
Information Theoretically Secure Multi Party Set

Intersection Re-Visited

Arpita Patra ∗ Ashish Choudhary † C. Pandu Rangan ‡

Department of Computer Science and Engineering

Indian Institute of Technology Madras

Chennai India 600036

Email:{ arpita,ashishc }@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract

We re-visit the problem of secure multiparty set intersection in information theoretic settings.
In [16], Li et.al have proposed a protocol for multiparty set intersection problem with n parties, that
provides information theoretic security, when t < n

3
parties are corrupted by an active adversary

having unbounded computing power. In [16], the authors claimed that their protocol takes six rounds
of communication and communicates O(n4m2) field elements, where each party has a set containing
m field elements. However, we show that the round and communication complexity of the protocol
in [16] is much more than what is claimed in [16]. We then propose a novel information theoretically
secure protocol for multiparty set intersection with n > 3t, which significantly improves the ”actual”
round and communication complexity (as shown in this paper) of the protocol given in [16]. To
design our protocol, we use several tools which are of independent interest.

Keywords: Multiparty Computation, Information Theoretic Security, Error Probability.

1 Introduction

Secure Multiparty Set Intersection (MPSI): Consider a complete synchronous network N , con-
sisting of n parties P = {P1, . . . , Pn}, who are pairwise connected by a reliable and private channel.
The parties do not trust each other and the distrust in the network is modelled by a centralized adver-
sary At, who has unbounded computing power and can actively corrupt at most t parties in Byzantine
fashion, where t < n

3 . A Byzantine (or actively) corrupted party is under complete control of At, who
may force the party to behave arbitrarily. Any protocol over N is assumed to operate in a sequence
of rounds. In each round, a party performs some local computation, sends new messages to the other
parties through the private channels and publicly broadcasts some information, receives the messages
that were sent by the other parties in current round on the private channels and the messages that
were publicly broadcast by the other parties in current round. Here broadcast is a primitive, which
allows a party to send some information identically to all other parties. If a physical broadcast channel
is available in the system, then broadcast will take one round. Otherwise, we can simulate broadcast
using a protocol among the parties in P. Each party Pi has a private data-set Si, containing m ele-
ments from a finite field F. The goal of MPSI is to design a protocol that can compute the intersection
of these n sets, satisfying the following properties:

(1) Correctness: At the end of the protocol, each honest party correctly gets the intersection of the
n sets, irrespective of the behavior of the corrupted parties and (2) Secrecy: The protocol should
not leak any extra information to the corrupted parties, other than what is implied by the input of
the corrupted parties (i.e., the data-sets possessed by corrupted parties) and the final output (i.e., the
intersection of all the n data-sets).

∗Financial Support from Microsoft Research India Acknowledged.
†Financial Support from Infosys Technology India Acknowledged.
‡Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Com-

putation, Sponsored by Department of Information Technology, Govt. of India.

1

MPSI problem is an interesting secure distributed computing problem and has huge practical appli-
cations such as online recommendation services, medical databases, data mining etc. [11].

Existing Literature on MPSI: The MPSI problem was first studied in cryptographic model in
[11, 15], under the assumption that the adversary has bounded computing power. By representing the
data-sets as polynomials, the set intersection problem is converted into the task of computing the
common roots of n polynomials in [11, 15]. This is done as follows: Let S = {s1, s2, . . . , sm} be a set
of size m, where ∀i, si ∈ F. Now set S can be represented by a polynomial f(x) of degree m, where
f(x) =

∏m
i=1(x− si) = a0 +a1x+ . . . +amxm. It is obvious that if an element s is a root of f(x), then

s is a root of r(x)f(x) too, where r(x) is a random polynomial of degree-m over F. Now for MPSI,
party Pi represents his set Si, by a degree-m polynomial f (Pi)(x) and supplies f (Pi)(x) (i.e. its m + 1
coefficients), as his input, in a secure manner. Then all the parties jointly and securely compute

F (x) = (r(1)(x)f (P1)(x) + r(2)(x)f (P2)(x) + . . . + r(n)(x)f (Pn)(x)) (1)

where r(1)(x), . . . r(n)(x) are n secret random polynomials of degree-m over F, jointly generated by the
n parties. Note that F (x) preserves all the common roots of f (P1)(x), . . . , f (Pn)(x). Every element
s ∈ (S1 ∩ S2 ∩ . . . ∩ Sn) is a root of F (x), i.e. F (s) = 0. Hence after computing F (x) in a secure
manner, it can be reconstructed towards every party, who locally checks if F (s) = 0 for every s in his
private set. All s’s at which the evaluation of F (x) is zero forms the intersection set (S1∩S2∩ . . .∩Sn).
In [15], it has been proved formally that F (x) does not reveal any extra information to the adversary,
other than what is deduced from (S1 ∩ S2 ∩ . . . ∩ Sn) and input set Si of the corrupted parties.

Remark 1 Even though every s ∈ (S1 ∩S2 ∩ . . .∩Sn) is a root of F (x), there may exist some s′ ∈ F,
such that F (s′) = 0, even though s′ 6∈ (S1 ∩ S2 ∩ . . . ∩ Sn). This is possible if s′ happens to be the
common root of all r(i)(x)’s. However, as stated in [15], the probability of this event is negligible.

In [15], the MPSI problem is solved by securely computing F (x), assuming At to be computationally
bounded. In [16], the authors have presented the first information theoretically secure protocol for
MPSI, assuming At to be computationally unbounded and n ≥ 3t + 1. Specifically, the authors have
shown how to securely compute F (x) in the presence of a computationally unbounded At. To the best
of our knowledge, this is the only known information theoretically secure MPSI protocol. Notice that,
although not explicitly stated in [16], the MPSI protocol of [16] involves a negligible error probability
in correctness. This is due to the argument given in Remark 1.

Our Motivation and Contribution: The authors in [16] claimed that their MPSI protocol takes
six rounds and communicates O(n4m2) elements from F. 1 However, we show that the round and
communication complexity of the MPSI protocol of [16] is much more than what is claimed in [16]. We
then propose a new information theoretically secure protocol for MPSI with n > 3t, which significantly
improves the ”actual” round and communication complexity (as shown in this paper) of the MPSI
protocol given in [16].

2 Round and Communication Complexity of MPSI Protocol of [16]

In order to securely compute F (x) given in (1) against a computationally unbounded At, the MPSI
protocol of [16] is divided into three phases. We briefly recall the steps performed in each phase.

1. Input Phase: Here each party represent his private data-set as a polynomial and t-shares2 the
coefficients of the polynomial among the n parties. In order to do the sharing, the parties use a two
dimensional verifiable secret sharing (VSS). A two dimensional VSS [12, 10, 14], ensures that each
party (including a corrupted party) ”consistently” and correctly t-shares the coefficients of his poly-
nomial with everybody. Now, the authors in [16] claimed that this takes two rounds, where in the first
round, each party does the sharing and in the second round verification is done by all the parties to

1In [16], k is used to denote the size of each set.
2We say that an element c ∈ F is t-shared among the n parties, if there exists a random polynomial p(x) over F of

degree t such p(0) = c and each (honest) party Pi has the share p(i).

2

ensure whether everybody has received correct and consistent shares (see sec. 4.2 in [16]). Moreover,
the authors have not provided the communication complexity of this phase. Now it is well known
in the literature that the minimum number of rounds taken by any VSS protocol with n ≥ 3t + 1
is at least three [12, 10, 14]. Moreover, the current best three round VSS protocol with n = 3t + 1
requires a private communication of O(n3) and broadcast of O(n3) field elements [10, 14]. Now in
the Input Phase of [16], each party executes (m + 1) VSS’s to share the coefficients of his secret
polynomial. In addition, each party also executes n(m+1) VSS’s to share the coefficients of n random
polynomials, each of degree m. These polynomials are used to generate secret random polynomials
r(1)(x), . . . , r(n)(x). So the total number of VSS done in Input Phase is O(n2m). Hence, the Input
Phase will take at least three rounds, with a private communication of O(n5m) and broadcast of
O(n5m) field elements. If the broadcast channel is not available, then simulation of broadcast of a
single field element requires a private communication of O(n2) field elements and Ω(t) rounds [17].
Thus, in the absence of broadcast channel, the Input Phase will require Ω(t) rounds and a commu-
nication complexity of O(n7m) field elements.

2. Computation Phase: Given that the coefficients of f (P1)(x), . . . , f (Pn)(x), r(1)(x), . . . , r(n)(x) are

correctly t-shared, in the computation phase, the parties jointly try to compute F (x) = r(1)(x)f (P1)(x)+
r(2)(x)f (P2)(x) + . . . + r(n)(x)f (Pn)(x), such that the coefficients of F (x) are t-shared. For this, the
parties execute a sequence of steps. But we recall only the first two steps, which are crucial in the
communication and round complexity analysis of the Computation Phase.

During step 1, the parties locally multiply the shares of the coefficients of r(i)(x) and f (Pi)(x),
for 1 ≤ i ≤ n. This results in 2t-sharing3 of the coefficients of f (Pi)(x)r(i)(x) for 1 ≤ i ≤ n. During
step 2, each party invokes a re-sharing protocol and converts the 2t-sharing of the coefficients of
f (Pi)(x)r(i)(x) into t-sharing, for 1 ≤ i ≤ n. The re-sharing protocol enables a party to generate
t-sharing of an element, given the t′-sharing of the same element, where t′ > t. In [16], the authors
have called a re-sharing protocol, without giving the actual details and claimed that the re-sharing and
other additional verifications will take only three rounds, with a private communication of O(n4m2)
field elements (see sec. 4.2 of [16]). The authors in [16] have given the reference of [13] for the details
of re-sharing protocol. However, the protocol given in [13] is a protocol for general secure Multiparty
Computation (MPC), which uses ”circuit based approach” to securely evaluate a function. Specifically,
the MPC protocol of [13] assumes that the (general) function to be computed is represented as an
arithmetic circuit over F, consisting of addition, multiplication, random, input and output gates. The
re-sharing protocol of [13] was used to evaluate a multiplication gate. But the protocol was non-robust
in the sense that it fails to achieve its goal when at least one of the parties misbehaves, in which case
the protocol outputs a pair of parties such that at least one of them is corrupted. The authors in
[16] have not mentioned clearly what will be the outcome of their protocol if the re-sharing protocol
(whose details they have not given) fails during the computation phase.

