/r
+

2256

r7
function calls.

To minimise this, we set r := 9. This allows us to find collisions for AURORA-512 in time

2232.9 + 2233.8 < 2234.5,

assuming sufficient memory for storing 2229.6 message blocks. Alternatively, we can set r := 2
to find collisions for AURORA-512 with limited memory in time

2256/28−1 = 2256−7 = 2249.

4



4 Attacking AURORA-384 and AURORA-256M

Aurora-384 and AURORA-256M follow exactly the same internal structure as AURORA-512,
except for truncating the output to 384 And 256 bit, respectively. Thus, our attacks apply to
both of these hash functions as well.

For AURORA-384, the naive way to find collisions only requires time 2192, so our collision
attack is irrelevant. But finding short 2nd pre-images for AURORA-384 should take time close
to 2384, while our 2nd pre-image attack only needs time 2291.

AURORA-256M is yet another variant of the AURORA family, with exactly the same struc-
ture as AURORA-512 and AURORA-384, except that AURORA-256M truncates the output
down to 256 bit. [2] specifically claims resistance against multi-collisions for AURORA-256M. [2]
does not quantify this claim, but ideally, finding a k-collision for an n-bit hash function should
take time (k! ∗ 2(k−1)∗256)1/k [4]. As it turns out, we can apply our collision attack and combine
it with with Joux’ approach to turn a small number of collisions into huge multi-collisions.

Consider k = 16 = 24. To find a k-collision, we just need four collisions in a row. A single
collision needs the time of less than 2234.5 function calls. Four such collisions need time <
4 ∗ 2234.5 = 2236.5. With this amount of work, we can generate a 16-collision. But for an ideal
hash function, finding even a 12-collision should require time (12! ∗ 211∗256)1/12 ≈ 2237 > 2236.5.
So for any k ≥ 12, we can find k-collisions faster than the generic attack.

The memoryless variant of our attack can also be used. Finding a 31-collision for an ideal
hash function would need time (31! ∗ 230∗256)1/31 ≈ 2251.38. And, as far as we know, that attack
seems to require a huge amount of memory. But for AURORA-256M, our attack requires finding
five collisions in a row. Thus, even with very small memory, we can generate a 32-collision in
time 5 ∗ 2249 ≈ 2251.32 < 2251.38.

5 DMMD compared to other approaches

The DMMD structure was designed to achieve the security of a 2n-bit hash function while
only using compression functions which take n-bits of chaining values. [2, Page 57] explicitly
compares DMMD to other double-block length constructions, namely to Lucks’ double-pipe
hash [3] and Hirose’s construction [1]. DMMD and Hirose’s and Lucks’ approach share the idea
of using one or more compression functions or internal block ciphers that generate an n-bit
output, i.e., one half of the new 2n-bit chaining value with. To generate the full chaining value,
one needs to call the compression function(s) twice.

Both Hirose’s and Lucks’ construction, however, take the full 2n-bit chaining value as the
input for each compression function call. DMMD is different: each compression function call only
takes one half (n bit) of the old chaining value as the input. To avoid turning into a cascade
of two independent Merkle-Damg̊ard hash functions, DMMD employs the MIX function MF
frequently. As it seems, a benefit of DMMD over Hirose’s and Lucks’ approach is an improvement
in efficiency. For example, if we use any of AURORA’s fi or gi functions for Lucks’ double-pipe
hash, each compression function call would need to take the full 2n-bit chaining value, and thus
could only process message blocks of size n = 256 bit, instead of 2n = 512 bit. Neglecting the
work for the MF functions, DMMD would appear twice as fast as the double-pipe hash.

As we have seen, however, the DMMD approach fails to provide the security one would
expect. Even for s = 1, performing one MF operation for each message block, we could find
collisions and 2nd pre-images faster than the generic attacks. This holds even if we restrict the
collision adversary to using almost no memory at all. Furthermore, observe that for small s, one
could hardly neglect the time to evaluate the MF function. All in all, our results casts severe
doubts on the soundness of the DMMD construction for hash functions.

5



6 Remark and Acknowledgements

This is a write-up of some concerns we raised after Tetsu Iwata’s presentation of the AURORA
family of hash functions at the SHA-3 candidate conference in Leuven, at Feb. 27, 2009. At
the same day, we dicussed these concerns – which, at that point of time, had not been thought
through, of course – with members of the AURORA team. We would like to thank the AURORA
team for their comments and encouragement.

7 Conclusion

The DMMD construction used by AURORA-512 and AURORA-384 has inherent weaknesses.
This leads to 2nd-preimage attacks on AURORA-512 and AURORA-384, as well as a collision
attack on AURORA-512. We conclude that these two hash functions do not satisfy the security
requirements that NIST specified for SHA-3.

References

1. S. Hirose. Some plausible constructions of double-block-length hash functions. FSE 2006, Springer LNCS 4047,
pp. 210–225.

2. T. Iwata, K. Shibutani, T. Shirai, S. Moriai, T. Akishita. AURORA: A Cryptographic Hash Algorithm Family.
Submission to NIST, October 31, 2008.

3. S. Lucks. A failure-friendly design principle for hash functions. Asiacrypt 2005 Springer LNCS 3788, pp. 474–
494.

4. K. Suzuki, D. Tonien, K. Kurosawa, K. Toyota. Birthday Paradox for Multi-Collisions. ICISC 2006, Springer
LNCS 4296, pp. 29–40.

6


