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Abstract.  Trivium is a hardware-oriented stream cipher, and one of the finally chosen ciphers by 
eSTREAM project. Michal Hojsik and Bohuslav Rudolf presented an effective attack to Trivium, 
named floating fault analysis, at INDOCRYPT 2008. Their attack makes use of the fault injection 
and the fault float. In this paper, we present an improvement of this attack. Our attack is under 
following weaker and more practical assumptions. 

 The fault injection can be made for the state at a random time. 
 The positions of the fault bits are from random one of 3 NFSRs, and from a random area 

within 8 neighboring bits. 
We present a checking method, by which either the injecting time and fault positions can be 

determined, or the state differential at a known time can be determined. Each of these two 
determinations is enough for floating attack. After the determination, the attacker can averagely 
obtain 67.167 additional linear equations from 82 original quadratic equations, and obtain 66 
additional quadratic equations from 66 original cubic equations. A modification of our model is 
similarly effective with the model of Michal Hojsik and Bohuslav, for the floating attack. 
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1  Introduction 
 
1.1  Background and Results of Our Work 
 
Trivium [1, 2] is a hardware-oriented stream cipher designed in 2005 by De Cannière and Preneel 
for eSTREAM project, and has successfully been chosen as one of the final ciphers by eSTREAM. 
It has a simple and elegant structure that is composed of 3 non-linear feedback shift registers 
(NFSRs) and a linear output function. Although Trivium has attracted a lot of interest [3-8], it 
remains unbroken by passive attacks. An obvious weakness of Trivium is that its non-linearization 
procedure is over slow, so that the attacker can obtain a large number of low-degree equations of 
its initial state, by obtaining a key-stream segment. Such low-degree equations are strong enough 
against those passive attacks, but are weak against active attacks, for example, known-differential 
attack. 

Several active attacks have been presented for stream ciphers [9-15]. Michal Hojsik and 
Bohuslav Rudolf presented an attack to Trivium, named differential fault analysis, at FSE 2008 
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[16]. This attack is a known-differential attack, and makes use of the fault injection to obtain the 
state differential. After that, they presented a more effective attack to Trivium, named floating 
fault analysis, at INDOCRYPT 2008 [17]. Besides the fault injection, their attack makes use of 
fault floating, another powerful tool. This attack is no doubt successful, but under two strong 
assumptions, as the follow. 

Assumption 1.1  The fault injection can be made for the state at a fixed time, especially at 
the initial time. 

Assumption 1.2  After the fault injection, exactly one random bit is changed. 
For any stream cipher, the state renewal is extremely fast, so that the attacker can hardly catch 

the state at a fixed time. On the other hand, the hardware-oriented stream ciphers are usually under 
protection against corruption. According to common comprehension, the fault injection is made by 
laser or by magnetic disturbance or by some other brute method. When a bit is corrupted, it is 
difficult to keep the neighbor bits not to be corrupted.  

In this paper, we present an improvement of the floating fault attack. Our attack is under 
following weaker and more practical assumptions. 

Assumption 2.1  The fault injection can be made for the state at a random time. 
Assumption 2.2  The positions of the fault bits are from random one of 3 NFSRs, and from a 

random area within 8 neighboring bits. 
We present a checking method, by which either the injecting time and fault positions can be 

determined, or the state differential at a known time can be determined. Each of these two 
determinations is enough for floating attack. After the determination, the attacker can averagely 
obtain 67.167 additional linear equations from 82 original quadratic equations, and obtain 66 
additional quadratic equations from 66 original cubic equations. Then we make a modification to 
our model, that is, we preserve the floating attack model of Michal Hojsik and Bohuslav, allowing 
repeatedly faut injections, except that Assumption 1.2 is changed as Assumption 2.2. Averagely 4 
fault injections and averagely 227×5 key-stream bits will break Trivium. This result is similarly 
effective with the primitive model of Michal Hojsik and Bohuslav Rudolf [17]. 

The contents are organized as follows. In subsection 1.2 we review related work recently about 
Trivium. Section 2 is a brief description of Trivium, emphasizing its differential feature and its 
differential floating feature. Section 3 is the checking method. In this section we first present, after 
the fault injection, the differential features in various cases. Then we present a complete checking 
routine, through which either the injecting time and fault positions can be determined, or the state 
differential at a known time can be determined. Section 4 is the floating analysis. We show that, 
till the time called “the floating end”, the attacker can averagely obtain 67.167 additional linear 
equations from 82 original quadratic equations, and obtain 66 additional quadratic equations from 
66 original cubic equations. In section 5 we make a modification to our model, and compare with 
the primitive model of Michal Hojsik and Bohuslav Rudolf. We show that, for our modified model, 
averagely 4 fault injections and averagely 227×5 key-stream bits will break Trivium. 
 
 
1.2  Related Work Recently about Trivium 
 
Many previous results in Trivium cryptanalysis have been mensioned by Michal Hojsik and 
Bohuslav Rudolf [15, 16], and listed in our refferences. Here we only briefly mension 3 results 



obtained recently. 
Deik Priemuth-schmid and Alex Biryukov [18] presented slid pairs in Trivium. They showed 

that initialization and key-stream generation of Trivium is slidable, that is, one can find distinct 
(Key, IV) pairs that produce identical (or closely related) key-streams. There are more than 239 
such pairs in Trivium. Enes Pasalic [19] mainly considered the scenario where the key differential 
and/or IV differential influence the internal state of the cipher. They show that under certain 
circumstances a chosen IV attack may be transformed in the key chosen attack. Based on the idea 
of cube attack proposed by Itai Dinur and Adi Shamir [20], S. S. Bedi and N. Rajesh Pillai [21] 
presented cube attacks on Trivium. 
 
 

2  Trivium Model and Trivium Features 
 
 
2.1  Trivium Key-Stream Generation and Original Equations 
 
3 combined NFSRs (Non-linear Feedback Shift Registers) drive the key-stream of Trivium. The 
first NFSR is 93 bit long, denoted as (s1, …, s93). The second NFSR is 84 bit long, denoted as 
(s94, …, s177).  The third NFSR is 111 bit long, denoted as (s178, …, s288). Table 1 is an 
equivalent algorithm for the key-stream generation. 
 
 

Table 1. The key-stream generation algorithm 
Input: Trivium inner state (s1, …, s288), number of output bits N≤264 

Output: key-stream (z0z1z2…zN) 

1: for i=0 to N do 
2:   zi←s66+s93+s162+s177+s243+s288 
3:   t1←s66+s91s92+s93+s171 
4:   t2←s162+s175s176+s177+s264 
5:   t3←s243+s286s287+s288+s69 
6:   (s1, …, s93)←(t3, s1, …, s92) 
7:   (s94, …, s177)←(t1, s94, …, s176) 
8:   (s178, …, s288)←(t2, s178, …, s287) 
4: end for 

 
In Table 1, the step 2 is output of the key-stream bit, which is a linear function of the state. The 
step 3~8 is renewal of the inner state. Let s(t, j) denote the state bit at time t and position j, then 
Table 2 presents a clearer description for the state renewal. 
 
 

Table 2. The inner state renewal 



(s(t+1, 1), s(t+1, 2), …, s(t+1, 93)) 
=(s(t, 243)+s(t, 286)s(t, 287)+s(t, 288)+s(t, 69), s(t, 1), …, s(t, 92)) 

(s(t+1, 94), s(t+1, 95), …, s(t+1, 177)) 
=(s(t, 66)+s(t, 91)s(t, 92)+s(t, 93)+s(t, 171), s(t, 94), …, s(t, 176)) 

(s(t+1, 178), s(t+1, 179), …, s(t+1, 288)) 
=(s(t, 162)+s(t, 175)s(t, 176)+s(t, 177)+s(t, 264), s(t, 178), …, s(t, 287)) 

 
 

Suppose that the attacker obtains a key-stream segment (ztzt+1zt+2…zt+N) from time t to time 
t+N. Then he obtains N+1 equations of (s(t, 1), s(t, 2),…, s(t, 288)), the state at time t. These equations 
are called original equations, and are respectively ranked equation (0), equation (1), …, equation 
(N). 

66 of these original equations are linear equations, ranked from equation (0) to equation (65). 
82 of these original equations are quadratic equations, ranked from equation (66) to equation (147). 
In each of these quadratic equations, quadratic terms are the products of two neighbor bits s(t j)s(t, 

j+1), and two quadratic terms do not have coincident bits. These quadratic terms are called pair 
quadratic terms. Because of such special features, equation (66) ~ equation (147) are also called 
pair quadratic equations (see [15]). 66 of these original equations are cubic equations, ranked from 
equation (148) to equation (213). 

The equation (0) ~ equation (147) are presented in Appendix A. 
 
 
2.2  Trivium Differential Features and Additional Equations 
 
Suppose that the attacker obtains not only the key-stream segment (ztzt+1zt+2…zt+N) from time t to 
time t+N, but also the following two objects. 

(1) Another key-stream segment (zt’zt+1’zt+2’…zt+N’) from time t to time t+N, therefore the 
differential of the two segments 

(△zt, △zt+1, …, △zt+N)=(zt+zt’, zt+1+zt+1’,…, zt+N+zt+N’). 
(2) The differential value of two inner states at time t,  

(△s(t, 1), △s(t, 2), …, △s(t, 288))=(s(t, 1)+s(t, 1)’, s(t, 2)+s(t, 2)’,…, s(t, 288)+s(t, 288)’). 
Then he obtains another N+1 equations of (s(t, 1), s(t, 2),…, s(t, 288)). These equations are called 

additional equations. From 66 original linear equations, he obtains 66 additional equations which 
are identities. From 82 original quadratic equations, he obtains 82 additional equations which are 
identities or linear equations. From 66 original cubic equations, he obtains 66 additional equations 
which are identities or linear equations or quadratic equations. And so on. Linear equations are 
most valuabale for breaking Trivium. Quadratic equations are much less valuabale. 
 
 
2.3  Differential Floating Feature 
 
It is clear that, by Appendix A, 

(△s(t+1, 1), △s(t+1, 2), …, △s(t+1, 93)) 



=(△s(t, 243)+△(s(t, 286)s(t, 287))+△s(t, 288)+△s(t, 69), △s(t, 1), …, △s(t, 92)) 
=(△s(t, 243)+s(t, 286)△s(t, 287)+s(t, 287)△s(t, 286)+△s(t, 286)△s(t, 287)+△s(t, 288)+△s(t, 69),  
△s(t, 1), …, △s(t, 92)), 

(△s(t+1, 94), △s(t+1, 95), …, △s(t+1, 177)) 
=(△s(t, 66)+△(s(t, 91)s(t, 92))+△s(t, 93)+△s(t, 171), △s(t, 94), …, △s(t, 176)) 
=(△s(t, 66)+s(t, 91)△s(t, 92)+s(t, 92)△s(t, 91)+△s(t, 91)△s(t, 92)+△s(t, 93)+△s(t, 171),  
△s(t, 94), …, △s(t, 176)), 

(△s(t+1, 178), △s(t+1,179), …, △s(t+1, 288)) 
=(△s(t, 162)+△(s(t, 175)s(t, 176))+△s(t, 177)+△s(t, 264), △s(t,178), …, △s(t, 287)) 
=(△s(t, 162)+s(t, 175)△s(t, 176)+s(t, 176)△s(t, 175)+△s(t, 175)△s(t, 176)+△s(t, 177)+△s(t, 264),  
△s(t,178), …, △s(t, 287)). 