To summarize, we can say that the details of the protocol given in [16] are incomplete. In addition,
the round complexity and communication complexity of the protocol are not consistent with the given
protocol. Moreover, it is not mentioned whether they have assumed a broadcast channel in the system.
An estimation of the round complexity and communication complexity of the the MPSI protocol of
[16] in the presence and in the absence of a physical broadcast channel is as follows:

1. If a physical broadcast channel is available in the system, then the Input Phase will require
a private communication of Ω(n5m) field elements and broadcast of Ω(n5m) field elements.
Moreover, the Computation Phase will take Ω(t) rounds.

2. If a physical broadcast channel is not available in the system, then the Input Phase will require
a private communication of Ω(n7m) field elements. Moreover, the Computation Phase will
take Ω(t2) rounds.

3We say that an element c ∈ F is 2t-shared among the n parties if there exists a polynomial p(x) over F of degree 2t,
such that p(0) = c and each (honest) party Pi has the share p(i).

3

3 Our Results

We propose a new, information theoretically secure MPSI protocol with n = 3t + 1, tolerating a
computationally unbounded At. Our protocol is based on the approach of solving the MPSI by securely
computing the function given in (1). Moreover, our protocol involves a negligible error probability
in correctness 4. However, as mentioned in Remark 1, any protocol for MPSI, based on computing
the function in (1) will involve a negligible error probability in correctness. In the following table,
we compare the round complexity (RC) and communication complexity (CC) of our MPSI protocol
with the RC and CC of the MPSI protocol of [16] (as stated in the previous section). In the table,
the CC is in terms of field elements. Moreover, CC/RC with (out) BC stands for communication
complexity/round complexity in the presence (absence) of physical broadcast channel 5.

Reference CC with BC RC with BC CC without BC RC without BC

Private Broadcast Private

[16] Ω(n5m) Ω(n5m) Ω(t) Ω(n7m) Ω(t2)

This Paper O((m2n3 + n4 log(|F|)) O(m2n3 + n4 log(|F|)) 58 O(m2n5 + n6 log(|F|)) O(t)

From the table, we find that our MPSI protocol significantly improves the round complexity and
communication complexity of the MPSI protocol of [16], both in presence of a physical broadcast
channel and in the absence of a physical broadcast channel.

3.1 Comparison of Our MPSI Protocol with Existing General MPC Protocols

The MPSI problem is a particular variant of general secure MPC problem [21]. Informally, in MPC
problem, each party Pi has a private input xi ∈ F. There is a publicly known function f : Fn → Fn.
At the end of computation of f , party Pi gets yi ∈ F, such that (y1, . . . , yn) = f(x1, . . . , xn). The
goal of any general MPC protocol is to securely compute f , where at the end of the protocol, all
parties (honest) receive correct outputs, irrespective of the behavior of the adversary At. Moreover,
the messages seen by the adversary At during the protocol, should contain no additional information
about the inputs and outputs of the honest parties, other than what can be computed from the inputs
and outputs of the corrupted parties. The function f to be computed is represented as an arithmetic
circuit over the finite field F, consisting of five type of gates, namely addition, multiplication, random,
input and output. The number of gates of these types are denoted by cA, cM , cR, cI and cO respectively.
Any general MPC protocol tries to securely evaluate the circuit gate-by-gate, keeping all the inputs
and intermediate results of the circuit as t-shared [3, 19].

The MPSI problem can be solved using any general MPC protocol. However, since a general MPC
protocol does not exploit the nuances and the special properties of the problem, it is not efficient
in general. Moreover, we do not know how to customize the generic MPC protocols to solve MPSI
problem in an optimal fashion. However, we outline below a general approach and use the same to
estimate the complexity of MPSI protocols, that could have been derived from general MPC protocols.

Suppose, we try to solve the MPSI by computing the function given in (1), using a general MPC
protocol. The arithmetic circuit, representing the function in (1), will roughly require cI = n(m + 1)
input gates (every party Pi inputs (m + 1) coefficients of his polynomial f (Pi)(x)), cR = n(m + 1)
random gates (n polynomials r(1)(x), . . . , r(n)(x) have in total n(m + 1) random coefficients), cM =
n(m+1)2 multiplication gates (computing r(1)(x)f (Pi)(x) requires (m+1)2 co-efficient multiplications)
and cO = 2m + 1 output gates (the 2m + 1 coefficients of F (x) should be output). In the following
table, we give the round complexity (RC) and communication complexity (CC) of the best known,
information theoretically secure, general MPC protocols with n = 3t + 1, to securely compute the
function given in (1), with the above number of gates. In the table, CC is in terms of field elements.

4There is no compromise in the secrecy.
5If a physical broadcast channel is not available, then we use the protocol of [4, 6], which takes O(t) rounds and

private communication of O(n2ℓ) bits to simulate the broadcast of ℓ bit message.

4

Reference CC with BC RC with BC CC without BC RC without BC

Private Broadcast Private

[3] O(n5m2) O(n5m2) O(1) O(n7m2) O(n)

[13] O(n4m2) O(n2) O(n) O(n6m2) O(n2)

[9] O(n2m2) O(n2) O(n) O(n4m2) O(n2)

[2] O(n2m2) O(n3) O(n) O(n4m2 + n5) O(n2)

This Paper O(m2n3 + n4 log(|F|)) O(m2n3 + n4 log(|F|)) 58 O(m2n5 + n6 log(|F|)) O(n)

From the table, we find that our protocol incurs much lesser communication complexity than
the protocol of [3], while keeping round complexity same. But the protocols of [13, 9, 2] provides
slightly better communication complexity than ours at the cost of increased round complexity. Round
complexity and communication complexity are two important parameters of any distributed protocol.
If we ever hope to practically implement MPSI protocols, then we should look for a solution, which
tries to simultaneously optimize both these parameters. In this context, our MPSI protocol fits the
bill more appropriately, then the protocols mentioned in the table.

Though our main motive in this paper is to present a clean solution for MPSI problem, as a bi-
product we have shown that our proposed protocol simultaneously optimizes both communication and
round complexity, whereas existing general MPC protocols (when applied to solve MPSI) optimize only
one of these two parameters.

3.2 Overview of Our Protocol

As mentioned earlier, our MPSI protocol tries to securely compute the function given in (1). Our
protocol is divided into three phases, namely (a) Input and Preparation phase; (b) Computation Phase
and (c) Output Phase. In the Input and Preparation phase, the parties t-share the coefficients of their
input polynomials. Moreover, the parties jointly generate the t-sharing of the secret random r(i)(x)
polynomials. To achieve the first task, we design a new protocol called 1DShare, which further uses
a new information checking protocol (ICP) called Multi-Secret-Multi-Receiver-ICP. The second task is
achieved by a sub-protocol called Random. In the Computation Phase, the parties generate the t-sharing
of the coefficients of r(i)(x)f (i)(x). For this, we use sub-protocol Mult, which is a combination of few
existing ideas from the literature and few new ideas presented in this paper. Finally, in the Output
Phase, the coefficients of F (x) are reconstructed by each party, by using sub-protocol ReconsPublic.
In the next section, we give the technical details of each of the above mentioned sub-protocols.

4 Tools Used

Here we present a number of sub-protocols each solving a specific task. Finally, we combine them to
design our MPSI protocol. All the sub-protocols that are presented here are designed to concurrently
deal with ℓ ≥ 1 values. In the literature, the sub-protocols that achieve the same functionality as
ours, were designed to deal with single value at a time. Our sub-protocols, concurrently dealing with ℓ

values, are better in terms of communication complexity, than ℓ concurrent executions of the existing
sub-protocols working with single value. Thus, our sub-protocols harness the advantage offered by
dealing with multiple values concurrently (this fact will be more clear in the following sections).

For convenience, we analyze the round complexity and communication complexity of the sub-
protocols assuming the existence of physical broadcast channel in the system. While presenting the
sub-protocols, we assume that all computations and communications are done over a finite field F,
where F = GF (2κ) and κ is the error parameter. Thus, each field element can be represented by
log(F) = O(κ) bits. Moreover, without loss of generality, we assume that n = poly(κ).

4.1 Information Checking Protocol and IC Signatures

The Information Checking Protocol (ICP) is a tool for authenticating messages in the presence of
computationally unbounded corrupted parties. The notion of ICP was first introduced by Rabin et.al
[19]. As described in [19, 8], an ICP is executed among three parties: a dealer D, an intermediary
INT and a verifier R. The dealer D hands over a secret value s ∈ F to INT . At a later stage, INT is
required to hand over s to R and convince R that s is indeed the value which INT received from D.

5

The basic definition of ICP involves only a single verifier R and deals with only one secret s [19, 8].
We extend this notion to multiple verifiers, where all the n parties in P act as verifiers. Thus our ICP
is executed among three entities: the dealer D ∈ P, an intermediary INT ∈ P and entire set P acting
as verifiers. This will be later helpful in using ICP as a tool in our MPSI protocol. Moreover, we
extend our ICP to deal with multiple secrets, denoted by S, which contains ℓ ≥ 1 secret values. Thus,
our ICP is executed with respect to multiple verifiers and deals with multiple secrets concurrently.
We call our ICP as Multi-Secret-Multi-Receiver-ICP. Now similar to the ICP defined in [19, 8], our
Multi-Secret-Multi-Receiver-ICP is a sequence of following three protocols:

1. Distr(D, INT,P, S): is initiated by D, who hands over secret S = [S(1) . . . S(ℓ)], containing ℓ ≥ 1
elements from F to INT . In addition, D hands over some authentication information to INT and
verification information to the individual parties (verifiers) in P.

