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Abstarct. Inspired by the recent developments in attribute-based encryption, in this paper
we propose threshold attribute-based signatures (t-ABS). In a t-ABS, signers are associated
with a set of attributes and verification of a signed document against a verification attribute
set succeeds if the signer has a threshold number of (at least t) attributes in common with
the verification attribute set. A t-ABS scheme enables a signature holder to prove possession
of signatures by revealing only the relevant (to the verification attribute set) attributes of the
signer, hence providing signer-attribute privacy for the signature holder. We define t-ABS
schemes, formalize their security and propose two t-ABS schemes: a basic scheme that is
selectively unforgeable and a second one that is existentially unforgeable, both provable in the
standard model, assuming hardness of the computational Diffie-Hellman problem. We show
that our basic t-ABS scheme can be augmented with two extra protocols that are used for
efficiently issuing and verifying t-ABS signatures on committed values. We call the augmented
scheme a threshold attribute based c-signature scheme (t-ABCS). We show how a t-ABCS
scheme can be used to realize a secure threshold attribute-based anonymous credential system
(t-ABACS) providing signer-attribute privacy. We propose a security model for t-ABACS and
give a concrete scheme using t-ABCS scheme. Using the simulation paradigm, we prove that
the credential system is secure if the t-ABCS scheme is secure.

Keywords: Public-Key Cryptography, Attribute-Based Cryptography, Anonymous Creden-
tial Systems, Identity-based Cryptography, User Privacy, Fuzzy Identity-based Signature

∗An abridged version of this paper is to appear in AfricaCrypt 2009 proceedings. This is the full version.
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1 Introduction

Inspired by the recent works on attribute based encryption, we introduce a new signature scheme that
we call a threshold attribute-based signature, or t-ABS for short. In a t-ABS scheme, a central authority
issues secret keys to the signers according to their attributes. A signer with an attribute set Att can use his
secret key to sign using any subset A ⊂ Att of attributes. A signature can be verified against a verification
attribute set B and verification succeeds if A∩B has at least size d. Threshold attribute-based signatures
have attractive applications that are outlined below.

As their name suggests, t-ABS schemes provide threshold attribute-based verification. Consider the fol-
lowing import policy for goods to a country: imports from certain ‘low-risk countries’ can be from any
company that has a specific ISO or a particular FAO certificate, but imports from other countries must be
from a company with both certificates. This policy can be enforced by verifying if the exporting company
has two of the three following attributes: it is in a low-risk country, it is an ISO certificate holder, and it
is a FAO certificate holder. Here, a t-ABS scheme with appropriate definition of attributes can be used
to implement the verification functionality.

The threshold verification can also be used for applications such as identity-based signatures that use
biometric information as user identities to provide strong authentication for users. Here, key generating
authorities measure users’ biometrics and issue secret keys to them. Verifiers, measure users’ biometrics
independently to obtain their identity in the system. The new measurement will not be exactly the
same as the ones collected at the registration phase and hence fuzzy verification is required. Using
a threshold attribute-based signature scheme with suitable choices of mapping and threshold, “close”
biometric measurements map to attribute sets for signing and verification that have sufficient overlap and
result in successful verification of signature.

A t-ABS scheme also enables the signer to choose their “signing identity” (relevant attributes) at the
time of signing. A professor in the School of Computer Science who is also Head of the School, may need
to sign documents as either a Professor of Computer Science, or the Head of the School, or a Professor
of Computer Science and the Head of the School. In general a person with n “atomic” identities can
sign using an identity that is any of the O(2n) “combination” identities, assuming the combination is
meaningful. This can be implemented using a t-ABS scheme with a signing key of size O(n). Providing
the same functionality using standard signatures or identity-based signatures requires O(2n) signing keys,
one for each combined identity. More importantly, the näıve solution of O(n) signing keys of a standard
or an identity-based signature, is not secure because signatures can be “mixed and matched” with each
other. A group of signers, for example, can collude to produce a signature corresponding to the union of
their identities. A t-ABS scheme provides collusion resistance: that is, no group of colluding signers can
produce a signature that could not be generated by a single member of the group.

A t-ABS scheme also enables signature holders to present for verification a signature that corresponds to
subset of signer’s attributes. A document signed by John Smith, a member of 2008 Executive Committee
of the Workers’ Union (WU), can be presented as signed by an Executive Committee member of the WU,
without revealing the signer’s name or the year. The same document can also be presented as signed by
a 2008 Executive Committee member of the WU, or simply by John Smith. This functionality gives the
signature holder the flexibility to present the same signature in different ways at different occasions. To
provide the same functionality, using a standard or an identity-based signature scheme, requires O(2n)
signatures, each produced using one of the aforementioned O(2n) keys. Using a t-ABS scheme however,
requires a signing key of size O(n) and a signature of size O(n) 1.

A t-ABS scheme supports signer-attribute privacy for users. Consider a scenario where participation in a
poll requires proof of residency in one of the 27 counties in a state. Assume these proofs are cards that are
signed by either the local government or police authorities of the counties and are given to the long-time
residents and foreign workers, respectively. For privacy reasons, card holders may want to be able to prove

1We note that in certain cases it may not be a desirable to be able to break up the attribute set during signing a message
or showing a signature, in which case traditional methods based on standard or identity-based signatures could be used.
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that they own a card but protect their other details. Proving possession of such a card is equivalent to
proving possession of a card issued by one of the 2×27 possible entities. Using standard or identity-based
signatures, a voter can prove possession of a valid signature with respect to one of the 2×27 public keys
or identities through a proof of size 2×27 (see proofs of partial knowledge [CDS94]). A t-ABS can provide
a proof of size 2+27 and ensures that the attributes of the signer (and hence those of the card holder)
are not revealed. Signers in such schemes will each have two attributes: one corresponding to ‘police’ or
‘local government’, and the other representing one of the 27 counties. Verification of residency is then
equivalent to requiring that a card is verifiable with a threshold of d = 2 attributes from the set of all
2+27 attributes above. This is because no signer can simultaneously be both police and government, or
from two (or more) counties.

The above example can be extended to the more general case where the universal set of attributes U can be
partitioned into n subsets Ui for i ∈ N = {1, 2, . . . , n} such that each signer has at most one attribute from
each set. Now suppose providing service to signature holder requires the signer to possess an i-th attribute
in the set Bi, for i ∈ I ⊆ N . Verification of such a property is equivalent to verifying if the signer has at
least |I| = d of the attributes in the attribute set U. A t-ABS scheme can be used to implement the above
system, with a verification cost of O(

∑
i∈I |Bi|). However, the number of possible accepting issuers for

such a verification policy and hence the cost of a proof of partial knowledge is O(
∏
i∈I |Bi| ·

∏
i∈N\I |Ui|).

The above functionalities of t-ABS schemes become more attractive in cases where it is practically in-
feasible for the signature holder and the verifier to know all possible signers. For example, when a user
wants to show that their document is signed by a notary public. It is impossible in practice for a verifier
to know all the notary publics and thus standard or identity-based signatures cannot be used. Using a
t-ABS however, allows the verifier to easily check if the signer has the attribute notary public.

As a prime example to show their application range, we show that t-ABS schemes, when augmented with
additional protocols for signing and proof of signature ownership, can be used to construct attribute-
based anonymous credential systems. In Section 5 we show that such credential systems inherit the above
properties of t-ABS and provide a number of attractive features including attribute privacy, which is an
essential property in anonymous credential systems, since verifying credentials against specific public keys
reveals unnecessary information about the users and contradicts the “raison d’être” of such systems.

1.1 Our Contributions

We first introduce a new type of signature called threshold attribute-based signature, or t-ABS for short.
In a t-ABS, a signer has an attribute set Att and receives a signing key from a key generating authority
based on the set Att. The signer can sign a document using any subset A ⊂ Att of attributes. A signature
is successfully verified against an attribute set B as long as the signing set A and the verification set B
have an intersection of size at least d. In other words, the verification succeeds if the attribute set used
in the signature is sufficiently ‘close’ to the attribute set used for verification. We construct a t-ABS
scheme in Section 3 and prove its security against selective forgery in the standard model based on the
CDH assumption. We discuss how security and efficiency of the scheme can be improved and give a secure
construction against existential forgery in the standard model.

We then introduce an algorithm for converting a signature and an interactive protocol for signature
verification. The convert algorithm enables the signature holder to construct a signature that is verifiable
with the attribute set A ∩ B and prevents the verifier from learning the signer’s attributes that are
outside A ∩B. The interactive verification protocol enables the signature holder to prove possession of a
valid signature without allowing the verifier to learn even A ∩ B. The two protocols, depending on the
requirements of the application, can be used to provide two levels of signer-attribute privacy. The weak
privacy level is achieved by providing the verifier with the converted signature and guarantees that the
verifier does not find out any signer attribute outside A ∩ B. The full privacy level is achieved by first
converting the signature and then proving possession of the signature using the interactive verification
protocol. This guarantees that the verifier learns nothing more than the fact that |A∩B| ≥ d. We denote
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a t-ABS with an efficient conversion algorithm and an efficient interactive verification protocol by t-ABS+.
We provide efficient conversion and interactive verification for our proposed basic scheme and prove that
it provides both levels of signer-attribute privacy. We also show how signatures in the second construction
can be efficiently converted and interactively verified and similarly prove our second construction to be
fully signer-attribute private.

A t-ABCS scheme consists of a t-ABS+ scheme, a commitment scheme, and three additional protocols for
(i) obtaining a signature on a committed value, (ii) proving knowledge of a signature, and (iii) proving
knowledge of a signature on a committed value. We give security definitions for t-ABCS schemes and
a concrete efficient construction that is based on our basic t-ABS scheme and prove security of the
construction. Consider a user with a secret key SKU that has established a pseudonym NUI with an issuer
I and another pseudonym NUV with a verifier V . Assume that these pseudonyms are both commitments to
SKU , but under different randomnesses. A t-ABCS scheme can be used by U to, on the pseudonym NUI ,
obtain a credential that is associated with a signing attribute set AI , and later provide proof of possession
for the credential on the pseudonym NUV against a verification attribute set BV if |AI ∩ BV | ≥ d. The
verifier cannot deduce any information about the d attributes in common between the signing attribute set
AI and the verification attribute set BV ; hence the privacy of the attributes presented by the credential
holder is guaranteed.

We define threshold attribute-based anonymous credential systems (t-ABACS) and formalize their security
using the simulation paradigm that is commonly used for defining security of multiparty protocols. The
approach uses a comparison of a real system model with an ideal system model. The ideal model for the
t-ABACS captures the security and privacy properties of an anonymous credential system. We show how
t-ABCS schemes can be used to realize this model. That is, we give a concrete t-ABACS system and
prove its security in the sense that it remains indistinguishable from an ideal system from the viewpoint
of any polynomial-time adversary. This results in a concrete t-ABCS scheme with security based on the
CDH problem.

1.2 Related Work

Attribute-based encryption (ABE) was introduced by Sahai and Waters as an extension of identity-based
encryption where each identity is considered as a set of descriptive attributes [SW05]. The scheme,
called fuzzy identity-based encryption, allows a threshold attribute-based decryption of encrypted data
as follows. Messages can be encrypted by specifying a set of decryptor attributes ω′ during encryption.
Such a ciphertext then can be decrypted by any user with the attribute set ω such that |ω ∩ ω′| ≥ d.
Our attribute-based signature scheme can be viewed as the signature counterpart of Sahai and Waters’s
encryption scheme. In our scheme, a signer has a set of attributes A and the verifier specifies a verification
attribute set B. A signature is verified as valid if |A ∩B| ≥ d.

Attribute-based signatures extend the identity-based signature of Shamir [Sha84] by allowing identity of
a signer to be a set of descriptive attributes rather than a single string representing the signer’s identity.
A t-ABS provides threshold attribute-based verification. That is, the verification succeeds if at least d of
the attributes specified by the verifier are the same as those of the signer. Thus, identity-based signature
can be seen as a specific case of our schemes with identity size and threshold both equal to one.