It implies that, if the state differential at time t is known, the state differential at time t+1 is 
known under one of several weak conditions. This feature is called differential float, or fault float. 
 
 
3  Determination of the Injecting Time and Fault Positions 
 
 
Suppose that the attacker obtains an encryption machine. He starts up this machine, and obtains 
the key-stream segment (z0z1z2 … zN). Then he starts up the machine once again, and 
simultaneously makes fault injection under Assumption2.1 and Assumption2.2. So that he obtains 
the fault injected key-stream segment (z0’z1’z2’…zN’), and the differential of the two segments (△
z0, △z1, …, △zN)=(z0+z0’, z1+z1’,…, zN+zN’). He wants to determine the injecting time and fault 
positions. 
 
 
3.1  Notations and Lemmas 
 
s(t, j) denotes the state bit at time t and position j. 

PL denotes the lowest position of injected faults. PH denotes the highest position of injected 
faults. According to our Assumption2.2, 1≤PH -PL≤7. Again PH and PL are from same set of 
indices {1, …, 93} or {94, …, 177} or {178, …, 288}. 

PL is of 9 cases: 1≤PL≤66, 67≤PL≤69, 70≤PL≤93, 94≤PL≤162, 163≤PL≤171, 172≤
PL≤177, 178≤PL≤243, 244≤PL≤264, 265≤PL≤288. 

T denotes the smallest time t such that △zt=1. M denotes the time when the faults are inserted. 
The attacker has already known T. He does not know M, but he does know that T-68≤M≤T. 

 
Lemma 1  Suppose that 
(1) A={a1, …, an} is a set of indices, max{A}-min{A}≤7, and 

A⊂ {1, …, 93} or A⊂ {94, …, 177} or A⊂ {178, …, 288}. 
(2) k is an integer.  
(3) For j=0, 1, …, k-1, (A+j)∩{66, 69, 91, 92, 93, 162, 171, 175, 176, 177, 243, 264, 286, 287, 

288}=Φ (the empty set), where (A+j)={a1+j, …, an+j}. 
(4) (A+k)∩{66, 69, 91, 92, 93, 162, 171, 175, 176, 177, 243, 264, 286, 287, 288}≠Φ. 



(5) t is a time. 
Then the following k+1 fault-injections are equivalent. That is, they generate k+1 fault injected 

key-streams which are completely same. 
Injection 0: at time t, the bits at the positions of A are corrupted. 
Injection 1: at time t+1, the bits at the positions of A+1 are corrupted. 
… 
Injection k: at time t+ k, the bits at the positions of A+k are corrupted. 
 
Lemma 2   
(1) In case 1≤PL≤66, we can equivalently take M=T, so that PH≥66. 
(2) In case 94≤PL≤162, we can equivalently take M=T, so that PH≥162. 
(3) In case 178≤PL≤243, we can equivalently take M=T, so that PH≥243. 
(4) In case 70≤PL≤93, we can equivalently take T-2≤M≤T, so that 91≤PH≤93. 
(5) In case 172≤PL≤177, we can equivalently take T-2≤M≤T, so that 175≤PH≤177. 
(6) In the 265≤PL≤288, we can equivalently take T-2≤M≤T, so that 286≤PH≤288. 
(7) In the 67≤PL≤69, we can equivalently take △s(M, 69)=1, so that PH≥69. 
(8) In the 163≤PL≤171, we can equivalently take △s(M, 171)=1, so that PH≥171. 
(9) In the 244≤PL≤264, we can equivalently take △s(M, 264)=1, so that PH≥264. 

 
 
3.2  Differential Features in Various Cases 
 

Proposition 1  Suppose 1≤PL≤66. Equivalently take M=T and PH≥66. Then there are m 
and n, 0≤m≤n≤7, such that 

(1) (△zT, △zT+1, …, △zT+n-m)=(1, *…*, 1). 
(2) (△zT+n-m+1, △zT+n-m+2, …, △zT-m+26)=(0, 0, …, 0). 
(3) (△zT-m+27, △zT-m+28, …, △zT+26)=(1, *…*). 
(4) (△zT+27, △zT+28, …, △zT+n-m+27)=(△zT, △zT+1, …, △zT+n-m)=(1, *…*, 1). 
(5) (△zT+n-m+28, △zT+n-m+29, …, △zT+65)=(0, 0, …, 0). 
(6) The fault positions are of the set A={t|-n+m+66≤t≤m+66, △zT-t+93=1}. 
 
Proof  Denote n=PH-PL, m=PH-66, then n-m=66-PL, 0≤m≤n≤7. According to Appendix A,  
(△zT, △zT+1, …, △zT+n-m)=(△s(T, 66), △s(T, 65), …, △s(T, -n+m+66))=(1, *…*, 1), 
(△zT+n-m+1, △zT+n-m+2, …, △zT-m+26)=(0, 0, …, 0), 
(△zT-m+27, △zT-m+28, …, △zT+26)=(△s(T, m+66), △s(T, m+65), …, △s(T, 67))=(1, *…*),  
(△zT+27, △zT+28, …, △zT+n-m+27)=(△s(T, 66), △s(T, 65), …, △s(T, -n+m+66))=(1, *…*, 1), 
(△zT+n-m+28, △zT+n-m+29, …, △zT+65)=(0, 0, …, 0). 
Proposition 1 is proved. 
 
Similar to Proposition 1, the following Proposition 2 and Proposition 3 are true. 

 
Proposition 2  Suppose 94≤PL≤162. Equivalently take M=T and PH≥162. Then there are 

m and n, 0≤m≤n≤7, such that 
(1) (△zT, △zT+1, …, △zT+n-m)=(1, *…*, 1). 



(2) (△zT+n-m+1, △zT+n-m+2, …, △zT-m+14)=(0, 0, …, 0). 
(3) (△zT-m+15, △zT-m+16, …, △zT+14)=(1, *…*). 
(4) (△zT+15, △zT+16, …, △zT+n-m+15)=(△zT, △zT+1, …, △zT+n-m)=(1, *…*, 1). 
(5) (△zT+n-m+16, △zT+n-m+17, …, △zT+65)=(0, 0, …, 0). 
(6) The fault positions are of the set A={t|-n+m+162≤t≤m+162, △zT-t+177=1}. 

 
Proposition 3  Suppose 178≤PL≤243. Equivalently take M=T and PH≥243. Then there are 

m and n, 0≤m≤n≤7, such that 
(1) (△zT, △zT+1, …, △zT+n-m)=(1, *…*, 1). 
(2) (△zT+n-m+1, △zT+n-m+2, …, △zT-m+44)=(0, 0, …, 0). 
(3) (△zT-m+45, △zT-m+46, …, △zT+44)=(1, *…*). 
(4) (△zT+45, △zT+46, …, △zT+n-m+45)=(△zT, △zT+1, …, △zT+n-m)=(1, *…*, 1). 
(5) (△zT+n-m+46, △zT+n-m+47, …, △zT+65)=(0, 0, …, 0). 
(6) The fault positions are of the set A={t|-n+m+243≤t≤m+243, △zT-t+288=1}. 

 
Proposition 4  Suppose 70≤PL≤93. Equivalently take T-2≤M≤T and 91≤PH≤93. Then 

there is n, 0≤n≤7, such that 
(1) (△zT, △zT+1, …, △zT+n)=(△s(T, 93), △s(T, 92), …, △s(T, 93-n))=(1, *…*, 1). 
(2) If M=T-2 (PH=91), (△zT+67, △zT+68)=(s(T-2, 92)△s(T, 93), △(s(T, 92)s(T, 93))), and the fault 

positions are from the set A={t|91-n≤t≤91, △zT-t+91=1}. 
(3) If M=T-1 (PH=92), (△zT+67, △zT+68)=(0, △(s(T, 92)s(T, 93))), and the fault positions are from 

the set A+1. 
(4) If M=T (PH=93), (△zT+67, △zT+68)=(0, 0), and the fault positions are from the set A+2. 
(5) (△zT+69, △zT+70, …, △zT+n+69)= 
(△(s(T, 91)s(T, 92)+s(T, 93)), △(s(T, 90)s(T, 91)+s(T, 92)), …, △(s(T, 91-n)s(T, 92-n)+s(T, 93-n))). 
(6) (△zT+67, △zT+68, …, △zT+n+69)=(△zT+82, △zT+83, …, △zT+n+84)=(△zT+133, △zT+134, …, 

△zT+n+135). 
(7) (△zT+145, △zT+146,△zT+147)=(△zT+67, △zT+68,△zT+69). 
(8) △zT+t=0 for other t such that 0≤t≤147. 
(9) Whether M=T-2 or M=T-1 or M=T, the state differential at time T is the follow: (△s(T, 93-n), 

△s(T, 94-n), …, △s(T, 93))=(△zT+n, △zT+n-1, …, △zT), (△s(T, 94), △s(T, 95))= (△zT+68, △zT+67), △
s(T, j)=0 for other j. 

 
Proof   
If M=T (PH=93), (△s(T, 93), △s(T, 92), …, △s(T, 93-n))=(1, *…*, 1), △s(T, j)=0 for other j. 
If M=T-1 (PH=92), (△s(T, 93), △s(T, 92), …, △s(T, 93-n))=(1, *…*, 1), △s(T, 94)=△(s(T, 92)s(T, 93)), 

△s(T, j)=0 for other j. 
If M=T-2 (PH=91), (△s(T, 93), △s(T, 92), …, △s(T, 93-n))=(1, *…*, 1), △s(T, 94)=△(s(T, 92)s(T, 93)), 

△s(T, 95)=s(T-2, 92)△s(T, 93), △s(T, j)=0 for other j. 
According to Appendix A, Proposition 4 is clear. 
 
Similar to Proposition 4, the following Proposition 5 and Proposition 6 are true. 

 
Proposition 5  Suppose 172≤PL≤177. Equivalently take T-2≤M≤T and 175≤PH≤177. 



Then there is n, 0≤n≤5, such that 
(1) (△zT, △zT+1, …, △zT+n)=(△s(T, 177), △s(T, 176), …, △s(T, 177-n))=(1, *…*, 1). 
(2) If M=T-2 (PH=175), (△zT+64, △zT+65)=(s(T-2, 176)△s(T, 177), △(s(T, 176)s(T, 177))), and the fault 

positions are from the set A={t|175-n≤t≤175, △zT-t+175=1}. 
(3) If M=T-1 (PH=176), (△zT+64, △zT+65)=(0, △(s(T, 176)s(T, 177))), and the fault positions are 

from the set A+1. 
(4) If M=T (PH=177), (△zT+64, △zT+65)=(0, 0), and the fault positions are from the set A+2. 
(5) (△zT+66, △zT+67, …, △zT+n+66)= 
(△(s(T, 175)s(T, 176)+s(T, 177)), △(s(T, 174)s(T, 175)+s(T, 176)), …, △(s(T, 175-n)s(T, 176-n)+s(T, 177-n))). 
(6) (△ zT+64, △ zT+65, … , △ zT+n+66)=(△ zT+109, △ zT+110, … , △ zT+n+111)=(△ zT+130, △

zT+131, …, △zT+n+132). 
(7) △zT+t=0 for other t such that 0≤t≤147. 
(8) Whether M=T-2 or M=T-1 or M=T, the state differential at time T is the follow: (△s(T, 177-n), 

△s(T, 178-n), …, △s(T, 177))=(△zT+n, △zT+n-1, …, △zT), (△s(T, 178), △s(T, 179))= (△zT+65, △zT+64), 
△s(T, j)=0 for other j. 

