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Abstract. Many implementations of cryptographic algorithms have shown to be
susceptible to fault attacks. For some of them, countermeasures against specific
fault models have been proposed. However, for symmetric algorithms like AES,
the main focus of available countermeasures lies on performance so that their
achieved error detection rates are rather low or not determinable at all. Even
worse, those error detection rates only apply to specific parts of the cipher. In
this paper we present a way to achieve a constantly higher error detection rate
throughout the whole algorithm while assuming a much stronger adversary model
than in previous papers. Furthermore, we propose solutions for two very impor-
tant, unsolved questions: First, how to do secure and efficient table lookups in
redundant algebras. Second, how to implement secure correctness checks to ver-
ify the result in a scenario where the adversary can manipulate comparisons. Our
paper is therefore the first one to construct a sound and continuous AES fault
countermeasure with an attacker-independent minimum error detection rate.

Keywords: Fault attacks, countermeasure, AES, EAN+B codes, redundant table
lookups, secure correctness checks.

1 Introduction

In 1997, Boneh, Demillo, and Lipton presented a new type of cryptanalysis, namely
fault analysis [7]. The principal idea behind these attacks is to manipulate the computa-
tion and evaluate the faulty behavior of the device in order to learn something about the
used secret. Whereas their attack targeted asymmetric algorithms, Biham and Shamir
followed up shortly afterwards with an attack on DES [4]. Since then, many attacks [6,
8, 11, 12, 19–21] and countermeasures [13–15, 17] have been introduced.

The way in which an attacker is able to manipulate the computation is called the
fault model. All these attacks and countermeasures assume specific fault models. How-
ever, especially for symmetric algorithms the fault model assumed for countermeasures
often differs from the one used for attacks. One such example is the countermeasure pro-
posed by Karpovsky et al. in [14]. In their paper, each AES round is protected separately.
Exactly this characteristic of the countermeasure makes it vulnerable to attacks. This is
because there is no protection between the rounds. Thus, the architecture meets exactly
the requirements for the attack proposed by Dusart et al. in [11]. In order to overcome



the problem, where a countermeasure is only secure under specific fault model assump-
tions, we assume a much stronger adversary and secure the AES algorithm throughout
the whole computation.

Apart from the fundamental question of the assumed fault model, there arises also
the question of how to check the correctness of the result returned by a protected al-
gorithm. Since instructions can be skipped [21], checks can be manipulated as well.
Therefore, their implementation is at least as crucial as the implementation of the coun-
termeasure itself. The best solution is to make such checks obsolete by breaking the
correlation between the fault and the output. An example for such an approach is pre-
sented in [5]. Unfortunately, this is not always possible. Hence, there exists the necessity
for secure checks. We present a probabilistic approach to solve this problem.

Furthermore, for AES, a major challenge for fault-countermeasure design is the
non-linearity of the S-Box. This is because non-linear functions are much harder to
protect than linear ones. The problem is further aggravated, if it is desired to use the
same protection mechanism for both parts in order to achieve a continuous protection.
All previously proposed countermeasures treat the linear and the non-linear part sepa-
rately and therefore leave vulnerabilities. We show how to do secure table lookups in
redundant algebras and hence provide a solution to this problem. Finally, we put these
elements together to implement a reasonably protected and sound AES implementation.

The remainder of the paper is organized as follows: Section 2 describes the used
adversary model, followed by a short review of the AES algorithm in Section 3. Section
4 discusses extended AN+B codes, how to apply them to AES, and how to implement
secure table lookups with such codes. After proposing methods to implement secure
correctness checks in Section 5, we assemble our AES implementation and investigate
its security properties in Section 6. We briefly analyze the countermeasure’s influence
on side-channel analysis in Section 7. A performance analysis is done in Section 8
before we draw conclusions in Section 9.

