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Abstract. Entity recognition does not ask whether the message is from
some entity X, just whether a message is from the same entity as a pre-
vious message. This turns turns out to be very useful for low-end devices.
Motivated by an attack against a protocol presented at SAC 2003, the
current paper proposes a new protocol – the “Jane Doe Protocol” –, and
provides a formal proof of its concrete security. The protocol neither em-
ploys asymmetric cryptography, nor a trusted third party, nor any key
pre-distribution. It is suitable for light-weight cryptographic devices such
as sensor network motes and RFID tags.

1 Introduction

Consider the following story: Two strangers, Jane and John Doe, meet at a
party and make a bet. They introduce themselves as Jane and John Doe, which
may or may not be their real names (who cares at a party?). Some days later,
however, it turns out that Jane is the winner, and John receives a message:
“John, please transfer the prize to bank account [. . . ] Thank you. Jane.”. How
does John know that this message actually has been sent from that person, who
had called herself “Jane” at that party? In other words, how does John recognise
Jane – or a message from her?

Below, we will use the names Alice and Bob instead of Jane and John Doe
for sender and receiver, in order to enhance readability for the cryptographically
trained reader. As the protocol goal is about entity recognition, “real” names
are unimportant. Alice and Bob are technical devices communicating in a hostile
environment. Recognising each other would be easy if they could use unique
identities and digital signatures: Initially, Alice would send Bob her public key.
Later, Alice would sign all the messages she sends to Bob, and Bob would verify
these signatures. But digital signatures are computationally expensive, and may
seem an “overkill” to the problem at hand.

In this paper, we present the Jane Doe protocol, a light-weight solution
to entity recognition using only symmetric primitives (namely, message authen-
tication codes). Even low-end devices, which are too slow for digital signatures
or the like, can run our protocol. The protocol does not depend on any trusted



third party. Neither does it require a pre-established common secret key. It runs
efficiently enough for real-time applications. In addition, it is interactive and
provides information about the freshness and timeliness of messages.

Our research is motivated by the emergence of extremely low-power and low-
cost devices such as sensor network motes and RFID tags. The continued desire
to make these devices smaller at an attractive price offsets the technological
advancements of increasing computational power. While implementing digital
signatures and public-key techniques on such devices is technologically feasible,
it is a hard burden from an economic viewpoint. Also, such devices are often used
in networks where one can neither assume availability of a trusted third party,
nor availability of pre-deployed secret or authentic information, and with a dy-
namic network topology. Another motivation is the question to what degree one
can imitate the functionality of public-key cryptography and digital signatures
by just using some simple primitives from symmetric cryptography. The Jane
Doe protocol turns out to be as powerful as the common two step protocol for
authenticating messages, consisting of a non-authenticated Diffie-Hellman key
agreement at initialisation time followed by MAC authenticated messages.

Previous Work: The security goal of entity recognition has independently been
proposed by Arkko and Nikander [2], Weimerskirch and Westhoff [21], and
Seigneur et al. [19], using names such as “temporal separation” or “zero-common-
knowledge authentication”. Later, Hamell et al. [10] formalised entity recogni-
tion. Drielsma et. al. called it “sender invariance” [8].

An early protocol to actually address entity recognition was the Resurrect-
ing Duckling protocol by Stajano and Anderson [20]. Since it requires the
exchange of a secret key in the initialisation phase, this protocol is vulnerable
to a passive adversary at this stage.

The Guy Fawkes protocol by Anderson et al. [1] is more suitable entity
recognition, since it does not require a pre-shared key or trusted third party. It
uses a one-way function h, as follows:

– Initially, Alice chooses a random1 codeword k0 and sends h(k0) to Bob.
– For each message xi (i = 1, 2, . . .), Alice chooses a new codeword ki and

commits to the hash value ai = h(xi, h(ki), ki−1).
– After ai has been made public, Alice sends (xi, h(ki), ki−1) to Bob. He verifies

whether ai was indeed a commitment to these values, and whether ki−1 is
indeed the codeword committed to in the last round. If both conditions are
met, he accepts xi as authentic.