 
Proposition 6  Suppose 265≤PL≤288. Equivalently take T-2≤M≤T and 286≤PH≤288. 

Then there is n, 0≤n≤7, such that 
(1) (△zT, △zT+1, …, △zT+n)=(△s(T, 288), △s(T, 287), …, △s(T, 288-n))=(1, *…*, 1). 
(2) If M=T-2 (PH=286), (△zT+64, △zT+65)=(s(T-2, 287)△s(T, 288), △(s(T, 287)s(T, 288))), and the fault 

positions are from the set A={t|286-n≤t≤286, △zT-t+286=1}. 
(3) If M=T-1 (PH=287), (△zT+64, △zT+65)=(0, △(s(T, 287)s(T, 288))), and the fault positions are 

from the set A+1. 
(4) If M=T (PH=288), (△zT+64, △zT+65)=(0, 0), and the fault positions are from the set A+2. 
(5) (△zT+66, △zT+67, …, △zT+n+66)= 
(△(s(T, 286)s(T, 287)+s(T, 288)), △(s(T, 285)s(T, 286)+s(T, 287)), …, △(s(T, 286-n)s(T, 287-n)+s(T, 288-n))). 
(6) (△zT+64, △zT+65, …, △zT+n+66)=(△zT+91, △zT+92, …, △zT+n+93). 
(7) △zT+t=0 for other t such that 0≤t≤147. 
(8) Whether M=T-2 or M=T-1 or M=T, the state differential at time T is the follow: (△s(T, 288-n), 

△s(T, 289-n), …, △s(T, 288))=(△zT+n, △zT+n-1, …, △zT), (△s(T, 1), △s(T, 2))= (△zT+65, △zT+64), △
s(T, j)=0 for other j. 

 
Proposition 7  Suppose 67≤PL≤69. Equivalently take △s(M, 69)=1 and PH≥69. Then there 

are m and n, m≥0, n-2≤m≤n≤7, such that 
(1) (△zT, △zT+1, …, △zT+n)=(1, *…*, 1), where △zT+m=1. 
(2) (△zT+n+1, △zT+n+2, …, △zT+m+41)=(0, 0, …, 0). 
(3) (△zT+m+42, △zT+m+43, …, △zT+n+42)=(△zT+m, △zT+1+m, …, △zT+n)=(1, *…*, 1). 
(4) (△zT+n+43, △zT+n+44, …, △zT+66)=(0, 0, …, 0). 
(5) (△zT+92, △zT+m+109, …, △zT+m+125)=(0, 0, …, 0). 
(6) M=T-24+m, where m is the smallest t such that 0≤t≤7 and △zT+t+42=1. 
(7) The fault positions are of the set A={t|69-n+m≤t≤69+m, △zT-t+m+69=1}. 
 
Proof  Denote n=PH-PL, m=PH-69, then n-m=69-PL, m≥0, n-2≤m≤n≤7. According to the 

state renewal (Table 2) we know that, from time M to time T, position 69+m shifts to position 93. 



So that T-M=24-m. We take close contact with differential floating feature. 
At time M, the state differential is the follow. 
(△s(M, 69-n+m), …, △s(M, 69+m))=(1, *, …*, 1), where △s(M, 69)=1. 
△s(M, j)=0 for other j. 
So that, at time T=M+24-m, the state differential is the follow. 
(△s(T, 93-n), …, △s(T, 93))=(△s(M, 69-n+m), …, △s(M, 69+m))=(1, *…*, 1), where △s(T, 93-m)=1. 
(△s(T, 24-n), …, △s(T, 24-m))=(△s(M, 69-n+m), …, △s(M, 69))=(1, *, …*, 1). 
(△s(T, 94), △s(T, 95))=(△(s(M, 68+m)s(M, 69+m)), △(s(M, 69+m)s(M, 70+m))). 
△s(T, j)=0 for each j∉{24-n, 25-n, …, 24-m, 93-n, 94-n, …, 95}. 
According to Appendix A and the state differential at time T, we can partly determine (△zT, 

△zT+1, △zT+2, …) as the follow. 
(△zT, △zT+1, …, △zT+n)=(△s(T, 93), △s(T, 92), …, △s(T, 93-n))=(1, *…*, 1), where △zT+m=1. 
(△zT+n+1, △zT+n+2, …, △zT+m+41) have no relation with {△s(T, j)| j∈{24-n, 25-n, …, 24-m, 

93-n, 94-n, …, 95}}, so that (△zT+n+1, △zT+n+2, …, △zT+m+41)=(0, …, 0). 
(△zT+m+42, △zT+m+43, …, △zT+n+42)=(△s(T, 24-m), △s(T, 23-m), …, △s(T, 24-n))=(1, *, …*, 1). 
(△zT+n+43, △zT+n+44, …, △zT+66) have no relation with {△s(T, j)| j∈{24-n, 25-n, …, 24-m, 

93-n, 94-n, …, 95}}, so that (△zT+n+43, △zT+n+44, …, △zT+66)=(0, 0, …, 0). 
(△zT+92, △zT+m+109, …, △zT+m+125) have no relation with {△s(T, j)| j∈{24-n, 25-n, …, 24-m, 

93-n, 94-n, …, 95}}, so that (△zT+92, △zT+m+109, …, △zT+m+125)=(0, 0, …, 0). 
Proposition 7 is proved. 
 
Lemma 3  Suppose 163≤PL≤171. Equivalently take △s(M, 171)=1 and PH≥171. Then there 

are m and n, 0≤m≤6, m≤n≤7, such that M=T-6+m. The fault positions are of the set 
A={t|171-n+m≤t≤171+m, △zT-t+m+171=1}. The differential at time T+n+1 is the follow. 

(1) (△s(T+n+1, 178), △s(T+n+1, 179), …, △s(T+n+1, 178+n)) 
=(△(s(M, 169-n+m)s(M, 170-n+m)+s(M, 171-n+m)), △(s(M, 170-n+m)s(M, 171-n+m)+s(M, 172-n+m)), …, △(s(M, 

169+m)s(M, 170+m)+s(M, 171+m))). 
(2) If M=T (m=6), (△s(T+n+1, 179+n), △s(T+n+1, 180+n))=(0, 0). 
(3) If M=T-1 (m=5), (△s(T+n+1, 179+n), △s(T+n+1, 180+n))=(△(s(M, 170+m)s(M, 171+m)), 0). 
(4) If M<T-1 (m<5), (△s(T+n+1, 179+n), △s(T+n+1, 180+n))=(△(s(M, 170+m)s(M, 171+m)), s(M, 172+m)△s(M, 

171+m)). 
(5) (△s(T+n+1, 100), …, △s(T+n+1, 100-m+n))=(△s(M, 171-n+m), …, △s(M, 171))=(1, *, …*, 1). 
(6) △s(T+n+1, j)=0 for each j∉{100, 101, …, 100-m+n, 178, 179, …, 180+n}. 
 
Proof  Denote n=PH-PL, m=PH-171, then n-m=171-PL, 0≤m≤6, m≤n≤7. According to the 

state renewal (Table 2) we know that, from time M to time T, position 171+m shifts to position 
177. So that T-M=6-m. We take close contact with differential floating feature. 

At time M, the state differential is the follow. 
(△s(M, 171-n+m), …, △s(M, 171+m))=(1, *, …*, 1), where △s(M, 171)=1. 
△s(M, j)=0 for other j. 
At time T+n+1, the state differential is the follow. 
(△s(T+n+1, 178), △s(T+n+1, 179), …, △s(T+n+1, 178+n)) 
=(△(s(T, 175-n)s(T, 176-n)+s(T, 177-n)), △(s(T, 176-n)s(T, 177-n)+s(T, 178-n)), …, △(s(T, 175)s(T, 176)+s(T, 177))) 
=(△(s(M, 169-n+m)s(M, 170-n+m)+s(M, 171-n+m)), △(s(M, 170-n+m)s(M, 171-n+m)+s(M, 172-n+m)), …, △(s(M, 



169+m)s(M, 170+m)+s(M, 171+m))). 
If M=T (m=6),  

(△s(T+n+1, 179+n), △s(T+n+1, 180+n))=(△s(T, 178), △s(T, 179))=(0, 0). 
If M=T-1 (m=5), 

(△s(T+n+1, 179+n), △s(T+n+1, 180+n))=(△s(T, 178), △s(T, 179))=(△(s(M, 170+m)s(M, 171+m)), 0). 
If M<T-1 (m<5), 

(△s(T+n+1, 179+n), △s(T+n+1, 180+n))=(△s(T, 178), △s(T, 179)) 
=(△(s(M, 170+m)s(M, 171+m)), s(M, 172+m)△s(M, 171+m)). 

(△s(T+n+1, 100), …, △s(T+n+1, 100-m+n))=(△s(M, 171-n+m), …, △s(M, 171))=(1, *, …*, 1). 
△s(T+n+1, j)=0 for each j∉{100, 101, …, 100-m+n, 178, 179, …, 180+n}. 
Lemma 3 is proved. 
 
Proposition 8  Suppose 163≤PL≤171. Equivalently take △s(M, 171)=1 and PH≥171. Then 

there are m and n, 0≤m≤6, m≤n≤7, such that 
(1) M=T-6+m. 
(2) The fault positions are of the set A={t|171-n+m≤t≤171+m, △zT-t+m+171=1}. 
(3) (△zT, △zT+1, …, △zT+n)=(△s(M, 171+m), △s(M, 170+m), …, △s(M, 171-n+m),)=(1, *…*, 1), 

where △zT+m=1. 
(4) (△zT+n+1, △zT+n+2, …, △zT+147) can be decomposed as 

(△zT+n+1, △zT+n+2, …, △zT+147)= 
(△uT+n+1, △uT+n+2, …, △uT+147)+(△vT+n+1, △vT+n+2, …, △vT+147). 

(△uT+n+1, △uT+n+2, …, △uT+147) is of the following shape. 
(u1)  

(△uT+64, △uT+65, …, △uT+n+66) 
=(△uT+109, △uT+110, …, △uT+n+111) 
=(△uT+130, △uT+131, …, △uT+n+132) 
=(△s(T+n+1, 180+n), △s(T+n+1, 179+n), …, △s(T+n+1, 178)). 

(u2) △uT+j=0 for other j∈{n+1, n+2, …, 147}. 
(△vT+n+1, △vT+n+2, …, △vT+147) is of the following shape. 

