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Abstract. Edon-R is one of the fastest SHA-3 candidate. In this paper we study the
security of Edon-R, and we show that using Edon-R as a MAC with the secret prefix
construction is unsafe. We present a practical attack in the case of Edon-R256, which
requires 32 queries, 230 computations, negligible memory, and a precomputation of 250.
This does not directly contradict the security claims of Edon-R or the NIST requirements
for SHA-3, but we believe it shows a strong weakness in the design.
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1 Introduction

In 2005, a team of researchers led by X. Wang produced breakthrough attacks against
many widely used hash functions, including MD5 [9] and SHA-1 [8]. This has led NIST
to call for a new hash function design, and to launch the SHA-3 competition. This
competition has focused the attention of many cryptographers, and NIST received 64
submissions. 51 designs were accepted to the first round, and 10 out of those 51 has been
conceded broken by their designers so far.

Edon-R is one of the fastest candidates in this competition. It has already received
some attention from the cryptographic community, resulting in various attacks on the
compression function. There is also a preimage attack on the full hash function, but it
requires of huge amount of memory making it debatable.

In this paper we show a new attack on Edon-R, when used in the secret-prefix MAC
construction. This mode of operation is not claimed to be secure by the designers, but
our attack has no memory requirement, making it somewhat less debatable than previous
attacks. Our approach is similar to the one followed by Wang et al. who studied a similar
MAC used with SHA-1 [7]: we use a non-standard MAC to show weaknesses of the hash
function. Note that attacks on hash-based MACs are usually harder to build than attacks
on the hash function itself because part of the state is unknown.

1.1 Secret-prefix MAC

We assume that Edon-R is used as a MAC with the secret-prefix construction, defined
as MACk(M) = Edon-R(k‖M). This kind of construction is used in some old protocols,
like RFC2069 [2]. It is well known that this construction is weak, because length extension
attacks can be used for forgeries, but the key is not expected to leak. Moreover, Edon-R is
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a wipe-pipe design, so the length extension issue does not apply. In fact, this construction
is secure if the hash function is wipe-pipe and the compression function is modeled as a
random oracle [1].

In the following we assume that the key is padded to a full block, so that the secret-
prefix construction is equivalent to using a secret IV (H0,0, H0,1), and our attack will
recover this secret IV.

However, some constructions (eg. RFC2069) do not pad the key to a full block. In this
case, we can still use our attack to get the MAC of an arbitrary message in an adaptive
way. Given a challenge message M , we view pad(k‖M) as the key, and we apply our
attack to recover Edon-R(k‖M). In this case, for each challenge, we need to make some
queries to the MAC oracle.

1.2 Road Map

Section 2 will describe Edon-R and discuss previous analysis. Then, in section 3, we show
how to use a pair a related queries to gather information on both the input and the output
of the compression function. The idea is similar to the length extension attack against
Merkle-Damgård hash functions. This reduces the key-recovery problem to solving a
small equation. In section 1, we show how to solve this equation. We use simple linear
algebra techniques to identify truncated differentials in the main operations of Edon-R,
and this leads to an attack with complexity 25n/8 using only two queries to the MAC
oracle. In section 5 we use more queries to the MAC oracle to build more equations, and
solve the equations using a guess-and-determine technique. This gives a very efficient
attack, which is even practical in the case of Edon-R224/256.

2 Description of Edon-R

Edon-R is a wide-pipe iterative design, based on a compression function R, with a final
truncation T . The Edon-R family is based on two main designs: Edon-R256 uses 32-
bits words, while Edon-R512 uses 64-bit words. The compression function is based on
a quasi-group operation ∗, which take two inputs X and Y in (Fw

2 )8 (i.e. 8 w-bit words)
and compute one output in (Fw

2 )8. The quasi-group operation is just the sum of two
permutations, and we will use a permutation based description of Edon-R in this paper:

X ∗ Y = µ(X) + ν(Y )
= Q0(R0(P0(X))) +Q1(R1(P1(Y )))

where

– + is a component-wise addition modulo 2w (w is the word size);
– µ and ν are the permutations defining ∗; we rewrite then with Qi, Ri and Pi;
– P0 and P1 are linear over Z8

2w , each output word is the sum of five inputs;
– R0 and R1 are component-wise rotations of w-bit words;
– Q0 and Q1 are linear over (Fw

2 )8, each output word is the xor of three inputs;
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– We identify Z8
2w and (Fw

2 )8 with the natural mapping between them;
– We also define µ̄(X [0], X [1], ...X [7]) = µ(X [7], X [6], ...X [0]).

Note that the quasi-group operation is very easy to invert: given X and X ∗ Y , we
can compute Y as ν−1(X ∗ Y − µ(X)).

The compression function takes as input 16 message (Mi,0 and Mi,1) words and 16
words of chaining value (Hi,0 and Hi,1) and produces 16 words of new chaining value
(Hi+1,0 and Hi+1,1). The full compression function is described in Figure 1. For more
details, see [3].

2.1 Previous analysis of Edon-R

Previous work [4,5] have shown various weaknesses of the compression function:

– given Mi,0, Mi,1, Hi+1,0 and Hi+1,1, it is easy to compute Hi,0 and Hi,1;
– given Hi,0, Hi,1, Mi,0, and Hi+1,0, it is easy to compute Mi,1, and Hi+1,1;
– given Hi+1,1, Hi,0 and Mi,0, we can find a value of Hi,1, Hi+1,0, and Mi,1 with 2n/2

operations.

These results can be used to mount various attacks on the hash function:

– We can apply generic attacks against narrow-pipe hash functions: multi-collisions,
second preimages on long message, fixed points, ...

– There is a preimage attack with complexity 22n/3 and 22n/3 memory.

The preimage attack requires less computations than a generic attack, but due to the
large memory requirement, the machine to carry out this attack might be more expensive
than a machine to perform a parallel brute force, so it is unclear whether this should be
considered as an attack.

However, these results show that the compression function of Edon-R is quite weak,
and the security of Edon-R can’t be based on a security proof of the Merkle-Damgård
mode.

2.2 Our Results

Our work shows that

– given Mi,0, Mi,1, Hi,1 and Hi+1,1, we can compute Hi,0 and Hi+1,0 with 25n/8 opera-
tions.

– given M (j)
i,0 , M

(j)
i,1 , Hi,1 and H(j)

i+1,1 for a group of 32 carefully chosen related messages
(Hi,0 andHi,1 are the same for all messages), we can computeHi,0 with 230 operations
for Edon-R256, or 232 for Edon-R512. However, there is a precomputation step to
build the group of message which costs 250 for Edon-R256, and 298 for Edon-R512.

This can be used to recover the key if Edon-R is used as a MAC with the secret-prefix
construction. Our attacks only needs a few queries and negligible memory. They can
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Fig. 1. Edon-R compression function.

easily be parallelized. Those attacks are the first attacks on Edon-R to clearly beat
parallel generic attacks.

In this paper we will describe two attack: a first one that requires only two queries,
and a second with more queries but the complexity will be practical:
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Queries Time Memory Precomputation

Edon-R224/256 2 2160 - -
Edon-R224/256 32 ' 230 - 250

Edon-R384/512 2 2320 - -
Edon-R384/512 32 ' 232 - 298

3 Key Recovery Using Related Queries

H0,1
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R
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H1,1

H0,1

H0,0

M0,1

M0,0
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H1,0

M1,1

M1,0

R
H2,1

H2,0 T
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Fig. 2. The first message pad(M) = M0,0M0,1 allow to recover H1,1 while the second
message pad(M ′) = M0,0M0,1M1,0M1,1 allows to recover H2,1.

