
A new approach for FCSRs

François Arnault1, Thierry Berger1, Cédric Lauradoux2, Marine Minier3

and Benjamin Pousse1

1 XLIM (UMR CNRS 6172), Université de Limoges
23 avenue Albert Thomas, F-87060 Limoges Cedex - France

first name.name@xlim.fr
2 Information Security Group

UCL / INGI / GSI
2, Place Saint Barbe

B-1348 Louvain-la-Neuve - Belgium
cedric.lauradoux@uclouvain.be

3 Lyon University - CITI Laboratory - INSA de Lyon
6, avenue des arts, 69621 Villeurbanne Cedex - France

marine.minier@insa-lyon.fr

Abstract. The Feedback with Carry Shift Registers (FCSRs) have been
proposed as an alternative to Linear Feedback Shift Registers (LFSRs)
for the design of stream ciphers. FCSRs have good statistical proper-
ties and they provide a built-in non-linearity. However, two attacks have
shown that the current representations of FCSRs can introduce weak-
nesses in the cipher. We propose a new “ring” representation of FCSRs
based upon matrix definition which generalizes the Galois and Fibonacci
representations. Our approach preserves the statistical properties and
circumvents the weaknesses of the Fibonacci and Galois representations.
Moreover, the ring representation leads to automata with a quicker diffu-
sion characteristic and better implementation results. As an application,
we describe a new version of F-FCSR stream ciphers.
Keywords: Stream cipher, FCSRs, ℓ-sequence, ring FCSRs.

1 Introduction

The FCSRs have been proposed by Klapper and Goresky [14, 15, 13] as
an alternative to LFSRs for the design of stream ciphers. FCSRs share
many of the good properties of LFSRs: sequences with known period and
good statistical properties. But unlike LFSRs, they provide an intrinsic
resistance to algebraic and correlation attacks because of their quadratic
feedback function. However, two recent results [5, 8] have shown weak-
nesses in stream ciphers using either the Fibonacci or Galois FCSR. Hell
and Johansson [8] have exploited the bias in the carries behaviour of a
Galois FCSR to mount a very powerful attack against the F-FCSR stream
cipher [2, 3]. Fisher et al. [5] have considered an equivalent of the F-FCSR



stream cipher based upon a Fibonacci FCSR to study the linear behavior
of the induced system.

We present a new approach for FCSRs which we call the ring repre-
sentation or ring FCSR. This representation is based on the adjacency
matrix of the automaton graph. A ring FCSR can be viewed as a gener-
alization of the Fibonacci and Galois representations. This structure has
been widely studied for the LFSR case as shown in [20, 10, 18] and is a
building block of the stream cipher Pomaranch when LFSRs are used [11].
However, this paper presents for the first time this structure in the FCSR
case.

In a Fibonacci FCSR, we have a single feedback function which de-
pends on multiple inputs. In a Galois FCSR, we have multiple feedback
functions with one common input. A ring FCSR can be viewed as a trade-
off between the two previous representations. It has multiple feedback
functions with different inputs. An example of a ring FCSR is shown in
Fig. 1.

c6

m6 m5m7

c5

m4 m3

c2

m2

c1

m1 m0

Fig. 1. An example of a ring FCSR (q = −347).

Ring FCSRs have many advantages over the previous representations.
First, they keeps all the good and traditional properties of the FCSRs
(known period, large entropy,...). Second, they can also be used to prevent
the attack of Hell and Johansson [8]. Third, they have a better diffusion
than the Galois or Fibonacci FCSR. Moreover, the ring representation
allows the designer to tune the implementation of FCSRs.

Section 2 gives an overview on FCSRs theory and classical representa-
tions. The ring FCSR is presented in Section 3. We discuss the implemen-
tation properties in Section 4 and a new version of F-FCSR is proposed
in Section 5.

2 Theoretical Background

First, we will recall some basic properties of 2-adic integers. For a more
theoretical approach the reader can refer to [14, 16, 15, 7, 1].

2



2.1 2-adic numbers and period

A 2-adic integer is formally a power series s =
∑∞

i=0 si2
i, si ∈ {0, 1}.

This series always converges if we consider the 2-adic topology. The set
of 2-adic integers is denoted by Z2. Addition and multiplication in Z2

can be performed by reporting the carries to the higher order terms, i.e.
2n +2n = 2n+1 for all n ∈ N. If there exists an integer N such that sn = 0
for all n ≥ N , then s is a positive integer. Every odd integer q has an
inverse in Z2.

The following property gives a complete characterization of eventually
periodic binary sequences in terms of 2-adic integers (see [7] for the proof).

Property 1 Let S = (sn)n∈N be a binary sequence and let s =
∑∞

i=0 si2
i

be the corresponding 2-adic integer. The sequence S is eventually periodic
if and only if there exist two numbers p and q in Z, q odd, such that
s = p/q.

Moreover, S is strictly periodic if and only if pq ≤ 0 and |p| ≤ |q|. In this
case, we have the relation sn = (p · 2−n mod q) mod 2.