This protocol implicitly assumes Alice to know when Bob has seen her commit-
ment ai. While this may be the case in the original use case (Guy Fawkes would
publish his commitments in a newspaper), an explicit confirmation of receipt
may be desirable in most application contexts.

1 In the following, “random” without further qualification always implies uniformly
distributed from some finite set.



The Guy Fawkes protocol uses hash chains of length 1. In general, a hash
chain [12] is used for authentication purposes by choosing k0, computing k1 :=
h(k0), k2 := h(k1), . . . , kn := h(kn−1), and then successively revealing kn, kn−1,
. . . In spite of the name “hash chain”, h does not have to be a cryptographic
hash function, but a one-way function.

The Remote User Authentication protocol proposed by Mitchell [15]
uses a message authentication code (MAC) and a cut-and-choose algorithm. The
protocol could be adapted to authenticate messages instead of users, but the
cut-and-choose procedure is computationally expensive. Mitchell recommends a
selection of 17 out of 35 committed values, slowing down the implementation
considerably compared to the Guy Fawkes protocol.

In [18], messages are authenticated using MACs, with a symmetric key being
exchanged using Diffie-Hellman key exchange at protocol start. The prob-
lem here is that the key exchange requires public-key operations, which are too
onerous for low-end systems. In appendix B, we provide a rough comparison of
this approach with our proposal.

The zero-common-knowledge protocol [21] from SAC 2003 uses hash
chains, but turned out to be flawed. The attack can be found in section 3. It also
has been described in [13].

An early 5-page abstract of the current research has been published at In-
formatik 2005, without any proofs [13]. A longer version, including proofs, has
been accepted for Indocrypt 2008 [14]. This is the full version.

Organisation: Section 2 introduces the world Alice, Bob and the attacker live
in. Section 3 describes a protocol from SAC 2003 and demonstrates an attack
against that protocol. 4 delivers a description of our protocol, which is analysed
in Section 5. Conclusions are given in Section 6.

Appendix A discussess bi-directional communication. Appendix B compares
the power consumption of the Jane Doe protocol with the power consumption
for a scheme employing a Diffie-Hellman key exchange. Appendix C discusses a
seemingly obvious generalisation of the current proposal.

2 Scenario Description

Sending messages: Alice is the sender of messages, Bob the receiver. All protocols
start with an initialisation phase, where Alice and Bob for the first time
contact each other and exchange some initial material. Later, messages are sent
from Alice to Bob in distinct time frames, which we denote as epochs. There
can be at most n such epochs. Each such epoch i consists of four basic steps:

1. Alice receives some external data xi, the origin of which lies outside the
scope of the protocol (e.g. a measurement from a sensor).

2. Alice authenticates and sends the message to Bob. Formally, we write Com-
mitMessage(xi,i).

3. Bob sends a confirmation that he received some data, supposedly from Alice.



4. Alice opens the commitment and proves that it was really her who send the
message. We write AcceptMessage(xi, i) if Bob believes the message xi to
be authentic and fresh in epoch i.

Adversary capabilities: The well-known Dolev-Yao model [7] assumes that Eve
is in full control over the connection between Alice and Bob, i.e. she is an active
adversary. In particular, she can

– read all messages sent from Alice or from Bob,
– modify messages, delay them or send them multiple times to Alice, Bob, or

to both of them,
– and send messages generated by herself to Alice or Bob or both.

This is considered as reasonable pessimism: Over-estimating the adversary is not
as bad as under-estimating her capabilities. However, e.g. Gollmann [9] argues
that novel applications may need more specific models. In our case, we make
the special assumption that during the initialisation phase, Eve behaves like a
passive adversary. She can read the messages between Alice and Bob (which
precludes any kind of secret key exchange), but she relays them faithfully. Note
that this is a weakening of the usual assumption that Alice and Bob can use a
protected communication channel for initialisation, i.e. our scenario requires less
external protection than most other proposals.