Independent of our work, there have been other attempts to define and realize attribute-based signatures
[Kha07b, Kha07a, YCD08, Kha08, GZ08, MPR08, LK08]. The schemes of [YCD08] and [GZ08] are direct
applications of the known transform from identity-based encryptions to identity-based signatures [GS02].
In both works, authors do not consider any notion of privacy. The works of [Kha07b, Kha07a] and [LK08]
capture weaker notions of anonymity where signers only remain anonymous within the group of entities
possessing the same attributes and the verifiers must know which attributes are used to sign a message
to be able to verify. Khader [Kha08] and Maji et al. [MPR08] treat attribute-privacy as a fundamental
requirement of attribute-based signatures and provide schemes that provably satisfy this requirement
for threshold trees and monotone boolean verification policies, respectively. However, both works have
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shortcomings that make their solutions unsuitable for the scenarios outlined in the introduction. Both
schemes require the signer to know the verification policy at the time of signing. This is a major limitation
for their proposed scheme, particularly in applications where other than the signer and the verifier, there
are also ‘signature holders’. An example of such applications is a credential system where a credential
holder needs to satisfy different verification policies depending on the occasion, and it is important for
efficiency and useability purposes not to require different credentials for each verification policy. Also,
security proofs of Khader and Maji et al. are in the random oracle or generic group models, while all our
proofs are in the standard model and use the well-known assumption of computational Diffie-Hellman.
Finally, none of the previous attribute-based signatures had been extended to credential systems.

Anonymous credential systems (a.k.a. pseudonym systems) were introduced by Chaum [Cha85, CE87] and
more recently further formalized and studied in [LRSW99, Lys02]. A credential in such systems is issued
and verified on a user pseudonym, which in turn is bound to the user’s secret identity. Users remain
anonymous since their pseudonyms hide their secret identity. Besides, transactions involving the same
user remain unlinkable.

2 Notation and Preliminaries

We use different font families to denote variables, algorithms, strings, and security notions, respec-
tively. By “x ← X (a)” we denote that X is run on input a and the output is assigned to x. We also use
“A −(X )→ B if C” to denote that A sends X to B if condition C holds. The condition can be complex
and include logical connectors. The symbol \ denotes set subtraction operation and we use |S| to denote
cardinality of the set S. We use the proof of knowledge notation originated in [CS97]. For instance,
“ZK-PoK{(x, y, z) : a = gxhy ∧ b = cydz}” denotes a zero knowledge proof of knowledge of (x, y, z) such
that a = gxhy and b = cydz, where a, g, h, b, c , and d are public inputs to the protocol.

Lagrange interpolation for a polynomial q(·) over Zp of order d− 1 and a set S ⊂ Zp with size |S| = d is
calculated as q(x) =

∑
i∈S q(i)∆i,S(x), where

∆i,S(x)
4
= 1 ·

∏
j∈S,j 6=i

x− j
i− j

for all i ∈ S (and extendedly for all i ∈ Zp) .

A zero knowledge (ZK) proof is intuitively a proof that although convinces a verifier, but adds no knowledge
(i.e., ability to compute) to the verifier. Formally, a proof is called zero knowledge if the view of any verifier
can be simulated given only the public inputs of the protocol (see [GMR89] for details). A protocol is
called a proof of knowledge (PoK) if, intuitively, it guarantees that a successful prover actually knows (i.e.,
is able to compute) the secret in question. More formally, a protocol is said to be a proof of knowledge if
there exists an extractor that is able to output the secret given the public inputs and access to a successful
prover (see [BG92] for details). We use zero knowledge proofs of knowledge for conjunctive statements
about discrete logarithms. Efficient versions of such proofs can be found in the literature. e.g., in the
work by Cramer et al. [CDM00].

A commitment scheme consists of two algorithms CmtKeyGen and Commit, where the former is the key
generation algorithm that generates a commitment public key cpk on input a security parameter and
the latter is the commitment algorithm that on input a commitment public key cpk, a message to be
committed m, and a random element r generates a commitment C on m. The scheme is said to be hiding
if C hides the message m, that is, given cpk and C, it is hard to obtain any information about m. The
scheme is said to be binding if C binds the committer to m, that is, Given cpk, it is hard to come up with
two different pairs (m, r) and (m′, r′) such that Commit(cpk,m, r) = Commit(cpk,m′, r′). The scheme is
said to be secure if it has both of the above properties.

Camenisch and Lysyanskaya have shown that a tuple consisting of a signature, a commitment scheme,
and efficient protocols for issuing and verifying signatures on committed values, is sufficient for realizing
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anonymous credential schemes [CL01, Lys02]. We denote such tuples by C-signatures.

A well-known paradigm that is used to define security of cryptographic protocols is the simulation
(a.k.a. “ideal vs. real”) paradigm, originating from [GMW91]. The intuition behind such definitions
is that a real system is secure if it emulates a certain ideal system designed to trivially guarantee security
properties expected from the system. To formally define security using this paradigm, one first defines
a protocol-independent framework, which contains the model of computation and communication and a
notion of emulation. The former determines the types of entities involved in the real-life and ideal proto-
col execution, what each of them can see and do, and how they communicate. The latter defines what it
means to say a real protocol execution emulates (i.e., is as secure as) the ideal protocol execution. Then,
an ideal model specific to the protocol is defined to capture the expected security properties. Security
is guaranteed by including a trusted entity that collects the inputs of different entities in each round,
performs the necessary calculations locally, and hands each entity’s outputs for that round back to them.
We use this paradigm to define a framework for analyzing security of our credential system.

3 Threshold Attribute-Based Signatures

We assume there is a universal set of attributes U that is publicly known. Each signer is associated with
a subset Att ⊂ U of attributes that is verified by a central authority. In the following, we assume that
the signing attribute set A is equal to the signer attribute set Att and we use the terms interchangeably.
This has minimal impact in our definitions of the schemes and their security. We define the signature for
a fixed threshold d. We discuss later how flexible thresholds can be achieved.

3.1 Definition

A threshold attribute-based signature (t-ABS) is a quadruple of algorithms as follows:

Setup is the algorithm run by a central authority on input the security parameter k and outputs a
master secret key msk and a master public key mpk.

KeyGen is the algorithm run by the central authority on inputs msk and a set of signer attributes A
and generates a secret signing key ssk for the signer.

Sign is the algorithm run by a signer on inputs ssk and a message m and generates a signature σ on
the message.

Verify is the algorithm run by a verifier on inputs mpk, a message signature pair (m,σ), and a verification
attribute set B and outputs 1 if σ is a valid signature by a signer who has at least d of the attributes
in B, i.e., if |A ∩B| ≥ d.

Correctness: A t-ABS scheme has to satisfy the correctness property, i.e., a signature generated by a
signer with attributes A must pass the verification test for any B if |A ∩B| ≥ d.

Unforgeability: For a t-ABS scheme defined as above we require that it is existentially unforgeable
against chosen message and attribute set attacks. In particular, we define the following game between a
challenger and the adversary.

Setup Phase: The challenger runs the Setup algorithm and gives mpk to the adversary.

Query Phase: The adversary is allowed to ask queries for the following:

– a secret key of a signer with attributes of its choice α, and

– a signature of a signer with any attribute set of its choice α on a message of its choice m.
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Forgery Phase: The adversary outputs a triplet (µ, σ, β), consisting of a message µ, a forged signature
σ, and a verification attribute set β, and wins if σ is a valid signature with respect to (mpk, µ, β)
and

– for all queried sets of attributes α, we have |α ∩ β| < d, and

– for all queried pairs (α,m), we have m 6= µ or |α ∩ β| < d.

If no polynomial adversary has a considerable advantage in the above game, we say that the t-ABS
scheme is existentially unforgeable against chosen message and attribute set attacks, or euf-cmaa-secure
for short. We also consider a weaker notion of security, selective unforgeability against chosen message
and attribute set attacks (suf-cmaa-security) in which the adversary should commit to the target forgery
message and verification attribute set in the beginning of the attack. We define this notion in Appendix
A and discuss how an existentially unforgeable scheme can be constructed given a selectively unforgeable
scheme.

Collusion Resistance: It is important to note that the above definition of unforgeability guarantees
collusion resistance in the sense that no colluding group of users can generate a signature that is not
generable by one of the colluders. This is because if a group of signers can construct a signature that
none of them could individually produce, then this is a forgery as per the above definition. Note that the
adversary is able to query for secret keys for entities with chosen attributes, hence the game captures the
scenario in which multiple signers are colluding. Furthermore, for the adversary to win, we must have
|α∩ β| < d for all queried sets of attributes α. This ensures that none of the colluders could generate the
forged signature by himself.

3.2 Additional Protocols

A signature holder can always check a signature σ against possible verification attribute sets to deduce
information about the signer’s attributes. To preserve privacy of signers we equip our t-ABS scheme
with an additional algorithm for converting the signature to another signature that is verifiable against
B and only reveals the d chosen attributes of the signer. The converted signature can be seen as a B-
designated signature that contains a minimal subset of attributes from the original set of signer attributes,
that allows the verification to succeed. Attribute privacy is obtained by using an interactive verification
protocol iVerify, that allows the signature holder to prove possession of a valid converted signature without
revealing the chosen d attributes in common between A and B.

We call our t-ABS scheme equipped with both the above conversion algorithm and interactive verification
protocol a t-ABS+ scheme, which formally contains the Setup, KeyGen, and Sign algorithms as defined in
the t-ABS scheme plus the following:

Convert is the algorithm run by a signature holder on inputs mpk, a message signature pair (m,σ), and
a verification attribute set B and generates a converted signature σ̃ on the message.

CvtVerify is the algorithm run by a verifier on inputs mpk, a message converted-signature pair (m, σ̃),
and a verification attribute set B and outputs 1 if σ̃ is a valid converted signature by a signer who
has at least d of the attributes in B, i.e., if |A ∩B| ≥ d.

iVerify is an interactive verification protocol for proving knowledge of a converted signature on the prover
side and verifying a converted signature on the verifier side. The public inputs are the t-ABS master
public key mpk, a message m, and verifier’s verification attribute set B. Prover’s private input is a
converted signature σ̃. The verifier has no private input. At the end of the protocol execution the
verifier will output a binary value reflecting prover’s converted signature validity against B.

Correctness: Apart from correctness of the underlying t-ABS scheme, we require that any converted
signature calculated from a valid signature (i) passes the CvtVerify test, and (ii) makes the verifier in the
iVerify protocol accept.
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Unforgeability: We require that converted signatures in our t-ABS+ scheme are also existentially un-
forgeable under chosen message and attribute set attacks. Since knowledge of a signature is sufficient
for producing a converted signature (using algorithm Convert), converted signature unforgeability implies
signature unforgeability, and hence, is a stronger notion of security. Converted signature existential un-
forgeability under chosen message and attribute set attacks (c-euf-cmaa-security) is defined through a
game, in which the setup and query phases are the same as the euf-cmaa-security game above, but σ in
the forgery phase is replaced with σ̃. That is, the adversary is given the same resources, but is expected
to forge a nontrivial valid converted signature instead of a nontrivial valid signature. The full game is
transcribed in Appendix A for completion.

Weak Signer-Attribute Privacy: A converted signature should not reveal any attribute of the signer
other than the d of them common withB chosen by the signature holder at the time of conversion. Thus, we
require that whatever a verifier can deduce about other attributes of the signer given a converted signature,
can also be deduced given merely the d attributes as well. This ensures that only the d attributes of the
signer that are chosen by the signature holder are revealed to the verifier given a converted signature. We
call this property weak signer-attribute privacy.

Signer-Attribute Privacy: We also require that the iVerify protocol is a zero knowledge proof of
knowledge of a valid converted signature with respect to the public inputs (mpk,m, β). This ensures that
(i) only provers in possession of a valid converted signature are indeed successful in proving so, and (ii)
the proof reveals no information other than the validity of the prover’s converted signature to the verifier.
We call this property (full) signer-attribute privacy. Note that property (ii) guarantees that proofs of
possession of signatures from different signers satisfying the verification policy remain indistinguishable
for the verifier. Furthermore, it guarantees that multiple proofs of possession of even the same signature
(from the same signer) remain unlinkable for the verifier.

Flexible Threshold: To achieve a flexible threshold, one can use either or a combination of the following
two techniques based on the application at hand: (i) designing multiple schemes with different thresholds
and (ii) using dummy attributes. The latter is specifically useful to enable thresholds less than the scheme
threshold d and it works as follows. The key generation authority assumes that all signers in the system
possess some dummy attributes and generates their signing key components accordingly. To enforce a
verification policy with threshold d′ ≤ d, a verifier includes d − d′ dummy attributes in its verification
attribute set. Possessing at least d attributes out of the “new” verification attribute set is equivalent to
possessing at least d′ attributes out of the “original” verification attribute set, since the d − d′ dummy
attributes are possessed by all signers. Hence, a range of thresholds [dmin.. dmax] can be supported by
a scheme with dmax − dmin dummy attributes at the price of increasing the size of all signing keys and
signatures by dmax − dmin components.