Then, the period of S is the order of 2 modulo q, i.e., the smallest
integer T such that 2T ≡ 1 (mod q). The period T is always less or
equal to |q| − 1. If q is prime, then T divides |q| − 1. If T = |q| − 1, the
corresponding sequence S is called an ℓ-sequence. As detailed in [14, 15, 7,
17], ℓ-sequences have many proved properties that could be compared to
the ones of m-sequences: known period, good statistical properties, fast
generation of sequences, etc. In summary, FCSRs have almost the same
properties as LFSRs but they provide non-linear relations between inputs
and outputs.

2.2 Galois FCSRs

A Galois FCSR (as shown in Fig. 2) consists of an n-bit main register
M = (m0, . . . , mn−1) with some fixed feedback positions d0, . . . , dn−1. All
the feedbacks are controlled by the feedback cell m0, and n − 1 binary
carry cells C = (c0, . . . , cn−2). At time t, an automaton in state (M, C)
is updated in the following way:

1. Compute the sums xi = mi+1+cidi+m0di for all i such that 0 ≤ i < n
with mn = 0 and cn−1 = 0 and where m0 represents the feedback bit;

2. update the state as follows: mi ← xi mod 2 for all i ∈ [0..n− 1] and
ci ← xi div 2 for 0 ≤ i < n for all i ∈ [0..n− 2].

3



d0dn−2dn−1

cn−2 c0

mn−1 mn−2 m1 m0

Fig. 2. A Galois FCSR.

Each cell is updated using an adder with carry as described in Fig. 3.

The reader can refer to [7] for a complete description of Galois FCSRs
properties. We recall the main property presented in [4] where the content
of each cell of M could be seen as a 2-adic integer.

Property 2 Let q = 1− 2
∑n−1

i=0 di2
i, and ri =

∑∞
t=0 mi(t)2

t for 0 ≤ i <
n; ri is the 2-adic integer corresponding to the sequence observed in the
i-th cell of the main register M . Then, for all 0 ≤ i < n, there exists
pi ∈ Z such that ri = pi/q.

As shown on Fig. 2, there exist some correlations between the carries
values and the feedback value. More precisely a single cell controls all the
feedbacks. This property is the basis of the attack presented in [8].

ci(t − 1) ci(t) = xy ⊕ xci(t − 1) ⊕ yci(t − 1)

x

y s = x ⊕ y ⊕ ci(t − 1)

Fig. 3. 2-bit adder with carry.

2.3 Fibonacci FCSRs

A Fibonacci FCSR (represented in Fig. 4) is composed of a main regis-
ter M = (m0, . . . , mn−1) with n binary cells. The binary feedback taps
(d0, . . . , dn−1) are associated to an additional carry register c of wH(d)
binary cells, where wH(d) is the Hamming weight of d = (1 + |q|)/2.

An automaton in state (M, c) is updated in this way:

1. compute the sum x = c +
∑n−1

i=0 midn−1−i;

2. then, update the state: M ← (m1, . . . , mn−1, x mod 2), c← x div 2.

4



÷2

mod 2

d0 d1 dn−1dn−2

mn−1 mn−2 m1 m0

c

∑

Fig. 4. A Fibonacci FCSR.

As for a Galois FCSR, the content of a particular cell mi of a Fibonacci
FCSR is a 2-adic integer: Property 2 holds also for Fibonacci FCSRs as
shown in [7].

The cell mn−1 is the only element with a non-linear behaviour in a
Fibonacci FCSR. As shown in [5], an attack can be carried out if a linear
filter is used with a Fibonacci FCSR.

3 A new approach for FCSRs

Galois and Fibonacci FCSRs are two different automata with similar
properties as seen in the previous section. In a Galois FCSR, the first
cell m0 modifies wH(d) cells of the main register. In a Fibonacci FCSR,
the cell mn−1 is modified by wH(d) cells of the main register. The ring
representation of FCSRs is a trade-off between these two setups. It is in
fact a generalization of Galois and Fibonacci FCSRs.

Definition 1 A ring FCSR is an automaton composed of a main shift
register of n binary cells m = (m0, . . . , mn−1), and a carry register of n
integer cells c = (c0, . . . , cn−1). It is updated using the following relations:

{

m(t + 1) = Tm(t) + c(t) mod 2
c(t + 1) = Tm(t) + c(t) ÷ 2

(1)

where T is a n× n matrix with coefficients 0 or 1 in Z, called transition
matrix, of this form:

0

B

B

B

B

B

B

B

@

∗ 1
∗ 1 (∗)

∗ 1

. . .
. . .

(∗) ∗ 1
1 ∗

1

C

C

C

C

C

C

C

A

5



Note that ÷2 is the traditional expression: X ÷ 2 = X−(X mod 2)
2 .

The main difference with Fibonacci and Galois FCSRs is that any cell
can be used as a feedback for any other cell. This remark leads to a new
way to draw FCSRs. For instance, the ring FCSR of Fig. 1 can be viewed
as in Fig. 5.