2 Adversary Model

Usually, countermeasures are only shown to be secure under a specific fault model. For
our research it was important not to restrict the capabilities of the attacker too much.
To classify the attacker we stick to the adversary classes introduced in [1] which can be
briefly summarized as follows: the clever outsider (class I), the knowledgeable insider
(class II) and the funded organization (class III). It is widely believed and reasonable
to assume that chip content cannot be secured against a class III attacker [2]. This is
because such an attacker can, by investing large amounts of money and time, remove or
circumvent all hardware countermeasures and afterwards probe all of the chip’s inter-
nals. Therefore, we assume a very strong class II adversary. We allow such an attacker
to inject the following faults:

– Bit-set/flip fault: The adversary can set a specific bit within the memory or regis-
ters either to zero or to one. Alternatively, a bit can be flipped. The position and the
moment in time can be chosen by the attacker.

– Random byte fault: This fault is similar to the one above, except that the error
cannot be chosen as precisely. In other words, the attacker can add a random value



ε ∈ [1, 255] to a byte in the memory or to a register, whereas the addition is an
exclusive-or.

– Skip instructions: These faults are quite common in real life and have been used
to attack pay-TV smart cards [3]. It has also been shown that they can be used to
skip comparisons in order to bypass correctness checks and therefore defeat coun-
termeasures [16].

Furthermore, an adversary is allowed to induce all the above faults several times
during a single run of the algorithm. Each attempt to induce a fault succeeds with a
probability of one. Finally, the attacker is allowed to induce the first two fault types
permanently. This means for instance that wires can be cut. As a result, the same error is
present during all following runs of the algorithm. Such errors usually defeat redundant
rounds.

3 AES

In 2000, a special version of the Rijndael algorithm was chosen to serve as the new
US standard for symmetric encryption. This Advanced Encryption Standard (AES) is a
block cipher which operates on a state of 128 bits and works with key sizes of 128, 192
or 256 bits. The state is presented by a 4x4 byte matrix, where each byte is an element
of GF (28). Depending on the key size, the number of rounds can be either 10, 12, or
14. We only look at the 128-bit version, consisting of 10 rounds. At the beginning of
the algorithm, the key is expanded into 11 round keys, each of them consisting of 16
bytes. For details about the key scheduling refer to [18]. The cipher itself consists of
one AddRoundKey operation at the beginning, followed by 9 AES rounds and a final
round. Each of the 9 rounds is composed of four transformations, namely SubBytes,
ShiftRows, MixColumns and AddRoundKey. The final round differs from the others by
a missing MixColumns operation. To describe the four AES transformations we use the
following notation:

– Si denotes the ith byte of the state for 0 ≤ i ≤ 15.
– Ki,k denotes the ith byte of the kth round key for 0 ≤ k ≤ 10.
– Cl denotes the polynomial modulo y4 + 1 which takes the four elements of the lth

column (in descending order) as coefficients, with 0 ≤ l ≤ 3, i.e.

Cl = S12+l · y3 + S8+l · y2 + S4+l · y + Sl.

– Rm denotes the polynomial modulo y4 + 1 which takes the four elements of the
mth row (in ascending order) as coefficients, with 0 ≤ m ≤ 3, i.e.

S4m · y3 + S4m+1 · y2 + S4m+2 · y + S4m+3.

– + denotes the exclusive-or operation since the used field has characteristic 2.

Using this notation the four round operations of round k can be described as following:

AddRoundKey
Si = Si +Ki,k



SubBytes
Si = A ∗ (S−1

i (mod x8 + x4 + x3 + x+ 1)) + d

After the inversion each state byte is treated as a bit vector. A denotes a fixed 8 × 8
bit matrix and d a constant 8 × 1 bit vector. The matrix multiplication and the vector
addition are done over GF (2). If a state byte has the value 0, the inversion is skipped.

ShiftRows
Rm = Rm ∗ ym (mod y4 + 1)

MixColumns
Cl = Cl ∗ (3y3 + y2 + y + 2) (mod y4 + 1)

4 Extended AN+B codes

Extended AN+B codes have been introduced in [17] as a generic countermeasure against
fault attacks. In this section we review this method to calculate with redundancy. The
approach is similar to common ring extension methods. However, the main difference
is that the result modulo the extending modulus is data independent and precomputed.
Hence, its computation cannot be manipulated since it happens during the key genera-
tion.