2. AuthVal(D, INT,P, S): is initiated by INT to ensure that in protocol RevealVal, secret S held by
INT will be accepted by all the (honest) parties (verifiers) in P.

3. RevealVal (D, INT,P, S): is carried out by INT and the verifiers in P. Here INT produces
S, along with authentication information and the individual verifiers in P produce verification
information. Depending upon the values produced by INT and the verifiers, either S is accepted or
rejected by all the parties/verifiers.

The authentication information, along with S, which is held by INT at the end of AuthVal is
called D’s IC signature on S, denoted as ICSig(D, INT, S). Multi-Secret-Multi-Receiver-ICP satisfies
the following properties (which are almost same as the properties, satisfied by the ICP of [19, 8]):

1. If D and INT are uncorrupted, then S will be accepted in RevealVal by each honest verifier.

2. If INT is uncorrupted, then at the end of AuthVal, INT knows an S, which will be accepted in
RevealVal by each honest verifier, except with probability 2−Ω(κ).

3. If D is uncorrupted, then during RevealVal, with probability at least 1 − 2−Ω(κ), every S′ 6= S

produced by a corrupted INT will be rejected by each honest verifier.

4. If D and INT are uncorrupted, then at the end of AuthVal, At has no information about S.

We now present our novel protocol Multi-Secret-Multi-Receiver-ICP, with n = 3t + 1. The high level
idea of the protocol is as follows: D selects a random polynomial F (x) of degree ℓ + nκ over F, whose
lower order ℓ coefficients are elements of S. In addition, D also selects a random polynomial R(x) of
degree ℓ + nκ over F, which is independent of F (x). D hands over F (x) and R(x) to INT . D then
associates κ random evaluation points with each verifier Pi and gives the value of F (x), R(x) at those
evaluation points to Pi. This prevents with very high probability, a corrupted INT , to produce an
incorrect F (x) during RevealVal, without being un-noticed by an honest verifier Pi. This ensures third
property of ICP. In order to ensure second property, an honest INT has to ensure that his F (x) is
consistent with the evaluation points of the honest verifiers. For this, INT and the verifiers interact in
a zero knowledge fashion and check the consistency of F (x) and secret evaluation points. To maintain
the secrecy of S during the zero knowledge interaction, INT uses the R(x) polynomial. Due to space
constraints, we prove the properties of protocol Multi-Secret-Multi-Receiver-ICP in APPENDIX A
and only state the following lemma.

Lemma 1 Protocol Multi-Secret-Multi-Receiver-ICP takes five rounds and correctly generates IC sig-
nature on ℓ field elements, by privately communicating O((ℓ+nκ)κ) bits and broadcasting O((ℓ+nκ)κ)
bits. The protocol works correctly, except with error probability of 2−Ω(κ).

Important Notation: In the rest of the paper, whenever we say that D hands over ICSig(D, INT, S)
to INT , we mean that Distr and AuthVal are executed in the background. Similarly, INT reveals
ICSig(D, INT, S) can be interpreted as INT , along with other parties, invoking RevealVal.

6

Multi-Secret-Multi-Receiver-ICP(D, INT,P , ℓ, S = (s(1), . . . , s(ℓ)))

Distr(D, INT,P , ℓ, S) Round 1: D selects a random polynomial F (x) of degree ℓ + nκ over F, whose lower order
ℓ coefficients are elements of S. In addition, D selects another random polynomial R(x) of degree ℓ + nκ over F,
which is independent of F (x). D also selects nκ random, non-zero, distinct evaluation points from F, denoted by
αi,1, αi,2, . . . , αi,κ, for 1 ≤ i ≤ n. D privately gives F (x) and R(x) to INT . To verifier Pi ∈ P , D privately gives
(αi,l, ai,l, bi,l), for l = 1, . . . , κ, where ai,l = F (αi,l) and bi,l = R(αi,l).

AuthVal(D, INT,P , ℓ, S) Round 2: INT chooses a random d ∈ F \ {0} and broadcasts (d,B(x) = F (x) + dR(x)).
Parallely, each verifier Pi ∈ P broadcasts a random subset of indices l1, ..., l κ

2
, the evaluation points αi,l1 , ..., αi,l κ

2

and the values ai,l1 , ..., ai,l κ
2

and bi,l1 , ..., bi,l κ
2
. Notice that each verifier randomly selects the subset of indices

l1, ..., l κ
2
, independent of other verifiers.

Round 3: D checks if for at least 2t + 1 verifiers Pi, it holds that ai,l + dbi,l = B(αi,l), for all l in the set of random
indices broadcasted by Pi in Round 2. If the above condition is not satisfied for at least 2t + 1 verifiers, then D

broadcasts the polynomial F (x).

Local Computation (by each party): if F (x) is broadcasted in Round 3, then INT replaces the F (x) received
from D during Round 1, with the F (x) which is broadcasted in Round 3. Accordingly, each verifier Pi adjust his
ai,l (as received in Round 1), for l = 1, . . . , κ, such that F (αi,l) = ai,l holds. else say that verifier Pi accepts INT

if ai,l + dbi,l = B(αi,l), for all l in the set of random indices, broadcasted by Pi in Round 2.

The polynomial F (x) is called D’s IC signature on S = (s(1), . . . , s(ℓ)) given to INT , which is denoted by
ICSig(D, INT, S).

RevealVal(D, INT,P , ℓ, S): (a) Round 4: INT broadcasts F (x); (b) Round 5: Each verifier Pi ∈ P broadcasts all
the evaluation points αi,l which were not broadcasted during Round 2 and ai,l corresponding those indices.

Local Computation (by each party): Say that verifier Pi re-accepts INT if for one of the newly revealed (by
Pi) points, it holds that ai,l = F (αi,l). If there are at least t + 1 verifiers who re-accepts INT , then accept the lower
order ℓ coefficients of F (x) as S = (s(1), . . . , s(ℓ)). In this case, we say that D’s signature on S is correct. Else reject
F (x) broadcasted by INT and we say that INT has failed to produce D’s signature.

Remark 2 (Comparison with Existing ICP) The current best known ICP is due to [8], which
privately communicates and broadcasts O(nκ) bits, to generate IC signature on a single secret. 6 Had
we executed ℓ times the ICP of [8], dealing with single secret, the communication complexity would
turn out to be O(ℓnκ) bits (both private and broadcast). However, the communication complexity of
Multi-Secret-Multi-Receiver-ICP considering all the ℓ secrets concurrently is O((ℓ + nκ)κ) bits (both
private and broadcast). This clearly shows that if ℓ is significantly large, which is the case in our
MPSI protocol, then executing a single instance of Multi-Secret-Multi-Receiver-ICP, dealing with multi-
ple secrets concurrently, is advantageous over executing multiple instances of ICP of [8], dealing with
single secret. The same principle holds for other sub-protocols, which are described in the sequel.

4.2 Generating ℓ Length Random Vector

We now present a protocol called RandomVector(P, ℓ), which allows the parties in P to jointly generate
a vector, containing ℓ random elements from F. Following the idea of [9], protocol RandomVector uses
Vandermonde Matrix and its capability to extract randomness. Protocol RandomVector also uses the
four round perfect VSS (verifiable secret sharing) protocol of [12] (see Fig 2 of [12]) as black box.
The perfect VSS (see the definition of VSS in Section 2.1 of [12]) with n ≥ 3t + 1 parties consists of
two phases, namely Sharing Phase and Reconstruction Phase. The Sharing Phase takes four rounds and
allows a dealer D (which can be any party from the set of n parties) to verifiably share a secret s ∈ F

by privately communicating O(n2 log |F|) bits and broadcasting O(n2 log |F|) bits where |F| ≥ n. The
Reconstruction Phase takes single round and allows all the (honest) parties to reconstruct the secret s

(shared by D in Sharing Phase) by broadcasting O(n log |F|) bits in total. Notice that, in our context,
|F| = 2κ ≥ n. The VSS protocol has an important property that once D (possibly corrupted) shares a
secret s during Sharing Phase, then D is committed to s. Later, in the Reconstruction Phase, irrespective
of the behavior of the corrupted parties, the same s will be reconstructed. Thus a corrupted D will
not be able to change his commitment from s to any other value, with the help of corrupted parties,
during Reconstruction Phase.

6Though the ICP of [8] is designed with n = 2t + 1, the protocol when executed with n = 3t + 1, will result in the
same communication complexity.

7

(r(1), . . . , r(ℓ)) = RandomVector(P , ℓ)

1. Every party Pi ∈ P selects L = ⌈ ℓ
2t+1

⌉ random elements r(1,Pi), . . . , r(L,Pi) from F.

2. Every party Pi ∈ P as a dealer invokes Sharing Phase of four round VSS protocol of [12] with n ≥ 3t + 1 for
sharing each of the values r(1,Pi), . . . , r(L,Pi).

3. For reconstructing the values r(1,Pi), . . . , r(L,Pi) (shared by Pi in Sharing Phase), the Reconstruction Phase of
four round VSS of [12] with n ≥ 3t + 1 is invoked for L times separately. Now corresponding to every Pi ∈ P ,
the values r(1,Pi), . . . , r(L,Pi) are public.

4. Now parties compute (r(1,1), . . . , r(1,2t+1)) = (r(1,P1), . . . , r(1,Pn))V , (r(2,1), . . . , r(2,2t+1)) =
(r(2,P1), . . . , r(2,Pn))V, . . ., (r(L,1), . . . , r(L,2t+1)) = (r(L,P1), . . . , r(L,Pn))V . Here V is a n × (2t + 1)
publicly known Vandermonde matrix over F.