(v1)  
(△vT+m+63, △v T+m+64, …, △vT+n+63) 
=(△vT+m+78, △vT+m+79, …, △vT+n+78) 
=(△vT+m+129, △vT+m+130, …, △vT+n+129) 
=(△s(T+n+1, -m+n+100), △s(T+n+1, -m+n+99), …, △s(T+n+1, 100)) 
=(1, *…*, 1). 

(v2) (△vT+m+141, △vT+m+142, …, △vT+n+144) is some function of {△s(T+n+1, 100), △s(T+n+1, 

101), …, △s(T+n+1, -m+n+100)}, where △vT+m+141=1. 
(v3) △vT+j=0 for other j∈{n+1, n+2, …, 147}. 
(5) m is the smallest t such that 0≤t≤7 and △zT+t+78=1. 
 
Proof  (1) and (2) have already been proved by Lemma 3. Again (3) is direct. From Lemma 3 

we have already known the state differential at time T+n+1. 
Now we take the stream differential (△uT+n+1, △uT+n+2, …, △uT+147) as generated by such 

state differential at time T+n+1: respectively {△s(T+n+1, 178), △s(T+n+1, 179), …, △s(T+n+1, 180+n)} at 



positions from {178, 179, …, 180+n}, and 0 at other positions. Then (△uT+n+1, △uT+n+2, …, △
uT+147) is of the following shape. 

(△uT+64, △uT+65, …, △uT+n+66) 
=(△uT+109, △uT+110, …, △uT+n+111) 
=(△uT+130, △uT+131, …, △uT+n+132) 
=(△s(T+n+1, 180+n), △s(T+n+1, 179+n), …, △s(T+n+1, 178)). 
△uT+j=0 for other j∈{n+1, n+2, …, 147}. 
Again we take the stream differential (△vT+n+1, △vT+n+2, …, △vT+147) as generated by such 

state differential at time T+n+1: respectively {△ s(T+n+1, 100), △ s(T+n+1, 101), … , △ s(T+n+1, 

-m+n+100)}={1, *…*, 1} at positions from {100, 101, …, 100-m+n}, and 0 at other positions. Then 
(△vT+n+1, △vT+n+2, …, △vT+147) is of the following shape. 

(△vT+m+63, △vT+m+64, …, △vT+n+63) 
=(△vT+m+78, △vT+m+79, …, △vT+n+78) 
=(△vT+m+129, △vT+m+130, …, △vT+n+129) 
=(△s(T+n+1, -m+n+100), △s(T+n+1, -m+n+99), …, △s(T+n+1, 100)) 
={1, *…*, 1}. 
△vT+m+141=△s(T+n+1, 100+n-m)=1. 
(△vT+m+142, △vT+m+143, …, △vT+n+144) is some function of {△s(T+n+1, 100), △s(T+n+1, 101), …, 

△s(T+n+1, -m+n+100)}. 
△vT+j=0 for other j∈{n+1, n+2, …, 147}. 
In each equation of Appendix A, there is no the product of such two factors, one of which is 

from the position set {100, 101, …, 100-m+n}, and another is from the position set {178, 179, …, 
180+n}. This implies that 

(△zT+n+1, △zT+n+2, …, △zT+147)= 
(△uT+n+1, △uT+n+2, …, △uT+147)+(△vT+n+1, △vT+n+2, …, △vT+147). 

So that 
(△zT+78, △zT+79, …, △zT+85)=(△vT+78, △vT+79, …, △vT+85), 

and △vT+78=△vT+79=…=△vT+m+77=0, △vT+m+78=1. 
Proposition 8 is proved. 
 
Proposition 9  Suppose 244≤PL≤264. Equivalently take △s(M, 264)=1 and PH≥264. Then 

there are m and n, 0≤m≤n≤7, such that 
(1) (△zT, △zT+1, …, △zT+n)=(1, *…*, 1), where △zT+m=1. 
(2) (△zT+n+1, △zT+n+2, …, △zT+m+41)=(0, 0, …, 0). 
(3) (△zT+m+42, △zT+m+43, …, △zT+n+42)=(△zT+m, △zT+1+m, …, △zT+n)=(1, *…*, 1). 
(4) (△zT+n+43, △zT+n+44, …, △zT+63)=(0, 0, …, 0). 
(5) (△zT+m+108, △zT+m+109, …, △zT+n+108)=(△zT+m, △zT+1+m, …, △zT+n)=(1, *…*, 1). 
(6) M=T-24+m, where m is the smallest t such that 0≤t≤7 and △zT+t+42=1. 
(7) The fault positions are of the set A={t|264-n+m≤t≤264+m, △zT-t+m+264=1}. 
 
Proof  Denote n=PH-PL, m=PH-264, then n-m=264-PL, 0≤m≤n≤7. According to the state 

renewal (Table 2) we know that, from time M to time T, position 264+m shifts to position 288. So 
that T-M=24-m. We take close contact with differential floating feature. 

At time M, the state differential is the follow. 



(△s(M, 264-n+m), …, △s(M, 264+m))=(1, *, …*, 1), where △s(M, 264)=1. 
△s(M, j)=0 for other j. 
So that, at time T=M+24-m, the state differential is the follow. 
(△s(T, 288-n), …, △s(T, 288))=(△s(M, 264-n+m), …, △s(M, 264+m))=(1, *…*, 1), where △s(T, 

288-m)=1. 
(△s(T, 201-n), …, △s(T, 201-m))=(△s(M, 264-n+m), …, △s(M, 264))=(1, *, …*, 1). 
(△s(T, 1), △s(T, 2))=(△(s(M, 263+m)s(M, 264+m)), △(s(M, 264+m)s(M, 265+m))). 
△s(T, j)=0 for each j∉{1, 2, 201-n, 202-n, …, 201-m, 288-n, 289-n, …, 288}. 
According to Appendix A and the state differential at time T, we can partly determine (△zT, 

△zT+1, △zT+2, …) as the follow. 
(△zT, △zT+1, …, △zT+n)=(△s(T, 288-n), …, △s(T, 288))=(1, *…*, 1), where △zT+m=1. 
(△zT+n+1, △zT+n+2, …, △zT+m+41)=(0, …, 0). 
(△zT+m+42, △zT+m+43, …, △zT+n+42)=(△s(T, 201-m), …, △s(T, 201-n))=(1, *, …*, 1). 
(△zT+n+43, △zT+n+44, …, △zT+63)=(0, 0, …, 0). 
(△zT+m+108, △zT+m+109, …, △zT+n+108)=(△s(T, 201-m), …, △s(T, 201-n))=(1, *, …*, 1). 
Proposition 9 is proved. 

 
 
3.3  Case Checking 
 

By Proposition 1~3 and Proposition 7~9 we know that, if the attacker knows which case is 
from {1≤PL≤66, 67≤PL≤69, 94≤PL≤162, 163≤PL≤171, 178≤PL≤243, 244≤PL≤264}, 
the injection time M and the fault positions can be determined. By Proposition 4~6 we know that, 
if the attacker knows which case is from {70≤PL≤93, 172≤PL≤177, 265≤PL≤288}, the 
injection time M has three possibilities, correspondingly the fault positions are of a floating set. 
But in each of these three cases the state differential at time T can be determined. This is enough 
for floating attack. So that we need only to check the cases by the key-stream differential (△zT, 
△zT+1,△zT+2, …). We consider 10 cases {1≤PL≤66, 67≤PL≤69, 70≤PL≤93, 94≤PL≤162, 
163≤PL≤171, 172≤PL≤177, 178≤PL≤243, 244≤PL≤264, 265≤PL≤288, Injection Failure}, 
with an additional case called Injection Failure. Injection Failure is described as that △zT+8△

zT+9…=00… is a 0 sequence. Injection Failure has no help for breaking Trivium, because the 
attacker can not obtain any useful equation. The following facts, about Injection Failure, are easy 
to be proved. Injection Failure overlaps each one of 3 cases {70≤PL≤93, 172≤PL≤177, 265≤
PL≤288 }. Injection Failure does not overlap any one of 6 cases {1≤PL≤66, 67≤PL≤69, 94≤
PL≤162, 163≤PL≤171, 178≤PL≤243, 244≤PL≤264}. If △zT+8△zT+9…△zT+147 is a 0 string, 
the case is Injection Failure. If one is in case 70≤PL≤93, he is not in case Injection Failure if and 
only if (△zT+82, △zT+83, …, △zT+n+84)≠(0, 0, …, 0), according to Proposition 4. If one is in 
case 172≤PL≤177, he is not in case Injection Failure if and only if (△zT+109, △zT+110, …, △
zT+n+111)≠(0, 0, …, 0) , according to Proposition 5. If one is in case 265≤PL≤288, he is not in 
case Injection Failure if and only if (△zT+91, △zT+92, …, △zT+n+93)≠(0, 0, …, 0) , according to 
Proposition 6. 

In this subsection we use the following notations. 
 n is the largest t such that 0≤t≤7 and △zT+t=1.  
 l is the smallest t such that t>n and △zT+t=1.  



 k is the largest t such that l≤t≤l+7 and △zT+t=1.  
By Proposition 1~9, the following Proposition 10 and Proposition 11 are clear. 
 
Proposition 10   
(1) The value of k-n comes from {27, 15, 45, 42, [55, +∞]}. 
(2) If k-n=27, the case is 1≤PL≤66. 
(3) If k-n=15, the case is 94≤PL≤162. 
(4) If k-n=45, the case is 178≤PL≤243. 
(5) If k-n=42, the case is from {67≤PL≤69, 244≤PL≤264}. 
(6) If k-n∈[55, +∞], the case is from {70≤PL≤93, 163≤PL≤171, 172≤PL≤177, 265≤PL

≤288, Injection Failure}. 
 
Proposition 11  Suppose the case is from {67≤PL≤69, 244≤PL≤264}. If (△zT+108, △

zT+109, …, △zT+n+108)=(0, 0, …, 0), the case is 67≤PL≤69, or else 244≤PL≤264. 
 
Proposition 12  Suppose the case is from {70≤PL≤93, 163≤PL≤171, 172≤PL≤177, 265

≤PL≤288, Injection Failure}. If (△zT+140, △zT+141, …, △zT+147)≠(0, 0, …, 0), the case is 
from {70≤PL≤93, 163≤PL≤171}, or else the case is from {70≤PL≤93, 172≤PL≤177, 265≤
PL≤288, Injection Failure}. 

 
Proof  Consider Proposition 4, Proposition 5, Proposition 6 and Proposition 8. (△zT+140, △

zT+141, …, △zT+147)≠(0, 0, …, 0) in case 163≤PL≤171. (△zT+140, △zT+141, …, △zT+147)=(0, 
0, …, 0) in each case from {172≤PL≤177, 265≤PL≤288, Injection Failure}. It is not certain 
whether (△zT+140, △zT+141, …, △zT+147)=(0, 0, …, 0) in case 70≤PL≤93 (more detailed 
analysis shows that, in case 70≤PL≤93, (△zT+140, △zT+141, …, △zT+147)=(0, 0, …, 0) with 
small probability). 