The basic principle behind extended AN+B codes is to take a suitable algebra (e.g.
RSA ring, ECC base field, or AES field) and extend it by a second one. We refer to the
first one as the data algebra FD and to the second as the check algebra FC . Using the
direct product of the two algebras, they can be rewritten as Cartesian product (FD×FC).
The algebraic operations are further defined componentwise. A tuple of two elements
xD ∈ FD, xC ∈ FC is written as column vector. Therefore, applying the algorithm f()
on such a tuple results in

f

((
xD

xC

))
=

(
f(xD)
f(xC)

)
.

The aim of this method is to enlarge the number of possible elements, while keep-
ing the number of valid elements constant. Instead of |FD| elements the new algebra
contains now |(FD × FC)| possible elements. However, to keep the number of valid
elements at |FD|, the check algebra is only allowed to hold a specific value at the end
of the algorithm. This value has to be precomputed. Since f(xD) and f(xC) are inde-
pendent of each other, this is always possible for non-probabilistic algorithms.

However, in order to make sure that a correct xC implies a correct xD with a certain
probability, the same algorithm has to be applied to both elements. For this purpose, the
algebras must not only be combined theoretically, but also physically within the device.
This is done by applying the Chinese remainder theorem (CRT). From a structural point
of view nothing changes since(

FD

FC

)
∼= CRT(FD,FC)



but the representation of the data within the microcontroller changes in an interesting
way: Assume that both, xD and xC , occupy 8 bits in memory, hence 16 bits together,
before running the CRT algorithm. Then afterwards, xD uses 16 bit as well as xC . How-
ever, they are orthogonally encoded and therefore they can be added and stored at the
same place in memory without loss of information. Thus, calculations are still applied
componentwise, but it is guaranteed that each operation is applied to both components.
Furthermore, alterations of the memory do affect both components with maximal prob-
ability of 1− 1/|FC |.

In summary, extended AN+B codes have three properties which are interesting for
our purpose. First, they do not only secure operands throughout addition and multi-
plication, but also allow only a specific function (i.e. a specific key) to be applied to
the encoded operands. This is because if the key or the instruction sequence (e.g., by
skipping instructions) changes, also the applied function f() changes to f̃(). At the end
of the algorithm, it can be verified that f(xC) 6= f̃(xC). Second, if several variables
are secured and each of them is assigned a different signature xC , then the variables
are not interchangeable anymore. This is vital for a code in order to secure AES. The
third property which allows the construction of redundant table lookups is described in
Section 4.2.

4.1 EAN+B Codes Suitable for AES

The previous section described the principle of extended AN+B codes and how they
are constructed. This section deals with the question of how to choose the algebras for
AES. We decided to add another 8 bits to each state byte. A redundancy of 8 bits is the
minimum needed, in order to continuously protect the algorithm.

A straightforward approach to add these 8 bits would be to take the fields FD and
FC as they are and construct a ring consisting of polynomials of degree smaller 16.
Although this is possible from a mathematical point of view, it is not advisable from
a computational point of view. The approach would penalize the most costly operation
within our AES implementation, the polynomial multiplication, for basically two rea-
sons: First, usually, microcontrollers do not feature a GF(2m) multiplier. Hence, the
multiplication of two elements has to be done by shift operations and conditional XOR
operations. However, this is too costly in terms of execution time. Second, a fast ap-
proach would be too expensive in terms of memory: Multiplication can also be done
using logarithm tables and in fact this approach is well suited for GF(28) where the
logarithm table needs only 256 entries. For our ring, consisting of polynomials of de-
gree smaller 16, on the other hand, we would need 216 entries. Therefore, we have to
construct a different ring, which allows a trade-off between execution time and memory.
A ring U, consisting of polynomials of degree smaller 2, with coefficients in GF(28) al-
lows the use of logarithm tables with 256 entries, although |U| = 216. The bijective
mapping we are looking for in order to map the (xD, xC) tuples into U is the following:

φ :
(

FD

FC

)
→ U := (F2[x]/P )[y]/y2 + c1y + c0

with the irreducible polynomial P defining the base field ∈ GF (28) and the coefficients
c1 and c0 being elements of this base field. This mapping is applied to the operands



before the AES calculation. After running the algorithm its inverse is used to transform
them back.