3.3 Constructions

We propose a threshold attribute-based signature based on bilinear maps. We make use of some design
techniques of earlier works of [SW05] and [BB04].

The Scheme: Signer attributes are assumed to be sets of at most n elements of Zp. Although generally,
identities can be sets of at most n arbitrary strings and a collision resistant hash function is used to map
the strings to elements of Zp. We use N = {1, 2, . . . , n + 1} to denote the set of possible attributes. In
the following, a basic scheme with a fixed threshold d is introduced. We will later discuss how to extend
our scheme for verifiers with different thresholds. Let G1 = 〈g〉 be a group of prime order p and a bilinear
map e : G1 × G1 → G2 be defined. Let (e,G1,G2) be of public knowledge. We present the scheme for
signing messages in Zp. Although, the message space can be expanded to contain arbitrary messages using
a collision resistant hash function to map strings to Zp.

Setup(1k): Pick y randomly from Zp and set g1 = gy. Pick random elements g2, h, t1, t2, ..., tn+1 from
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G1. Define and output the following:

T (x)
4
= gx

n

2

n+1∏
i=1

t
∆i,N (x)
i and msk = y and mpk = (g, g1, g2, t1, t2, . . . , tn+1, h)

KeyGen(msk,A): Choose a random d − 1 degree polynomial q(x) such that q(0) = y, choose random
elements ri in Zp for i ∈ A, and output

ssk =
〈 {

g
q(i)
2 T (i)ri , gri

}
i∈A

〉

Sign(ssk,m): Parse the signing key as ssk =
〈
{ssk1i, ssk2i}i∈A

〉
, pick random elements si in Zp for all

i ∈ A, and output

σ =
〈

A, { ssk1i (gm1 · h)si , ssk2i, gsi }i∈A
〉

Verify(mpk,m, σ,B): Parse the signature as σ =
〈
A, {σ1i, σ2i, σ3i}i∈A

〉
. Select an S ⊆ A∩B such that

|S| = d and check if the following equation holds:

∏
i∈S

(
e(σ1i, g)

e(T (i), σ2i) · e(gm1 · h, σ3i)

)∆i,S(0)

= e(g2, g1) (1)

Correctness and Unforgeability: One can easily check the correctness of the scheme by verifying that
the S components of the signature interpolate to result in e(g2, g1). The correctness proof can be found
in Appendix B for completion. Unforgeability is implied by converted-signature unforgeability that we
prove later in Theorem 1.

Additional Protocols: The concrete conversion and converted-signature verification algorithms are as
follows:

Convert(mpk,m, σ,B): Parse the signature as σ =
〈
A, {σ1i, σ2i, σ3i}i∈A

〉
. Select an S ⊆ A ∩ B such

that |S| = d. Calculate the converted signature components as follows:

for all i ∈ S : σ̃1i ← σ
1/∆i,B\S(0)

1i σ̃2i ← σ
1/∆i,B\S(0)

2i σ̃3i ← σ
1/∆i,B\S(0)

3i

for all i ∈ B \ S : σ̃1i ← (T (i)gm1 h)1/∆i,B\S(0)
σ̃2i ← g1/∆i,B\S(0) σ̃3i ← g1/∆i,B\S(0)

and output σ̃ =
〈
{σ̃1i, σ̃2i, σ̃3i}i∈B

〉
.

CvtVerify(mpk,m, σ̃, B): Parse the converted signature as σ̃ =
〈
{σ̃1i, σ̃2i, σ̃3i}i∈B

〉
. Check if the follow-

ing equation holds: ∏
i∈B

(
e(σ̃1i, g)

e(T (i), σ̃2i) · e(gm1 · h, σ̃3i)

)∆i,B(0)

= e(g2, g1) (2)

Furthermore, the iVerify protocol flow is as follows:

1. The signature holder randomizes the converted signature by first choosing random elements s′i and r′i
for i ∈ B and then calculating the following. Note that the resulting randomized converted signature
is a valid converted signature itself.

σ̆1i = σ̃1i · T (i)r
′
i (gm1 · h)s

′
i and σ̆2i = σ̃2i · gr

′
i and σ̆3i = σ̃3i · gs

′
i

2. The signature holder chooses random values τi for all i ∈ B and sets σ̂1i ← σ̆
1/τi
1i and sends〈

{σ̂1i, σ̆2i, σ̆3i}i∈B
〉

to the verifier.
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3. Both the signature holder and the verifier calculate the following for all i ∈ B:

u0 ← e(g2, g1) u1i ← e(σ̂1i, g)∆i,B(0)

u2 ←
∏
i∈B e(T (i), σ̆2i)∆i,B(0) u3 ←

∏
i∈B e(g

m
1 h, σ̆3i)∆i,B(0)

4. The signature holder performs the following ZK-PoK for the verifier:

ZK-PoK
{

({τi}i∈B) :
∏
i∈B

uτi1i = u0u2u3

}

Correctness and Unforgeability: The t-ABS+ scheme is correct since (i) the t-ABS scheme is correct,
and (ii) the S components of the converted signature interpolate to result in e(g2, g1) and the B \ S
components are dummy components, and (iii) the equation checked in the iVerify protocol is only a
rearranged version of what is checked in the CvtVerify algorithm. We discuss unforgeability of our scheme,
and in particular, the proof of the following theorem, in Appendix C.

Theorem 1 The above t-ABS+ scheme is c-suf-cmaa-secure if the CDH problem is hard. As a direct
corollary, the underlying t-ABS scheme is suf-cmaa-secure if the CDH problem is hard.

Full Security: Existential unforgeability can be achieved in either of the following techniques:

General Reduction: Any selectively unforgeable t-ABS can be proved to be existentially unforgeable.
This general reduction is discussed in Appendix A. This reduction is not efficient and introduces a
large penalty factor to the security of the scheme, but it is carried out in the standard model.

Random Oracles: An alternative method is use random oracles to hash messages and signer attributes
at the time of signing. This method is discussed in Appendix A and provides an efficient reduction.
The penalty factor here is substantially lower than that of the general reduction.

Waters’ Technique: Waters proposed a technique [Wat05] that can be used here to achieve a tight
existential unforgeability reduction in the standard model at the price of large public keys. To
use this technique, we needs to (i) add ` random elements h1, h2, . . . , h` from G1 to mpk in Setup
algorithm, where ` is the (maximum) bit length of messages, and (ii) replace all instances of gm1 h
in the above scheme with W(m), where Waters function W(·) is defined as W(m) = h

∏
hmii , where

mi denotes the i-th bit of m. The concrete scheme is transcribed in Appendix F for completeness.

Of course, Waters’ technique is preferred to the other two. However, we use the algebraic properties of
our basic scheme to construct C-signatures in the next section and we do not know if C-signatures can
be constructed based on the Waters modification of our basic t-ABS scheme. Thus, our construction of
C-signatures admits only to the first two techniques.

Signer-Attribute Privacy: One can see that since B \ S components of the converted signature are
publicly simulatable, weak signer-attribute privacy is achieved. Furthermore, the iVerify protocol can be
easily proved to be both a proof of knowledge and zero knowledge and hence full signer-attribute privacy
is also achieved. We prove the following theorem in Appendix E:

Theorem 2 The above t-ABS+ scheme achieves both weak and full signer-attribute privacy.

Efficiency: The iVerify protocol is of size linear in the size of the verification attribute set. This is in
contrast with the discussed partial proofs of knowledge, which require proofs of size linear in the number
of possible signers.

4 Threshold Attribute-Based C-Signatures

We define threshold attribute-based C-signatures to accommodate for construction of an anonymous cre-
dential scheme where users’ pseudonyms are in the form of committed values. Hence, we extend t-ABS+
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schemes to schemes supporting efficient protocols for signing and verifying signatures on committed values
(i.e., pseudonyms) in the following.

4.1 Definition

A t-ABCS scheme consists of a t-ABS+ scheme defined on messages in the form m̃ = (m, r), a commitment
scheme, and the following additional protocols:

iCSign: An interactive signing protocol for signing a committed value on the signer side and obtaining
a signature on a committed value on the user side. The public inputs are the t-ABS master public
key mpk, the commitment public key cpk, and a commitment M . User’s private inputs are the
message to be signed (m, r) containing a random value r such that M = Commit(cpk,m, r). Signer’s
private input is its signing key ssk. At the end of the protocol execution the user will output signer’s
signature σ on m.

iHVerify: An interactive verification protocol for proving knowledge of a converted signature on the
prover side and verifying a converted signature on the verifier side. The public inputs are the t-ABS
master public key mpk and verifier’s verification attribute set B. Prover’s private input is the tuple
(m, r, σ̃) such that σ̃ is a converted signature on (m, r). The verifier has no private input. At the
end of the protocol execution the verifier will output a binary value reflecting prover’s converted
signature validity against B.

iCVerify: An interactive verification protocol for proving knowledge of a converted signature on a
committed value on the prover side and verifying a converted signature on a committed value on
the verifier side. The public inputs are the t-ABS master public key mpk, the commitment public
key cpk, a commitment M ′, and verifier’s verification attribute set B. Prover’s private input is the
tuple (m, r, r′, σ̃) such that M ′ = Commit(cpk,m, r′) and σ̃ is a converted signature on (m, r). The
verifier has no private input. At the end of the protocol execution the verifier will output a binary
value reflecting prover’s converted signature validity against B.

Correctness: Besides correctness of the underlying t-ABS+ scheme, we require that the above protocols
should satisfy the correctness property. For iCSign it means that if the user and the signer follow the
protocol, then the user should output a valid signature. In other words, if σ is the output the user gets from
running the protocol with a signer with attribute set A, then Convert(mpk, (m, r), σ, B) should pass the
verification test for any B if |A∩B| ≥ d. Correctness for iHVerify and iCVerify means that if the prover and
the verifier follow the protocol, then the verifier finds out the validity or invalidity of the prover’s converted
signature correctly. This means that the verifier’s outputs is the same as CvtVerify(mpk, (m, r), σ̃, B).

Security: Besides security of the underlying t-ABS+ scheme, we require the following security properties
from the additional protocols. We require that the iCSign protocol is secure in the following senses:

Security for the user: Users with different private inputs m should remain indistinguishable for the
signer, even if the signer acts maliciously. In particular, we require that for any mpk and cpk, there is
no malicious signer that can distinguish if it is interacting with a user with private input containing
m0 or with a user with private input containing m1.

Security for the signer: The protocol should reveal (almost) no information other than a single signature
on a known committed value to a user, even though the user acts maliciously. In particular, we
require that for any mpk and cpk, and for any (possibly malicious) user, there exists a simulator,
that with only a one-time access to the signing oracle, can simulate a signer’s interaction with the
user.

We require that the iHVerify protocol is (i) a zero knowledge protocol (security for the prover) and
(ii) a proof of knowledge of a triplet (m, r, σ̃) such that CvtVerify(mpk, (m, r), σ̃, B) = 1 (security for
the verifier). We require that the iCVerify protocol is (i) a zero knowledge protocol (security for the
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prover) and (ii) a proof of knowledge of a quadruple (m, r, r′, σ̃) such that M ′ = Commit(cpk,m, r′) and
CvtVerify(mpk, (m, r), σ̃, B) = 1 (security for the verifier).

A t-ABCS scheme is said to be correct and secure if the underlying t-ABS+ scheme defined on messages
in the form m̃ = (m, r), is correct and c-euf-cmaa-secure, the commitment scheme is correct and secure,
and the associated iCSign, iHVerify and iCVerify protocols are correct and secure for the user, signer, prover
and verifier in the above senses.

4.2 Construction

Our t-ABS+ scheme can be modified to be defined on messages in the form of m̃ = (m, r) as follows:
(i) in the Setup algorithm, add a random element g3 from G1 to the master public key and set mpk =
(g, g1, g2, g3, t1, t2, . . . , tn+1, h), and (ii) in the Sign, Verify, Convert, and CvtVerify algorithms, replace gm1
with gm1 g

r
3 everywhere. We will not use the iVerify protocol. The scheme is provided in Appendix D for

completion.