In typical application scenarios (e.g. for sensor networks), Eve may even
be able to extract secret data inside the devices by tampering, in addition to
controlling the network. Our protocol does not protect against this kind of threat.
If this threat is relevant for the application at hand, and if it can not be mitigated
by using tamper-resistant hardware, then additional protection measures (like
introducing redundancy and using secure multi-party computation algorithms)
have to be introducedat a higher layer of the protocol stack.

Adversary goal: Driven by reasonable pessimism as before, we assume that Eve
aims for an existential forgery in a chosen message scenario:

– Eve may have some influence on xi. Thus, for purposes of security analysis,
we allow her to choose messages xi which Alice will authenticate and send,
i.e. CommitMessage(xi,i).

– She succeeds if Bob accepts any message x′ 6= xi as authentic, i.e. AcceptMes-
sage(x′, i).

At the beginning of the protocol, Alice and Bob choose initial random values
a0 resp. b0. From then on, Alice and Bob act as strictly deterministic machines.
When receiving a message, Alice and Bob update their internal state and send
a response, if necessary. Eve is a probabilistic machine with independent con-
nections to Alice and to Bob. In the context of this paper, the actual choice of
a machine model is not important – any reasonable machine model will do.

We require the initial random values (=keys) a0 and b0 to be chosen inde-
pendently from the keys for other sessions. To this regard, our setting is much
simpler than any communication scenario where the same key material can be
used in more than one session (see e.g. [4, 3]).



Limitation: We assume that the number of messages to be authenticated is
known in advance, or a reasonable upper bound is known. During the initiali-
sation phase, both Alice and Bob commit to the endpoint of a hash chain. The
length of this hash chain bounds the number of messages to be authenticated.
This limits of our approach, compared to other solutions employing public-key
cryptography. Those, however, may be less efficient than our scheme, see Sec-
tion B in the appendix for evaluating the power consumption.

Reliability: Since Eve has full control over the connection between Alice and
Bob,the reliability of the connection depends on her. Thus, denial of service
attacks are trivial for Eve. In addition, if the communication channel itself is
unreliable, messages may be lost or faulty messages may be received even with-
out the active involvement of a malicious adversary. Such problems can not be
solved at cryptographical level, but have to be managed by the network or trans-
port layer in the protocol stack. But the following reliability properties can be
guaranteed:

Soundness: If the network is reliable and Eve relays messages like a passive
wire, the protocol works as intended: Bob accepts each message xi Alice has
committed to.

Recoverability: If Eve suppresses or modifies some messages, or creates some
messages of her own, Bob may refuse to accept a message xi Alice has com-
mitted to. However, once Eve begins again to honestly transmit all messages,
like a passive wire, the soundness with respect to new messages is regained.

3 Attacking a Proposed Solution

Attacking a Protocol from SAC 2003. In [21], Weimerskirch and Westhoff
propose an entity recognition protocol (termed Zero Common-Knowledge) and
present a proof of security for that protocol. Unfortunately, the proof is flawed,
since it implicitly assumes either party to notice when the other party rejects
a message. In communication scenarios relevant for entity recognition, this is
hardly realistic. In the following, we will show how this can be used for an
attack. Let s be the key size and h : {0, 1}s → {0, 1}s a one-way function.
Typically s ≥ 80, and h is a cryptographic hash function. Furthermore, m :
{0, 1}s×{0, 1}∗ → {0, 1}c is a cryptographic message authentication code (MAC)
with key size s and c-bit authentication tags, typically 32 ≤ c ≤ s.

Initialisation: At first, Alice chooses a0 ∈r {0, 1}s and generates a hash chain
a1 := h(a0), . . . , an := h(an−1). Similarly, Bob chooses b0 ∈r {0, 1}s and gen-
erates b1 := h(b0), . . . , bn := h(bn−1). The initialisation phase, where Eve can
read the messages but relays them faithfully, consists of sending (1) Alice →
Bob: an and (2) Bob → Alice: bn. After the initialisation phase, Alice’s internal
state can be described by the triple (bn, n, 1), and Bob’s by (an, n, 1).