To construct the ring U we use the two fields FU1 := (F2[x]/P )[y]/y + a1 and
FU2 := (F2[x]/P )[y]/y + a2 with a1 6= a2. Hence, the first step is to use φ1 to map
the elements of FD to FU1 and φ2 to map the elements of FC to FU2. However, if the
base field is chosen to be the AES field, these mappings do not have to be implemented,
because the representation of the elements in the microcontroller does not change. By
multiplying the moduli of FU1 and FU2 it is now possible to construct the desired two-
term ring U with c1 = (a1 + a2) and c0 = a1a2. All left to do now, is to calculate
the two idempotent elements for the CRT, i1 and i2, as follows: With p1 = y + a1 and
p2 = y + a2 we get

i1 = p2(p−1
2 (mod p1)) (mod p1p2) (1)

i2 = p1(p−1
1 (mod p2)) (mod p1p2). (2)

Finally the mapping φ and its inverse can be defined as:

φ : (FD × FC)→ U (3)
φ1(xD) · i1 + φ2(xC) · i2 (4)

φ−1 : U→ (FD × FC) (5)(
φ−1

1 (u (mod p1))
φ−1

2 (u (mod p2))

)
(6)

As stated above, if the irreducible polynomial P equals the AES polynomial, then
the mappings φ1 and φ2 are only of theoretic nature. Using φ(xD, xC), the bytes of
the plaintext and those of the signature can be transformed pairwise into elements of
U. After the AES calculation they are transformed back using φ−1(u), where u is an
element of U.

4.2 Redundant Table Lookups

A question that remains is how to implement the SubBytes operation used by AES.
Since inversions are costly in software, this transformation is normally realized by using
a 256-byte lookup table. However, a lookup table with 216 entries is not practical for
our case. Extracting xD and using a standard lookup table (S-Box) is no option either,
since this would present a vulnerability. Hence, it would be convenient to reduce the
problem to an efficient, yet redundant, table lookup.

By fixing the signature to a known value before a lookup, we can reduce the in-
formation held by the 16-bit value to 8 bits. Fortunately, there is also a fast way to get
hold of the encoded information: For both of the polynomial’s coefficients, there exists
a bijective mapping to FD (see Appendix A.1), if both coefficients of the idempotent i1
are co-prime to P . This is given since P is irreducible. The actual mapping is for free,
since an S-Box, already permuted according to this mapping, can be precomputed.

Nevertheless, both coefficients have to be used, otherwise it is as insecure as ex-
tracting xD. The idea to protect the S-Box lookup is to take the first coefficient of the



input polynomial to locate a 16-bit S-Box value. This first result contains an error term
depending on xD. The second coefficient is used to look up the corresponding correc-
tion term. In other words, if either of the indices (coefficients) has been altered, they
refer to different xD values and the output of the S-Box is corrected to a wrong xC . The
signature before the lookup and the signature afterwards have to be different, otherwise
the operation would not affect xC and could be skipped. We denote the fixed input sig-
nature before the lookup as xCin

and to the fixed output signature after the lookup as
xCout

.
Although the signature xC has to be normalized before each S-Box lookup, it is

crucial that the output signature correlates with the input signature before the normal-
ization. Otherwise the protection would not be continuous. We propose to store the
difference between the actual and the normalized input signature and to add this differ-
ence again after the lookup. A complete S-Box lookup can be seen in Algorithm 1. A
detailed description of the algorithm can be found in Appendix A.2.

Algorithm 1 Redundant S-Box Lookup
Require: An input value u = u1y + u0 = CRT(φ1(xD), φ2(xC)), the transformed input

signaturem = xCin ·i2, the idempotent i2, the redundant S-Box table SB , and the correction
table CT .