We will make two calls to the MAC, with two related messages, such that after the
padding step, the first message is a prefix of the second one. The first message M is
chosen arbitrarily such that after the padding it fits in one block pad(M). The second
message M ′ has pad(M) as its first block, and has to fit in two blocks after the padding.
For instance, we can use:

M (empty)
pad(M) 80000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

M ′ 80000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

pad(M ′) 80000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
80000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000200

This is similar to the length extension attack on narrow-pipe hash function. Applied to
a wide-pipe design such as Edon-R, this gives us some information on the input and
output of the second compression function (see Fig 2):
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– M1,0 and M1,1 are known;
– H1,1 is known;
– H2,1 is known.

We will show how to recover H1,0. Then H0,0 and H0,1 can be recovered from H1,0, H1,1

and M0,0,M0,1 because the compression function of Edon-R is easy to invert [4]. Since
there are 8 unknown words in the input of the compression function (H1,0) and we know
8 words of the output of the compression function (H2,1), we expect one solution on
average. In this setting, a preimage attack will be able to recover the value of H1,0 and
not merely a value that gives the same output.

If we look at the description of the compression function [3], we have:

H2,1 = H2,0 ∗X(3)
1

= (M1,0 ∗X(3)
0 ) ∗ (X(2)

1 ∗X(3)
0 )

= (µ̄(M1,0) + ν(X(3)
0 )) ∗ (µ(X(2)

1 ) + ν(X(3)
0 ))

= (U + C0) ∗ (U + C1)

where U = ν(X(3)
0 ) is unknown, and C0 = µ̄(M1,0), C1 = µ(X(2)

1 ) are known constants.
If we are able to solve the equation H = (U+C0)∗ (U+C1) where U is the unknown,

then we can recover X(3)
0 = ν−1(U), and this will give us H1,0 = ν−1(X(3)

0 − µ(X(2)
0 )).

4 Solving the equation H = (U + C0) ∗ (U + C1)

The main step of the attack is to solve the equation

H = (U + C0) ∗ (U + C1)
= Q0(R0(P0(U + C0))) +Q1(R1(P1(U + C1)))

All the variables are 8-uples of w bit words, and U is the unknown. To solve this equation,
we will express U over a basis of Z8

2w such that some basis vector do not affect some words
of (U + C0) ∗ (U + C1). Then we can solve the equation more efficiently than by brute
force because we do not need to explore the full space.

More precisely, P0, P1 are defined by the following matrices over Z2w (i.e. the sums
are modular additions):

P0 =



1 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1
1 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
1 0 1 1 1 1 0 0
1 1 0 0 0 1 1 1
0 0 1 1 1 1 1 0


P1 =



1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 0 1 0 0
0 0 1 1 1 0 1 1
1 1 0 1 1 1 0 0
0 0 1 0 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 1 1 0 1 1


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We will use three vectors U0, U1, U2 in the kernels of some submatrices of P0 and P1:

U0 =
[

0 0 0 0 0 0 1 −1
]

U1 =
[

2 2 2 2 231 − 3 231 − 3 0 231 − 1
]

U2 =
[

1 0 0 0 231 − 1 231 0 231
]

Then we have (the stars represent any non-zero value):

P0 · U0 =
[
∗ ∗ 0 0 ∗ 0 0 ∗

]
P1 · U0 =

[
∗ ∗ 0 0 0 0 0 0

]
P0 · U1 =

[
∗ ∗ 0 0 ∗ 0 0 ∗

]
P1 · U1 =

[
∗ ∗ ∗ 0 0 ∗ 0 0

]
P0 · U2 =

[
0 0 0 0 ∗ 0 ∗ ∗

]
P1 · U2 =

[
∗ ∗ ∗ ∗ 0 ∗ 0 0

]
Q0, Q1 are defined by the following matrices over Fw

2 (i.e. the sums are exclusive or):

Q0 =



1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 1
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 0 0


Q1 =



1 1 0 0 0 1 0 0
0 0 1 0 0 0 1 1
1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1


Due to the positions of the zeros in Pi · Uj , we have, for all α, β ∈ Z2w :