 
Proposition 13  Suppose the case is from {70≤PL≤93, 172≤PL≤177, 265≤PL≤288, 

Injection Failure}.  
(1) If (△zT+109, △zT+110, …, △zT+118)≠(0, 0, …, 0), the case is 172≤PL≤177. 
(2) If (△zT+109, △zT+110, …, △zT+118)=(0, 0, …, 0), and (△zT+133, △zT+134, …, △zT+147)≠

(0, 0, …, 0), the case is 70≤PL≤93. 
(3) If (△zT+109, △zT+110, …, △zT+118)=(0, 0, …, 0), (△zT+133, △zT+134, …, △zT+147)=(0, 

0, …, 0), and (△zT+91, △zT+92, …, △zT+100)≠(0, 0, …, 0), the case is 265≤PL≤288. 
(4) If (△zT+109, △zT+110, …, △zT+118)=(0, 0, …, 0), (△zT+133, △zT+134, …, △zT+147)=(0, 

0, …, 0), and (△zT+91, △zT+92, …, △zT+100)=(0, 0, …, 0), the case is Injection Failure. 
 
Proof  (1), (2), and (3) of Proposition 13 are clear. If the case is from {70≤PL≤93, 172≤PL

≤177, 265≤PL≤288, Injection Failure}, and all conditions of (4) of Proposition 13 hold, (△
zT+n+1, △zT+n+2, …, △zT+147)=(0, 0, …, 0) is a 0 string. So that (△zT+n+1, △zT+n+2, …)=(0, 
0, …) is a 0 stream. 

 
We say the string △zT△zT+1△zT+2…△zT+147 possesses the features of the case 70≤PL≤93, if 

each of the following 3 conditions is true. 



Condition 1: (△zT+67, △zT+68, …, △zT+n+69)=(△zT+82, △zT+83, …, △zT+n+84)=(△zT+133, △
zT+134, …, △zT+n+135). 

Condition 2: (△zT+145, △zT+146, △zT+147)=(△zT+67, △zT+68, △zT+69). 
Condition 3: △zT+t=0 for other t such that n+1≤t≤147. 
 
Lemma 4  Suppose the case is 163≤PL≤171, and △zT△zT+1△zT+2…△zT+147 possesses the 

features of the case 70≤PL≤93. Then we have 
(1) 4≤n≤7. 
(2) There is m, 4≤m≤n≤7, such that (△zT+63+m, △zT+64+m, …, △zT+63+n)=(△zT+78+m, △

zT+79+m, …, △zT+78+n)=(△zT+129+m, △zT+130+m, …, △zT+129+n)=(1, *…*, 1). 
(3) (△zT+63+m, △zT+64+m, …, △zT+69)=(△zT+141+m, △zT+142+m, …, △zT+147)=(1, *, *) 
(4) △zT+t=0 for other t such that n+1≤t≤147. 
 
Proof  According to Proposition 8, 

(△zT+n+1, △zT+n+2, …, △zT+147)= 
(△uT+n+1, △uT+n+2, …, △uT+147)+(△vT+n+1, △vT+n+2, …, △vT+147). 

Because  
(△vT+109, △vT+110, …, △vT+n+111) =(0, 0, …, 0), 
(△zT+109, △zT+110, …, △zT+n+111)=(△uT+109, △uT+110, …, △uT+n+111).  

Again because  
(△zT+109, △zT+110, …, △zT+n+111)=(0, 0, …, 0), 
(△uT+109, △uT+110, …, △uT+n+111)=(0, 0, …, 0). 

So that (△uT+n+1, △uT+n+2, …, △uT+147) is a 0 string, and that 
(△zT+n+1, △zT+n+2, …, △zT+147)=(△vT+n+1, △vT+n+2, …, △vT+147). 

Notice that (△vT+m+63, △vT+m+64, …, △vT+n+63)=(1, *…*, 1) for m≤n≤7. Again notice that (△
zT+63, △zT+64, △zT+65, △zT+66)=(0, 0, 0, 0). So that 4≤m≤n≤7. By Proposition 8, Lemma 4 is 
proved. 

 
Proposition 14  Suppose (△zT+140, △zT+141, …, △zT+147)≠(0, 0, …, 0), so that the case is 

from {70≤PL≤93, 163≤PL≤171}. 
(1) If △zT△zT+1△zT+2…△zT+147 does not possess the features of case 70≤PL≤93, the case is 

163≤PL≤171. 
(2) If △zT△zT+1△zT+2…△zT+147 possesses the features of the 70≤PL≤93, and at least one of 

the features of Lemma 4 does not hold, the case is 70≤PL≤93. 
(3) If △zT△zT+1△zT+2…△zT+147 possesses features of the case 70≤PL≤93, and all features 

of Lemma 4 hold, we can not check which case is from {70≤PL≤93, 163≤PL≤171}. But the 
state differential at time T+n+1 can be uniquely determind as the follow: (△s(T+n+1, 100), △s(T+n+1, 

101), …, △s(T+n+1, 100-m+n))=(△z63+n, △z62+n, …, △z63+m)=(1, *, …*, 1), △s(T+n+1, j)=0 for other 
j. 

 
Proof  (1) and (2) of Proposition 14 are clear.  
Suppose the case is 163≤PL≤171, △zT△zT+1△zT+2…△zT+147 possesses features of the case 

70≤PL≤93, and all features of Lemma 4 hold. Then the state differential at time T+n+1 is the 
follow: (△s(T+n+1, 100), △s(T+n+1, 101), …, △s(T+n+1, 100-m+n))=(△z63+n, △z62+n, …, △z63+m)=(1, 



*, …*, 1), △s(T+n+1, j)=0 for other j. 
Again suppose the case is 70≤PL≤93, and all features of Lemma 4 hold. Then the state 

differential at time T+n+1 can be determined, as the follow: (△s(T+n+1, 94), △s(T+n+1, 95), …, △
s(T+n+1, 96+n))=(△z69+n, △z68+n, …, △z67), △s(T+n+1, j)=0 for other j. On the other hand, Lemma 4 
tells us (△z69+n, △z68+n, …, △z64+n)=(0, 0, …, 0), (△z63+n, △z62+n, …, △z63+m)=(1, *, …*, 
1), (△z62+m, △z61+m, …, △z67)=(0, 0, …, 0). 

Proposition 14 is proved. 
 
 
3.4  Summarization for Case Checking 
 

Subsection 3.3 presents a complete checking routine for determining the case. If the case is 
determined, either the injecting time and fault positions are determined, or the state differential at 
time T is determined. The unique circumstance in which the case can not be determind is 
Proposition 14 (3). In this circumstance the state differential at time T+n+1 is determined. Each 
result of subsection 3.3 is sufficient for floating attack, except Injection Failure.  

On the other hand, Injection Failure occurs with a small probability about 1/256.  
 
 
4  Floating Fault Analysis Under Our Assumptions 
 
 
4.1  Preparing for Floating 
 
Michal Hojsik and Bohuslav Rudolf presented an effective attack to Trivium, named floating fault 
analysis. The idea of this attack is to find an appropriate time. At this time, the state differential is 
heavy enough (from point of Hamming weight) and even enough (from point of distribution). 
Generally speaking, the heavier and the more even the state differential is, the more additional 
equations will be linear equations, from 82 original quadratic equations. At fault injection time M, 
the state differential is only distributed within an 8 bits area. So that it needs to float the state 
differential. The weakness of Trivium makes such floating possible. Michal Hojsik and Bohuslav 
presented an algorithm for floating. The input of this algorithm is the follow. 

 The two key-stream segments (z0z1z2…zN) and (z0’z1’z2’…zN’). 
 (△s(i, 1), …, △s(i, 288)), for each i∈{0, 1, …, t}, where t is an integer, t≥3. 
 {△(s(i, 91)s(i, 92)), △(s(i, 175)s(i, 176)), △(s(i, 286)s(i, 287))}, for each i∈{0, 1, …, t-1}. 

The process of this algorithm is the follow. 
Step 1: try to compute {△(s(t, 91)s(t, 92)),△(s(t, 175)s(t, 176)), △(s(t, 286)s(t, 287))}. 
Step 2: compute (△s(t+1, 1), …, △s(t+1, 288)). 
It is said that the state differential is floatable at time t, if the algorithm can succeed. We know 

that Step 2 is immediate from the Step 1, by considering subsection 2.3. Step 1 is a computation 
which includes many cases, and needs many skills. For the sake of the simplicity of our analysis, 
we present two conditions, described in the following Lemma 5. The combination of these two 
conditions is sufficient for the floatablility. 

 



Lemma 5  The state differential is floatable at time t, if each of the following two conditions 
holds. 

(1) (△s(t, 286), △s(t, 287))=(0, 0) or (△s(t, 175), △s(t, 176))=(0, 0). 
(2) (△s(t, 91), △s(t, 92))=(0, 0)  
or (△s(t, 172), △s(t, 173), △s(t, 283), △s(t, 284))=(0, 0, 0, 0)  
or (△s(t, 76), △s(t, 77), △s(t, 157), △s(t, 158), △s(t, 268), △s(t, 269))=(0, 0, 0, 0, 0, 0). 
 
Proof  Lemma 5 is clear by considering equation (66), equation (69) and equation (84) of 

Appendix A. 
 
We call j the floating end, if j is the smallest t such that, at time t, the two conditions of Lemma 

5 can not be assured. In fact, the state differential may still be floatable at or beyond the floating 
end, but it is much more complicated to analyze such floatability. 

In next subsections we will make floating. Here are our assumptions. At each time, the state is 
uniformly distributed. At time M, random faults appear in the positions {m, m+1, …, m+7}, 
where m is uniformly distributed in the set {1, 2, …, 86}∪{94, 95, …, 170}∪{178, 179, …, 
281}. At each of 8 positions{m, m+1, …, m+7}, the fault value is uniformly distributed between 1 
and 0. Faults at different positions are independent with each other. So that the average weight of 
the faults is 4.  

Faults shift rightward as 3 NFSRs drive. When faults pass across the positions {66, 69, 91, 92, 
93, 162, 171, 175, 176, 177, 243, 264, 286, 287, 288}, they are diffused to the positions {1, 94, 
178}. 6 positions {66, 69, 162, 171, 243, 264} are simple positions because, when faults pass 
across them, these faults are directly diffused to the positions {1, 94, 178}. 9 positions {91, 92, 93, 
175, 176, 177, 286, 287, 288} are key positions because, when faults pass across them, diffusion 
features are more complicated. Lemma 6 and Lemma 7 present diffusion features at these 
positions. 

 
Lemma 6  Take n as a non-negative integer. Suppose that, at time t, the state differential 

possesses the following feature. 
 At positions {91-n, 92-n, …, 91}, the values are {X91-n, X92-n, …, X91}, where {X91-n, 

X92-n, …, X91} are uniformly distributed, and independent with each other. 
 At each position from {92, 93}∪{64-n, 65-n,…, 66}∪{169-n, 170-n,  …, 171}, the 

value is 0. 
{Y173-n, Y174-n, …, Y175} denotes the state differential values at time t+n+3 and positions {94, 

95, …, 96+n}. Then 
 Y175 has a biased distribution, taking 1 with the probability 0.25. 
 Y174 has a biased distribution, taking 1 with the probability 0.375. 
 {Y173-n, Y174-n, …, Y173} are uniformly distributed and independent with each other. 