For the commitment scheme, consider the scheme with cpk = (g1, g3) and Commit(cpk,m, r) = gm1 g
r
3.

This scheme is (unconditionally) hiding and (computationally) binding if the discrete logarithm problem
is hard. For this commitment scheme and the above t-ABS scheme, we introduce the following additional
protocols to construct a t-ABCS scheme altogether. The iCSign protocol is as follows:

1. the user gives a ZK-PoK of (m, r) such that M = gm1 · gr3.

2. the signer picks random elements si in Zp for all i ∈ A, calculates the signature as below, and sends
it to the user.

σ =
〈

A, { ssk1i(Mh)si , ssk2i, gsi }i∈A
〉

The iHVerify and iCVerify protocols are as follows:

1. The signature holder randomizes the converted signature by first choosing random elements s′i and r′i
for i ∈ B and then calculating the following. Note that the resulting randomized converted signature
is a valid converted signature itself.

σ̆1i = σ̃1i · T (i)r
′
i (gm1 g

r
3 · h)s

′
i and σ̆2i = σ̃2i · gr

′
i and σ̆3i = σ̃3i · gs

′
i

2. The signature holder chooses random values τi for all i ∈ B and sets σ̂1i ← σ̆
1/τi
1i and sends〈

{σ̂1i, σ̆2i, σ̆3i}i∈B
〉

to the verifier.

3. Both the signature holder and the verifier calculate the following for all i ∈ B:

u0 ← e(g2, g1) u1i ← e(σ̂1i, g)∆i,B(0) u2 ←
∏
i∈B e(T (i), σ̆2i)∆i,B(0)

u31 ←
∏
i∈B e(g1, σ̆3i)∆i,B(0) u32 ←

∏
i∈B e(g3, σ̆3i)∆i,B(0) u33 ←

∏
i∈B e(h, σ̆3i)∆i,B(0)

4. The signature holder performs the following ZK-PoK for the verifier based on the protocol:

for iHVerify : ZK-PoK
{

(m, r, {τi}i∈B) :
∏
i∈B u

τi
1i = u0u2u

m
31u

r
32u33

}
for iCVerify : ZK-PoK

{
(m, r, r′, {τi}i∈B) : M ′ = gm1 g

r′

3 ∧
∏
i∈B u

τi
1i = u0u2u

m
31u

r
32u33

}
Correctness: In Appendix E we briefly show that the above protocols are correct.

Security: On unforgeability of our scheme, in Appendix C we prove Theorem 3 that comes in the
following. As discussed under unforgeability of our t-ABS scheme, the theorem implies that the scheme
is also euf-cmaa-secure with a loose reduction or is euf-cmaa-secure with an efficient reduction in the
random oracle model. On security of our additional protocols, we prove the Theorem 4 that comes in

13



the following in Appendix E. Furthermore, hardness of the CDH problem implies hardness of the discrete
logarithm problem, which, in turn, is sufficient for the commitment scheme to be secure. Thus our t-ABCS
scheme is secure as per our definition if CDH is hard.

Theorem 3 The above t-ABCS scheme, i.e. our t-ABS+ scheme defined on messages in the form m̃ =
(m, r), is c-suf-cmaa-secure if the CDH problem is hard.

Theorem 4 The above protocols iCSign, iHVerify, and iCVerify are secure for the user, signer, prover and
verifier.

5 Threshold Attribute-Based Anonymous Credential Systems

A credential system involves users and organizations. Organizations issue credentials to users based on
their policy, which might require users to prove possession of credentials from other organizations. Users
are considered holders of the credential they are issued with and might wish to prove possession of their
credentials to organizations to get a service or be granted new credentials. An anonymous credential
system is one in which users are known to organizations only by their pseudonyms. Such pseudonyms
should be well-defined, i.e., each pseudonyms must belong to only one user.

A basic anonymous credential system must support a minimal of three basic protocols, respectively for
forming pseudonyms, granting credentials, and verifying credentials. All these protocols are between a
user and an organization. Users first form the pseudonyms with any organization that they might wish to
issue a credential to them. Then they might be granted a credential on their formed pseudonym. Possession
of such a credential can be verified by an organization at a later time. The user proves possession of her
credential to obtain a service from the verifier. If this service includes issuing a credential to the user,
then the user must have formed a pseudonym with the organization previously and prove possession of her
credential on the formed pseudonym. Otherwise, there is no need to involve a pseudonym. The user simply
proves possession of her credential in this case. Thus, an optional property is that the system supports
two types of verification protocols: one for verifying possession of a credential on a formed pseudonym,
and another for simply verifying possession of a credential, which implements more efficiently than the
former.

An attribute-based anonymous credential system is one with attribute-based organizations. Each organi-
zation is given a signing key based on its attributes by a trusted authority. A threshold attribute-based
anonymous credential system is an attribute-based anonymous credential system that supports threshold
attribute-based verification. We assume that the “credential types” in the system are fixed and each orga-
nization is given extra attributes for the credential types they can issue. Hence, a credential only consists
of the identity of the credential holder and the signature of the organization on it, using the appropriate
signing attribute for the credential type. Hence, a driving license would be in the form of a signature on
the identity of a user with the attribute “authorized driving license issuer” among the issuer organization
attribute set.

5.1 Security Framework

To formalize a security definition for a threshold attribute-based anonymous credential system, we use
the simulation paradigm. Two models of a credential system, an ideal model and a real model, are
presented. In both models, the system contains users and organizations as entities. Each model contains
an active adversary in the sense that not only the adversary sees all the messages sent to the corrupted
entities (users and organizations), but also upon corruption, the adversary gets hold of all the secret
information and future actions of the corrupted entity. However, only static adversaries are considered.
That is, the adversary only gets to pick the entities it wishes to corrupt in the beginning of the system
execution and is not allowed to dynamically corrupt new entities during the system run. In the real
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model, the entities communicate with each other directly. However, in the ideal model, they communicate
via a trusted party, which locally performs all calculations needed to carry out a transaction and just
reports the corresponding outputs to the entities involved. The adversary is assumed to be unable to
eavesdrop the communications. To be able to compare the two systems, a scheduler entity is introduced
to the system, called the environment. The environment schedules transactions in the system and gathers
output information. In particular, it tells each entity which protocol to carry out and with whom. At
the end of the protocol, the entities involved report back the outcome of the protocol. The environment
proceeds in periods and in each period it schedules only one transaction. Concurrent scheduling is not
considered2. A depiction of a typical system with the above setting is shown in Figure 1. This framework
of security is the same as what Camenisch and Lysyanskaya used for defining security of anonymous
credential systems [CL01, Lys02].

U1 U2 U3O1 O2

AR

E

U1 U2 U3O1 O2

AI

E

T

Figure 1: The real model (left) vs. the ideal model (right) in a system consisting of the environment E,
the users U1, U2, and U3, and the organizations O1 and O2, where the adversary A controls the user U3

and the organization O2. T is the ideal-world trusted party.

A real system is said to be secure if it emulates a secure ideal model. Emulation means that for any
arbitrary scheduling and any arbitrary real-model adversary, an ideal-model adversary can be found such
that the two systems are indistinguishable in the eyes of the environment. An implication of this property is
that whatever the real-model adversary can extract from the real-model system, the ideal-model adversary
can extract from the ideal-model system. Now, since the ideal system is defined in a way that its security
against ideal-model adversaries is guaranteed, the security of the real-model system follows.

5.2 Ideal Model for t-ABACS

The Model: In the ideal, model users and organizations interact through a trusted party T who makes
sure the system remains anonymous and secure. There is a public universal set of attributes U. Each
organization O has a set of attributes AO ∈ U, which is assumed to be public and fixed during the life
of the system. Besides, each organization O, based on its policy at a certain time, might be interested
to verify users’ credentials against a set of attributes. We denote this set by BO ∈ U. BO is assumed to
be made public by the organization and fixed during each period. T maintains three lists: a list of user
passwords LP, a list of user pseudonyms LN, and a list of issued credentials LC. LP contains pairs of user
names U and their passwords KU and is used to authenticate (and hence identify) users. We assume that
initially this list contains all user names and passwords in the system. LN contains triplets of user names
U , organization names O, and their pseudonyms NUO, and is initially empty and is filled by T as users
form pseudonyms with organizations. LC contains pairs of user pseudonyms NUI and issuer organization
attributes AI , and is initially empty and is filled by T as organizations grant credentials to users. User
pseudonyms are assumed to be chosen randomly and independent of user identities. There are four basic
operations as follows.

2Note that this notion of security is weaker than Canetti’s Universal Composability [Can01]. We do not address a
composable notion of security, but rather a stand-alone one.
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FormNym [U ↔ T↔ O] (NUO) :
This is a protocol between a user U and an organization O. U wants to form a pseudonym NUO with O.
The protocol flow is as follows.

U −(FormNym, (U,KU ) , NUO, O )→ T :
U sends her login info (U,KU ) to T along with a request for forming a pseudonym NUO with O.

T −(FormNym, NUO )→ O if (U,KU ) ∈ LP :
T checks U ’s login info and if KU is U ’s password then tells O that a user wants to form a pseudonym
NUO with it.

O −(d )→ T :
O either accepts or rejects the request and informs T of its decision d.

T −(d )→ U :
T informs U of O’s decision d. If O accepts, T also stores the triple (U,O,NUO) in LN.

GrantCred [U ↔ T↔ I] (NUI) :
This is a protocol between a user U and an organization I. U , who has already formed a pseudonym NUI
with I, wants to be granted a credential by I on NUI . I has set of attributes AI . The protocol flow is as
follows.

U −(GrantCred, (U,KU ) , NUI , I )→ T :
U sends her login info (U,KU ) to T along with a request for being granted a credential by I on a
pseudonym NUI .

T −(CrantCred, NUI )→ I if (U,KU ) ∈ LP ∧ (U, I,NUI) ∈ LN :
T checks U ’s login and pseudonym info. If KU is U ’s password and NUI is U ’s pseudonym with I
then T tells I that the user with pseudonym NUI wishes to be granted a credential.

I −(d )→ T :
I either accepts or rejects the request and informs T of its decision d.

T −(d )→ U :
T informs U of I’s decision d. If I accepts, T also stores the pair (NUI , AI) in LC.

VerifyCred [U ↔ T↔ V ] (NUI) :
This is a protocol between a user U and an organization V . U has a credential issued by I on NUI . AI
is the attribute set of I and BV is the verification attribute set of V . U wants V to verify that she has
been issued a credential by an organization whose attributes AI has at least d elements in common with
V ’s verification attribute set BV . The protocol flow is as follows.

U −(VerifyCred, (U,KU ) , NUI , V )→ T :
U sends her login info (U,KU ) to T along with a request for her credential on NUI to be verified by
V .

T −(VerifyCred )→ V if (U,KU ) ∈ LP ∧
[
∃I : (U, I,NUI) ∈ LN ∧ (NUI , AI) ∈ LC ∧ |AI ∩BV | ≥

d
]

:
T checks U ’s login and credential info. If KU is U ’s password and there exists an organization I
such that NUI is U ’s pseudonym with I and a credential has been issued on NUI by an organization
with attributes AI which has at least d elements in common with V ’s verification attribute set BV ,
then T tells I that the user has a credential from an organization whose attributes has at least d
elements in common with V ’s verification attribute set.

V −(Ack )→ T :
V acknowledges verification of the credential.

T −(Ack )→ U :
T passes V ’s acknowledgment to U .
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VerifyCredOnNym [U ↔ T↔ V ] (NUI , NUV ) : This is a protocol between a user U and an organization
V . U has a credential issued by I on NUI and has already formed a pseudonym NUV with V . AI is the
attribute set of I and BV is the verification attribute set of V . U wants V to verify that she has been
issued a credential by an organization whose attributes AI has at least d elements in common with V ’s
verification attribute set BV . The protocol flow is as follows.

U −(VerifyCredOnNym, (U,KU ) , NUI , V,NUV )→ T :
U sends her login info (U,KU ) to T along with a request for her credential on NUI to be verified by
V who knows her by NUV .