Q0(R0(P0(X + αU0)))⊕Q0(R0(P0(X))) =
[
∗ ∗ ∗ ∗ ∗ 0 0 0

]
Q0(R0(P0(X + αU1)))⊕Q0(R0(P0(X))) =

[
∗ ∗ ∗ ∗ ∗ 0 0 0

]
Q0(R0(P0(X + αU2)))⊕Q0(R0(P0(X))) =

[
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

]
Q1(R1(P1(Y + βU0)))⊕Q1(R1(P1(Y ))) =

[
∗ ∗ ∗ ∗ ∗ 0 0 0

]
Q1(R1(P1(Y + βU1)))⊕Q1(R1(P1(Y ))) =

[
∗ ∗ ∗ ∗ ∗ 0 ∗ 0

]
Q1(R1(P1(Y + βU2)))⊕Q1(R1(P1(Y ))) =

[
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

]
This proves that the vectors U0, U1, U2 do not affect some of the output words. This
property can be seen as a truncated differential for the ∗ operation:

(X + αU0) ∗ (Y + βU0)⊕X ∗ Y =
[
∗ ∗ ∗ ∗ ∗ 0 0 0

]
(1)

(X + αU1) ∗ (Y + βU1)⊕X ∗ Y =
[
∗ ∗ ∗ ∗ ∗ 0 ∗ 0

]
(2)

(X + αU2) ∗ (Y + βU2)⊕X ∗ Y =
[
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

]
(3)

This is a very important part of the attack, so let us explain into more detail what
equation (3) means. Using notations similar to the one from [3], the last output word of
X ∗ Y is computed as:

(X ∗ Y )[7] = (T [2]
X ⊕ T

[3]
X ⊕ T

[5]
X ) + (T [4]

Y ⊕ T
[6]
Y ⊕ T

[7]
Y )

7



where

T
[2]
X = (X [0] +X [1] +X [4] +X [6] +X [7])≪ 8

T
[3]
X = (X [2] +X [3] +X [5] +X [6] +X [7])≪ 13

T
[5]
X = (X [0] +X [2] +X [3] +X [4] +X [5])≪ 22

T
[4]
Y = (Y [0] + Y [1] + Y [3] + Y [4] + Y [5])≪ 15

T
[6]
Y = (Y [1] + Y [2] + Y [5] + Y [6] + Y [7])≪ 25

T
[7]
Y = (Y [0] + Y [3] + Y [4] + Y [6] + Y [7])≪ 27

We now consider X ′ = X + αU2 and Y ′ = Y + βU2:

(X ′ ∗ Y ′)[7] = (T ′[2]
X ⊕ T

′[3]
X ⊕ T

′[5]
X ) + (T ′[4]

Y ⊕ T
′[6]
Y ⊕ T

′[7]
Y )

where

T ′
[2]
X = (X [0] + α+X [1] +X [4] + α(231 − 1) +X [6] +X [7] + α231)≪ 8

T ′
[3]
X = (X [2] +X [3] +X [5] + α231 +X [6] +X [7] + α231)≪ 13

T ′
[5]
X = (X [0] + α+X [2] +X [3] +X [4] + α(231 − 1) +X [5] + α231)≪ 22

T ′
[4]
Y = (Y [0] + β + Y [1] + Y [3] + Y [4] + β(231 − 1) + Y [5] + β231)≪ 15

T ′
[6]
Y = (Y [1] + Y [2] + Y [5] + β231 + Y [6] + Y [7] + β231)≪ 25

T ′
[7]
Y = (Y [0] + β + Y [3] + Y [4] + β(231 − 1) + Y [6] + Y [7] + β231)≪ 27

We see that the α and β terms cancels out:

T
[2]
X = T ′

[2]
X T

[3]
X = T ′

[3]
X T

[5]
X = T ′

[5]
X

T
[4]
Y = T ′

[4]
Y T

[6]
Y = T ′

[6]
Y T

[7]
Y = T ′

[7]
Y

and as a consequence
(X ′ ∗ Y ′)[7] = (X ∗ Y )[7]

This works because U2 was chosen in the kernel of the linear forms that define T [2]
X , T [3]

X ,
T

[5]
X , T [4]

Y , T [6]
Y , and T [7]

Y . Similarly, U1 is in the kernel of the linear forms involved in the
computation of (X ∗ Y )[5,7] and U0 is in the kernel of the linear forms involved in the
computation of (X ∗ Y )[5,6,7].