3.1 Remarks on the transition matrix

According to Definition 1, we have the following property considering that
ti,j is the element at the i-th row and j-th column:

T = (ti,j)0≤i,j<n with ti,j =

{

1 if cell mj is used to update cell mi,
0 otherwise.

As the main register of a ring FCSR is by definition a shift register,
the over-diagonal of the associated transition matrix is by definition full
of ones, i.e. for all 0 ≤ i < n we have ti,i+1 mod n = 1. For example, the
FCSR presented in Fig.1 can be described using the following transition
matrix TR (with q = −347):

TR =

0

B

B

B

B

B

B

B

B

B

B

@

0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

Fig. 5. A ring FCSR.

This notation agrees with the ones proposed in [7]. In particular, Ga-
lois FCSRs and Fibonacci FCSRs have respectively the following transi-
tion matrices TG and TF with the following form:

6



TG =

0

B

B

B

B

B

B

B

@

d0 1
d1 0 1 (0)
d2 0 1
...

. . .
. . .

dn−2 (0) 0 1
1 0

1

C

C

C

C

C

C

C

A

TF =

0

B

B

B

B

B

B

B

@

0 1
0 1 (0)

0 1

(0)
. . .

. . .

0 1
1 dn−2 . . . d2 d1 d0

1

C

C

C

C

C

C

C

A

3.2 Characterizing the cells content

Definition 1 introduces the transition matrix of a ring FCSR. We explain
now how the value q could be directly computed from a given matrix T .

Let mi(t) denote the content of each cell of the main register at time
t and Mi(t) the series observed in the i-th cell:

Mi(t) =
∑

k∈N

mi(t + k)2k.

Then, the ring FCSR is updated at each clock and the series observed in
each cell verify the following relation according to Equation 1:

M(t + 1) = TM(t) + c(t) (2)

with M(t) = (M0(t), · · · , Mn−1(t)) and where c(t) = (c0(t), · · · , cn−1(t))
is the carry register at clock t.

This new representation of the main register contents is fundamental
in our approach. We ignore the general content of the main register and
focus on the series produced by each cell of the main register.

Theorem 1 The series Mi(t) observed in the cells of the main register
are 2-adic expansion of pi/q with pi ∈ Z and with q = det(I − 2T ).

Proof. According to the definition of Mi(t) and to Definition 1, we can
write the following relation: M(t) = 2M(t + 1) + m(t) where m(t) is a
binary vector of size n. Using Equation 2, we have:

(I − 2T ) ·M(t)− 2 · c(t)−m(t) = 0.

Considering the adjugate of I − 2T , we obtain:

det(I − 2T ) ·M(t) = Adj(I − 2T )(m(t) + 2 · c(t)).

In this relation, the right member is a vector of integers (p0(t), . . . , pn−1(t)).
And so we have Mi(t) = pi(t)/ det(I−2T ) by identifying the terms using
Property 2.

7



Lemma 1 With the notation of Theorem 1, if q = det(I − 2T ) is prime,
and if the order of 2 in Z/qZ is maximal, then each Mi is an ℓ-sequence.

A ring FSCR has all the properties induced by the ℓ-sequences if its
transition matrix T is such that q = det(I − 2T ) is prime and the order
of 2 in Z/qZ is maximal.

4 Implementation properties

We detail in this section the new implementation characteristics of the
ring FCSRs. All the properties given in this section can be directly applied
to LFSRs by replacing addition with carry by addition modulo 2.

Path/fan-out – The Galois FCSR is considered in many works [6, 7, 12] as
the best representation for the hardware implementation of an FCSR. It
has a better critical path, i.e, a shorter longuest path, than a Fibonacci
FCSR. A drawback of the Galois representation is that the fan-out of
the feedback cell m0 is wH(d) with d = (1 + |q|)/2. At the opposite,
the Fibonacci representation has a fan-out of 2. A ring FCSR allows the
designer to tune both the critical path and the fan-out throught the choice
of the transition matrix:

– the critical path is given by the row ai with the largest number of 1s;
– the fan-out is given by the column bi with the largest number of 1s.

We compare in Table 1 the critical path, the fan-out and the cost of the
different representations of an FCSR. We have expressed the critical path
as the number of adders crossed. The choice of the adder has also an
impact on the path of a ring FCSR. A naive adder (Fig. 6) composed of a
serialisation of generic adder leads to a path of max(wH(ai))− 1 adders.
However, it is possible to exploit the commutativity to perform additions
in parallel. This reduces the critical path to max(⌈log2(wH(ai))⌉) adders.

i0 i2 if−1i1 if−2

c0
jc

f−1
j c

f−2
j c1

j

Fig. 6. A naive adder

For each given q, it should be possible to find a transition matrix
corresponding to a critical path with only one adder and a fan-out equal
to 2. This is the case of the ring FCSR given in Fig. 1.

8



Fibonacci Galois Ring

Path ⌈log2(wH(d))⌉ 1 max(⌈log2(wH(ai))⌉)

Fan-out 2 wH(d) max(wH(bi))

Cost (#adders) wH(d) − 1 wH(d) − 1 wH(T ) − n

Table 1. Comparison of the different representations.

