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Abstract: It is known that Euclid’s algorithm, Guass’ elimination and
Buchberger’s algorithm play important roles in algorithmic number the-
ory, symbolic computation and cryptography, and even in science and en-
gineering. The aim of this paper is to reveal again the relations of these
three algorithms, and, simplify Buchberger’s algorithm without using mul-
tivariate division algorithm. We obtain an algorithm for computing the
greatest common divisor of several positive integers, which can be regarded
as the generalization of Euclid’s algorithm. This enables us to re-find the
Guass’ elimination and further simplify Buchberger’s algorithm for comput-
ing Gröbner bases of polynomial ideals in modern Computational Algebraic
Geometry.
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1 Generalization of Euclid’s algorithm

It is well-known that Euclid began his number-theoretical work by introduc-
ing his algorithm (See [1]: Book 7, Propositions 1 and 2).

Proposition 1 (Book 7): Two unequal numbers being set out, and
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the less being continually subtracted in turn from the greater, if the number
which is left never measures the one before it until a unit is left, the original
numbers will be prime to one another.

Proposition 2 (Book 7): Given two numbers not prime to one another,
to find their greatest common measure.

Propositions 1 and 2 in Book 7 of Elements [1] are exactly the famous
Euclidean algorithm for computing the greatest common divisor of two pos-
itive integers. According to Knuth [2], ‘we might call Euclid’s method the
granddaddy of all algorithms, because it is the oldest nontrivial algorithm
that has survived to the present day’.

In Book 7, Proposition 3 of Elements [1], Euclid further considered how
to compute the great common divisors of three positive integers a, b, c. His
method is simple and natural. Namely, firstly, compute the great common
divisors (a, b) = d of a, b, secondly, compute (d, c) = e, then (a, b, c) =
e. This method can be readily generalized to the case for computing the
greatest common divisor of several positive integers.

In this paper, we try to give another algorithm for computing the greatest
common divisor of several positive integers, which can be regarded as the
generalization of Euclid’s algorithm.

Based on Division algorithm, for any positive integer a, b with a > b,
we may find an integer r such that (a, b) = (b, r) and b > r. Hence, once
repeating this process, we can always find a, b. This enlightens us to firstly
find the least among several positive integers a1, ..., an so as to compute their
greatest common divisor, then, we try to find integers b1, ..., bm with m < n
such that min{a1, ..., an} = max{b1, ..., bm} and (a1, ..., an) = (b1, ..., bm).
Once we achieve this goal, then in a finite number of steps, we can find
(a1, ..., an). The following lemma enables us to present an algorithm (see
Algorithm 1). The proof of this lemma is straitforward and omitted.

Lemma 1: Let a1, ..., an be positive integers with an = min{a1, ..., an}.
Denote ai mod an by R(ai, an) for 1 ≤ i ≤ n− 1. Then we have:

(1) If R(ai, an) = 0 for any i (1 ≤ i ≤ n− 1), (a1, ..., an) = an.
(2) When R(ai, an) 6= 0 for some i (1 ≤ i ≤ n− 1), we write

{R(ai, an)|R(ai, an) 6= 0, 1 ≤ i ≤ n− 1} = {b1, ...bm}.

Then we have (a1, ..., an) = (b1, ..., bm) and n− 1 ≥ m ≥ 1.
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Algorithm 1: This algorithm finds their greatest common divisor of
several positive integers.

Input: A set A = {a1, ..., an} of positive integers
Output: (a1, ..., an)
Step 1: Compute min{a1, ..., an}. Set b←− min{a1, ..., an}.
Step 2: Compute {R(ai, b)|1 ≤ i ≤ n} and set B ←− {R(ai, b)|1 ≤

i ≤ n}. If B = {0}, output (a1, ..., an) = b and terminate the algorithm.
Otherwise, set A←− B \ {0} and go to Step 1.

Remark 1: The advantage of Algorithm 1 is of that we need not do
many divisions. However, we must find the least integer in Step 1. As
a result, the total running time of our algorithm is approximately the to-
tal running time of Euclid’s algorithm for computing the greatest common
divisor of several positive integers.

Recently, we learned that the Algorithm 1 has been discovered by Blake,
Von zur Gathen and Xu [Private Communication]. They further provided
an analysis of the algorithm.

2 Guass’ elimination and Buchberger’s algorithm

The aim of this section is to reveal again the relations among Euclid’s algo-
rithm, Guass’ elimination and Buchberger’s algorithm [3]. We also simplify
Buchberger’s algorithm without using multivariate division algorithm.