Thanks to this property, we can do an exhaustive search with early abort. We extend
U0, U1, U2 into a basis U0, U1, ...U7 of Z8

2w , and we will represent U in this basis: U =∑7
i=0 αiUi. We define V = (U + C0) ∗ (U + C1). Due to the properties of U0, U1, U2, we

know that:

– α0 has no effect on V [5], V [6] and V [7];
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– α1 has no effect on V [5] and V [7];
– α2 has no effect on V [7].

The full algorithm is given by Algorithm 1 and is quite simple. We first iterate over
α3, α4, ...α7 and we filter the elements such that V = (U + C0) ∗ (U + C1) matches H
on the last coordinates. If it does not match, we don’t need to iterate over α0, α1, α2

because this wont modify V [7], so we can abort this branch. For the choices that match,
we iterate over α2 and check V [5]. If it matches H [5], we iterate over α1 and check V [6].
If it matches H [6], we can then iterate over α0.

The time complexity is 25w = 25n/8:

– the first loop is executed 25w times;
– each matching reduces the number of candidates to 24w;
– each subsequent loop raises the number of candidates to 25w.

The memory requirement are negligible because we do not need to store a list a candidate,
we just iterate over a set and filter out the candidates as they come.

Algorithm 1 Solving H = (U + C0) ∗ (U + C1)
Input: C0, C1, H
Output: U
1: for all α3, α4, ...α7 ∈ Z2w do
2: U ←

P7
i=3 αiUi

3: V ← (U + C0) ∗ (U + C1)
4: if V [7] = H [7] then
5: for all α2 ∈ Z2w do
6: U ←

P7
i=2 αiUi

7: V ← (U + C0) ∗ (U + C1)
8: if V [5] = H [5] then
9: for all α1 ∈ Z2w do
10: U ←

P7
i=1 αiUi

11: V ← (U + C0) ∗ (U + C1)
12: if V [6] = H [6] then
13: for all α0 ∈ Z2w do
14: U ←

P7
i=0 αiUi

15: V ← (U + C0) ∗ (U + C1)
16: if V = H then
17: U is a solution

Once we have recovered U = ν(X(3)
0 ), it is easy to invert the permutations and recover

X
(3)
0 . From that we find H1,0 by inverting a quasi-group operation, and we have all the

variables of the compression function. We can then recover the key H0,0, H0,1 by inverting
the first compression function (it is easy when the output and the message are known)

5 Using more queries

In this section, we improve this attack using more queries to the MAC oracle. We gather
more equations of the form H = (U + C0) ∗ (U + C1), and this enables us to mount a
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very efficient attack. In the case of Edon-R256, it requires about 32 queries and can
recover the secret key with about 230 computations after a precomputation of about 250

operations, which makes it a practical attack.

5.1 Building the queries

To get new equations, we will query the MAC oracle with new messages M (i) so that
pad(M) is a prefix of all the M (i)’s. Each query will give some equation involving the
same H1,0, and we will deduce an equation of the form H(i) = (U +C

(i)
0 ) ∗ (U +C

(i)
1 ) as

in the previous section. Remember that we have U = ν(X(3)
0 ) = ν(ν(H1,0) + µ(X(2)

0 )).
We will build our messages so that the value of X(2)

0 is the same for all the M (i)’s, or
equivalently, X(1)

0 is the same for all the M (i)’s. This means that all the equations will
involve the same U , and recovering this U will allow to recover H1,0.