Ensure: u1y + u0 = CRT(φ1(SubBytes(xD)), φ2(xC + xCin + xCout))
1: t← u · i2
2: d← t+m
3: u′ ← u+ d
4: u← SB [u′

1] + CT [u′
0] + d

5: return u

5 Secure Correctness checks

Amongst the many countermeasures proposed so far, none defines the final checks
themselves. In this section we propose methods which leave the adversary with only
a probabilistic chance to succeed in bypassing these checks after inducing an error. As-
suming devices which deactivate themselves after a certain number of detected faults,
the aim is to prevent the attacker from gathering useful information from training de-
vices. In other words the attacker must not be able to improve his knowledge about
how to bypass the check with the help of training devices. The following three building
blocks are used in order to achieve this:

Time randomization: Here, the moment in time, when the checks happen, depends on
the device itself. Hence, there are n time slots, when the check of byte i can take place
and it does in time slot j. This permutation of the checks depends on the device and
does not need to change for every run of the algorithm. The attacker succeeds with a
probability of 1/n to mount the attack at the right moment in time. In the case of AES,
n would be 16, since there are 16 signature bytes xC . Apart from the fact that this error



detection probability is smaller than the one of the code itself, one could argue that an
instruction skipping attack can be mounted on all time slots. Therefore a randomization
of the branches is required as well.

Branch randomization: Randomizing the branches basically means that the adversary
does not know, which branch to choose, which instruction to skip or to which value
a flag must be set. This technique decreases the adversary’s probability only by 50%.
Nevertheless, it is vital for the whole concept. The implementation of these randomized
branches is crucial as well. This is because an attacker, using simple power analysis,
can observe the power consumption of a correct run of the algorithm and recover the
randomization. Therefore, we propose to first evaluate a branch condition (i.e. con ←
xC 6= f(xCinit

) or con ← xC = f(xCinit
)) and then use this condition to compute a

destination address for the code to be executed (i.e. dest← con∗delKey+not(con)∗
output or dest← not(con) ∗ delKey + con ∗ output).

Check doubling: Another technique is to run the checks t times. Thus, if a single run
of the checks had probability p, then t runs with distinct randomization guarantee a
probability of pt. This method is suitable to ensure that the checks are not less secure
than the remainder of the implementation and hence decrease the overall security.

5.1 Integration

By combining the time randomization with the branch randomization the attacker is left
with a chance of 1/32. If the attacker needs to manipulate the checks for more than one
byte, the success probability decreases. However, assuming the probability with 1/32,
the check still presents the weakest link in the whole system. Therefore, we repeat the
checks once with different randomization parameters and reduce the attacker’s chance
to 1/1024.

The randomization of the checking mechanism itself does not need to change on ev-
ery run of the algorithm. It is enough if it changes per device. Therefore, the randomized
instruction sequence can be generated together with the key.

6 Implementation and Security

This section investigates the security of the whole system, considering several attack
scenarios. The first threat we take a closer look at, is the manipulation of data in mem-
ory. By equipping every state byte with a signature, we can provide reasonable security
against such threats. Recalling the scenarios from Section 2, we see that for example
single-bit errors are not possible, since the adversary needs to add a multiple of the
idempotent in order to succeed. This also holds for byte errors, for the same reason. In
fact, all additive errors, which are not larger than the added redundancy cannot lead to
success. Hence, if the adversary wants to manipulate a data value in the memory, he
can only succeed with a probability of 1/256 by attacking two bytes. First, one byte is
altered with probability 1. Afterwards, there is only one possibility left for the second
byte in order to preserve the signature. Therefore, since a signature is added to each



byte at the beginning and is only removed at the end of the cipher, the data integrity in
memory is preserved throughout the computation with probability 1/256.

However, if every byte is protected with the same signature, they are interchange-
able. Such an implementation would be susceptible to index manipulation. For example,
a wrong state byte could be loaded during an operation. This would allow random byte
errors like the ones required for the attack described in [11]. To prevent such an attack,
different signatures have to be assigned to every byte of the state. The xC values can
be seen as random values throughout the algorithm. Thus, it can happen, that two take
the same value at a certain point in time and become interchangeable. By applying the
birthday paradox, we get a probability of 1− 256!