Let f1, ..., fm be all polynomials of degree 1 over the unique factorization
domain F [x1, ...xn], where F is a field. By the idea of Algorithm 1, we notice
that it is easy to compute Gröbner bases of the ideal I = 〈f1, ..., fm〉. By
using the S-polynomial S(fi, fj), one can eliminate the leading terms of two
polynomials and get the lower polynomial under given monomial ordering.
This is just the nature character of Division algorithm. And Algorithm 1
has exactly this property. Therefore, we can further present an algorithm
for finding Gröbner bases of the ideal I.

Remark 2: In this paper, we only consider the decreasing ordering:
x1 > x2 > ... > xn. Thus, the polynomial f = x2

2 + x1 + x1x3 + x2x
3
3 should

be represented by f = x1x3 +x1 +x2
2 +x2x

3
3. We denote the leading term of

f ∈ F [x1, ...xn] by L(f). Under the given ordering x1 > x2 > ... > xn, for
any two polynomial f, g, L(f) = αxe1

1 ...xen
n ≥ L(g) = βxd1

1 ...xdn
n if and only

if there is an integer j with 1 ≤ j ≤ n such that ej ≥ dj , moreover for any
1 ≤ i < j, ei = di, where α, β ∈ F and ek, dk are all non-negative integers
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for 1 ≤ k ≤ n. In the inequality L(f) = αxe1
1 ...xen

n ≥ L(g) = βxd1
1 ...xdn

n ,
we do not need to compare the coefficients α, β. We say L(f) is divisible
by L(g) 6= 0 if for any 1 ≤ k ≤ n, ek ≥ dk. We write L(g)|L(f) if L(f)
is divisible by L(g). We call L(g) 6= 0 is co-prime to L(f) 6= 0 if for any
1 ≤ k ≤ n, ekdk = 0. Write (L(f), L(g)) = 1 if L(f) is co-prime to L(g).
Especially, (xi, xj) = 1 if i 6= j. The S-polynomial S(f, g) = [L(f),L(g)]

L(f) f −
[L(f),L(g)]

L(g) g, where [L(f), L(g)] is the least common multiple of L(f) and L(g).
Polynomials g1, ..., gk over F [x1, ...xn] is called a Gröbner bases of the ideal I
if the leading term of any polynomial in I is divisible by the leading term of
some polynomial in {g1, ..., gk} and 〈g1, ..., gk〉 = I. Particularly, 1, x1, ..., xn

is a Gröbner bases of F [x1, ...xn]. Note that every ideal I in F [x1, ...xn] has a
Gröbner basis but its Gröbner bases might be not unique. A Gröbner bases
is reduced if the leading coefficient of each element of the basis is 1 and no
monomial in any element of the bases is in the ideal generated by the leading
terms of the other elements of the basis. As we know, the reduced Gröbner
bases is unique. With these notations and definitions, now, we present our
algorithms as follows:

Algorithm 2: For given the ideal I = 〈f1, ..., fm〉  F [x1, ...xn], where
f1, ..., fm over F [x1, ...xn] is linear, this algorithm gives Gröbner bases g1, ...gk

of I.
Input: Linear polynomials f1, ..., fm and a monomial ordering
Output: Gröbner bases of the ideal I = 〈f1, ..., fm〉 under given ordering
Step 1: If (L(fi), L(fj)) = 1 for any 1 ≤ i 6= j ≤ m, output Gröbner

bases f1, ..., fm of the ideal I = 〈f1, ..., fm〉.
Step 2: Find g ∈ {f1, ..., fm} such that L(g) = min{L(f1), ..., L(fm)}

and (L(g), L(r)) > 1 for some r ∈ {f1, ..., fm} with r 6= g.
Step 3: Set fi ←− S(fi, g) if fi 6= g, (L(fi), L(g)) 6= 1. Go to Step 1.

Remark 3: Note that if (L(fi), L(fj)) = 1 for any 1 ≤ i 6= j ≤ m, then
f1, ..., fm form Gröbner bases of I since they can not offer new S-polynomials.
In Step 3, we use a key fact that if (L(fi), L(g)) 6= 1, then fi and g divide
each other since they are linear. Therefore, {f1, ..., fi−1, S(fi, g), fi+1, ...fm}
can replace {f1, ..., fi−1, fi, fi+1, ...fm}. Notice that S(fi, g) 6∈ F since we
beforehand assumed I = 〈f1, ..., fm〉  F [x1, ...xn]. So, Algorithm 2 is true.
When I = 〈f1, ..., fm〉 = F [x1, ...xn], f1, ..., fm is a Gröbner bases of the
ideal I.