Let us assume that we have two such equations, with C(i)
0 = C

(j)
0 .

H(i) = Q0(R0(P0(U + C
(i)
0 ))) +Q1(R1(P1(U + C

(i)
1 )))

H(j) = Q0(R0(P0(U + C
(j)
0 ))) +Q1(R1(P1(U + C

(j)
1 )))

H(i) −H(j) = Q1(R1(P1(U + C
(i)
1 )))−Q1(R1(P1(U + C

(j)
1 )))

since P1 is linear over Z8
2w , we can consider Ũ = P1 · U and C̃(i)

1 = P1 · C(i)
1

H(i,j) = Q1(R1(Ũ + C̃
(i)
1 ))−Q1(R1(Ũ + C̃

(j)
1 )) (4)

If we consider Ũ = P1 · U to be the unknown, this gives a simpler equation than in the
previous section, where H(i,j) = H(i) −H(j), C̃(i)

1 and C̃(j)
1 are known constants.

However, if we have a pair of messages M (i),M (j) where C(i)
0 = C

(j)
0 and X

(1)
0 is

constant, then we have M (i) = M (j) and we don’t get any equation. Instead, we use
messages such that C(i)

0 and C(j)
0 have some relations. Namely, if we have

(P0 · C(i)
0 )[2] = (P0 · C(j)

0 )[2] (P0 · C(i)
0 )[3] = (P0 · C(j)

0 )[3] (P0 · C(i)
0 )[5] = (P0 · C(j)

0 )[5]

(5)

then

H(i,j)[7] =
(
µ(U + C

(i)
0 ) + ν(U + C

(i)
1 )
)[7]
−
(
µ(U + C

(j)
0 ) + ν(U + C

(j)
1 )
)[7]

=
(
ν(U + C

(i)
1 )− ν(U + C

(j)
1 )
)[7]

+
(
µ(U + C

(i)
0 )− µ(U + C

(j)
0 )
)[7]

=
(
ν(U + C

(i)
1 )− ν(U + C

(j)
1 )
)[7]

+
(
P0(U + C

(i)
0 )[2] ≫ 8⊕ P0(U + C

(i)
0 )[3] ≫ 13⊕ P0(U + C

(i)
0 )[5] ≫ 22

)
−
(
P0(U + C

(j)
0 )[2] ≫ 8⊕ P0(U + C

(j)
0 )[3] ≫ 13⊕ P0(U + C

(j)
0 )[5] ≫ 22

)
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The two last terms cancel out by linearity of P0 over Z8
2w

H(i,j)[7] =
(
ν(U + C

(i)
1 )− ν(U + C

(j)
1 )
)[7]

= Q1(R1(Ũ + C̃
(i)
1 ))[7] −Q1(R1(Ũ + C̃

(j)
1 ))[7] (6)

We can see (6) as a weaker version of (4): we only have an equation on one word,
instead of eight. We can build similar equations restricted to any word by choosing
appropriate relations between C(i)

0 and C(j)
0 : if we want an equation restricted to word k

we just need to have an equality between P0 ·C(i)
0 and P0 ·C(j)

0 on the three words used
in the computation of Q[k]

0 .

5.2 Dealing with the padding

Another problem that we face to gather these equations is the padding. Edon-R uses a
padding with Merkle-Damgård strengthening, so there are 65 bits in M1,1 that must be
kept untouched (129 bits in Edon-R384/512).

To find proper messages, we use a preprocessing step. First, we fix some arbitrary
value for X(1)

0 . Then we take a set of random M1,1 satisfying the padding, we compute
the corresponding M1,0 and we look for a collision in three words of P0 · C(i)

0 according
to (5). Each collision costs 248 computations on average (296 for Edon-R384/512), and
gives one equation. Note that this is independent of the key we are attacking. It can be
done as a preprocessing step, and we only need to store a the message pairs that will be
used to extract the equations. Since we need 16 collisions, the time complexity of this
preprocessing step will be

√
16× 248 for Edon-R256 and

√
16× 296 for Edon-R512 [6].