25616240! ≈ 0.38 for such an event. How-
ever, the adversary still has to guess or randomly choose those indices. This hardens
the task by a probability of 1/(15 ∗ 16). Combining the two events results in an overall
probability of ≈ 1/630.

Furthermore, none of the operations must be negligible for the computation of the
final signature. However, this alone does not suffice. Every operation has to affect the
signature in a way, that even two or more skipped operations are discovered at the end.
That is, no instruction presents a trivial inverse of another one. Of course since the
signatures are considered random throughout the algorithm, such events can occur. An
example would be the following: AddRoundKey alters the signature from x′C to x′C +
kC . If kC = xCout

+ xCin
, the attacker would succeed in skipping the AddRoundKey

and the SubBytes operation. However, such an event occurs with probability 1/256 and
furthermore if such operations are not adjacent, it becomes more difficult, since the
error spreads all over the state. This value must be multiplied with the probability of the
attacker to find out at which position this event occurs. If we add a random signature
(per key) to the plaintext, we can observe that no attack can succeed with a probability
larger than 1/256 throughout the whole cipher.

Finally, we show that this holds as well for the redundant S-Box lookup, as de-
scribed in Algorithm 1. Taking a look at the algorithm, we see that every line or in-
struction within the line directly or indirectly changes the signature. Furthermore, no
two lines present a trivial (data independent) inverse of each other. Although, as stated
before, depending on the data processed, it can happen that two instruction are inverse.
As for the lookup itself, u′0 and u′1 respectively can only be altered together with a
probability of 1/256 for the same reasons as above.

We hence can state for our countermeasure that the attacker cannot succeed at all
with bit errors and random byte errors. For all other attacks the adversary succeeds with
a probability of 1/256 or less.

6.1 Comparison with Existing Countermeasures

A direct security comparison between existing countermeasures and ours is difficult
since the fault model and the approach to the problem differ. We can state a maximal
success probability for the attacker, whereas for time-redundant or space-redundant ap-
proaches this is not possible. Also for non-continuous approaches security figures can
only be stated for parts of the algorithm, thus leaving the security of some parts unspec-
ified. In contrast to countermeasures which assume a specific/restricted fault model, for



our approach the adversary’s chances will not increase with maybe new upcoming fault
injection techniques.

Software fault-countermeasures for AES normally deploy some kind of time redun-
dancy. While this approach is cheap and straight-forward, it usually does not detect per-
manent and destructive faults. In contrast to such methods, our countermeasure detects
permanent faults since we do not compare the results of consecutive runs. Furthermore,
our countermeasures also implicitly prevents attacks on the key schedule as presented
in [8].

Space-redundant hardware approaches, depending on the implementation, might be
vulnerable to program flow manipulation. For instance, skipping the last round in [13]
suffices to recover half of the key bits of the last round key. Other approaches like
in [14] leave time windows open in which no protection is provided. Our approach
has the advantage that it provides program flow integrity and continuously protects
the algorithm. Furthermore, it is superior over approaches which focus on small error
multiplicities like [9] since faults up to 8 bit are not possible at all.

7 Consequences for Side-Channel Attacks

Although our presented fault-attack countermeasure was never intended to counteract
side-channel attacks, we investigated the possibilities. In the case of AES, the mem-
ory overhead of the employment of this countermeasure against side-channel attacks is
impractical. This is because different initial signatures as well as different xCin

, xCout

values would have to be used. These values would serve as masks for the S-Box. How-
ever, for different xCin

, xCout
values, also different lookup tables are needed. The S-

Box table of our implementation needs 512 bytes and the correction table needs 256
bytes. Hence, for every additional mask, another 768 bytes of memory are needed. Even
worse, these 768 extra bytes, do not provide much extra security. If we randomly change
the used mask for every block, the countermeasure can be seen as a time randomization,
where a window has already been applied. Therefore, introducing n different masks re-
duces the DPA peak linearly by n. Hence, although this technique could be applicable
in combination with other DPA countermeasures for other ciphers, it is not for AES.