The values r(1,1), . . . , r(1,2t+1), . . . , r(L,1), . . . , r(L,2t+1) constitute the elements of ℓ length random vector.

As mentioned above, protocol RandomVector uses the properties of Vandermonde matrix to generate
the random vector. We now provide a brief discussion on Vandermonde matrix.

Vandermonde Matrix and Randomness Extraction [20, 9]: Let β1, . . . , βc be distinct and
publicly known elements from F. We denote an (r × c) Vandermonde matrix by V (r,c), where for
1 ≤ i ≤ c, the ith column of V (r,c) is (β0

i , . . . , βr−1
i)T . The idea behind extracting randomness using

V (r,c) is as follows: without loss of generality, assume that r > c. Moreover, let (x1, . . . , xr) be such
that (a) any c elements of it are chosen uniformly at random from F and are unknown to adversary
At, (b) the remaining r − c elements are chosen with an arbitrary distribution from F, independent
of the c elements, and are also known to At . Now if we compute (y1, . . . , yc) = (x1, . . . , xr)V , then
(y1, . . . , yc) is a random vector of length c unknown to At, extracted from (x1, . . . , xr) [20, 9]. This
principle is used in protocol RandomVector.

Lemma 2 Protocol RandomVector generates ℓ length random vector in five rounds and privately com-
municates O(ℓn2κ) bits and broadcasts O(ℓnκ) bits.

Proof: Communication and round complexity is easy to understand. The correctness follows from
the correctness of the four round perfect VSS of [12] and the above discussion. 2

4.3 Unconditional Verifiable Secret Sharing and Reconstruction

Definition 1 (d-1D-sharing [1]) : A value s is correctly d-1D-shared among the parties in P if
every honest party Pi ∈ P is holding a share si of s, such that there exists a degree-d polynomial f(x)
over F with f(0) = s and f(i) = si for every Pi ∈ P. The vector (s1, s2, . . . , sn) of shares is called a
d-sharing of s and is denoted by [s]d. We may skip the subscript d when it is clear from the context.

If a secret s is d-1D-shared by D ∈ P, then we denote it as [s]Dd . In the sequel, we describe a new
protocol called 1DShare, which allows a dealer D ∈ P to t-1D-share ℓ secret values s(1), . . . , s(ℓ), where
ℓ ≥ 1, with very high probability. If D behaves correctly during the protocol, then each honest Pi ∈ P

will hold ith shares s
(1)
i , . . . , s

(ℓ)
i , of the secrets s(1), . . . , s(ℓ) (respectively), at the end of the protocol.

Notice that the desired sharing for each s(i) (separately) can be produced using a perfect (i.e., without
any error) VSS protocol with n ≥ 3t + 1 [12, 10, 14]. However, this will involve more communication
complexity than 1DShare which performs the same task with less communication complexity (but with
a negligible error probability). 1DShare achieves this by incorporating the ideas of [9] and using Multi-

Secret-Multi-Receiver-ICP as building block.
The goal of 1DShare is as follows: (a) If D is honest, then the protocol generates [s(1)]t, . . . , [s

(ℓ)]t
with very high probability, such that the secrets s(1), . . . , s(ℓ) remain information theoretically secure
from At. (b) If D is corrupted and has not generated t-1D-sharing of secrets, then with high probability,
D will be detected as corrupted during a public verification process. Moreover, every honest party
accepts a pre-defined t-1D-sharing of ℓ 1’s, namely [1]t, [1]t, . . . , [1]t (ℓ times), on behalf of D.

Informally, the protocol works as follows: D chooses ℓ+ 1 random polynomials f (0)(x), . . . , f (ℓ)(x)
over F, each of degree t, such that f (0)(0) = r and f (l)(0) = s(l) for l = 1, . . . , ℓ. Here r is a random
non-zero element from F. D then hands over his IC signature on ith points of f (l)(x) polynomials
concurrently to party Pi. After this, the parties jointly produce a non-zero random value z. Now D

is asked to broadcast a linear combination of the ℓ + 1 polynomials, where the scalars of the linear

8

combination are function of z. At the same time, each party Pi is asked to broadcast his corresponding
linear combination of points. Ideally, the linear combination of points, broadcasted by the individual
parties, should lie on the linear combination of the polynomial broadcasted by D. If this happens,
then with very high probability, D has correctly t-1D-shared each s(l). Otherwise, there is a party,
say Pi, for which the above condition is not satisfied. In this case, Pi is asked to reveal D’s signature
on the ith points of f (l)(x) polynomials that he has received from D. In case Pi is able to correctly
produce the signature, D is detected to be corrupted and the protocol terminates, with each party
assuming predefined t-1D-sharing of ℓ 1’s, namely [1]t, [1]t, . . . , [1]t, on behalf of D.

Lemma 3 In protocol 1DShare, if D is honest, then t-1D-sharing of s(1), . . . , s(ℓ) are generated, except
with error probability of 2−Ω(κ). Moreover, At will have no information about the secrets. On the other
hand, if D is corrupted and any of the values r, s(1), . . . , s(ℓ) is not t-1D-shared, then D will be caught,
except with error probability of 2−Ω(κ). The protocol takes eleven rounds, privately communicates
O((ℓn + n2κ)κ) bits and broadcasts O((ℓn + n2κ)κ) bits.

Proof (sketch): The communication complexity and number of rounds can be checked easily by
inspection. We now prove the correctness. If D is honest, then f(i) = yi for all honest Pi’s. However,
a corrupted party Pi may broadcast incorrect y′i 6= yi , such that y′i 6= f(i) and can forge honest

D’s IC signature on the corresponding incorrect S′
i 6= Si, where S′

i = (r′i, s
′(1)
i , . . . , s′

(ℓ)
i) and r′i 6= ri

or/and s′
(l)
i 6= s

(l)
i , for l = 1 . . . ℓ. In this case, everybody will reject the sharing done by D. However,

from the properties of Multi-Secret-Multi-Receiver-ICP protocol, the above event can happen with error
probability 2−Ω(κ). The secrecy of the secrets s(1), s(2), . . . , s(ℓ) for an honest D, follows from the fact
that At will have t shares for each s(i), 1 ≤ i ≤ n. In addition, the value f(0) is blinded with a random
value r, chosen by D. Thus, At will have no information about the secrets.

Next, we consider the case, when D is corrupted and the sharing of at least one of the values
r, s(1), . . . , s(ℓ) is not a correct t-1D-sharing, i.e. the shares of the honest parties lie on a polynomial
of degree higher than t. In this case, it can be shown that with very high probability, the polynomial
fdef (x), defined by the yi’s, corresponding to the honest parties, will be of degree more than t (see
APPENDIX B). Now if fdef (x) is of degree more than t, then for at least one honest party Pi,
it will hold that f(i) 6= yi. Moreover, from the properties of Multi-Secret-Multi-Receiver-ICP, the
honest Pi will be able to correctly produce ICSig(D,Pi, Si), except with probability 2−Ω(κ), where

Si = (ri, s
(1)
i , . . . , s

(ℓ)
i). Furthermore, everybody will verify that f(i) 6= yi(= ri+

∑ℓ
l=1 s

(l)
i zl) and hence

will reject the sharings done by D. For complete proof, see APPENDIX B. 2

([s(1)]Dt , . . . , [s(ℓ)]Dt) = 1DShare(D,P , ℓ, s(1), s(2), . . . , s(ℓ))

1. For l = 1, . . . , ℓ, D picks a random polynomial f (l)(x) over F of degree-t, with f (l)(0) = s(l). D also chooses a
random polynomial f (0)(x) of degree-t with f (0)(0) = r where r is a random, non-zero element from F. For i =

1, . . . , n, let Si = (ri, s
(1)
i , s

(2)
i , . . . , s

(ℓ)
i), where ri = f (0)(i) and s

(l)
i = f (l)(i). D hands over ICSig(D, Pi, Si)

to party Pi.

2. All the parties in P invoke RandomVector(P , 1) to generate a non-zero random value z ∈ F.

3. D broadcasts the polynomial f(x) = f (0)(x) +
Pℓ

l=1 f (l)(x)zl =
Pℓ

l=0 f (l)(x)zl. Parallely, every party Pi

computes and broadcasts yi = ri +
Pℓ

l=1 s
(l)
i zl.

4. If the polynomial f(x) broadcasted by D is of degree more than t, then each party agrees that D is corrupted
and outputs t-1D-sharing of ℓ 1’s i.e [1]t, [1]t, . . . , [1]t. The protocol terminates here.

5. Every party checks whether f(i)
?
= yi for all i = 1, . . . , n. If yes then everybody accepts the t-1D-sharings

[s(1)]t, [s
(2)]t, . . . , [s

(ℓ)]t and the protocol terminates. Otherwise, let Pi ∈ P , such that f(i) 6= yi. In this

case, Pi reveals ICSig(D,Pi, Si). If Pi succeeds to prove D’s signature on Si = (ri, s
(1)
i , . . . , s

(ℓ)
i) and f(i) 6=

ri+
Pℓ

l=1 s
(l)
i zl, then each party agrees that D is corrupted and outputs t-1D-sharing of ℓ 1’s i.e [1]t, [1]t, . . . , [1]t

(ℓ times) and the protocol terminates here. We say that Pi has raised a valid complaint against D. But if
the signature is invalid then ignore Pi’s complaint against D and everybody accepts [s(1)]t, . . . , [s

(ℓ)]t.