5.3 Solving

To recover the value of U , we gather some equation of the type of (6). We can rewrite
them as:(

(Ũ [4] + C̃
(i)[4]
1 )≫ 17⊕ (Ũ [6] + C̃

(i)[6]
1 )≫ 7⊕ (Ũ [7] + C̃

(i)[7]
1 )≫ 5

)
−(

(Ũ [4] + C̃
(j)[4]
1 )≫ 17⊕ (Ũ [6] + C̃

(j)[6]
1 )≫ 7⊕ (Ũ [7] + C̃

(j)[7]
1 )≫ 5

)
= H(i,j)[7]

(7)

We will solve these equations using a guess-and-determine approach. First we guess
the 18 lower bits of Ũ [4], the 8 lower bits of Ũ [6], and the 6 lower bits of Ũ [7]. This allows
us to compute the least significant bit of the left hand side of (7), and we check this
bit against the right hand side. If we have enough equations, we can filter out many
candidates. Then we guess one more bit of Ũ [4], Ũ [6], and Ũ [7]. We can now compute one
more bit of (7), and again reduce the number of candidates. We repeat this step until
all the bits of Ũ [4], Ũ [6], and Ũ [7] have been guessed. Each time we guess some bits, the
number of candidates grows, but it will shrink when we check the new bit of (7). The cost
of this step is at least 232 because we have to guess 32 bits in the beginning. If we have
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enough equations and they give an independent filtering, we expect the complexity to be
about 232. We did some experiments with random constants to check our assumptions.
Experiments shows that with only 10 equations we can solve (7) for Edon-R256 by
exploring slightly more than 232 nodes. This take a few minutes on a desktop PC. For
Edon-R512, we have to guess 56 bits, and we expect a complexity of 256.

Another way to solve this system is to guess the carries instead of guessing the low
order bits. In this case, we only use 4 equations, because we have to guess the carries
in each equations. We have only 24 carry bits to guess, but the 4 equations have many
solutions, so we use extra equations to check each of these solutions until a single solution
is left. According to our experiments, this takes about one minute on a desktop PC, and
we have about 216 solutions when using 4 equations (the search goes through 230 nodes).
Note that the complexity of this technique is independent of the rotation amounts, so
it can be applied with any output word, not necessarily the seventh as in (6). More
importantly, it is about as efficient on Edon-R512: it take about 20 minutes to explore
233 nodes, and gives about 220 solutions.

This first step gives us Ũ [4], Ũ [6], and Ũ [7]. Next, we need an equation similar to (6),
but involving the fifth word instead of the seventh:(

(Ũ [3] + C̃
(i)[3]
1 )≫ 21⊕ (Ũ [4] + C̃

(i)[4]
1 )≫ 17⊕ (Ũ [6] + C̃

(i)[6]
1 )≫ 7

)
−(

(Ũ [3] + C̃
(j)[3]
1 )≫ 21⊕ (Ũ [4] + C̃

(j)[4]
1 )≫ 17⊕ (Ũ [6] + C̃

(j)[6]
1 )≫ 7

)
= H(i,j)[5]

(8)

Since this equation only involves one unknown word Ũ [3], it is quite easy to solve. We
use the same technique as previously: we guess the carry bits. We only have 2 carry bits
to guess so this step is negligible. We will repeat this using some more equations and we
can recover the words of Ũ one by one. Then, we can recover U = P−1

1 · Ũ , and finally
H1,0.

The number of queries needed for the attack is

– 2× 10 to recover three words in the first step;
– 2 for each extra word.

Conclusion

We have shown a practical key-recovery attack against secret-prefix Edon-R. While this
construction is not required to be secure by NIST, it is a natural construction that is
used in some protocols. We believe that a strong cryptographic hash function should not
leak the key when used in this setting.
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