Cost – An interesting perspective of the ring FCSR is that we can find
implementation with fewer gates than in a Fibonacci/Galois represen-
tation. This possibility was first observed in [18]. However, the solution
proposed in [18] is specific to LFSRs and it cannot be applied systemat-
ically to FCSRs as shown in appendix C. The number #adders of 2-bit
adders required in the different representations of an n-bit FCSR is com-
pared in Table 1. Amongst the three representations, ring FCSR is the
only one that allows to find an implementation with less than (wH(d)−1)
2-bit adders. For q = −347, a Galois or Fibonacci representation leads to
#adders = 4. A ring representation with the matrix TR defined by:

TR =

0

B

B

B

B

B

B

B

B

B

B

@

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

leads to an implementation with #adders = 3, a fan-out of 2 and a
critical path of 1 adder.

Side-channel attacks – It seems possible to work out an equivalent of the
side-channel attack of Joux and Delaunay [12] on Galois FCSR using the
results of Hell and Johansson [8]. Such an attack would exploit the power
consumption to recover the feedback m0 (because of the excessive fan-out
of the feedback cell) and therefore how the carry cells are modified. As the
ring FCSR has a reduced fan-out and uncorrelated carries, it is a better
alternative to prevent side-channel attacks.

5 F-FCSR based on ring representation

In this section, we propose a generic algorithm to construct F-FCSR
stream ciphers based upon a ring FCSR with a linear filter. We give two

9



particular examples which are F-FCSR-H v3 and F-FCSR-16 v3. Any de-
signer using the proposed algorithm could generate its own stream cipher
according to the following parameters:

– key length k and IV length v that will provide the corresponding size
n := k + v of the T matrix (usually k = v);

– the number u of bits output at each clock taken between 1 and n/16
to ensure a hard inversibility of the filter. Moreover for later design
we require u to be a divisor of n;

– the number of willing feedbacks ℓ usually taken between n/2− 5 and
n/2 + 5 to ensure a sufficient non linear structure and a sufficiently
weighted filter.

The algorithm is composed of 3 particular steps: the choice of the matrix
T , the choice of the linear filter and the key/IV setup.

5.1 The choice of the matrix T

Using the requirements of Section 3, we pick a n × n random matrix T
with the following requirements:

– the matrix must be composed of 0 and 1 and with a general weight
equal to n + ℓ;

– the over-diagonal must be full of 1 and tn−1,0 = 1 (to ensure a classical
ring structure of the automaton);

– the number of ones for a given row or a given column must be at most
two. This last condition allows a better diffusion induced by maxi-
mizing the number of cells reached by the feedbacks. It also provides
uncorrelated carries and a fan-out bounded by 2.

For each picked matrix with the previous requirements, test if:

1. log2(q) ≥ n; det(T ) 6= 0;
2. q = det(I − 2T ) is prime; the order of 2 modulo q is |q| − 1.

The first condition ensures a non-degenerated matrix. The second ensures
good statistical properties and a long period.

This matrix completely defines the ring FCSR. In this case, the diffu-
sion (that will be faster than in Galois or Fibonacci FCSRs) corresponds
to the diameter d of the graph associated to the ring FCSR. This value
is the maximal distance between two cells of the main register. In other
words, d is the distance after which all the cells of the main register have
been influenced by at least one other cell through the feedbacks. It cor-
responds to the minimal number of clocks required to have all the cells
of the main register influenced by at least one other cell. d should be
sufficiently small for diffusion purpose.

10



5.2 The filter

As done in the previous versions of F-FCSR [3], the filter extracting the
keystream is linear in order to break the 2-adic structure of the automaton
through ⊕ operations. It also prevents linearization attacks over the set
of 2-adic numbers. As previously done, the filter uses the cells of the
main register which receive a feedback to prevent correlation attacks. The
periodic structure of the filter in the previous F-FCSR has been exploited
in [8] to generate particular subsystems from the main one. We break this
structure in the following way:

– let F = {mf0 , · · · , mfℓ−1
} be the set of all the cells mi that receive

a feedback and indexed in this way: the row fi of the matrix T has
more than one 1 for 0 ≤ i < ℓ, and fi < fi+1.

– The u bits of output are: ∀ 0 ≤ i < u, zi =
⊕

j≡i mod u mfj
.

This new structure leads to a more “random” structure in the filtered cells
choice avoiding extraction of simple subsystems at small time intervals.

5.3 Key and IV setup

As shown in [8], if at a given time, the FCSR is in a synchronized state
(i.e. a state from which after a finite number of steps the automaton will
return, i.e. a state belonging to the main cycle), next and previous states
of the main cycle could be directly deduced using only multiplications
over Z/qZ. Moreover, as shown in [4], a Galois FCSR is synchronized
in at most n + 4 clocks, but in reality, few clocks are sufficient. So, to
completely discard the weakness of the key and IV setup used in [8], we
need to create a non-synchronized structure for the key and IV setup to
prevent a direct key recovery attack. Thus, the new key and IV setup aims
at keeping its states non-synchronized in order to create a transformation
that is really hard to inverse.