 
Lemma 7  Take m as a non-negative integer, m≤n. As a result of Lemma 6, at time t+82 and 

positions {173-m, 174-m, …, 175}, the state differential values are such {Y173-m, Y174-m, …, Y175}. 
Suppose that, at time t+82, the state differential possesses the following feature. 

 At each position from {176, 177}∪{158-m, 159-m,…, 162}∪{260-m, 261-m,  …, 
264}, the value is 0. 



{Z282-m, Z283-m, …, Z286} denotes the state differential values at time t+m+87 and positions 
{178, 179, …, 182+m}. Then 

 Z286 has a biased distribution, taking 1 with the probability 0.125. 
 Z285 has a biased distribution, taking 1 with the probability 0.25. 
 Z284 has a biased distribution, taking 1 with the probability 0.375. 
 Z283 has a biased distribution, taking 1 with the probability 0.453125. 
 {Z282-m, Z283-m, …, Z282} are uniformly distributed and independent with each other. 

 
Lemma 6 and Lemma 7 are easy to be verified by simple search. They describe such shift: 

faults firstly pass across the positions {91, 92, 93}, and secondly {175, 176, 177}. They imply 
some increase of average Hamming weight of differential. Symmetrical conclusion keeps true if 
we consider such shift: faults firstly pass across the positions {175, 176, 177}, and secondly {286, 
287, 288}. Another symmetrical conclusion keeps true if we consider such shift: faults firstly pass 
across the positions {286, 287, 288}, and secondly {91, 92, 93}. 
 
 
4.2  Floating Analysis for Case 1≤PL≤66 
 
In case 1≤PL≤66, the floating end is about T+163. Let (u1, u2, …, u288) denote the state 
differential at the floating end. Then the major features of (u1, u2, …, u288) are the follow. 

 Each of 141 entries {u4~u5, u29~u83, u92~u93, u101, u110, u119~u143, u163~u170, u194, u203~u221, 
u234~u236, u247~u248, u259~u263, u272~u288} is 0. 

 Entry u233 takes 1 with the probability 0.125. 
 Each of 5 entries {u3, u162, u232, u246, u258} takes 1 with the probability 0.25. 
 Each of 7 entries {u2, u14, u152, u161, u231, u245, u257} takes 1 with the probability 0.375. 
 Entry u230 takes 1 with the probability 0.453125. 
 Each of other 133 entries is uniformly distributed. (But these 133 entries are not 

independent with each other) 
 From these 133 entries, {u84, u85, …, u91} are independent with each other. 
 From these 133 entries, (u84, u85, …, u91)=(u102, u103, …, u109)=(u111, u112, …, u118)=(u195, 

u196, …, u202)=(u264, u265, …, u271). 
 From these 133 entries, (u85, u86, …, u91)=(u16, u17, …, u22)=(u94, u95, …, u100). 
 From these 133 entries, (u86, u87, …, u91)=(u23, u24, …, u28). 
 From these 133 entries, (u88, u89, u90, u91)=(u190, u191, u192, u193). 
 From these 133 entries, (u84, u85, …, u90)=(u171, u172, …, u177). 
 From these 133 entries, (u144, u145, …, u151)=(u237, u238, …, u244). 
 Average differential Hamming weights of 3 NFSRs are respectively 17.5, 24.5 and 

30.453125. 
By equation (66) of Appendix A, the additional equation is a linear equation (other than an 

identity) with the probability 0.75. Similarly by equation (67) of Appendix A, the additional 
equation is a linear equation (other than an identity) with the probability 0.75, etc. Table 3 presents 
each probability, with which the additional equation is a linear equation (other than an identity) by 
original quadratic equation. According to Appendix A, original quadratic equations are equation 
(66), equation (67), …, equation (147). In Table 3, “Rank i” denotes equation (i) of Appendix A, i



∈{66, 67, …, 147}, “Prob.” denotes corresponding probability with which the additional 
equation is a linear equation. Most probabilities in Table 3 are exact. A small number of these 
probabilities are conservative estimations, because we are not very clear what detailed correlation 
is between some entries of the state differential. 
 
 

Table 3. The probability with which the additional equation is a linear equation 
Rank 66 67 68 69 70 71 72 73 74 75 
Prob. 0.75 0.75 0.75 0.875 0.938 0.875 0.75 0.75 0.75 0.75 
Rank 76 77 78 79 80 81 82 83 84 85 
Prob. 0.75 0.5 0 0.25 0.531 0．844 0.938 0.938 0．969 0．984
Rank 86 87 88 89 90 91 92 93 94 95 
Prob. 0．984 0．984 0．984 0.938 0.922 0.938 0.875 0.75 0.875 0.938
Rank 96 97 98 99 100 101 102 103 104 105 
Prob. 0.938 0.938 0.875 0.75 0.75 0.75 0.75 0.75 0.5 0 
Rank 106 107 108 109 110 111 112 113 114 115 
Prob. 0.25 0.531 0.844 0.938 0.938 0．984 0．984 0．984 0．984 0．984
Rank 116 117 118 119 120 121 122 123 124 125 
Prob. 0.875 0 0 0.125 0.344 0.648 0.839 0.957 0.984 0.984
Rank 126 127 128 129 130 131 132 133 134 135 
Prob. 0.984 0.984 0.984 0.984 0.984 0．969 0．969 0.984 0.984 0.984
Rank 136 137 138 139 140 141 142 143 144 145 
Prob. 0.984 0.984 0.996 0.996 0.996 0.992 0.996 0.992 0.938 0.953
Rank 146 147         
Prob. 0.968 0.984         

 
 

According to Table 3 we can induce that, from 82 original quadratic equations, the attacker 
averagely obtains 66.6 additional equations, which are linear equations (other than identities). 
 
 
4.3  Floating Analysis for Other 8 Cases 
 
By the same procedure with subsection 4.2, we can obtain floating features in other 8 cases. In this 
subsection we omit the detailed discussion, and only present major results. 

In case 94≤PL≤162, the floating end is about T+169. From 82 original quadratic equations, 
the attacker averagely obtains 70.6 additional equations which are linear equations. 

In case 178≤PL≤243, the floating end is about T+134. From 82 original quadratic equations, 
the attacker averagely obtains 62.9 additional equations which are linear equations.  

In case 70≤PL≤93, the floating end is about T+236. From 82 original quadratic equations, the 
attacker averagely obtains 74.9 additional equations which are linear equations. 

In case 172≤PL≤177, the floating end is about T+198. Notice PH-PL≤6 in this case. So that, 
at the floating end, the differential is more sparsely distributed. From 82 original quadratic 
equations, the attacker averagely obtains 54.1 additional equations which are linear equations. 



In case 265≤PL≤288, the floating end is about T+227. From 82 original quadratic equations, 
the attacker averagely obtains 72.9 additional equations which are linear equations. 

In case 244≤PL≤264, the floating end is about T+195. From 82 original quadratic equations, 
the attacker averagely obtains 70.6 additional equations which are linear equations. 

In case 163≤PL≤171, the floating end is about T+161. The analysis is much more complicated 
than other cases. We can still estimate that averagely no less than 50 additional equations are 
linear equations, from 82 original quadratic equations. 

Case 67≤PL≤69 is another complicated case. We can only estimate that the floating end is not 
smaller than T+130, and that averagely no less than 40 additional equations are linear equations, 
from 82 original quadratic equations. Notice that the probability of this case is about 3/280, so that 
it can be neglected. 
 
 
4.4  Summarization and Notes for Floating Analysis 
 
From the discussion in last subsections we have the following result. At the floating end, 
averagely no less than 67.167 additional equations are linear equations, from 82 original quadratic 
equations. This result is quite satisfactory for the attacker. 

These additional linear equations have a side function. Notice that 82 original quadratic 
equations are pair quadratic equations, and pair quadratic terms are sparsely distributed. 67.167 
additional linear equations may combine with 66 original linear equations, to solve some bits of 
the state, so that some pair quadratic terms are changed into linear terms. This side function is 
helpful for Guess-and-Determine attack (see [15]). 

There are 66 original equations which are cubic equations, and are not included in Appendix A. 
We call these equations equation (148), equation (149), …, equation (213), respectively. From 
each of these 66 original cubic equations, the additional equation is almost certainly a quadratic 
equation (neither a linear equation nor an identity). In other words, almost 66 additional quadratic 
equations are obtained from 66 original cubic equations, at the floating end. It is hard to evaluate 
the power of these additional quadratic equations for breaking Trivium. If an additional quadratic 
equation is a pair quadratic equation, it is quite useful for Guess-and-Determine attack (see [15]). 
 
 
5  A Comparison between Michal Hojsik’s Model and Ours 
 
 
5.1  Result and Guess of Michal Hojsik and Bohuslav 
 
Besides their Assumption 1.1 and Assumption 1.2, Michal Hojsik and Bohuslav Rudolf [14, 15] 

allowed repeated fault injections. They had Assumption 1.3, as the follow. 
Assumption 1.3  The attacker can make such fault injection many times for the same initial 

state. 
Michal Hojsik and Bohuslav Rudolf then presented their result [15] under Assumption 1.1, 

Assumption 1.2 and Assumption 1.3. Averagely 3.2 fault injections will break Trivium, by using 
averagely 800×4.2 key-stream bits (they said they use averagely 800 original key-stream bits, so 



that they use averagely 800×3.2 fault-injected key-stream bits). They guessed [14] the attak 
would be more effective if one-bit-fault-injection could be changed as multi-bit-fault-injection 
(that is, Assumption 1.2 could be changed, for example, as Assumption 2.2).  
 
 
5.2  Our Modified Model and Result 
 

To compare Hojsik’s model and ours, we must make some modification to our model. 
Assumption 1.3 is needed, that is, injection/floating procedure can be repeated. For different fault 
injections, we hope to solve the state at same time, other than to solve the states at various floating 
ends. By this reason, faults must be injected into initial state, and that floating must be started 
from the initial time. So that Assumption 1.1 is needed, other than Assumption 2.1. In a word, we 
make injection and floating under Assumption 1.1, Assumption 2.2 and Assumption 1.3. We try to 
solve the state at such time that is the minimal value of various floating ends. 

Suppose the case is 1≤PL≤66. By subsection 4.2 we know that the floating end is about 
T+163. Now we can estimate the probabilistic distribution of T. T takes values from {0, 1, …, 65}. 
T takes values from {0, 1, …, 8} with descending probabilities. T takes any value from {8, 9, …, 
58} with the same probability. T takes values from {58, 59, …, 65} with descending probabilities. 
A simple and approximate description is that T tends to be uniformly distributed in {0, 1, …, 65}. 
So that the floating end tends to be uniformly distributed in {163, 164, …, 228}. 

Similarly, if the case is 94≤PL≤162, the floating end tends to be uniformly distributed in 
{169, 170, …, 237}, ect. Lemma 8 presents approximately probabilistic distribution of the 
floating end in each of 9 cases, and presents the probability of each case. 