Remark 4: Clearly, Algorithm 2 is essentially Guass’ elimination. By
this idea, one can propose a pretreatment algorithm for simplifying Buch-
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berger’s algorithm. Note that the aforementioned fact in Remark 3 is also
useful for this pretreatment algorithm. Here we omit its detailed description.

Pretreatment algorithm: For any given polynomials f1, ..., fm over
F [x1, ...xn] satisfying I = 〈f1, ..., fm〉 6= F [x1, ...xn], this algorithm finds
polynomials h1, ...hk over F [x1, ...xn] with k ≤ m such that L(hi) and L(hj)
do not divide each other for any 1 ≤ i 6= j ≤ k and I = 〈h1, ..., hk〉.
Moreover the leading coefficient Lc(hi) = 1 of L(hi) for 1 ≤ i ≤ k and each
term of hi is not divisible by L(hj) for 1 ≤ i 6= j ≤ k. We call h1, ..., hk the
reduced polynomials of f1, ..., fm. Clearly, any two element in {h1, ..., hk}
are comparable. Without loss of generality, we write h1 > ... > hk.

Algorithm 3 (The simplified Buchberger’s algorithm): For poly-
nomials f1, ..., fm over F [x1, ...xn] satisfying I = 〈f1, ..., fm〉 6= F [x1, ...xn],
Algorithm 3 finds the reduced Gröbner bases of I = 〈f1, ..., fm〉.

Input: A set A = {f1, ..., fm} of polynomials and a monomial ordering
Output: Gröbner bases of the ideal I = 〈f1, ..., fm〉 under given ordering
Step 1: By the pretreatment algorithm, find the reduced polynomials

of A: h1, ..., hk. Set B ←− {h1, ..., hk}.
Step 2: Set C ←− B ∪ {S(h, g) : S(h, g) 6= 0, (L(h), L(g)) 6= 1, h 6=

g,∀g, h ∈ B}. If {S(h, g) : S(h, g) 6= 0, (L(h), L(g)) 6= 1, h 6= g,∀g, h ∈ B} =
∅, terminate the algorithm and output the Gröbner bases h1, ..., hk of I.

Step 3: By the pretreatment algorithm, find the reduced polynomials
of C: g1, ..., gr. Set D ←− {g1, ..., gr}. If D = B, terminate the algorithm
and output the Gröbner bases h1, ..., hk of I. Otherwise, B ←− D, go to
Step 2.

Remark 5: Since Hilbert’s basis theorem states that every ideal in the
ring F [x1, ...xn] is finitely generated, hence, in a finite number of steps, we
must have D = B and Algorithm 3 holds.

A toy example: Compute the reduced Gröbner bases of the ideal I =
〈f1 = x2 + 2xy, f2 = xy + 2y2 − 1〉 under order x > y.

1: Note that L(f1) and L(f2) do not divide each other, moreover,
Lc(f1) = Lc(f2) = 1, and L(f1) > L(f2) under order x > y. By the
pretreatment algorithm, first, we only need to consider each term of f1 is
not divisible by L(f2). Since 2xy is divisible by xy, hence, we compute
f3 = f1 − 2f2 = x2 − 4y2 + 2. Clearly, I = 〈f2, f3〉.

2: Compute S-polynomial S(f2, f3) = 2y2x − x + 4y3 − 2y since
(L(f2), L(f3)) 6= 1. Now, we get a set A = {f2, f3, S(f2, f3)} = {x2 −
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4y2 + 2, 2y2x− x + 4y3 − 2y, xy + 2y2 − 1}.
3: Notice that 2y2x is divisible by xy. So, we compute f4 = 2yf2 −

S(f2, f3) = x and get a set B = {f2, f3, f4} = {x2−4y2 +2, xy +2y2−1, x}.
Clearly, I = 〈f2, f3, f4〉. Using the pretreatment algorithm, we continue
to reduce the set B since x|L(f2) and x|L(f3). It shows immediately that
x, 2y2 − 1 is a Gröbner bases of I. Of course, the reduced Gröbner bases of
I is x, y2 − 1

2 .

Based on Algorithms 1, 2 and 3, one will see the relations among Euclid’s
algorithm, Guass’ elimination and Buchberger’s algorithm again — Guass’
elimination is the generalization of Euclid’s algorithm, and Buchberger’s
algorithm is the generalization of Guass’ elimination.

It is well-known that the problem how to estimate the complexity of
Buchberger’s algorithm remained a mystery for over thirty years. Although
Algorithm 3 can simplify Buchberger’s algorithm without using multivariate
division algorithm, we do not know how to estimate its complexity yet.
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