However, using a ring FCSR leads to a new problem: we can not ensure
the entropy of the automaton. In the case of F-FCSR using a Galois or
a Fibonacci FCSR, taking the content of the carry register equal to zero
prevents collisions (i.e. one point of the states graph with two preimages)
and allows to maintain a constant entropy. This particular property comes
from the particular structure of the adjoint matrix (I − 2T )∗ that has its
first row composed of the successive powers of two in case of a Galois
FSCR (in a Fibonacci FCSR, a similar property exists on the last row).
In the ring case, no particular structure exists in (I − 2T )∗. Note that
in this case the collisions search becomes an instance of the subset sum

11



problem with a complexity equals to 2n/2 (forcing the carry to be null)
or 23n/2 (in the general case).

Thus, the new key and IV setup is based upon those two facts: to stay
on non-synchronized states as long as possible and to limit the entropy
loss. The key and IV setup consists first in connecting at u different places
shift registers of length r = n/u (this corresponds to add n binary cells
a0, . . . , an−1 at different places as shown in Fig. 7)

a(r−1)u+1

a(r−1)u a0au

a1au+1

a(r−1)u+u−1 au+u−1 au−1

Fig. 7. Disposition of the cells a0, . . . , an−1 in u shift registers.

The u positions denoted by J := {j0 < · · · < ju−1} allowing to connect
the u shift registers have been chosen such that for all 0 ≤ i < u, no adder
exists between cells mji+1 and mji

(i.e. wH(Rji
) = 1 where Rji

is the jth
i

row of the matrix T ). Then, the shift register is connected between mji+1

and mji
using a 2-bit adder with carry (as shown in Fig. 8) modifying the

content of mji
according the values of mji+1, ai and of the carry cell cji

.

a(r−1)u+i au+i ai

cji

mji
mji+1

Fig. 8. Connection of a shift register in position ji.

Using those new u simple shift registers inserted in the ring FCSR
using a 2-bit adder, the key and IV setup works as follows:

– Initialize the cells (a0, . . . , an−1) with (K‖0n−k−v‖IV ), M ← 0, C ←
0.

12



– The FCSR is clocked r times. At each clock, the FCSR is filtered
using F to produce a u bits vector z0, . . . , zu−1 used to fill back
a(r−1)u, . . . , a(r−1)u+u−1: a(r−1)u+i ← zi for 0 ≤ i < u.

– The FCSR is clocked max(r, d + 4) times discarding the output.

The first step of the key and IV setup allows an initial diffusion of
the key through the simple shift registers. The next r clocks induces a
complete diffusion of the IV and of the key in the FCSR. The diffusion is
complete at the end of the key and IV setup. Moreover, if an attacker is
able to recover the state just at the end of the key and IV setup, he won’t
be able to use this information to recover the key because the new design
is composed of non-synchronized states that are hard to inverse and hard
to compute: for a given mk+1 bit value of the main register, the values
ck and mk producing mk+1 are not unique leading to a combinatorial
explosion when an attacker wants to recover a previous state.

As previously mentioned, this construction is not a bijection and be-
haves more like a random function. From this point, two attacks are es-
sentially possible: direct collisions search and time memory data trade-off
attack for collisions search built upon entropy loss. As mentioned before,
direct collisions search has a cost of 2(n/2) if the attacker is able to put at
zero the carry bits. Due to the use of the ring FCSR that does not allow a
direct control of the carry bits through the feedback bit, the probability to
force to 0 the carry bits is about 2−ℓ. Thus such an attack is more expen-
sive than a key exhaustive search. In the other cases, the corresponding
complexity is 2(3n/2) preventing collisions search.

TMDTO attacks are possible if a sufficient quantity of entropy is lost.
As studied in [19], considering that the key and IV setup are random
function, the induced entropy loss is about 1 bit, so considering an initial
entropy equal to n bits, the entropy after the key and IV setup is equal
to n − 1 bits. The question is now how to exploit this entropy loss for
a collisions search in a TMDTO attack? A well-known study case is the
attack proposed in [9] by J. Hong and W.H. Kim against the stream
cipher MICKEY. Even if this attack seems to work, A. Rock has shown
in [19] that the query complexity in the initial states space could not
be significantly reduced and that the attacks based on the problem of
entropy loss are less efficient than expected especially regarding the query
complexity. So, we conjecture that considering that our key and IV setup
behaves as a random function, the induced entropy loss is not sufficient
to mount a complete TMDTO attack for collisions search taking into
account the query complexity.

13



5.4 F-FCSR-H v3 and F-FCSR-16 v3

The details of the two constructions, especially the corresponding T ma-
trices, are given respectively in Appendix A and B. The respective pa-
rameters are the following ones:

– For F-FCSR-H v3: k = 80, v = 80, ℓ = 82, n = 160, u = 8, d = 24;

– For F-FCSR-16 v3: k = 128, v = 128, ℓ = 130, n = 256, u = 16,
d = 28.

These two automata have been chosen with an additional property:
(|q|−1)/2 prime. This condition ensures maximal period for the outputted
stream. However this is a hard condition to fill, so we don’t put this in
the classical requirements.