Reconstruction of t-1D-Sharing: We now present a protocol called ReconsPublic, that reconstruct
a secret s, given [s]t. In the protocol, every party broadcasts his share of s. Now out of these n

shares, at most t could be corrupted. But since n ≥ 3t+1, by applying Reed-Solomon error correction
algorithm (e.g. Berlekamp Welch Algorithm [18]), s can be recovered.

9

s = ReconsPublic(P , [s]t)

Each party Pi broadcasts his share si of s. The parties apply error correction to reconstruct s from the n shares.

Lemma 4 ReconsPublic takes one round and broadcasts O(nκ) bits.

Important Notation: We now define few notations which will be used heavily in the subsequent
sections (these notations are also commonly used in the literature). By saying that the parties in
P compute (locally) ([y(1)]d, . . . , [y

(ℓ′)]d) = ϕ([x(1)]d, . . . , [x
(ℓ)]d) (for any function ϕ : Fℓ → Fℓ′), we

mean that each Pi computes (y
(1)
i , . . . , y

(ℓ′)
i) = ϕ(x

(1)
i , . . . , x

(ℓ)
i). Note that applying an affine (linear)

function ϕ to a number of d-1D-sharings, we get d-1D-sharings of the outputs. So by adding two
d-1D-sharings of secrets, we get d-1D-sharing of the sum of the secrets, i.e. [a]d + [b]d = [a + b]d.
However, by multiplying two d-1D-sharings of secrets, we get 2d-1D-sharing of the product of the
secrets, i.e. [a]d[b]d = [ab]2d. ♦

4.4 Upgrading t-1D-sharing to t-2D-sharing

Definition 2 We say that a value s is correctly d-2D-shared among the parties in P, if there exists
degree-d polynomials f, f1, f2 . . . , fn with f(0) = s and for i = 1, . . . , n, f i(0) = f(i). Moreover, every
(honest) party Pi ∈ P holds a share si = f(i) of s, the polynomial f i(x) for sharing si and share-share
sji = f j(i) for the share sj of every other (honest) party Pj . We denote d-2D-sharing of s as [[s]]d.

If a secret s is d-2D-shared by a party D ∈ P, then we denote it as [[s]]Dd . Notice that if s is d-2D-shared,
then its ith share si is d-1D-shared. We now present a new protocol, called Upgrade1Dto2D for upgrad-
ing t-1D-sharing to t-2D-sharing. Specifically, given t-1D-sharing of ℓ secrets, namely [s(1)]t, . . . , [s

(ℓ)]t,
Upgrade1Dto2D, outputs t-2D-sharing [[s(1)]]t, [[s

(2)]]t, . . . , [[s
(ℓ)]]t, except with probability of 2−Ω(κ).

Moreover, At learns nothing about the secrets during Upgrade1Dto2D. Furthermore, if a party tries
to cheat during the protocol, then with very high probability, he will be caught.

([[s(1)]]t, [[s
(2)]]t, . . . , [[s

(ℓ)]]t) = Upgrade1Dto2D(P , ℓ, [s(1)]t, [s
(2)]t, . . . , [s

(ℓ)]t)

1. Each Pi ∈ P invokes 1DShare(Pi,P , 1, s(0,Pi)) to generate [s(0,Pi)]t, where s(0,Pi) ∈ F \ {0} is a random value.

2. The parties in P computes [s(0)]t =
Pn

j=1[s
(0,Pj)]t.

3. Now every Pi invokes 1DShare(Pi,P , ℓ + 1, s
(0)
i , s

(1)
i , . . . , s

(ℓ)
i) to generate [s

(0)
i]t, [s

(1)
i]t, . . . , [s

(ℓ)
i]t, where

s
(0)
i , s

(1)
i , . . . , s

(ℓ)
i are the ith shares of secrets s(0), s(1), . . . , s(ℓ) respectively.

4. Now to detect the parties Pk (at most t), who have generated [s
(0)
k]t, [s

(1)
k]t, . . . , [s

(ℓ)
k]t such that s

(l)
k 6= s

(l)
k

for some l ∈ {0, 1, . . . , ℓ}, the parties in P jointly generate an ℓ length random vector (r(1), . . . , r(ℓ)) by

invoking Protocol RandomVector(P , ℓ). Now all the parties publicly reconstruct si = s
(0)
i +

Pℓ
l=1 r(l)s

(l)
i and

s = s(0) +
Pℓ

l=1 r(l)s(l) by executing following steps:

(a) The parties in P compute [si]t = [s
(0)
i]t +

Pℓ
l=1 r(l)[s

(l)
i]t and invoke ReconsPublic(P , [si]t) to publicly

reconstruct si, for i = 1, . . . , n.

(b) Every party apply Reed-Solomon error correction algorithm (e.g. Berlekamp Welch Algorithm [18]) to
s1, s2, . . . , sn, to recover s. Reed-Solomon error correction algorithm also points out the corrupted shares.
Hence if si is pointed as a corrupted share, then [s

(0)
i]t, [s

(1)
i]t, . . . , [s

(ℓ)
i]t are ignored by every party.

5. Output [[s(1)]]t, [[s
(2)]]t, . . . , [[s

(ℓ)]]t.

Lemma 5 Protocol Upgrade1Dto2D upgrades t-1D-sharing of ℓ secrets to t-2D-sharing, except with
negligible error probability. The protocol consumes twenty eight rounds, privately communicates O((ℓn2+
n3κ)κ) bits and broadcasts O((ℓn2 + n3κ)κ) bits. Moreover, At learns nothing about the secrets.

Proof: The communication and round complexity of the protocol is easy to follow. We now prove
the correctness. Provided ℓ t-1D-sharing [s(1)]t, [s

(2)]t, . . . , [s
(ℓ)]t, every honest party Pi correctly t-1D-

shares his shares s
(0)
i , s

(1)
i , . . . , s

(ℓ)
i . Now for every honest party Ph, the value sh = s

(0)
h +

∑ℓ
l=1 r(l)s

(l)
h

will be reconstructed correctly, where sh is the hth share of s = s(0) +
∑ℓ

l=1 r(l)s(l). But a corrupted

party Pc may share s
(0)
c , s

(1)
c , . . . , s

(ℓ)
c with s

(l)
c 6= s

(l)
c for some l ∈ {0, 1, . . . , ℓ}. In this case with very

high probability sc = s
(0)
c +

∑ℓ
l=1 r(l)s

(l)
c will not be equal to sc (which is the actual cth share of

10

s) as the ℓ length vector (r(1), . . . , r(ℓ)) is chosen uniformly at random. Hence Reed-Solomon Error
correction algorithm will point s̄c as a corrupted share, in which case Pc will be caught. It is easy to
see that at any stage of the protocol, At learns not more than t shares for each s(l), 1 ≤ l ≤ ℓ. Hence
all the secrets will be secure. 2

Remark 3 (Comparison with Existing Protocols) In [1], the authors have given a protocol to
upgrade d-1D-Sharing to d-2D-Sharing, where n = 2t + 1. However, the protocol is non-robust. That
is, if all the n parties behave honestly, then the protocol will perform the upgradation. Otherwise,
the protocol will fail to do the upgradation, but will output a pair of parties, of which at least one is
corrupted. On the other hand, our upgradation protocol is designed with n = 3t + 1 and hence will
always perform the upgradation successfully, irrespective of the behavior of the corrupted parties.

4.5 Proving c = ab

Given t-1D-sharing of ℓ pairs, ([a(1)]Dt , [b(1)]t), . . . , ([a
(ℓ)]Dt , [b(ℓ)]Dt), let c(l) = a(l)b(l) for l = 1, . . . , ℓ.

D ∈ P now wants to generate [c(1)]Dt , . . . , [c(ℓ)]Dt such that the (honest) parties in P know that the
shared cl values satisfy c(l) = a(l)b(l) for l = 1, . . . , ℓ. If D is honest, then during this process all a(l),
b(l) and c(l) values should remain secure.

We propose a protocol ProveCeqAB to achieve the above task. The idea of the protocol is inspired
from [8], where a protocol for the same purpose is proposed, with a single pair of values, namely (a, b).
Our protocol concurrently deals with ℓ pairs, which leads to a gain in communication complexity. Our
protocol uses 1DShare as a building block.

We try to explain the idea of the protocol with a single pair (a, b). According to the problem
definition, D has generated [a]Dt and [b]Dt . Now he wants to generate [c]Dt , where c = ab, without
leaking any additional information about a, b and c. For this, he first selects a random non-zero
β ∈ F and generates [c]Dt , [β]Dt and [βb]Dt . Now all the parties in P jointly generate a random value
r and compute [Y]t = r[a]Dt + [β]Dt . D then broadcasts the value Λ = ra + β, while the parties
publicly reconstruct Y . Everybody then verifies whether Y is same as Λ. If D has correctly generated
[c]Dt , [β]Dt and [βb]Dt , then Y = Λ will hold. Otherwise all the parties will conclude that D is corrupted
and he fails to prove ’c = ab’. However, if Y = Λ, then the parties proceed further and compute
[X]t = Y [b]Dt − [βb]Dt − r[c]Dt . The parties then publicly reconstruct X. Now again if D has correctly
generated [c]Dt , [β]Dt and [βb]Dt , then X = Y b − βb − rc = 0 will hold. So after reconstructing X,
every body checks whether X = 0. If X = 0 then everybody accepts [c]Dt as valid t-1D-sharing of ab.
Otherwise all the parties will conclude that D is corrupted and he fails to prove ’c = ab’.

The error probability of the protocol is negligible because of the random r, generated by all the
parties jointly. Specifically, though a corrupted D may share βb 6= βb or c 6= c, X can be zero when
βb + rc = βb + rc. However this equality is satisfied for only one value of r. Since r is randomly
generated, independent of the sharings done by D, the probability that the equality will hold is 1

|F|
which is negligibly small. The secrecy follows from the fact that the broadcasted value Λ is randomly
distributed. Now we can extend the above idea for the ℓ pairs (a(l), b(l)) concurrently. As the protocol
is based on existing idea of [8], we present it in APPENDIX C.