 
Lemma 8  Let end denote the floating end. 
(1) In case 1≤PL≤66, end tends to be uniformly distributed in {163, 164, …, 228}. The 

probability of case 1≤PL≤66 tends to be 66/288. 
(2) In case 94≤PL≤162, end tends to be uniformly distributed in {169, 170, …, 237}. The 

probability of case 94≤PL≤162 tends to be 69/288. 
(3) In case 178≤PL≤243, end tends to be uniformly distributed in {134, 135, …, 199}. The 

probability of case 178≤PL≤243 tends to be 66/288. 
(4) In case 70≤PL≤93, end tends to be uniformly distributed in {236, 237, …, 259}. The 

probability of case 70≤PL≤93 tends to be 24/288. 
(5) In case 172≤PL≤177, end has a biased distribution in {198, 199, …, 203}, with 

descending probabilities. The probability of case 172≤PL≤177 tends to be 6/288. 
(6) In case 265≤PL≤288, end tends to be uniformly distributed in {227, 228, …, 250}. The 

probability of case 265≤PL≤288 tends to be 24/288. 
(7) In case 67≤PL≤69, the distribution of end is complicated, but the probability of case 67≤

PL≤69 is 3/288. 
(8) In case 163≤PL≤171, end has a biased distribution in {161, 162, …, 169}, with 

descending probabilities. The probability of case 172≤PL≤177 tends to be 9/288. 
(9) In case 244≤PL≤264, end tends to be uniformly distributed in {195, 196, …, 215}. The 

probability of case 244≤PL≤264 tends to be 21/288.  
 



Lemma 8 implies that the expectation of the end is about 195. Now suppose that the 
injection/floating procedure is repeated 4 times, with the floating ends end1, end2, end3 and end4 
respectively. Each of {end1, end2, end3, end4} has an appropriate distribution as described in 
Lemma 8, and {end1, end2, end3, end4} are independent each other. We try to solve the state at the 
time min{end1, end2, end3, end4}. It is easy to compute that the expectation of min{end1, end2, 
end3, end4} is about 163. 

For an injection/floating procedure, we consider the state at time 163. Let L denote the number 
of additional linear equations, about the state at time 163, obtained from 82 original quadratic 
equations. In the follow we list our analyzing results about L in 9 cases. 

(1) In case 1≤PL≤66, the average value of L is no less than 56. 
(2) In case 94≤PL≤162, the average value of L is no less than 59. 
(3) In case 178≤PL≤243, the average value of L is no less than 51. 
(4) In case 70≤PL≤93, the average value of L is no less than 63. 
(5) In case 172≤PL≤177, the average value of L is no less than 43. 
(6) In case 265≤PL≤288, the average value of L is no less than 61. 
(7) In case 67≤PL≤69, the average value of L is no less than 30. 
(8) In case 163≤PL≤171, the average value of L is no less than 40. 
(9) In case 244≤PL≤264, the average value of L is no less than 60. 
In fact, these results are quite conservative from our analysis.  
Then it is easy to compute that averagely no less than 55.823 additional equations are linear 

equations, about the state at time 163, obtained from 82 original quadratic equations. If 
injection/floating procedure is repeated 4 times, averagely no less than 55.823×4=223.292 
additional equations are linear equations, from 82 original quadratic equations. By considering 66 
original linear equations, averagely no less than 289.292 linear equations, about the state at time 
163, are obtained. There is a rank reduction in 289.292 linear equations, but these linear equations 
are enough for breaking Trivium, by careful soving skill, a small number of guesses, and a large 
number of pair quadratic equations (original and additional). 

For obtaining min{end1, end2, end3, end4}, we must obtain {end1, end2, end3, end4}. So that, for 
each injection/floating procedure, the floating should be stoped at the same time max{end1, end2, 
end3, end4}. It is easy to compute that the expectation of max{end1, end2, end3, end4} is about 227. 
This implies that 4 injection/floating procedures should be stoped at a same time, which is 
averagely 227. In other words, we need averagely 227×5 key-stream bits to obtain min{end1, 
end2, end3, end4}. 
 
 
5.3  Comparison of Results and Notes 
 
Under the model of Michal Hojsik and Bohuslav Rudolf, averagely 3.2 fault injections and 
averagely 800×4.2 key-stream bits will break Trivium. Under our modified model, averagely 4 
fault injections and averagely 227×5 key-stream bits will break Trivium. From these comparison 
results, we can say that our modified model is similarly effective with the model of Michal Hojsik 
and Bohuslav Rudolf, for the floating attack. 

Against their guess, our modified model is not more effective than the model of Michal Hojsik 
and Bohuslav Rudolf, for the floating attack. The follows are several reasons for that. 



Our floating end is defined as “the smallest time when the two conditions of Lemma 5 can not 
be assured”, other than “the smallest time when the two conditions of Lemma 5 do not hold”. In 
fact, even in the circumstance “the two conditions of Lemma 5 do not hold”, there are some other 
methods for floatability. Our conservative definition reduces the difficulty of our analysis, but 
makes our modified model less effective. 

In their model, Michal Hojsik and Bohuslav Rudolf seemed to make full use of skills for 
solving equations. We are not interested in how to solve the equations, and only try to obtain 
enough equations, especially linear equations. Therefore we can not present better result. 

Multi-bit-fault-injection is never more effective than one-bit-fault-injection for floating attack. 
We find that, if the Hamming weight of the state differential is larger than 288/3, it is quite 
possible that the float has to be stoped soon. Therefore multi-bit-fault-injection can not generate 
more linear equations than one-bit-fault-injection. It can only reduce the number of needed 
key-stream bits. 
 
 
6  Future Work 
 
 
Trivium will lead us to continue our work. The first future work is the fault injection in larger 

scale. Advances in micro-electronics make the components smaller, so that fault positions should 
be in a larger scale. We find that, if the fault positions are from the area within 15 neighboring 
bits, a modified checking method will be valid. But the fault floating analysis seems more 
complicated. 

The second future work is the combination of fault floating analysis and power analysis. A 
simple example will illustrate the function of such combination. Suppose that, after injection, the 
bit at position j is changed. Suppose {j-1, j, j+1}∩{66, 69, 91, 92, 93, 162, 171, 175, 176, 177, 
243, 264, 286, 287, 288}=Φ (the empty set). If the power consumed for the state renewal is 
larger, the bits at the positions j-1 and j+1 are equal to original bit at position j. If this power is 
smaller, the bits at the positions j-1 and j+1 are different with original bit at position j. If this 
power is equall, the bit at one position from {j-1, j+1} is different with original bit at position j, 
and at another position is equal to original bit at position j. 

The third future work is hard fault injection, that is, after the fault injection, bits at some 
positions of the state will be permanently 1 or 0. Hard fault injection may be considered a great 
reduction to the cipher, but there are still some problems, for example, how to determine the fault 
positions. 
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Appendix 
 
 
Appendix A  Trivium Original Equations 
 
By the key-stream (z0z1z2…), the attacker can obtain the original equations of the initial state 
(s1, …, s288), described as following. 

z0=s66+s93+s162+s177+s243+s288                          (0) 

z1=s65+s92+s161+s176+s242+s287                          (1) 

…                                     … 
z65=s1+s28+s97+s112+s178+s223                          (65) 

 

z66=s27+s69+s96+s111+s162+s175s176+s177+s222+s243+s264+s286s287+s288          (66) 
z67=s26+s68+s95+s110+s161+s174s175+s176+s221+s242+s263+s285s286+s287          (67) 
z68=s25+s67+s94+s109+s160+s173s174+s175+s220+s241+s262+s284s285+s286          (68) 

 
z69=s24+s91s92+s93+s108+s159+s171+s172s173+s174+s219+s240+s261+s283s284+s285       (69) 
z70=s23+s90s91+s92+s107+s158+s170+s171s172+s173+s218+s239+s260+s282s283+s284       (70) 
z71=s22+s89s90+s91+s106+s157+s169+s170s171+s172+s217+s238+s259+s281s282+s283       (71) 
z72=s21+s88s89+s90+s105+s156+s168+s169s170+s171+s216+s237+s258+s280s281+s282       (72) 
z73=s20+s87s88+s89+s104+s155+s167+s168s169+s170+s215+s236+s257+s279s280+s281       (73) 
z74=s19+s86s87+s88+s103+s154+s166+s167s168+s169+s214+s235+s256+s278s279+s280       (74) 
z75=s18+s85s86+s87+s102+s153+s165+s166s167+s168+s213+s234+s255+s277s278+s279       (75) 
z76=s17+s84s85+s86+s101+s152+s164+s165s166+s167+s212+s233+s254+s276s277+s278       (76) 
z77=s16+s83s84+s85+s100+s151+s163+s164s165+s166+s211+s232+s253+s275s276+s277       (77) 
z78=s15+s82s83+s84+s99+s150+s162+s163s164+s165+s210+s231+s252+s274s275+s276       (78) 
z79=s14+s81s82+s83+s98+s149+s161+s162s163+s164+s209+s230+s251+s273s274+s275       (79) 
z80=s13+s80s81+s82+s97+s148+s160+s161s162+s163+s208+s229+s250+s272s273+s274       (80) 
z81=s12+s79s80+s81+s96+s147+s159+s160s161+s162+s207+s228+s249+s271s272+s273       (81) 
z82=s11+s78s79+s80+s95+s146+s158+s159s160+s161+s206+s227+s248+s270s271+s272       (82) 
z83=s10+s77s78+s79+s94+s145+s157+s158s159+s160+s205+s226+s247+s269s270+s271       (83) 

 



z84=s9+s66+s76s77+s78+s91s92+s93+s144+s156+s157s158+s159+s171+s204+s225+s246+s268s269+s270  (84) 

z85=s8+s65+s75s76+s77+s90s91+s92+s143+s155+s156s157+s158+s170+s203+s224+s245+s267s268+s269  (85) 
z86=s7+s64+s74s75+s76+s89s90+s91+s142+s154+s155s156+s157+s169+s202+s223+s244+s266s267+s268  (86) 
z87=s6+s63+s73s74+s75+s88s89+s90+s141+s153+s154s155+s156+s168+s201+s222+s243+s265s266+s267  (87) 
z88=s5+s62+s72s73+s74+s87s88+s89+s140+s152+s153s154+s155+s167+s200+s221+s242+s264s265+s266  (88) 
z89=s4+s61+s71s72+s73+s86s87+s88+s139+s151+s152s153+s154+s166+s199+s220+s241+s263s264+s265  (89) 
z90=s3+s60+s70s71+s72+s85s86+s87+s138+s150+s151s152+s153+s165+s198+s219+s240+s262s263+s264  (90) 
z91=s2+s59+s69s70+s71+s84s85+s86+s137+s149+s150s151+s152+s164+s197+s218+s239+s261s262+s263  (91) 
z92=s1+s58+s68s69+s70+s83s84+s85+s136+s148+s149s150+s151+s163+s196+s217+s238+s260s261+s262  (92) 

 
z93=s57+s67s68+s82s83+s84+s135+s147+s148s149+s150+s162 

+s195+s216+s237+s243+s259s260+s261+s286s287+s288                 (93) 

z94=s56+s66s67+s81s82+s83+s134+s146+s147s148+s149+s161 

+s194+s215+s236+s242+s258s259+s260+s285s286+s287                 (94) 

z95=s55+s65s66+s80s81+s82+s133+s145+s146s147+s148+s160 

+s193+s214+s235+s241+s257s258+s259+s284s285+s286                 (95) 

z96=s54+s64s65+s79s80+s81+s132+s144+s145s146+s147+s159 

+s192+s213+s234+s240+s256s257+s258+s283s284+s285                 (96) 

z97=s53+s63s64+s78s79+s80+s131+s143+s144s145+s146+s158 

+s191+s212+s233+s239+s255s256+s257+s282s283+s284                 (97) 

z98=s52+s62s63+s77s78+s79+s130+s142+s143s144+s145+s157 

+s190+s211+s232+s238+s254s255+s256+s281s282+s283                 (98) 

z99=s51+s61s62+s76s77+s78+s129+s141+s142s143+s144+s156 

+s189+s210+s231+s237+s253s254+s255+s280s281+s282                 (99) 
z100=s50+s60s61+s75s76+s77+s128+s140+s141s142+s143+s155 