5.5 Resistance against known attacks

We do not discuss here the resistance against traditional attacks such as
correlation and fast correlation attacks, guess and determine attacks, alge-
braic attacks, etc. The reader can refer to [3] for some details about resis-
tance to these classical attacks. For a complete analysis against TMDTO
attacks, the reader can refer to the Section 5.3. Now, we discuss the two
main recent results [8] and [5] concerning attacks against FCSR and F-
FCSR.

The attack presented in [8] against F-FCSR, which is based on a Galois
FCSR, relies on the existence of correlations between the carries values
and the feedback values. More precisely, the control of the m0 bit leads
to the control of the feedback values. If the feedback can be forced to 0
during t consecutive clocks, the behavior of the stream cipher becomes
linear, and its synthesis becomes possible by solving of a really simple
system. Due to ℓ-sequence properties, this behavior happens with a prob-
ability about 2−t for a Galois FCSR. If instead a ring FCSR is used, this
probability decreases to 2−t·k where k is the number of cells of the main
register controlling a feedback. Thus for k values corresponding to most
ring FCSR, the linear behavior probability becomes so small that the cost
of the corresponding attack becomes higher than an exhaustive search.
Analyzing further the attack in [8], we see that it is also based upon the
fact that during t consecutive clocks the carries remains constant. We
made an experiment with F-FCSR-H v3 to search for states for which
carries does not change during transition to the next state. Looking over
238 states, we found only 41 different states for which carries remains

14



constant after one transition. We found none for which carries remains
constant after two transitions.

In [5], the authors propose a linearization attack against a linearly
filtered Fibonacci FCSR which does not work against any version of F-
FCSR. This attack uses the linearity of the filter to build linear equations.
In a Fibonacci FCSR, the carries values only influence one bit of the main
register at each clock. Thus, if one could imagine to build a F-FCSR using
a Fibonacci FCSR, such a generator would be subject to an attack where
the control of the carries leads to the control of a part of the main register.
Thus, we recommend to NOT use a Fibonacci FCSR in a linearly filtered
stream cipher.

6 Conclusion and future work

In this paper, we present a new approach for FCSRs that unifies the
previous representations. We can obtain with the ring representation a
better diffusion characteristic and a better implementation for FCSRs.
It can be used to prevent recent attacks against F-FCSR as shown in
Section 5.

References

1. François Arnault and Thierry P. Berger. Design and Properties of a New Pseudo-
random Generator Based on a Filtered FCSR Automaton. IEEE Transaction on

Computers, 54(11):1374–1383, 2005.

2. François Arnault and Thierry P. Berger. F-FCSR: design of a new class of stream
ciphers. In Fast Software Encryption - FSE 2005, Lecture Notes in Computer
Science 3557, pages 83–97. Springer-Verlag, 2005.

3. François Arnault, Thierry P. Berger, and Cédric Lauradoux. Update on F-FCSR
Stream Cipher. ECRYPT - Network of Excellence in Cryptology, Call for stream
Cipher Primitives - Phase 2 2006. http://www.ecrypt.eu.org/stream/.

4. François Arnault, Thierry P. Berger, and Marine Minier. Some Results on FCSR
Automata With Applications to the Security of FCSR-Based Pseudorandom Gen-
erators. IEEE Transactions on Information Theory, 54(2):836–840, 2008.

5. Simon Fischer, Willi Meier, and Dirk Stegemann. Equivalent Repre-
sentations of the F-FCSR Keystream Generator. In ECRYPT Net-

work of Excellence - SASC Workshop, pages 87–94, 2008. Available at
http://www.ecrypt.eu.org/stvl/sasc2008/.

6. Ian Goldberg and David Wagner. Architectural considerations for cryptanalytic
hardware. Technical report, Secrets of Encryption Research, Wiretap Politics &
Chip Design, 1996.

7. Mark Goresky and Andrew Klapper. Fibonacci and Galois representations of
feedback-with-carry shift registers. IEEE Transactions on Information Theory,
48(11):2826–2836, 2002.

15



8. Martin Hell and Thomas Johansson. Breaking the F-FCSR-H stream cipher in
real time. In Advances in Cryptology - Asiacrypt 2008, Lecture Notes in Computer
Science, 2008. to appear.

9. Jin Hong and Woo-Hwan Kim. Tmd-tradeoff and state entropy loss considera-
tions of streamcipher mickey. In Subhamoy Maitra, C. E. Veni Madhavan, and
Ramarathnam Venkatesan, editors, INDOCRYPT, volume 3797 of Lecture Notes

in Computer Science, pages 169–182. Springer, 2005.
10. Cees J.A. Jansen, Tor Helleseth, and Alexander Kholosha. Cascade

jump controlled sequence generator and pomaranch stream cipher (version
2). eSTREAM, ECRYPT Stream Cipher Project, Report 2006/006, 2006.
http://www.ecrypt.eu.org/stream.