Lemma 6 In protocol ProveCeqAB, if D does not fail, then (a(l), b(l)), c(l) satisfies c(l) = a(l)b(l) for
l = 1, . . . , ℓ, except with error negligible probability. ProveCeqAB takes eighteen rounds, privately
communicates O((ℓn + n2κ)κ) bits and broadcasts O((ℓn + n2κ)κ) bits. Moreover, if D is honest then
At learns no information about a(l), b(l) and c(l), for 1 ≤ l ≤ ℓ.

4.6 Multiplication

Given t-1D-sharing of ℓ pairs of secrets, say ([a(1)]t, [b
(1)]t), . . . , ([a

(ℓ)]t, [b
(ℓ)]t), we now present a

protocol called Mult which allows the parties to compute t-1D-sharing [c(1)]t, . . . , [c
(ℓ)]t such that

c(l) = a(l)b(l) for l = 1, . . . , ℓ. Our protocol is motivated from the protocol of [8], which deals with
a single pair of t-1D-sharing. However, our protocol concurrently deals with ℓ pairs of t-1D-sharing.
This leads to a gain in communication complexity.

11

We explain the idea considering a single pair, say (a, b). Given ([a]t, [b]t), the parties want to
compute [c]t. For that the parties first compute [c]2t = [a]t[b]t. So every party Pi now has aibi,
where ai and bi are the ith shares of a and b. Now every party Pi generates [aibi]

Pi
t by execut-

ing ProveCeqAB (though the corrupted parties may fail to generate [aibi]
Pi
t). Since a1b1, . . . , anbn

are n points on a 2t degree polynomial, say C(x), whose constant term is c, by Lagrange interpo-
lation formula [7], c can be computed as c =

∑n
i=1 ri(aibi) where ri =

∏n
j=1,j 6=i

−j
i−j

. The vector
(r1, . . . , rn) is called recombination vector [7] which is public and known to every party. So for short-
hand notation, we write c = Lagrange(a1b1, . . . , anbn) =

∑n
i=1 ri(aibi). Now all parties compute

[c]t = Lagrange([a1b1]t, . . . , [anbn]t) =
∑n

i=1 ri[aibi]t, to obtain the desired output. Notice that since
C(x) is of degree 2t, we need 2t + 1 parties to successfully generate aibi value (a 2t degree polyno-
mial requires 2t + 1 points on it to be interpolated correctly). So, even if t corrupted parties fail to
generate [aibi]t, our protocol will work. Our protocol Mult follows the above technique for ℓ pairs
simultaneously. The protocol is given in APPENDIX C.

Lemma 7 Except with negligible error probability, Mult produces [c(1)]t, . . . , c
(ℓ)]t from ℓ pairs ([a(1)]t,

[b(1)]t), . . . , ([a
(ℓ)]t, [b

(ℓ)]t). The protocol takes 46 rounds, privately communicates O((ℓn2 + n3κ)κ) bits
and broadcasts O((ℓn2+n3κ)κ) bits. Moreover, At learns nothing about c(l), a(l) and b(l), for 1 ≤ l ≤ ℓ.

4.7 Generating Random t-1D-Sharing

We now present a protocol called Random(P, ℓ), which allows the parties in P to jointly generate ℓ

random t-1D-sharings, [r(1)]t, . . . , [r
(ℓ)]t, where each r(i) is a random element in F.

Random(P , ℓ)

Every party Pi ∈ P invokes 1DShare(Pi,P , ℓ, r(1,Pi), . . . , r(ℓ,Pi)) to verifiably t-1D-share ℓ random values
r(1,Pi), . . . , r(ℓ,Pi) from F. Now all the parties in P jointly computes [r(l)]t =

Pn
i=1[r

(l,Pi)]t for l = 1, . . . , ℓ

Lemma 8 With overwhelming probability, Random generates ℓ random t-1D-sharing [r(1)]t, . . . , [r
(ℓ)]t

in 11 rounds, by privately communicating O((ℓn2 +n3κ)κ) bits and broadcasting O((ℓn2 +n3κ)κ) bits.

5 Unconditionally Secure MPSI Protocol with n = 3t + 1

We now present our unconditionally secure MPSI protocol with n = 3t + 1. We first present the
protocol for Input and Preparation Phase, where t-1D-sharing of the coefficients of r(i)(x) and f (i)(x)
polynomials are generated.

Input and Preparation Phase

1. Every Pi ∈ P represents his set Si = {e(1)
i , e

(2)
i , . . . , e

(m)
i } by a polynomial f (Pi)(x) of degree m

such that f (Pi)(x) = (x − e
(1)
i) . . . (x − e

(m)
i) = a(0,Pi) + a(1,Pi)x + . . . + a(m,Pi)xm. Pi then invokes

1DShare(Pi,P , m, a(0,Pi), . . . , a(m−1,Pi)) to generate [a(0,Pi)]t, . . . , [a
(m−1,Pi)]t. Since a(m,Pi) = 1 always, every

party in P assumes a predefined t-1D-sharing for 1, namely [1]t on behalf of a(m,Pi) (see Remark 4).

2. The parties in P invoke n times Random(P ,m+1) parallely, where ith invocation of Random(P ,m+1) generates
m+1 t-1D-sharings [b(0,i)]t, . . . , [b

(m,i)]t. Now the parties assume that r(i)(x) = b(0,i) + b(1,i)x + . . . + b(m,i)xm

for i = 1, . . . , n. This step can be executed parallely with step 1.

Remark 4 In any MPSI protocol that computes the intersection of the sets of the parties using the
function given in (1), At may disrupt the security of the protocol by forcing a corrupted party to input
a zero polynomial representing his set. This is because At will come to know the intersection of the
sets of the remaining parties at the end of computation of the protocol [16, 15]. So to stop a corrupted
party to input a zero polynomial, the authors of [16, 15] specified the following trick. They have noticed

that the coefficient of mth degree term in every Pj ’s polynomial f (Pj)(x) =
∏m

k=1(x− e
(k)
j) is 1 always.

Hence, every party assumes a predefined [1]t on behalf of the mth coefficient of every parties f (Pj)(x)
polynomial (instead of allowing individual parties to t-1D-share the mth coefficient). This stops the
corrupted parties to commit a zero polynomial.

12

Theorem 1 Input and Preparation phase takes 11 rounds (step 1 and step 2 can be executed parallely),
privately communicates O((mn3 + n4κ)κ) bits and broadcasts O((mn3 + n4κ)κ) bits.

After input and preparation phase, the parties jointly compute the coefficients of F (x) =
∑n

i=1 r(i)(x)f (Pi)(x)
in a shared manner in Computation Phase. In Output Phase, the coefficients F (x) are publicly recon-
structed. Then each party locally evaluates F (x) at each element of his private set. All the elements
at which F (x) = 0 belongs to the intersection of the n sets, with very high probability.

Theorem 2 Computation and Output phase takes 47 rounds, privately communicates O((m2n3 +
n4κ)κ bits and broadcasts O((m2n3 + n4κ)κ bits.

Theorem 3 MPSI protocol with 3t+1 takes 58 rounds, privately communicates O((m2n3+n4κ)κ bits
and broadcasts O((m2n3 + n4κ)κ bits, when physical broadcast channel is available in the system. In
the absence of a physical broadcast channel, the protocol takes O(t) rounds and privately communicates
O((m2n5 + n6κ)κ bits. The protocol correctly solves secure MPSI problem with very high probability.
Moreover, At will not get any extra information, other than what can be inferred by the data sets of
the corrupted parties and the intersection of the data sets of all the parties.

Proof: The round complexity and communication complexity follows easily from the protocol. The
security follows from the security of 1DShare and Mult 7. The correctness follows from the protocol
steps and the argument given in Remark 1. 2

Computation Phase

1. Let F (i)(x) = r(i)(x)f (Pi)(x) = c(0,i) + c(1,i)x + . . . + c(2m,i)x2m for i = 1, . . . , n. For i = 1, . . . , n, to generate
[c(0,i)]t, . . . , [c

(2m,i)]t, the parties in P do the following:

(a) The parties invoke Mult(P , (m + 1)2, ([a(0,i)]t, [b
(0,i)]t), ([a

(0,i)]t, [b
(1,i)]t), . . . , ([a

(m,i)]t, [b
(m−1,i)]t),

([a(m,i)]t, [b
(m,i)]t)) with (m + 1)2 pairs (every coefficient of r(i)(x) should be mul-

tiplied with every coefficient of f (Pi)(x)) to produce (m + 1)2 t-1D-sharings
[a(0,i)b(0,i)]t, [a

(0,i)b(1,i)]t, . . . , [a
(m,i)b(m−1,i)]t, [a

(m,i)b(m,i)]t.

(b) The parties compute [c(0,i)]t = [a(0)b(0,i)]t, [c(1,i)]t = [a(0,i)b(1,i)]t + [a(1,i)b(0,i)]t, . . . , [c
(2m,i)]t =

[a(m,i)b(m,i)]t.

2. Let F (x) =
Pn

i=1 F (i)(x) = d(0) + d(1)x+ . . . + d(2m)x2m. To generate [d(0)]t, . . . , [d
(2m)]t, the parties compute

[d(j)]t =
Pn

i=1[c
(j,i)]t for j = 0, . . . , 2m.

Output Phase

1. The parties invoke ReconsPublic(P , [d(j)]t) to publicly reconstruct d(j) for j = 0, . . . , 2m. Thus now parties
have reconstructed F (x).

2. Each Pi with his private set Si = {e(1)
i , . . . , e

(m)
i } locally checks whether F (e

(l)
i)

?
= 0 for l = 1, . . . , m. If

F (e
(l)
i) = 0, the Pi adds e

(l)
i in a set ISi (initially ISi = ∅). Pi outputs ISi as the intersection set S1 ∩

S2 . . . ,∩Sn.