T −(VerifyCredOnNym, NUV )→ V if (U,KU ) ∈ LP ∧ (U, V,NUV ) ∈ LN ∧
[
∃I : (U, I,NUI) ∈

LN ∧ (NUI , AI) ∈ LC ∧ |AI ∩BV | ≥ d
]

:
T checks U ’s login, nym, and credential info. If KU is U ’s password, NUV is U ’s pseudonym with
V , and there exists an organization I such that NUI is U ’s pseudonym with I and a credential
has been issued on NUI by an organization with attributes AI which has at least d elements in
common with V ’s verification attribute set BV , then T tells I that the user with pseudonym NUV
has a credential from an organization whose attributes has at least d elements in common with V ’s
verification attribute set.

V −(Ack )→ T :
V acknowledges verification of the credential.

T −(Ack )→ U :
T passes V ’s acknowledgment to U .

Usage Scenario: Let’s show how the above ideal model can be used to provide an attribute-based and
anonymous solution for a credential system. Consider a user U in the system who already has credentials
from organizations O1 and O2 on her pseudonyms with them, NUO1 and NUO2 , respectively. There is a
third organization O3 that issues credentials to users that possess two credentials: (i) a credential from
an organization with at least d attributes in B31, and (ii) a credential from an organization with at
least d attributes in B32. Suppose that O1 and O2 satisfy these conditions, respectively. Now, to get a
credential from O3, U first runs FormNym(NUO3) with O3 to form the pseudonym NUO3 . Then, she runs
VerifyCredOnNym(NUO1 , NUO3) with verification attribute set B31 and VerifyCredOnNym(NUO2 , NUO3)
with verification attribute set B32 with O3. As a result, O3 is convinced that the owner of pseudonym
NUO3 satisfies conditions (i) and (ii), and hence issues a credential on the same pseudonym by running
GrantCred(NUO3) with her. Note that, O3 does not learn anything more than conditions (i) and (ii) about
O1 and O2. Suppose there is a fourth organization O4 that provides services (that does not include issuing
credentials) to users that possess a credential from an organization with at least d attributes in B4. U
can simply run VerifyCred(NUO3) with verification attribute set B4 with O4. This convinces O4 that the
user they are dealing with satisfies their policy. Hence, the service is provided to the user.

Properties of the Model: The above model ensures the following security and privacy properties:

Attribute-Based Unforgeability of Credentials: The fact that records can be added to LC only when
a credential is issued together with checking LC at verification time make it impossible to forge
credentials. That is, one cannot prove a credential via VerifyCred or VerifyCredOnNym if it was not
issued by an issuer with at least d attributes in common with B.

Privacy of Users: Organizations do not find out anything about a user other than her ownership of
some credentials, even if they collude. Thus, the users’ privacy is preserved except for the inherent
and unavoidable leakage of information as a result of obtaining and/or verification of credentials
under the same pseudonym. This property includes the following properties:

Anonymity: The only pieces of information about users the organizations see during the protocols
are their pseudonyms. Hence, users are known to organizations only by their pseudonyms and
to link a pseudonym to a user, even if organizations and other users collude, they cannot do
better than random guessing.
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Unlinkability: It is infeasible to link two transactions involving the same user as long as the
user uses different pseudonyms in the transactions. Hence, it is also infeasible to link two
pseudonyms belonging to the same user.

Non-transferability: Since LN is checked during both issuing and verifying the credentials, it is
infeasible to get credentials on behalf of some other user or transfer one’s credential to others.

Issuer Attribute Privacy: Verifiers do not find out anything about the attributes of the credential
issuers other than the fact that their attributes satisfy the verification policy.

5.3 A Concrete t-ABACS System

Consider a t-ABCS scheme as defined above. We propose the following t-ABACS system based on this
scheme. We assume that there is a trusted signing key generator authority outside the system that issues
signing keys for organizations based on their attributes. Organizations’ attribute sets are all subsets of a
universal public attribute set U.

Init(1k): During the initiation phase, each user U in the system picks a secret SKU and each organization
O with attributes AO contacts the system signing key generator to get a signing secret key sskO.

FormNym [U ↔ O] (NUO): User U picks a random rO and forms a commitment to her secret NUO =
Commit(cpk, SKU , rO). She then sends NUO to O and proves that she knows the pair (SKU , rO)
using a ZK-PoK protocol. U and O save NUO as the pseudonym of U with O.

GrantCred [U ↔ I] (NUI): User U and credential issuer I who have already formed a pseudonym NUI =
Commit(cpk, SKU , rI), carry out the iCSign protocol on public inputs (mpk, cpk,NUI), user’s private
input (SKU , rI), and issuer’s private input sskI . User stores her output σ.

VerifyCred [U ↔ V ] (NUI): User U first calculates σ̃ = Convert(mpk, (SKU , rI), σ, BV ). Then, user U
and verifier V carry out the iHVerify protocol on public inputs (mpk,BV ) and user’s private inputs
(SKU , rI , σ̃).

VerifyCredOnNym [U ↔ V ] (NUI , NUV ): User U first calculates σ̃ = Convert(mpk, (SKU , rI), σ, BV ).
Then, user U and verifier V who have already formed a pseudonym NUV = Commit(cpk, SKU , rV ),
carry out the iCVerify protocol on public inputs (mpk, cpk,NUV , BV ) and user’s private inputs
(SKU , rI , rV , σ̃).

We assume that pseudonyms are well-defined. That is, each pseudonym belongs to only one user. In
practice, this can be guaranteed as follows. All users are required to reveal their identity and pseudonyms
to a trusted authority and get a zeroth credential for each of their pseudonyms. Possession of this zeroth
credential is proved to an organization at the time of forming the pseudonym with the organization.

We prove that the above system is a secure implementation of the t-ABACS system. In particular, in
Appendix G we prove the following theorem. In our proof, we provide an ideal-model adversary for any
real-model adversary and briefly show how they remain indistinguishable in the eyes of the environment
as long as the underlying t-ABCS scheme is secure.

Theorem 5 The above concrete t-ABACS system emulates the ideal model for a t-ABACS if the under-
lying t-ABCS scheme is euf-cmaa-secure.

6 Conclusions and Open Problems

We introduced a new scheme called a threshold attribute-based signature, which allows verification of
signatures as originating from a fuzzy signer. We proposed a basic concrete t-ABS scheme and provided a
tight security reduction for selective unforgeability based on hardness of the CDH problem and discussed
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how to achieve existential unforgeability in both the standard and the random oracle models. We have
shown that our basic t-ABS scheme admits to an efficient threshold attribute-based C-signature that
can be used as a building block to realize privacy-enhanced anonymous credential systems. However,
existential unforgeability of our t-ABCS scheme is based on a loose generic reduction. Designing t-ABCS
schemes with tight existential unforgeability remains as an open problem.

Our attribute-based signature scheme and hence our attribute-based anonymous credential system only
support simple threshold verification policies. A possible future direction is to design schemes that support
more complex verification policies. That is, to generalize our schemes to ones in which the verification
algorithm gets as input a (complex) policy, rather than a verification attribute set, and the verification
goes through if the signer attributes satisfy the verification policy. Systems based on such schemes can
accommodate for a larger application spectrum.

References

[BB04] Dan Boneh and Xavier Boyen. Efficient Selective-ID Secure Identity-Based Encryption With-
out Random Oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT ′04,
volume 3027 of Lecture Notes in Computer Science, pages 223–238. Springer, 2004. (Cited on
pages 9 and 21.)

[BG92] Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowledge. In Ernest F. Brick-
ell, editor, CRYPTO ′92, volume 740 of Lecture Notes in Computer Science, pages 390–420.
Springer, 1992. (Cited on page 6.)

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In ACM Conference on Computer and Communications Security (ACM-
CCS ′93), pages 62–73. ACM, 1993. (Cited on page 21.)

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
In FOCS ′01, pages 136–145, 2001. (Cited on page 15.)

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Philip D. MacKenzie. Efficient Zero-Knowledge Proofs of
Knowledge Without Intractability Assumptions. In Hideki Imai and Yuliang Zheng, editors,
Public Key Cryptography (PKC ′00), volume 1751 of Lecture Notes in Computer Science, pages
354–372. Springer, 2000. (Cited on page 6.)

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In Yvo Desmedt, editor, CRYPTO ′94, volume
839 of Lecture Notes in Computer Science, pages 174–187. Springer, 1994. (Cited on page 4.)

[CE87] David Chaum and Jan-Hendrik Evertse. A Secure and Privacy-protecting Protocol for
Transmitting Personal Information Between Organizations. In Andrew M. Odlyzko, editor,
CRYPTO ′86, volume 263 of Lecture Notes in Computer Science, pages 118–167. Springer,
1987. (Cited on page 6.)

[Cha85] David Chaum. Security Without Identification: Transaction Systems to Make Big Brother
Obsolete. Commun. ACM, 28(10):1030–1044, 1985. (Cited on page 6.)

[CL01] Jan Camenisch and Anna Lysyanskaya. An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In Birgit Pfitzmann, editor, EURO-
CRYPT ′01, volume 2045 of Lecture Notes in Computer Science, pages 93–118. Springer, 2001.
(Cited on pages 7 and 15.)

[Cra05] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,

19



Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer Science.
Springer, 2005. (Cited on page 20.)

[CS97] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for Large Groups
(Extended Abstract). In Burton S. Kaliski Jr., editor, CRYPTO ′97, volume 1294 of Lecture
Notes in Computer Science, pages 410–424. Springer, 1997. (Cited on page 6.)

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Comput., 18(1):186–208, 1989. (Cited on page 6.)

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield Nothing But Their
Validity for All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM, 38(3):691–
729, 1991. (Cited on page 7.)

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In Yuliang Zheng,
editor, ASIACRYPT ′02, volume 2501 of Lecture Notes in Computer Science, pages 548–566.
Springer, 2002. (Cited on page 5.)

[GZ08] Shanqing Guo and Yingpei Zeng. Attribute-based Signature Scheme. Information Security and
Assurance, 2008. ISA 2008. International Conference on, pages 509–511, April 2008. (Cited
on page 5.)

[Kha07a] Dalia Khader. Attribute Based Group Signature with Revocation. Cryptology ePrint Archive,
Report 2007/241, 2007. http://eprint.iacr.org/2007/241. (Cited on page 5.)

[Kha07b] Dalia Khader. Attribute Based Group Signatures. Cryptology ePrint Archive, Report
2007/159, 2007. http://eprint.iacr.org/2007/159. (Cited on page 5.)

[Kha08] Dalia Khader. Authenticating with Attributes. Cryptology ePrint Archive, Report 2008/031,
2008. http://eprint.iacr.org/2008/031. (Cited on page 5.)

[LK08] Jin Li and Kwangjo Kim. Attribute-Based Ring Signatures. Cryptology ePrint Archive, Report
2008/394, 2008. http://eprint.iacr.org/2008/394. (Cited on page 5.)

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym Systems. In
Howard M. Heys and Carlisle M. Adams, editors, Selected Areas in Cryptography (SAC ′99),
volume 1758 of Lecture Notes in Computer Science, pages 184–199. Springer, 1999. (Cited on
page 6.)

[Lys02] Anna Lysyanskaya. Signature Schemes and Applications to Cryptographic Protocol Design.
PhD thesis, Massachusetts Institute of Technology, 2002. (Cited on pages 6, 7 and 15.)

[MPR08] Hemanta Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-Based Signatures: Achiev-
ing Attribute-Privacy and Collusion-Resistance. Cryptology ePrint Archive, Report 2008/328,
2008. http://eprint.iacr.org/2008/328. (Cited on page 5.)

[Sha84] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO ′84, pages
47–53, 1984. (Cited on page 5.)

[SW05] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In Cramer [Cra05], pages
457–473. (Cited on pages 5 and 9.)

[Wat05] Brent Waters. Efficient Identity-Based Encryption Without Random Oracles. In Cramer
[Cra05], pages 114–127. (Cited on page 11.)

[YCD08] Piyi Yang, Zhenfu Cao, and Xiaolei Dong. Fuzzy Identity Based Signature. Cryptology ePrint
Archive, Report 2008/002, 2008. http://eprint.iacr.org/2008/002. (Cited on page 5.)

20

http://eprint.iacr.org/2007/241
http://eprint.iacr.org/2007/159
http://eprint.iacr.org/2008/031
http://eprint.iacr.org/2008/394
http://eprint.iacr.org/2008/328
http://eprint.iacr.org/2008/002


A Selective and Converted Signature Unforgeability

A weaker notion of security that we consider is selective unforgeability against chosen message and attribute
set attacks. In particular, we define the following game between a challenger and the adversary.