11. Cees J.A. Jansen, Tor Helleseth, and Alexander Kholosha. Po-
maranch version 3. eSTREAM, ECRYPT Stream Cipher Project, 2006.
http://www.ecrypt.eu.org/stream.

12. Antoine Joux and Pascal Delaunay. Galois lfsr, embedded devices and side channel
weaknesses. In Progress in Cryptology - INDOCRYPT 2006, Lecture Notes in
Computer Science 4329, pages 436–451. Springer Verlag, 2006.

13. Andrew Klapper. A survey of feedback with carry shift registers. In Sequences and

Their Applications - SETA 2004, Lecture Notes in Computer Science 3486, pages
56–71. Springer Verlag, 2004.

14. Andrew Klapper and Mark Goresky. 2-adic shift registers. In Fast Software Encryp-

tion - FSE’93, Lecture Notes in Computer Science 809, pages 174–178. Springer-
Verlag, 1993.

15. Andrew Klapper and Mark Goresky. Feedback shift registers, 2-adic span and
combiners with memory. Journal of Cryptology, 10(2):111–147, 1997.

16. Neal Koblitz. p-adic numbers, p-adic analysis and Zeta-Functions. Springer-Verlag,
1997.

17. Cédric Lauradoux and Andrea Röck. Parallel generation of l-sequences. In Se-

quences and Their Applications - SETA 2008, Lecture Notes in Computer Science
5203, pages 299–312. Springer Verlag, 2008.

18. Grzegorz Mrugalski, Janusz Rajski, and Jerzy Tyszer. Ring generators - new
devices for embedded test applications. IEEE Trans. on CAD of Integrated Circuits

and Systems, 23(9):1306–1320, 2004.
19. Andrea Röck. Stream ciphers using a random update function: Study of the entropy

of the inner state. In Serge Vaudenay, editor, AFRICACRYPT, volume 5023 of
Lecture Notes in Computer Science, pages 258–275. Springer, 2008.

20. Yves Roggeman. Varying feedback shift registers. In EUROCRYPT, pages 670–
679, 1989.

A Description of the transition matrix for F-FCSR-H v3

Input parameters: k = 80 (key length), v = 80 (IV length), ℓ = 82
(number of feedbacks), n = 160 (size of T ), u = 8 (number of output
bits), d = 24 (diameter of the graph).

We give here the description of the transition matrix T = (ti,j)0≤i,j<160

(see Fig. 9 for graphic representations):

– For all 0 ≤ i < 160, ti,i+1 mod 160 = 1;

16



– For all (i, j) ∈ S, ti,j = 1, where S = { (1, 121); (2, 133); (4, 44); (5, 82);

(9, 38); (11, 40); (12, 54); (14, 105); (15, 42); (16, 63); (18, 80); (19, 136); (20, 2);

(21, 35); (23, 28); (25, 137); (28, 131); (31, 102); (36, 41); (39, 138); (40, 31); (42,

126); (44, 127); (45, 77); (46, 110); (47, 86); (48, 93); (49, 45); (51, 17); (54, 8);

(56, 7); (57, 150); (59, 25); (62, 51); (63, 129); (65, 130); (67, 122); (73, 148); (75,

18); (77, 46); (79, 26); (80, 117); (81, 1); (84, 72); (86, 60); (89, 15); (90, 89); (91,

73); (93, 12); (94, 84); (102, 141); (104, 142); (107, 71); (108, 152); (112, 92); (113,

83); (115, 23); (116, 32); (118, 50); (119, 43); (121, 34); (124, 13); (125, 74); (127,

149); (128, 90); (129, 57); (130, 103); (131, 134); (132, 155); (134, 98); (139, 24);

(140, 61); (141, 104); (144, 48); (145, 14); (148, 112); (150, 59); (153, 39); (156,

22); (157, 107); (158, 30); (159, 78) };

– Otherwise, ti,j = 0.

Fig. 9. Matrix representation and graph representation of the matrix T chosen for
F-FCSR-H v3

– The corresponding q value is (in decimal notation):

q = 1741618736723237862812353996255699689552526450883

– The set J (for the first part of the Key/IV setup) is:

J = {3, 22, 43, 64, 83, 103, 123, 143}

17



– the 8 subfilters F0, · · · , F7 are given by:

F0={1, 15, 28, 46, 59, 79, 93, 115, 128, 141, 158}
F1={2, 16, 31, 47, 62, 80, 94, 116, 129, 144, 159}
F2={4, 18, 36, 48, 63, 81, 102, 118, 130, 145}
F3={5, 19, 39, 49, 65, 84, 104, 119, 131, 148}
F4={9, 20, 40, 51, 67, 86, 107, 121, 132, 150}
F5={11, 21, 42, 54, 73, 89, 108, 124, 134, 153}
F6={12, 23, 44, 56, 75, 90, 112, 125, 139, 156}
F7={14, 25, 45, 57, 77, 91, 113, 127, 140, 157}

B Description of the transition matrix for F-FCSR-16 v3

Input parameters: k = 128, v = 128, ℓ = 130, n = 256, u = 16, d = 28.
We give here a description of the transition matrix T = (ti,j)0≤i,j<256