+s188+s209+s230+s236+s252s253+s254+s279s280+s281                (100) 

z101=s49+s59s60+s74s75+s76+s127+s139+s140s141+s142+s154 

+s187+s208+s229+s235+s251s252+s253+s278s279+s280                (101) 

z102=s48+s58s59+s73s74+s75+s126+s138+s139s140+s141+s153 

+s186+s207+s228+s234+s250s251+s252+s277s278+s279                (102) 

z103=s47+s57s58+s72s73+s74+s125+s137+s138s139+s140+s152 

+s185+s206+s227+s233+s249s250+s251+s276s277+s278                (103) 

z104=s46+s56s57+s71s72+s73+s124+s136+s137s138+s139+s151 

+s184+s205+s226+s232+s248s249+s250+s275s276+s277                (104) 

z105=s45+s55s56+s70s71+s72+s123+s135+s136s137+s138+s150 

+s183+s204+s225+s231+s247s248+s249+s274s275+s276                (105) 

z106=s44+s54s55+s69s70+s71+s122+s134+s135s136+s137+s149 

+s182+s203+s224+s230+s246s247+s248+s273s274+s275                (106) 

z107=s43+s53s54+s68s69+s70+s121+s133+s134s135+s136+s148 

+s181+s202+s223+s229+s245s246+s247+s272s273+s274                (107) 

z108=s42+s52s53+s67s68+s69+s120+s132+s133s134+s135+s147 

+s180+s201+s222+s228+s244s245+s246+s271s272+s273                (108) 

z109=s41+s51s52+s66s67+s68+s119+s131+s132s133+s134+s146 

+s179+s200+s221+s227+s243s244+s245+s270s271+s272                (109) 



z110=s40+s50s51+s65s66+s67+s118+s130+s131s132+s133+s145 

+s178+s199+s220+s226+s242s243+s244+s269s270+s271                (110) 

 
z111=s39+s49s50+s64s65+s66+s117+s129+s130s131+s132+s144+s162+s175s176+s177 

+s198+s219+s225+s241s242+s243+s264+s268s269+s270                  (111) 
z112=s38+s48s49+s63s64+s65+s116+s128+s129s130+s131+s143+s161+s174s175+s176 

+s197+s218+s224+s240s241+s242+s263+s267s268+s269                  (112) 

z113=s37+s47s48+s62s63+s64+s115+s127+s128s129+s130+s142+s160+s173s174+s175 

+s196+s217+s223+s239s240+s241+s262+s266s267+s268                  (113) 

z114=s36+s46s47+s61s62+s63+s114+s126+s127s128+s129+s141+s159+s172s173+s174 

+s195+s216+s222+s238s239+s240+s261+s265s266+s267                  (114) 

z115=s35+s45s46+s60s61+s62+s113+s125+s126s127+s128+s140+s158+s171s172+s173 

+s194+s215+s221+s237s238+s239+s260+s264s265+s266                  (115) 

z116=s34+s44s45+s59s60+s61+s112+s124+s125s126+s127+s139+s157+s170s171+s172 

+s193+s214+s220+s236s237+s238+s259+s263s264+s265                  (116) 

z117=s33+s43s44+s58s59+s60+s111+s123+s124s125+s126+s138+s156+s169s170+s171 

+s192+s213+s219+s235s236+s237+s258+s262s263+s264                  (117) 

z118=s32+s42s43+s57s58+s59+s110+s122+s123s124+s125+s137+s155+s168s169+s170 

+s191+s212+s218+s234s235+s236+s257+s261s262+s263                  (118) 

z119=s31+s41s42+s56s57+s58+s109+s121+s122s123+s124+s136+s154+s167s168+s169 

+s190+s211+s217+s233s234+s235+s256+s260s261+s262                  (119) 

z120=s30+s40s41+s55s56+s57+s108+s120+s121s122+s123+s135+s153+s166s167+s168 

+s189+s210+s216+s232s233+s234+s255+s259s260+s261                  (120) 

z121=s29+s39s40+s54s55+s56+s107+s119+s120s121+s122+s134+s152+s165s166+s167 

+s188+s209+s215+s231s232+s233+s254+s258s259+s260                  (121) 

z122=s28+s38s39+s53s54+s55+s106+s118+s119s120+s121+s133+s151+s164s165+s166 

+s187+s208+s214+s230s231+s232+s253+s257s258+s259                  (122) 

z123=s27+s37s38+s52s53+s54+s105+s117+s118s119+s120+s132+s150+s163s164+s165 

+s186+s207+s213+s229s230+s231+s252+s256s257+s258                  (123) 

z124=s26+s36s37+s51s52+s53+s104+s116+s117s118+s119+s131+s149+s162s163+s164 

+s185+s206+s212+s228s229+s230+s251+s255s256+s257                  (124) 

z125=s25+s35s36+s50s51+s52+s103+s115+s116s117+s118+s130+s148+s161s162+s163 

+s184+s205+s211+s227s228+s229+s250+s254s255+s256                  (125) 

z126=s24+s34s35+s49s50+s51+s102+s114+s115s116+s117+s129+s147+s160s161+s162 

+s183+s204+s210+s226s227+s228+s249+s253s254+s255                  (126) 

z127=s23+s33s34+s48s49+s50+s101+s113+s114s115+s116+s128+s146+s159s160+s161 

+s182+s203+s209+s225s226+s227+s248+s252s253+s254                  (127) 

z128=s22+s32s33+s47s48+s49+s100+s112+s113s114+s115+s127+s145+s158s159+s160 

+s181+s202+s208+s224s225+s226+s247+s251s252+s253                  (128) 

z129=s21+s31s32+s46s47+s48+s99+s111+s112s113+s114+s126+s144+s157s158+s159 

+s180+s201+s207+s223s224+s225+s246+s250s251+s252                  (129) 

z130=s20+s30s31+s45s46+s47+s98+s110+s111s112+s113+s125+s143+s156s157+s158 

+s179+s200+s206+s222s223+s224+s245+s249s250+s251                  (130) 

z131=s19+s29s30+s44s45+s46+s97+s109+s110s111+s112+s124+s142+s155s156+s157 



+s178+s199+s205+s221s222+s223+s244+s248s249+s250                  (131) 
 

z132=s18+s28s29+s43s44+s45+s96+s108+s109s110+s111+s123+s141+s154s155+s156+s162 

+s175s176+s177+s198+s204+s220s221+s222+s243+s247s248+s249+s264             (132) 

z133=s17+s27s28+s42s43+s44+s95+s107+s108s109+s110+s122+s140+s153s154+s155+s161 

+s174s175+s176+s197+s203+s219s220+s221+s242+s246s247+s248+s263             (133) 

z134=s16+s26s27+s41s42+s43+s94+s106+s107s108+s109+s121+s139+s152s153+s154+s160 

+s173s174+s175+s196+s202+s218s219+s220+s241+s245s246+s247+s262             (134) 

 
z135=s15+s25s26+s40s41+s42+s66+s91s92+s93+s105+s106s107+s108+s120+s138+s151s152+s153 

+s159+s171+s172s173+s174+s195+s201+s217s218+s219+s240+s244s245+s246+s261         (135) 

z136=s14+s24s25+s39s40+s41+s65+s90s91+s92+s104+s105s106+s107+s119+s137+s150s151+s152 

+s158+s170+s171s172+s173+s194+s200+s216s217+s218+s239+s243s244+s245+s260         (136) 

z137=s13+s23s24+s38s39+s40+s64+s89s90+s91+s103+s104s105+s106+s118+s136+s149s150+s151 

+s157+s169+s170s171+s172+s193+s199+s215s216+s217+s238+s242s243+s244+s259         (137) 

z138=s12+s22s23+s37s38+s39+s63+s88s89+s90+s102+s103s104+s105+s117+s135+s148s149+s150 

+s156+s168+s169s170+s171+s192+s198+s214s215+s216+s237+s241s242+s243+s258         (138) 

z139=s11+s21s22+s36s37+s38+s62+s87s88+s89+s101+s102s103+s104+s116+s134+s147s148+s149 

+s155+s167+s168s169+s170+s191+s197+s213s214+s215+s236+s240s241+s242+s257         (139) 

z140=s10+s20s21+s35s36+s37+s61+s86s87+s88+s100+s101s102+s103+s115+s133+s146s147+s148 

+s154+s166+s167s168+s169+s190+s196+s212s213+s214+s235+s239s240+s241+s256         (140) 

z141=s9+s19s20+s34s35+s36+s60+s85s86+s87+s99+s100s101+s102+s114+s132+s145s146+s147 

+s153+s165+s166s167+s168+s189+s195+s211s212+s213+s234+s238s239+s240+s255         (141) 

z142=s8+s18s19+s33s34+s35+s59+s84s85+s86+s98+s99s100+s101+s113+s131+s144s145+s146 

+s152+s164+s165s166+s167+s188+s194+s210s211+s212+s233+s237s238+s239+s254         (142) 

z143=s7+s17s18+s32s33+s34+s58+s83s84+s85+s97+s98s99+s100+s112+s130+s143s144+s145 

+s151+s163+s164s165+s166+s187+s193+s209s210+s211+s232+s236s237+s238+s253         (143) 

z144=s6+s16s17+s31s32+s33+s57+s82s83+s84+s96+s97s98+s99+s111+s129+s142s143+s144 

+s150+s162+s163s164+s165+s186+s192+s208s209+s210+s231+s235s236+s237+s252         (144) 

z145=s5+s15s16+s30s31+s32+s56+s81s82+s83+s95+s96s97+s98+s110+s128+s141s142+s143 

+s149+s161+s162s163+s164+s185+s191+s207s208+s209+s230+s234s235+s236+s251         (145) 

z146=s4+s14s15+s29s30+s31+s55+s80s81+s82+s94+s95s96+s97+s109+s127+s140s141+s142 

+s148+s160+s161s162+s163+s184+s190+s206s207+s208+s229+s233s234+s235+s250         (146) 

 
z147=s3+s13s14+s28s29+s30+s54+s66+s79s80+s81+s91s92+s93+s94s95+s96+s108+s126+s139s140+s141 

+s147+s159+s160s161+s162+s171+s183+s189+s205s206+s207+s228+s232s233+s234+s249       (147) 

 
 
 