Initiation Phase: The adversary declares a pair (µ̃, β) containing the message and the verification
attribute set on which it wants to make a forgery.

Setup Phase: The challenger runs the Setup algorithm and gives mpk to the adversary.

Query Phase: The adversary is allowed to ask queries for the following:

– a secret key of a signer with attributes of its choice α as long as |α ∩ β| < d, and

– a signature of a signer with any attribute set of its choice α on a message of its choice m̃ as
long as m̃ 6= µ̃ or |α ∩ β| < d.

Forgery Phase: The adversary outputs a forged converted signature σ̃ on the message µ̃ and the
verification attribute set β and wins if Verify(mpk, µ̃, σ̃, β) = 1.

If no polynomial adversary has a considerable advantage in the above game, we say that the t-ABS scheme
is selectively unforgeable against chosen message and attribute set attacks, or suf-cmaa-secure for short.

It is easy to see that any suf-cmaa-secure t-ABS scheme is a euf-cmaa-secure scheme, but the reduction
is not efficient. The corresponding security penalty is linear in the product of the sizes of the message and
verification attribute set spaces. To see this, consider a successful euf-cmaa adversary for the scheme.
One can use this adversary to suf-cmaa-break the scheme as follows. First guess the adversary’s choice
of (µ̃, β) and declare it as the selected forging target. Then run the adversary. If the guess is correct, the
suf-cmaa attack succeeds and the probability of this event is one over the number of possible messages
times the number of possible verification attribute sets. Using the Random Oracle Model [BR93], the
security penalty can be reduced to the maximum number of oracle queries the adversary can make. In
this case, the random oracle only needs to be ‘programmed’ in one point, making sure that the forgery
target (µ̃, β) provided by the euf-cmaa adversary is mapped to the guessed pair. A similar situation in
the design of identity-based encryption schemes is elaborated by Boneh and Boyen in [BB04].

The c-euf-cmaa-security game is defined as follows. The c-suf-cmaa-security game can be defined
accordingly.

Setup Phase: The challenger runs the Setup algorithm and gives mpk to the adversary.

Query Phase: The adversary is allowed to ask queries for the following:

– a secret key of a signer with attributes of its choice α, and

– a signature of a signer with any attribute set of its choice α on a message of its choice m.

Forgery Phase: The adversary outputs a triplet (µ, σ̃, β), consisting of a message µ, a forged converted
signature σ̃, and a verification attribute set β, and wins if σ̃ is a valid converted signature with
respect to (mpk, µ, β) and

– for all queried sets of attributes α, we have |α ∩ β| < d, and

– for all queried pairs (α,m), we have m 6= µ or |α ∩ β| < d.
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B Correctness of Our t-ABS+ Scheme

We show that our t-ABS+ scheme satisfies the correctness property. If σ is a correctly produced signature,
we have:

∏
i∈S

(
e(σ1i, g)

e(T (i), σ2i) · e(gm1 · h, σ3i)

)∆i,S(0)

=
∏
i∈S

(
e(gq(i)2 T (i)ri (gm1 · h)si , g)
e(T (i), gri) · e(gm1 · h, gsi)

)∆i,S(0)

=
∏
i∈S

(
e(g2, g)q(i)

)∆i,S(0)

= e(g2, g)
∑
i∈S q(i)∆i,S(0)

= e(g2, g)y = e(g2, g1)

Thus, Equation 1 holds.

Now, note that, from the definition of the Lagrange coefficient, for any subset S of B and all i ∈ B we
have:

∆i,B(x) = ∆i,S(x) ·∆i,B\S(x)

Considering this property, if σ̃ is a correctly produced converted signature, for the components in S we
have:

∏
i∈S

(
e(σ̃1i, g)

e(T (i), σ̃2i) · e(gm1 · h, σ̃3i)

)∆i,B(0)

=
∏
i∈S

(
e(σ1i, g)

e(T (i), σ2i) · e(gm1 · h, σ3i)

)∆i,B(0)/∆i,B\S(0)

=
∏
i∈S

(
e(σ1i, g)

e(T (i), σ2i) · e(gm1 · h, σ3i)

)∆i,S(0)

= e(g2, g1)

Furthermore, for the components of the converted signature not in S we have:

∏
i∈B\S

(
e(σ̃1i, g)

e(T (i), σ̃2i) · e(gm1 gr3 · h, σ̃3i)

)∆i,B(0)

=
∏
i∈S

(
e(T (i)gm1 g

r
3h, g)

e(T (i), g) · e(gm1 gr3 · h, g)

)∆i,B(0)/∆i,B\S(0)

=
∏
i∈S

(
e(T (i)gm1 g

r
3h, g)

e(T (i), g) · e(gm1 gr3 · h, g)

)∆i,S(0)

=
∏
i∈S

1∆i,S(0) = 1

Combining the two results above shows that the verification equation, i.e., Equation 2, holds.

Furthermore, if σ̃ is a correctly produced converted signature, one can easily check that the equation∏
i∈B

uτi1i = u0u2u
m
31u33

in the iVerify protocol, is just a rearrangement of Equation 2 and hence it holds.

C Unforgeability of Our t-ABS+ and t-ABCS Schemes

Theorem 1. Our t-ABS+ scheme is c-suf-cmaa-secure if the CDH problem is hard. As a direct corollary,
the underlying t-ABS scheme is suf-cmaa-secure if the CDH problem is hard.
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Proof. The proof can be derived from the proof of the Theorem 3 that comes next by setting r = ρ = 0.
Note that in that case, there would be no type 2 forgery in the following proof, thus the part dealing with
a type 2 forger can be ignored. We omit the proof to avoid repetition.

Theorem 3. Our t-ABCS scheme, i.e. our t-ABS+ scheme defined on messages in the form m̃ = (m, r),
is c-suf-cmaa-secure if the CDH problem is hard.

Proof. Suppose that there exists an adversary A who forges a converted signature for the t-ABS scheme
on a selected message µ̃ = (µ, ρ) and verification attribute set β in a chosen message and attribute set
attack with probability ε. Then, one of the following is true:

either with probability at least ε/2, A forges on a message (µ, ρ) such that for all queried messages
(m, r) during the attack gm1 g

r
3 6= gµ1 g

ρ
3 ,

or with probability at least ε/2, A forges on a message (µ, ρ) such that for some queried message (m, r)
during the attack gm1 g

r
3 = gµ1 g

ρ
3 .

Let’s call the above types of forgery as type 1 and type 2 forgery, respectively. We show that both types
of forgery enables us to solve the CDH problem.

Dealing with A Type 1 Forger: Suppose we are given a type 1 forger A. We show how construct an
algorithm B to solve the CDH problem. B is given (g, ga, gb) as input and calculates gab by running A
as a subroutine and simulating the attack environment for it. When B initiates A, A outputs its target
verification attribute set β and target message µ̃ = (µ, ρ). B sets g1 = ga and g2 = gb. Then it chooses a
random n degree polynomial f(x) and another random n degree polynomial u(x) such that u(x) = −xn

if and only if x ∈ β. B then sets ti = g
u(i)
2 gf(i) for i = 1, · · · , n + 1. Note that we implicitly have

T (x) = g
xn+u(x)
2 gf(x) since

T (x) = gx
n

2

n+1∏
i=1

t
∆i,N (x)
i = gx

n

2

n+1∏
i=1

(gu(i)
2 gf(i))∆i,N (x)

= gx
n

2 g
∑n+1
i=1 u(i)∆i,N (x)

2 g
∑n+1
i=1 f(i)∆i,N (x)

= g
xn+u(x)
2 gf(x)

B then chooses z and γ randomly in Zp and sets g3 = gz1 and h = g−µ1 g−ρ3 · gγ . It then gives pk =
(g, g1, g2, g3, t1, t2, . . . , tn+1, h) to A who will start its secret key and signature queries. B responds to
these queries as follows.

On a secret key query for a user with attribute set α, where |β ∩ α| < d, B defines Γ = β ∩ α and lets Γ′

be any set such that Γ ⊆ Γ′ ⊆ α and |Γ′| = d− 1. B then sets S = Γ′ ∪ {0} and calculates the following:

• for i ∈ Γ′ chooses ri and λi randomly in Zp and sets

sski =
〈
gλi2 T (i)ri , gri

〉
.

• for i ∈ α \ Γ′ chooses r′i randomly in Zp and sets

ssk1i =
(
g
−f(i)
in+u(i)
1

(
g
in+u(i)
2 gf(i)

)r′i)∆0,S(i) ∏
j∈Γ′

g
λj∆j,S(i)
2

ssk2i =
(
g

−1
in+u(i)
1 gr

′
i

)∆0,S(i)

.

The simulation is obviously correct for i ∈ Γ′. To see why the simulation for i ∈ α \ Γ′ is also correct,
let q(x) be an n − 1 degree polynomial such that q(i) = λi for i ∈ Γ′ and q(0) = a. This polynomial is
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implicitly chosen randomly by random choices of elements λi by B. Also note that in + u(i) 6= 0 for all
i /∈ β, which covers all elements i ∈ α \ Γ′. Furthermore, let’s implicitly set ri =

(
r′i − a

in+u(i)

)
∆0,S(i)

and we will have:

ssk1i =
(
g
−f(i)
in+u(i)
1

(
g
in+u(i)
2 gf(i)

)r′i)∆0,S(i) ∏
j∈Γ′

g
λj∆j,S(i)
2

=
(
g
−af(i)
in+u(i)

(
g
in+u(i)
2 gf(i)

)r′i)∆0,S(i) ∏
j∈Γ′

g
λj∆j,S(i)
2

=
(
ga2

(
g
in+u(i)
2 gf(i)

) −a
in+u(i)

(
g
in+u(i)
2 gf(i)

)r′i)∆0,S(i) ∏
j∈Γ′

g
λj∆j,S(i)
2

=
(
ga2

(
g
in+u(i)
2 gf(i)

)r′i− −a
in+u(i)

)∆0,S(i) ∏
j∈Γ′

g
λj∆j,S(i)
2

= g
a∆0,S(i)
2 T (i)ri

∏
j∈Γ′

g
λj∆j,S(i)
2

= g
q(0)∆0,S(i)+

∑
j∈Γ′ q(j)∆j,S(i)

2 T (i)ri

= g
q(i)
2 T (i)ri

and

ssk2i =
(
g

−1
in+u(i)
1 gr

′
i

)∆0,S(i)

=
(
gr
′
i− a

in+u(i)

)∆0,S(i)

= gri .

Also note that random choices of elements r′i implies random elements ri. Thus, ssk is simulated correctly
by B.

On a signature query by a user with attribute set α on a message (m, r), where (m, r) 6= (µ, ρ) or |β∩α| < d,
B simulates the signature as follows:

• If |β ∩α| < d then B calculates ssk as above and then calculates the signature as follows for random
choices of si

σ =
〈
{ssk1i (gm1 g

r
3 · h)si , ssk2i, g

si}i∈α
〉
.

• Otherwise B chooses a random d − 1 degree polynomial q′(x) such that q′(0) = γ
m−µ+z(r−ρ) and

random s′i and ri in Zp for all i ∈ α and sets

σ =
〈{

g
q′(i)
2 T (i)ri (gm1 g

r
3 · h)s

′
i , gri , g

−1
m−µ+z(r−ρ)
2 gs

′
i

}
i∈α

〉
.