6 Conclusion and Open Problems

In this paper, we have shown that the round complexity and communication complexity of the infor-
mation theoretically secure MPSI protocol of [16] is much more than what is claimed in [16]. We then
presented a new information theoretically secure MPSI protocol with n = 3t + 1, which significantly
improves the actual round complexity and communication complexity of the MPSI protocol of [16].
Towards this, we have designed new sub-protocols, namely Multi-Secret-Multi-Receiver-ICP, 1DShare
and Upgrade1Dto2D, which along with existing techniques from the literature, led to our efficient
MPSI protocol. It would be interesting to improve the resilience of the MPSI protocol of [16] and this
paper, by designing an information theoretically secure MPSI protocol with optimal resilience (i.e.,
with n = 2t + 1). Improving the round complexity and communication complexity of information
theoretically secure MPSI protocol is another interesting problem.

7The security of the MPSI protocol can be proved in UC framework [5].

13

References

[1] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control. In
Proc. of TCC, pages 305–328, 2006.

[2] Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communication complex-
ity. In Proc. of TCC 2008, volume 4948 of LNCS, pages 213–230. Springer Verlag, 2008.

[3] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. of 20th ACM STOC, pages 1–10, 1988.

[4] P. Berman, J. A. Garay, and K. J. Perry. Bit optimal distributed consensus. In Computer Science
Research, pages 313–322, 1992. Preliminary version appeared in STOC 89.

[5] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.

[6] L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and
System Sciences (JCSS), 18(4):143–154, 1979. Preliminary version appeared in STOC 77.

[7] R. Cramer and I. Damg̊ard. Multiparty Computation, an Introduction. Contemporary Cryptog-
raphy. Birkhuser Basel, 2005.

[8] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty compu-
tations secure against an adaptive adversary. In Proc. of EUROCRYPT 1999, volume 1592 of
LNCS, pages 311–326. Springer Verlag, 1999.

[9] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In
Proc. of CRYPTO 2007, volume 4622 of LNCS, pages 572–590. Springer Verlag, 2007.

[10] M. Fitzi, J. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-optimal and
efficient verifiable secret sharing. In Proc. of TCC 2006, volume 3876 of LNCS, pages 329–342.
Springer Verlag, 2006.

[11] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In
Proc. of EURORYPT 2004, volume 3027 of LNCS, pages 1–19. Springer Verlag, 2004.

[12] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of verifiable
secret sharing and secure multicast. In STOC, pages 580–589, 2001.

[13] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multiparty computation. In Proc. of
ASIACRYPT 2000, volume 1976 of LNCS, pages 143–161. Springer Verlag, 2000.

[14] J. Katz, C. Yuen Koo, and R. Kumaresan. Improving the round complexity of vss in point-to-
point networks. In Proc. of ICALP (2), pages 499–510, 2008.

[15] L. Kissner and D. Song. Privacy preserving set operations. In Proc. of CRYPTO 2005, volume
3621 of LNCS, pages 241–257. Springer Verlag, 2005.

[16] R. Li and C. Wu. An unconditionally secure protocol for multi-party set intersection. In Proc.
of ACNS 2007, volume 4521 of LNCS, pages 222–236. Springer Verlag, 2007.

[17] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[18] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. North-Holland
Publishing Company, 1978.

[19] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In STOC, pages 73–85, 1989.

14

[20] K. Srinathan, A. Narayanan, and C. Pandu Rangan. Optimal perfectly secure message transmis-
sion. In Proc. of Advances in Cryptology: CRYPTO 2004, LNCS 3152, pages 545–561. Springer-
Verlag, 2004.

[21] A. C. Yao. Protocols for secure computations. In Proc. of 23rd IEEE FOCS, pages 160–164,
1982.

APPENDIX A: Properties of Protocol Multi-Secret-Multi-Receiver-
ICP

Lemma 9 (Property 1) If D and INT are honest, then each honest verifier will accept S at the
end of RevealVal, without any error.

Proof: If D and INT are honest, then all the honest verifiers (at least 2t+1) will accept INT during
AuthVal. The same honest verifiers will re-accept INT during RevealVal. Hence S will be accepted by
each honest verifier. 2

Lemma 10 (Property 2) If INT is uncorrupted, then at the end of AuthVal, INT knows an S,
which will be accepted in RevealVal by each honest verifier, except with probability 2−Ω(κ).

Proof: If D is honest, then the proof follows from Lemma 9. So we consider the case when D is
corrupted. Here also, there are two possible sub-cases. If D broadcasts F (x) during Round 3, then
the lemma holds trivially, without any error. So we consider the case, when D (corrupted) has not
broadcasted F (x) during Round 3. This implies that at least 2t + 1 verifiers have accepted INT

during AuthVal. Now, out of these 2t + 1 verifiers, at least t + 1 are honest. If we can show that these
honest verifiers will re-accept INT during RevealVal with high probability, then the proof is over. So
we now proceed to prove the same.

In order that an honest Pi accept INT during AuthVal but does not re-accept it during RevealVal,
it must be the case that the data (evaluation points and values) that Pi exposed during AuthVal
satisfies the polynomial B(x) that INT broadcasted during AuthVal, but on the other hand, out of
the remaining evaluation points that are used by Pi in RevealVal, none satisfy the polynomial F (x)
produced by INT . That is, for the selected κ

2 indices l1, ..., lκ
2
, it holds that ai,l +dbi,l = B(αi,l), for all

l in the set of indices {l1, ..., lκ
2
} and F (αi,l) 6= ai,l for all l in the remaining set of indices. Notice that

INT chooses d independently of the values given by D. Also, Pi chooses the κ
2 indices randomly out

of κ indices. So the probability that the above event happens is 1

(κ
κ/2)

≈ 2−Ω(κ), which is negligible.

This shows that with high probability all honest verifiers (at least t + 1), who have accepted INT

during AuthVal, will re-accept INT during RevealVal, thus proving our lemma. 2

Lemma 11 (Property 3) If D is uncorrupted, then during RevealVal, with probability at least 1 −
2−Ω(κ), every S′ 6= S produced by a corrupted INT will be rejected by each honest verifier.

Proof: If a corrupted INT produces S′ 6= S during RevealVal, then it implies that D has broadcasted
F ′(x) 6= F (x) during Round 4. Moreover, while broadcasting F ′(x), INT will have no information
about the κ

2 random secret evaluation points (which were not broadcasted during AuthVal), corre-
sponding to each honest verifer. We now claim that with very high probability, none of the honest
verifier will re-accept INT (i.e., F ′(x)), at the end of Round 5. The polynomial F ′(x) can agree
with F (x) in at most ℓ + nκ evaluation points. Without knowing the κ

2 secret evaluation points of

an honest verifier, say Pi, the probability that INT will be re-accepted by Pi is at most ℓ+nk
|F| . Thus,

the total probability that any honest verifier will accept INT (who broadcasts F ′(x) 6= F (x)) is
(ℓ+nk)(2t+1)

|F| ≈ 2−Ω(k). Hence with very high probability, none of the honest verifiers will re-accept a
corrupted INT . Moreover, there can be at most t corrupted verifiers, who will re-accept a corrupted
INT . These two facts together implies that each honest verifier will reject S′ 6= S with very high
probability. 2

15

Lemma 12 (Property 4) If D and INT are honest, then At will have no information about S at
the end of AuthVal.

Proof: For simplicity, assume that first t verifiers are corrupted. So in the Round 1, the adversary
will know κt points on F (x) and R(x). In Round 2, the adversary will come to know about additional
k
2 (2t+1) points on F (x) and R(x). Moreover, since D and INT are both honest, 2t+1 honest verifiers
will accept INT and hence D will not broadcast F (x) during Round 3. So at the end of AuthVal,
adversary will know κt + κ

2 (2t + 1) points on each of F (x) and R(x). However, since n = 3t + 1 and
degree of F (x) and R(x) is ℓ + nκ, the adversary will have no information about the lower order ℓ

coefficients of F (x), which further implies information theoretic security for S at the end of AuthVal.
2

APPENDIX B

Lemma 3: In protocol 1DShare, if D is honest, then t-1D-sharing of s(1), . . . , s(ℓ) are generated, except
with error probability of 2−Ω(κ). Moreover, At will have no information about the secrets. On the other
hand, if D is corrupted and any of the values r, s(1), . . . , s(ℓ) is not t-1D-shared, then D will be caught,
except with error probability of 2−Ω(κ). The protocol takes eleven rounds, privately communicates
O((ℓn + n2κ)κ) bits and broadcasts O((ℓn + n2κ)κ) bits.

Proof: The communication complexity and number of rounds can be checked easily by inspection.
We now prove the correctness. If D is honest, then all the honest parties will correctly verify the
t-1D-sharing of ℓ secrets. Specifically, f(i) = yi will hold, corresponding to every honest Pi. However,
a corrupted party Pi may broadcast incorrect y′i 6= yi , such that y′i 6= f(i). Moreover, Pi can forge

honest D’s IC signature on the corresponding incorrect r′i 6= ri or/and s
′(j)
i 6= s

(j)
i , for j = 1 . . . ℓ. In

this case, everybody will reject the sharing done by D. However, from the properties of Multi-Secret-
Multi-Receiver-ICP protocol, the above event can happen with probability 2−Ω(κ). The secrecy of the
secrets s(1), s(2), . . . , s(ℓ) for an honest D, follows from the fact that At will have only t shares for each
s(i), 1 ≤ i ≤ n and random r. In addition, the value f(0) is blinded with a random value r, chosen by
D. Thus, At will have no information about the secrets.