8 Performance

The performance of the used code depends on the size of the added redundancy. In
the case of AES, the minimum redundancy in order to continuously protect the imple-
mentation is 100%. Therefore, simple operations like AddRoundKey need twice the
execution time. SubBytes on the other hand needs three single byte lookups plus eight
additions and a ring multiplication. Furthermore, the ring multiplication in our algebra
needs three addtions and six multiplications inGF (28), which are performed using log-
arithm tables. Rijndael was not designed towards the use of such an algebra and there-
fore the implementation becomes costly. On an ATMega128 microcontroller roughly
90,000 cycles are needed for 10 rounds of AES. Since the two ring multiplications (one
for the SubBytes and one for MixColums) alone need 54,000 of the cycles, a hardware



acceleration for this operation might help. Another possibility to speed up the imple-
mentation would be to use T-tables [10]. The use of redundant lookups would allow
such a performance increasing technique, however in resource-restricted environments
the use of T-tables might not be possible. We are aware of the fact, that the overhead of
our implemenation is large in terms of execution time. On the other hand, the approach
creates no extra hardware costs.

9 Conclusion

We presented a fault-secure AES implementation. In contrast to previous works we fo-
cused predominantly on security rather than on performance and assumed a stronger
adversary. We presented methods to do secure correctness checks and showed how re-
dundant table lookups can be implemented. Using these two building blocks together
with EAN+B codes, we constructed a sound, fault-protected AES implementation. To
the best of our knowledge this is the first work to continuously protect the AES algo-
rithm with a constant error detection rate. The security evaluation shows that a standard
attacker (capable of bit and word-width errors, random or not) cannot succeed at all.
For any other attacker we can state an upper success rate bound of 1/256. Furthermore,
the implementation was designed in a way that an attack working for a single device
is not applicable to another device. This means that the amount of devices the attacker
possesses for training purposes does not increase the chances for the target device.
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A Redundant S-Box lookup

A.1 Mapping the coefficients to FD

Let the coefficients of the idempotent i1 be i11 and i12. Analogously, i2 = i21 · y+ i22.
Then every ring element u ∈ U can be written as

u = (φ1(xD)i11 + φ2(xC)i21) · y + (φ1(xD)i12 + φ2(xC)i22).

If xC is known, then φ2(xC)i21 · y + φ2(xC)i22 can be subtracted from u. What
remains is the polynomial

φ1(xD)i11 · y + φ1(xD)i12

which contains xD in both coefficients. Furthermore, as long as i11 and i12 are
co-prime to P , there exists a one-to-one mapping between the coefficients and xD.

A.2 Redundant S-Box lookup in detail

For reasons of simplicity we omit the mappings φ1 and φ2 here. The input of the algo-
rithm is the polynomial

CRT(xD, xC) =
u = u1y + u0 =

(xDi11 + xCi21) · y + (xDi12 + xCi22)

In line 1 the signature xC is extracted:

t = u · i2 =
xDi1i2 + xCi2i2 (mod p1 · p2) =

xCi2

Afterwards, the difference d = (xCin
+xC)·i2 is calculated in line 2. This difference

is then used to normalize the input signature of u to xCin in line 3. The normalized u is
denoted as u′.

The redundant S-Box itself takes xDi11 + xCin
i21 and outputs

(SubBytes(xD)i11 + xCouti21)· y +
SubBytes(xD)i12 + xCouti22 +

error(xD)



The correction table CT takes xDi12+xCin
i22 and outputs error(xD). After adding

up the output of the redundant S-Box SB , the output of the correction table CT , and
the difference d, the algorithm yields

(SubBytes(xD)i11 + (xCout + xCin + xC)i21)· y +
SubBytes(xD)i12 + (xCout + xCin + xC)i22 =

CRT(SubBytes(xD), xC + xCi + xCo)