In the former case, B’s simulation is correct for obvious reasons. We show that the simulation is correct
for the latter case as well. Note that since A is a type 1 forger, we have gm1 g

r
3 6= gµ1 g

ρ
3 , which implies that

m+ zr 6= µ+ zρ (since g3 = gz1). This ensures that m− µ+ z(r − ρ) 6= 0 and the above assignments are
well defined. Now, let’s (implicitly) define si = s′i − b

m−µ+z(r−ρ) and q(i) = q′(i) + a + γ
m−µ+z(r−ρ) . We
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have:

σ1i = g
q′(i)
2 T (i)ri (gm1 g

r
3 · h)s

′
i

= g
q′(i)
2 T (i)ri (gm1 g

r
3 · h)

b
m−µ+z(r−ρ) (gm1 g

r
3 · h)s

′
i− b

m−µ+z(r−ρ)

= g
q′(i)
2 T (i)ri

(
gm1 g

r
3 · g

−µ
1 g−ρ3 gγ

) b
m−µ+z(r−ρ) (gm1 g

r
3 · h)si

= g
q′(i)
2 T (i)ri

(
g
m−µ+z(r−ρ)
1 · gγ

) b
m−µ+z(r−ρ)

(gm1 g
r
3 · h)si

= g
q′(i)
2 T (i)rigb1 · g

bγ
m−µ+z(r−ρ) (gm1 g

r
3 · h)si

= g
q′(i)
2 T (i)riga2 · g

γ
m−µ+z(r−ρ)
2 (gm1 g

r
3 · h)si

= g
q(i)
2 T (i)ri (gm1 g

r
3 · h)si

and
σ3 = g

−1
m−µ+z(r−ρ)
2 gs

′
i = gs

′
i− b

m−µ+z(r−ρ) = gsi

Note that random choices of s′i and q′(x) imply randomness of si and q(x). We also have q(0) = q′(0) +
a+ γ

m−µ+z(r−ρ) = a. Thus B’s simulations in the latter case are correct as well.

Finally, the adversary A outputs a forgery σ̃ for the verification attribute set β and message (µ, ρ). Since
σ̃ is a valid converted signature, we have:

∏
i∈B

(
e(σ1i, g)

e(T (i), σ2i) · e(gµ1 g
ρ
3 · h, σ3i)

)∆i,B(0)

= e(g2, g1).

Now, note that gµ1 g
ρ
3 · h = gγ and also for any i ∈ β : T (i) = gf(i). Thus the above equation can be

rewritten as follows: ∏
i∈B

(
e(σ1i, g)

e(σf(i)
2i , g) · e(σγ3i, g)

)∆i,B(0)

= e(gab, g).

Hence B is able to calculate gab and solve the CDH problem instance as follows:

∏
i∈B

(
σ1i

σ
f(i)
2i · σ

γ
3i

)∆i,B(0)

= gab.

Dealing with A Type 2 Forger: Suppose we are given a type 2 forger A. We show how construct an
algorithm C to solve the discrete logarithm and hence the CDH problem. C is given (g, gz) as input and
calculates z by running A as a subroutine and simulating the attack environment for it. When C initiates
A, A outputs its target attribute set β and target message µ̃ = (µ, ρ). C follows the Setup algorithm of the
t-ABS scheme to generate msk and mpk except for g3 which it sets as g3 = gz. Thus, C picks y randomly
from Zp and sets g1 = gy and also chooses random elements g2, h, t1, t2, ..., tn+1 from G1. T (x) is defined
in the same way. C then keeps msk = y private and gives mpk = (g, g1, g2, g3, t1, t2, . . . , tn+1, h) to the
forger. Since C knows msk, it is able to answer A’s secret key and signature queries by simply running
the KeyGen and Sign algorithms of the t-ABS scheme.

Finally, the adversary A outputs a forgery σ̃ for the verification attribute set β and message (µ, ρ). Since
A is a type 2 forger, for some queried message (m, r) during the attack we have gm1 g

r
3 = gµ1 g

ρ
3 , hence

ym+ zr = yµ+ zρ. Thus C can calculate the discrete logarithm as z = y µ−mr−ρ . Note that r− ρ 6= 0, since
otherwise r = ρ together with ym + zr = yµ + zr would imply that m = µ, hence (µ, ρ) = (m, r) and
(µ, ρ) would not count as a forgery.
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D The Concrete t-ABCS Scheme

Setup(1k): Pick y randomly from Zp and set g1 = gy. Pick random elements g2, g3, h, t1, t2, ..., tn+1

from G1. Define

T (x)
4
= gx

n

2

n+1∏
i=1

t
∆i,N (x)
i

and output the following:

msk = y and mpk = (g, g1, g2, g3, t1, t2, . . . , tn+1, h)

KeyGen(msk,A): Choose a random d − 1 degree polynomial q(x) such that q(0) = y, choose random
elements ri in Zp for i ∈ A, and output

ssk =
〈 {

g
q(i)
2 T (i)ri , gri

}
i∈A

〉

Sign(ssk, (m, r)): Parse the signing key as ssk =
〈
{ssk1i, ssk2i}i∈A

〉
, pick random elements si in Zp

for all i ∈ A, and output

σ =
〈

A, { ssk1i (gm1 g
r
3 · h)si , ssk2i, gsi }i∈A

〉
Verify(mpk, (m, r), σ̃, B): Parse the signature as σ =

〈
A, {σ1i, σ2i, σ3i}i∈A

〉
. Select an S ⊆ A ∩B such

that |S| = d and check if the following equation holds:

∏
i∈S

(
e(σ1i, g)

e(T (i), σ2i) · e(gm1 gr3 · h, σ3i)

)∆i,S(0)

= e(g2, g1)

Convert(mpk, (m, r), σ, B): Parse the signature as σ =
〈
A, {σ1i, σ2i, σ3i}i∈A

〉
. Select an S ⊆ A∩B such

that |S| = d. Calculate the converted signature components as follows:

for all i ∈ S : σ̃1i ← σ
1/∆i,B\S(0)

1i σ̃2i ← σ
1/∆i,B\S(0)

2i σ̃3i ← σ
1/∆i,B\S(0)

3i

for all i ∈ B \ S : σ̃1i ← (T (i)gm1 g
r
3h)1/∆i,B\S(0)

σ̃2i ← g1/∆i,B\S(0) σ̃3i ← g1/∆i,B\S(0)

and output σ̃ =
〈
{σ̃1i, σ̃2i, σ̃3i}i∈B

〉
.

CvtVerify(mpk, (m, r), σ̃, B): Parse the converted signature as σ̃ =
〈
{σ̃1i, σ̃2i, σ̃3i}i∈B

〉
and check if the

following equation holds:

∏
i∈B

(
e(σ̃1i, g)

e(T (i), σ̃2i) · e(gm1 gr3 · h, σ̃3i)

)∆i,B(0)

= e(g2, g1) (3)

E Security of Our Concrete Additional Protocols

Theorem 2. Our t-ABS+ scheme achieves both weak and full signer-attribute privacy.

Proof. It is easy to see that the converted signature cannot reveal more than the d selected attributes,
since it simply does not include any components corresponding to other attributes. The proof of our
iVerify protocol being a zero knowledge proof of knowledge of a converted signature is a simpler version of
the proof of the same properties for iHVerify and iCVerify protocols. The latter proof is part of the proof
of Theorem 4 which comes next. We omit the proof to avoid repetition.
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The protocol iCSign is correct for obvious reasons. Correctness of the iHVerify and iCVerify protocols is
also easy to see, considering the fact that the equation

∏
i∈B u

τi
1i = u0u2u

m
31u

r
32u33 is just a rearrangement

of Equation 3. Now, we show that the protocols are secure as per our definitions.

Theorem 4. Our protocols iCSign, iHVerify, and iCVerify are secure for the user, signer, prover and
verifier.

Proof. For the iCSign protocol, the only information the signer receives about m during the protocol is
the commitment M , since the first step of the protocol is zero knowledge. Now since M perfectly hides
m, the protocol satisfies the “security for the user” property. Technically, a distinguisher for the protocol
implies either a distinguisher for the zero knowledge protocol in the first step or a distinguisher for the
commitment scheme, which in turn contradicts witness indistinguishability of the zero knowledge protocol
or the hiding property of the commitment scheme, respectively.

To prove the second property for iCSign protocol, we introduce the following simulator. The simulator
first runs the knowledge extractor for the proof of knowledge in the first step of the protocol, which gives
a pair (m, r) such that M = gm1 · gr3. Then the simulator queries a signature on (m, r) from the signing
oracle and sends the acquired signature to the user. This shows that the “security for the signer” property
is also satisfied.

To prove the zero knowledge property for the iHVerify and iCVerify protocols, note that the tuple that
the prover sends to the verifier before performing the ZK-PoK, i.e.,

〈
{σ̂1i, σ̆2i, σ̆3i}i∈B

〉
, consists of three

random values independent of the actual converted signature. The reason is that these components are
randomized by independent random elements τi, r′i, and s′i, respectively. Thus the following simulator is
able to simulate the view of the verifier. First, the simulator picks random elements σ̂1i, σ̆2i, and σ̆3i and
sends them to the verifier. Then, it runs the simulator for the zero knowledge protocol in which simulates
the rest of the verifier’s view. Thus both the iHVerify and iCVerify protocols satisfy the “security for the
prover” property.

To prove the proof of knowledge property for the iHVerify and iCVerify protocols, we must introduce an
extractor for each that extracts a message converted-signature pair. Consider the following algorithm.
First, the extractor receives the values

〈
{σ̂1i, σ̆2i, σ̆3i}i∈B

〉
from the prover. Then it runs the extractor for

the proof of knowledge in the last step of the protocol to extract a tuple (m, r, {τi}i∈B) if the protocol
is iHVerify or (m, r, r′, {τi}i∈B) if the protocol is iCVerify. Now, by letting σ̆1i = σ̂τi1i the extractor gets a
randomized converted signature σ̆ =

〈
{σ̆1i, σ̆2i, σ̆3i}i∈B

〉
, which is itself a valid converted signature. Thus,

the “security for the verifier” property is satisfied for both protocols.

F A Standard-Model Existentially-Unforgeable t-ABS+ Scheme

Signer attributes are assumed to be sets of at most n elements of Zp. Although generally, identities can
be sets of at most n arbitrary strings and a collision resistant hash function is used to map the strings to
elements of Zp. We use N = {1, 2, . . . , n + 1} to denote the set of possible attributes. Let G1 = 〈g〉 be
a group of prime order p and a bilinear map e : G1 × G1 → G2 be defined. Let (e,G1,G2) be of public
knowledge. We present the scheme for signing messages with (maximum) bit length `. Although, the
message space can be expanded to contain arbitrary messages using a collision resistant hash function to
map strings to the set of binary strings with (maximum) length `. Waters function W(·) is defined as
W(m) = h

∏
hmii , where mi denotes the i-th bit of m.

Setup(1k): Pick y randomly from Zp and set g1 = gy. Pick random elements g2, h, t1, t2, ..., tn+1, h1,
h2, ..., h` from G1. Define and output the following:

T (x)
4
= gx

n

2

n+1∏
i=1

t
∆i,N (x)
i and msk = y and mpk = (g, g1, g2, t1, t2, . . . , tn+1, h)
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KeyGen(msk,A): Choose a random d − 1 degree polynomial q(x) such that q(0) = y, choose random
elements ri in Zp for i ∈ A, and output

ssk =
〈 {

g
q(i)
2 T (i)ri , gri

}
i∈A

〉

Sign(ssk,m): Parse the signing key as ssk =
〈
{ssk1i, ssk2i}i∈A

〉
, pick random elements si in Zp for all

i ∈ A, and output
σ =

〈
A, { ssk1iW(m)si , ssk2i, gsi }i∈A

〉
Verify(mpk,m, σ,B): Parse the signature as σ =

〈
A, {σ1i, σ2i, σ3i}i∈A

〉
. Select an S ⊆ A∩B such that

|S| = d and check if the following equation holds:

∏
i∈S

(
e(σ1i, g)

e(T (i), σ2i) · e(W(m), σ3i)

)∆i,S(0)

= e(g2, g1)

The concrete conversion and converted-signature verification algorithms are as follows:

Convert(mpk,m, σ,B): Parse the signature as σ =
〈
A, {σ1i, σ2i, σ3i}i∈A

〉
. Select an S ⊆ A ∩ B such

that |S| = d. Calculate the converted signature components as follows:

for all i ∈ S : σ̃1i ← σ
1/∆i,B\S(0)

1i σ̃2i ← σ
1/∆i,B\S(0)

2i σ̃3i ← σ
1/∆i,B\S(0)

3i

for all i ∈ B \ S : σ̃1i ← (T (i)W(m))1/∆i,B\S(0)
σ̃2i ← g1/∆i,B\S(0) σ̃3i ← g1/∆i,B\S(0)

and output σ̃ =
〈
{σ̃1i, σ̃2i, σ̃3i}i∈B

〉
.