Next, we consider the case, when D is corrupted and the sharing of at least one of the values
r, s(1), s(2), . . . , s(ℓ) is not a correct t-1D-sharing, i.e., the shares of the honest parties lie on a polynomial
of degree higher than t. Let H be the set of honest parties in P. Moreover, let h0(x), . . . , hℓ(x) denote
the minimum degree polynomial, defined by the points on f (0)(x), . . . , f (ℓ)(x) respectively, held by the
parties in H. Then according to the condition, degree of at least one of the polynomials h0(x), . . . , hℓ(x)
is more than t. Moreover, degree of h(0)(x), . . . , h(ℓ)(x) can be at most |H| − 1. This is because |H|
distinct points can define a polynomial of degree at most |H| − 1. Now the value yi broadcasted by
an honest Pi can be defined as yi =

∑ℓ
j=0 zjhj(i).

We next claim that if degree of at least one of the polynomials h0(x), . . . , hℓ(x) is more than t,
then the minimum degree polynomial, say hmin(x), defined by yi’s, corresponding to Pi ∈ H will be
of degree more than t, with very high probability. This will clearly imply that f(x) 6= hmin(x) and
hence yi 6= f(i), for at least one Pi ∈ H.

So we proceed to prove that hmin(x) will be of degree more than t with very high probability, when
one of h0(x), . . . , hℓ(x) has degree more than t. For this, we show the following:

1. We first show that hdef (x) = Σℓ
j=0z

jhj(x) will of degree more than t with very high probability,

if one of h0(x), . . . , hℓ(x) has degree more than t.

2. We then show that hmin(x) = hdef (x), implying that hmin(x) will be of degree more than t with
very high probability

To prove the first point, assume that at least one of h0(x), . . . , hℓ(x), has degree more than t. Let m

be such that hm(x) has maximal degree among h0(x), . . . , hℓ(x), and let tm be the degree of hm(x).
Then according to the condition, tm > t. Also recall that tm < |H|. This is because given |H| values

16

(recall that h0(x), . . . , hℓ(x) are defined by the points on polynomials f (0)(x), . . . , f (ℓ)(x), held by the
honest parties in H), the maximum degree polynomial that can be defined using them is |H|−1. Now

each polynomial hi(x) can be written as hi(x) = ci
tm

xtm + ĥi(x) where ĥi(x) has degree lower than
tm. Thus the polynomial hdef (x) can be written as:

hdef (x) = [c0
tmxtm + ĥ0(x)] + z[c1

tmxtm + ĥ1(x)] + . . . + zℓ[cℓ
tmxtm + ĥℓ(x)]

= xtm(c0
tm + . . . + zℓcℓ

tm) + Σℓ
j=0z

j ĥj(x)

= xtmctm + Σn
j=0z

jĥj(x)

By assumption cm
tm 6= 0. It implies that the vector (c0

tm , . . . , cℓ
tm) is not a complete 0 vector. Hence

ctm = c0
tm + . . . + zℓcℓ

tm will be zero with probability ℓ
|F|−1 ≈ 2−Ω(κ) (which is negligible). This is

because the vector (c0
tm

, . . . , cℓ
tm

) may be considered as the set of coefficients of a degree-ℓ polynomial,
say µ(x), and hence the value ctm is the value of µ(x) evaluated at x = z. Now ctm will be zero if z

happens to be one of the ℓ roots of µ(x) (since degree of µ(x) is at most ℓ). Now since z is generated
randomly from F \ {0}, independent of the polynomials h0(y), . . . , hℓ(x), the probability that it is a
root of µ(x) is ℓ

|F|−1 ≈ 2−Ω(κ). So with very high probability ctm , which is the tthm coefficient of hdef (x)

is non-zero. This implies that hdef (x) will be of degree at least tm > t. Notice that each yi broadcasted
by an honest Pi, will lie on hdef (x).

Now we will show that hmin(x) = hdef (x) and thus hmin(x) has degree at least tm, which is greater
than t. So consider the difference polynomial dp(x) = hdef (x) − hmin(x). Clearly, dp(x) = 0, for all
x = i, where Pi ∈ H. Thus dp(x) will have at least |H| roots. On the other hand, maximum degree
of dp(x) could be tm, which is at most |H| − 1. These two facts together imply that dp(x) is the zero
polynomial, implying that hdef (x) = hmin(x) and thus hmin(x) has degree tm > t.

Since hmin(x) has degree more than t, it implies that hmin(x) 6= f(x) (which is of degree-t and
broadcasted by D). This further imply that f(i) 6= yi, for at least one Pi ∈ H. So Pi will raise a valid

complaint against D by revealing ICSig(D,Pi, Si), where Si = (ri, s
(1)
i , . . . , s

(ℓ)
i). Since Pi is honest,

the signature will be revealed successfully, except with an error probability of 2−Ω(κ) (this follows
from the properties of Multi-Secret-Multi-Receiver-ICP). Moreover, everybody will publicly verify that

f(i) 6= ri +
∑ℓ

l=1 s
(l)
i zl and hence will catch the corrupted D with very high probability. 2

APPENDIX C

([c(1)]Dt , . . . , [c(ℓ)]Dt) = ProveCeqAB(D,P , ℓ, [a(1)]Dt , [b(1)]Dt , . . . , [a(ℓ)]Dt , [b(ℓ)]Dt)

1. D chooses a random non-zero ℓ length tuple (β(1), . . . , β(ℓ)) ∈ F
ℓ. D then invokes 1DShare(D,P , ℓ, c(1), . . . , c(ℓ)),

1DShare(D,P , ℓ, β(1), . . . , β(ℓ)) and 1DShare(D,P , ℓ, b(1)β(1), . . . , b(ℓ)β(ℓ)) to verifiably t-1D-share
(c(1), . . . , c(ℓ)), (β(1), . . . , β(ℓ)) and (b(1)β(1), . . . , b(ℓ)β(ℓ)) respectively. If in any of these 1DShare proto-
col, D is found to be corrupted, then every party conclude that D fails in this protocol and hence this protocol
terminates.

2. Now all the parties in P invoke RandomVector(P , 1) to generate a random value r ∈ F.

3. For every l ∈ {1, . . . , ℓ}, all parties locally compute [Y (l)]t = (r[a(l)]t + [β(l)]t) and invoke
ReconsPublic(P , [Y (l)]t) to reconstruct Y (l). Parallely, D broadcasts the values Z(1) = (ra(1)+β(1)), . . . , Z(ℓ) =

(ra(ℓ) + β(ℓ)). All the parties check whether Z(l) ?
= Y (l). If not then every party concludes that D fails in this

protocol and hence the protocol terminates.

4. For every l ∈ {1, . . . , ℓ}, the parties locally compute [X(l)]t =
“

Y (l)[b(l)]t − [b(l)β(l)]t − r[c(l)]t
”

and invoke

ReconsPublic(P , [X(l)]t) to reconstruct X(l). The parties then check X(l) ?
= 0. If not then every party concludes

that D fails in this protocol and hence the protocol terminates. Otherwise D has proved that c(l) = a(l)b(l).

Table 1: A Eighteen Round Protocol to Generate t-1D-Sharing of c(l) Where c(l) = a(l)b(l)

17

([c(1)]t, . . . , [c
(ℓ)]t) = Mult(P , ℓ, ([a(1)]t, [b

(1)]t), . . . , ([a
(ℓ)]t, [b

(ℓ)]t))

1. All the parties invoke Upgrade1Dto2D(P , ℓ, [a(1)]t, . . . , [a
(ℓ)]t) and Upgrade1Dto2D(P , ℓ, [b(1)]t, . . . , [b

(ℓ)]t) to
upgrade t-1D-sharings of 2ℓ values to t-2D-sharings, i.e., to generate [[a(1)]]t, . . . , [[a

(ℓ)]]t and [[b(1)]]t, . . . , [[b
(ℓ)]]t

respectively.

2. Let (a
(l)
1 , . . . , a

(l)
n) and (b

(l)
1 , . . . , b

(l)
n) denote the 1D sharings of a(l) and b(l) respectively. Since a(l) and b(l) is

t-2D-shared, their ith shares a
(l)
i and b

(l)
i are t-1D-shared (see the definition of t-2D-sharing). The parties in

P locally computes [c(l)]2t = [a(l)]t[b
(l)]t for l = 1, . . . , ℓ where [c(l)]2t = (a

(l)
1 b

(l)
1 , . . . , a

(l)
n b

(l)
n).

3. Each party Pi has in his possession ith share of [c(l)]2t i.e. a
(l)
i b

(l)
i for l = 1, . . . , ℓ where both a

(l)
i and b

(l)
i are

already t-1D-shared by Pi during Protocol Upgrade1Dto2D executed in step 1 of this protocol. Now each party
Pi invokes ProveCeqAB(Pi,P , ℓ, [a

(1)
i]Pi

t , [b
(1)
i]Pi

t , . . . , [a
(ℓ)
i]Pi

t , [b
(ℓ)
i]Pi

t) to produce [c
(1)
i]Pi

t , . . . , [c
(ℓ)
i]Pi

t such that

c
(l)
i = a

(l)
i b

(l)
i for l = 1, . . . , ℓ. At most t (corrupted) parties may fail to execute ProveCeqAB. For simplicity

assume first 2t + 1 parties are successful in executing ProveCeqAB.

4. Now for each l ∈ {1, . . . , ℓ}, first (2t + 1) parties have produced [c
(l)
1]P1

t , . . . , [c
(l)
(2t+1)]

P(2t+1)

t . So for l = 1, . . . , ℓ,

parties in P compute [c(l)]t as follows: [c(l)]t = Lagrange([c
(l)
1]P1

t , . . . , [c
(l)
(2t+1)]

P(2t+1)

t).

Table 2: A protocol for computing [c(l)]t = [a(l)]t[b
(l)]t

18