(see Fig. 10 for graphic representations):

– For all 0 ≤ i < 256, ti,i+1 mod 256 = 1;
– For all (i, j) ∈ S, ti,j = 1, where S = { (0, 52); (2, 150); (3, 2); (5, 169); (6,

89); (8, 100); (9, 1); (11, 156); (12, 9); (13, 46); (19, 146); (20, 206); (26, 204); (31,

254); (32, 151); (38, 144); (40, 108); (46, 167); (47, 198); (48, 70); (49, 98); (50,

213); (53, 214); (56, 87); (57, 55); (58, 162); (62, 160); (63, 13); (64, 192); (65, 59);

(66, 12); (67, 207); (68, 209); (71, 229); (73, 84); (74, 199); (77, 168); (78, 122);

(79, 35); (80, 154); (82, 153); (85, 188); (87, 51); (89, 4); (90, 49); (93, 231); (95,

224); (97, 249); (101, 208); (102, 120); (104, 218); (105, 8); (108, 77); (109, 68);

(110, 250); (113, 237); (115, 252); (116, 17); (118, 73); (119, 182); (123, 29); (124,

234); (127, 138); (132, 190); (134, 244); (136, 219); (141, 228); (142, 205); (143,

58); (144, 230); (145, 210); (146, 44); (147, 137); (148, 130); (150, 79); (152, 111);

(153, 172); (154, 141); (156, 78); (157, 131); (158, 110); (159, 127); (170, 189); (171,

112); (174, 217); (175, 7); (176, 187); (177, 40); (179, 118); (181, 195); (184, 48);

(186, 64); (189, 246); (190, 47); (191, 37); (192, 211); (193, 85); (194, 181); (195,

61); (196, 54); (198, 222); (199, 83); (203, 105); (204, 201); (205, 43); (206, 139);

(208, 20); (210, 242); (211, 124); (213, 253); (215, 243); (216, 69); (218, 176); (220,

30); (222, 19); (223, 232); (224, 239); (225, 220); (227, 102); (231, 185); (232, 15);

(234, 152); (236, 62); (238, 245); (242, 197); (245, 235); (246, 171); (247, 67); (253,

26); (254, 202) };
– Otherwise, ti,j = 0.

– The corresponding q value is (in hexadecimal notation):

q = (B085834B6BFAE1541C54F7D84F42084C

B0568496DDD0FEA5E99AA79C022023241)

18



Fig. 10. Matrix representation and graph representation of the matrix T chosen for
F-FCSR-16 v3

– The set J (for the first part of the Key/IV setup) is:

J = {10, 27, 43, 59, 75, 91, 107, 122, 139, 155, 172, 187, 202, 219, 235, 251}

– the 16 subfilters F0, · · · , F15 are given by:

F0={0, 40, 68, 101, 134, 158, 193, 218, 253}
F1={2, 46, 71, 102, 136, 159, 194, 220, 254}
F2={3, 47, 73, 104, 141, 170, 195, 222}
F3={5, 48, 74, 105, 142, 171, 196, 223}
F4={6, 49, 77, 108, 143, 174, 198, 224}
F5={8, 50, 78, 109, 144, 175, 199, 225}
F6={9, 53, 79, 110, 145, 176, 203, 227}
F7={11, 56, 80, 113, 146, 177, 204, 231}
F8={12, 57, 82, 115, 147, 179, 205, 232}
F9={13, 58, 85, 116, 148, 181, 206, 234}

F10={19, 62, 87, 118, 150, 184, 208, 236}
F11={20, 63, 89, 119, 152, 186, 210, 238}
F12={26, 64, 90, 123, 153, 189, 211, 242}
F13={31, 65, 93, 124, 154, 190, 213, 245}
F14={32, 66, 95, 127, 156, 191, 215, 246}
F15={38, 67, 97, 132, 157, 192, 216, 247}

C Transvections

Mrugalski and al. have proposed in [18] a set of of transformations for
LFSRs. The authors alter the structure of the conventional LFSRs but

19



preserve the characteristic polynomial. They use several elementary map-
pings called EL corresponding to elementary transvections: if A is the
original matrix, the transformation after one EL step is A′ = V(i,j)TV −1

(i,j)

where V(i,j) represents the elementary transvection such that V(i,j) = (vk,l)
with vk,k = 1 for all possible k and vi,j = 1. If we directly try to apply
this technique to the case of FCSRs, we observe that the coefficients that
appear in the transition matrix are no more only 0 and 1. For example,
let consider q = −53, we have:

T =













1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0













.

We could apply the elementary tranvection V2,1 and we obtain:

V(2,1)TV −1
(2,1) =













1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













·













1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0













·













1 0 0 0 0
−1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













=













0 1 0 0 0
1 1 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0













whereas, if we apply the elementary tranvection V4,1, we obtain

V(4,1)TV −1
(4,1) =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1













·













1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0













·













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−1 0 0 1 0
0 0 0 0 1













=













1 1 0 0 0
1 1 1 0 0
−1 0 0 1 0
2 0 0 0 1
1 0 0 0 0













.

20