CvtVerify(mpk,m, σ̃, B): Parse the converted signature as σ̃ =
〈
{σ̃1i, σ̃2i, σ̃3i}i∈B

〉
. Check if the follow-

ing equation holds: ∏
i∈B

(
e(σ̃1i, g)

e(T (i), σ̃2i) · e(W(m), σ̃3i)

)∆i,B(0)

= e(g2, g1)

Furthermore, the iVerify protocol flow is as follows:

1. The signature holder randomizes the converted signature by first choosing random elements s′i and r′i
for i ∈ B and then calculating the following. Note that the resulting randomized converted signature
is a valid converted signature itself.

σ̆1i = σ̃1i · T (i)r
′
iW(m)s

′
i and σ̆2i = σ̃2i · gr

′
i and σ̆3i = σ̃3i · gs

′
i

2. The signature holder chooses random values τi for all i ∈ B and sets σ̂1i ← σ̆
1/τi
1i and sends〈

{σ̂1i, σ̆2i, σ̆3i}i∈B
〉

to the verifier.

3. Both the signature holder and the verifier calculate the following for all i ∈ B:

u0 ← e(g2, g1) u1i ← e(σ̂1i, g)∆i,B(0)

u2 ←
∏
i∈B e(T (i), σ̆2i)∆i,B(0) u3 ←

∏
i∈B e(W(m), σ̆3i)∆i,B(0)

4. The signature holder performs the following ZK-PoK for the verifier:

ZK-PoK
{

({τi}i∈B) :
∏
i∈B

uτi1i = u0u2u3

}
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G Security of Our Concrete t-ABACS System

We prove the following theorem.

Theorem 5 Our concrete t-ABACS system emulates the ideal model for a t-ABACS if the underlying
t-ABCS scheme is euf-cmaa-secure.

Proof sketch. Let E be the environment and AR be the adversary in the real model. To prove that
our system emulates the ideal model, we must present a ideal-model adversary AI such that E cannot
distinguish if it is talking to the ideal system (of ideal parties and AI) or to the real system (of real parties
and AR). To do this, we run a copy of AR and translate its communications into the ideal model. As for
AR’s communication with E, no translation is needed. However, we must be able to do the two following
translations: (i) translate any message from T, intended for an ideal corrupted party, to a message that
AR understands, i.e., a message intended for a real corrupted party, and (ii) translate any message from
AR (i.e., from a real corrupted party), intended for a real honest party, to a message that T understands.
We introduce a translator S that takes care of the above in the following. The combination of S and AR
can be seen as the ideal-model adversary AI that we propose. A depiction of our simulation of the ideal
model using the real adversary AR and the translator S comes is Figure 2.

U1 U2 O1

E

T

AR

S

AI

Figure 2: Simulation of the ideal model in Figure 1 (left) in the proof using the real adversary AR from the
same figure (right) as a black box with its three incoming/outgoing communication channels. S translates
these communications into communications with T.

Since all the protocols in our systems are between a user and an organization, S needs to translate messages
in two cases: either a protocol between a corrupted user and an honest organization or a protocol between
an honest user and a corrupted organization. The translator S first generates secret signing keys for the
ideal organizations and then does the following based on the relevant case. In the following we assume
that each pseudonym N corresponds with only one pair (SK, r), since otherwise, the binding property of
the commitment scheme is broken. Technically speaking, we are able to use any adversary that breaks
the binding property to solve the discrete logarithm problem. Thus, we exclude such adversaries from the
following simulation.

Case 1. On the event that a corrupted user initiates a protocol with an honest organization, S does as
follows based on the initiated protocol:

• When a corrupted user initiates a real-model FormNym protocol with an honest organization O on
pseudonym N , S runs the extractor for the proof of knowledge of a committed value protocol and
extracts the user’s secret key SK and the corresponding r. If SK is a new key, S sets up login
information (U,KU ) with T for the corrupted user and stores (U,KU ) under the new entry SK in its
records. Otherwise, S looks SK up in its records and retrieves the login information (U,KU ). Then
S runs the ideal-model FormNym protocol with T on N . Upon completion of the protocol, S forwards
the output to the corrupted user and finishes the real-model FormNym protocol execution. Finally,
S stores (O,N, r) under SK in its records. Note that this record corresponds to (U,O,N) ∈ LN in
T’s records.
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• When a corrupted user initiates a real-model GrantCred protocol with an honest organization I on
pseudonym N , S runs the simulator for the iCSign protocol. This simulates the interaction for the
user. At some point, the simulator queries for a signature on some message (SK, r). S stops the
simulator execution at this time and looks SK up in its records. Then it retrieves the corresponding
login information (U,KU ). Using this login information, S starts an ideal-model GrantCred protocol
with T on N . When T informs S that the credential is granted, S computes the queried signature σ
on (SK, r) using the secret signing key it has generated before for I. Then it answers the signature
query of the simulator and resumes execution of the simulator code. Finally, S updates its record of
(I,N, r) to (I,N, r, σ). Note that this record corresponds to (N,AI) ∈ LC in T’s records. Also note
that the successful completion of the ideal-model GrantCred protocol means that (U, I,N) ∈ LN and
hence (I,N, r) exists in records under SK.

• When a corrupted user initiates a real-model VerifyCred protocol with an honest organization V , S
runs the extractor for the iHVerify protocol and extracts the corrupted user’s secret key SK, the
corresponding r, and a converted signature σ̃ on (SK, r). S proceeds only if σ̃ is a valid converted
signature on (SK, r) with respect to BV . S then looks SK up in its records and retrieves the
corresponding (U,KU ). It also searches for r in its records on SK and checks if it finds a matching
record (I,N ′, r, σ). If no such matching record is found S checks if any of the corrupted organizations
have at least d attributes in common with BV . If such an organization I is found, S first runs the
ideal-model FormNym and GrantCred protocols on behalf of both U and I with T to form a pseudonym
N ′ and get a credential on it. If neither a matching record nor a suitable corrupted organization is
found, S outputs ((SK, r), σ̃) and halts. Then S runs an ideal-model VerifyCred protocol with T on
issuer pseudonym N ′ and relays the outcome of the protocol back to the corrupted user.

• When a corrupted user initiates a real-model VerifyCredOnNym protocol with an honest organization
V on pseudonym N , S runs the extractor for the iCVerify protocol and extracts the corrupted user’s
secret key SK, the corresponding r and rV , and a converted signature σ̃ on (SK, r). S proceeds only
if σ̃ is a valid converted signature on (SK, r) with respect to BV . S then looks SK up in its records
and retrieves the corresponding (U,KU ). It also searches for r in its records on SK and checks if it
finds a matching record (I,N ′, r, σ). If no such matching record is found or the converted signature
is not equal to σ̃, S checks if any of the corrupted organizations have at least d attributes in common
with BV . If such an organization I is found, S first runs the ideal-model FormNym and GrantCred
protocols on behalf of both U and I with T to form a pseudonym N ′ and get a credential on it. If
neither a matching record nor a suitable corrupted organization is found, S outputs ((SK, r), σ̃) and
halts. Then S runs an ideal-model VerifyCredOnNym protocol with T on issuer pseudonym N ′ and
verifier pseudonym N and relays the outcome of the protocol back to the corrupted user.

Case 2. On the event that an honest user initiates a protocol with a corrupted organization, T contacts
S. S does as follows based on the initiated protocol:

• When an honest user initiates an ideal-model FormNym protocol with a corrupted organization O
on pseudonym N , T contacts S with a pseudonym establishment request on N . S picks a random
secret key SK ′ for this user. Then S calculates a commitment N ′ on SK ′ with a random r′ and runs
the real-model FormNym protocol as a user with O. Upon successful completion of the protocol, S
responds to T to complete the ideal FormNym protocol and establish the pseudonym N with the
honest user. Finally, S stores (O,N, r′, N ′) under secret key SK ′ in its records. Note that this
record corresponds to a record (U,O,N) ∈ LN in T’s records for some U that we do not know.

• When an honest user initiates an ideal-model GrantCred protocol with a corrupted organization I
on pseudonym N , T contacts S with a credential issuance request on N if N is the honest user’s
pseudonym with I (i.e., (U, I,N) ∈ LN for U being the honest user). S first searches its records for
a pseudonym N and retrieves the corresponding SK ′ and (I,N, r′, N ′). Such a record exists since
(U, I,N) ∈ LN. Then it runs the iCSign protocol as a user with I on input (SK ′, r′) and pseudonym
N ′. Upon completion of the protocol, if S gets a valid signature σ′ on (SK ′, r′), it notifies T that a
credential is granted and completes the ideal-model GrantCred protocol with T. Finally, S updates
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the record (I,N, r′, N ′) to (I,N, r′, N ′, σ′). Note that this record corresponds to (N,AI) ∈ LC in
T’s records.

• When an honest user initiates an ideal-model VerifyCred protocol with a corrupted organization V
on some issuer pseudonym, T contacts S with a credential verification request if the user has a
credential on its issuer pseudonym, from an issuer with at least d common attributes with BV . S
runs the simulator for the iCVerify protocol. This simulates the interaction with V . Upon completion
of the simulation, S acknowledges credential verification to T and finishes the ideal-model VerifyCred
protocol execution.

• When an honest user initiates an ideal-model VerifyCredOnNym protocol with a corrupted organi-
zation V on some issuer pseudonym and a verifier pseudonym N , T contacts S with a credential
verification request on N if the user has a credential on its issuer pseudonym, from an issuer with
at least d common attributes with BV . S searches its records for a pseudonym N and retrieves
the corresponding SK ′ and (V,N, r′, N ′). Then S runs the simulator for the iCVerify protocol on
N ′. This simulates the interaction with V . Upon completion of the simulation, S acknowledges
credential verification to T and finishes the ideal-model VerifyCredOnNym protocol execution.

The simulation only halts when a corrupted user manages to produce a pair ((SK, r), σ̃) such that σ̃
is a valid converted signature on (SK, r) and is not issued through a GrantCred protocol by an honest
organization. This means that the signature basically is a forgery! Thus if a combination of an environment
E and an adversary AI (itself made of S and AR) causes the simulation to halt, we can use them to construct
an algorithm that forges signatures for the t-ABCS scheme. In the following we show that if the simulation
does not halt, then it will provide an indistinguishable simulation.

Let’s call each of the above protocols a simulated protocol and the above system containing the translator
S the simulated system. Assume that the environment E schedules a total of ν protocols. We define an
i-th hybrid system for i ∈ {0, 1, . . . , ν} as a system in which the first i protocols are simulated protocols
and the rest of the protocols are ideal protocols. With such a definition, the ideal system can be seen as
the zeroth hybrid and the simulated system as the ν-th hybrid.

Now, if a polynomial time environment E distinguishes between the ideal system and the simulated system,
then it should be able to distinguish between (j − 1)-th and j-th hybrids for some j ∈ {1, . . . , ν}. Since
the only difference between the two hybrids is the j-th protocol, E should be able to distinguish between
a simulated j-th protocol and an ideal j-th protocol. Depending on which protocol the j-th protocol is,
we have the following cases:

• If the j-th protocol is a FormNym protocol between a corrupted user and an honest organization,
then E should be able to distinguish between a knowledge extractor and a verifier in the proof of
knowledge of a committed value protocol, which is a contradiction.

• If the j-th protocol is a GrantCred protocol between a corrupted user and an honest organization,
then we use E to construct an algorithm that distinguishes between a simulator and a signer in the
iCSign protocol.

• If the j-th protocol is a VerifyCred or a VerifyCredOnNym protocol between a corrupted user and
an honest organization, then E should be able to distinguish between a knowledge extractor and a
verifier in the iHVerify or iCVerify protocol, respectively, which is a contradiction.

• The j-th protocol cannot be a FormNym protocol between an honest user and a corrupted organiza-
tion, since the simulation exactly follows the ideal and real-model protocol procedure.

• If the j-th protocol is a GrantCred protocol between an honest user and a corrupted organization,
then we use E to construct an algorithm that distinguishes between interactions with users with
different private inputs in the iCSign protocol.

• If the j-th protocol is a VerifyCred or a VerifyCredOnNym protocol between an honest user and a
corrupted organization, then we use E to construct an algorithm that distinguishes between a prover
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and a simulator in the iHVerify or iCVerify protocol, respectively.

Hence we have shown that unless either the t-ABS scheme is forgeable, the commitment scheme is not
secure, or either of the iCSign, iHVerify, or iCVerify protocols is not secure in the sense of our definitions,
then we succeed in simulating an indistinguishable system for E and this completes the proof.
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