Authentication: At some point in time, we write (bi, j, u) for Alice’s internal
state and (aj , i, v) for Bob’s.2 Authenticating a message is achieved as follows:

1. Alice → Bob: m(aj−u−1, x), aj−1.
2. Bob verifies h(aj−1) = aj

3. For k := 1 to k′ := max{u, v} do
(a) Bob → Alice: bi−k.
(b) Alice verifies h(bi−k) = bi−k+1.
(c) Alice → Bob: aj−k−1.
(d) Bob verifies h(aj−k−1) = aj−k.
(e) If any verification fails, or the loop is interrupted, then Alice and Bob

stop execution:
i. Alice’s new internal state is (bi, j, max{u, k + 1}).
ii. Bob’s new internal state is (aj , i, max{v, k + 1}).

(f) Else (∗ everything went well ∗)
i. Alice’s new internal state is (bi−k′ , j − k′ − 1, 1).
ii. Bob’s new internal state is (aj−k′ , i− k′ − 1, 1).

Attack: However, this protocol is insecure. Let Alice’s internal state be (bi, j, 1)
and Bob’s (aj , i, 1).

1. Alice → Bob: m(aj−2, x), aj−1.
2. Bob verifies h(aj−1) = aj . (OK!)
3. For k := 1 to 1 do

(a) Bob → Alice: bi−1.
(b) Alice verifies h(bi−1) = bi. (OK!)
(c) Alice → Bob: aj−2. Eve changes aj−2 to a′ 6= aj−2.
(d) Bob verifies h(a′) = aj−2. (Check fails!)

Since Alice’s check is OK, she executes step 3(f)i, and her internal state becomes
(bi−1, j − 2, 1). Bob’s check fails, he executes step 3(e)ii, and his new internal
state is (ai, j, 2). Now assume the next message x′ to authenticate:

1’. Alice → Bob: m(aj−4, x
′), aj−3.

2’. Bob verifies h(aj−3) = aj . (Check fails!)

At a first look, this is a denial of service attack – and a powerful one. Eve modifies
a single message, and the protocol stalls, because it lacks of recoverability. (In
fact, any random corruption of aj−2 is likely to break the service.)

But Eve can even forge any message x′′: To accept x′′, Bob needs to see aj−1,
aj−2, and aj−3, verifying h(aj−1) = aj , h(aj−2) = aj−1, and h(aj−3) = aj−2. In
step 1’, Alice sends aj−3 to Bob. Eve, having seen aj−3, can impersonate Alice
and convince Bob to accept any x′′ of Eve’s choice.

2 The first value is the currently verified “endpoint” of the other party’s hash chain,
the second one points into the own hash chain, and the third value counts the number
of necessary repetitions.



4 The Jane Doe Protocol

In this section, we describe the Jane Doe protocol to solve the entity recognition
problem without using public-key cryptography. We write s for the size of a
symmetric key. A second security parameter is the tag size c ≤ s for message
authentication. (Typically: s ≥ 80 and c ≥ 32.) We use two functions, a MAC
m : {0, 1}s × {0, 1}∗ → {0, 1}c and a one-way function h : {0, 1}s → {0, 1}s. (In
Section 5, we will describe how to derive both m and h from a single MAC.) We
write x ∈r {0, 1}s to indicate a random s-bit string x, uniformly distributed.

Initialisation phase: For initialisation, Alice chooses a0 ∈r {0, 1}s and generates
a hash chain a1 := h(a0), . . . , an := h(an−1). Similarly, Bob chooses b0 ∈r {0, 1}s
and generates b1 := h(b0), . . . , bn := h(bn−1). When running the protocol, both
Alice and Bob learn some values bi resp. ai from the other’s hash chain. If
Alice accepts bi as authentic, we write AcceptKey(bi). Similarly for Bob and
AcceptKey(ai). The initialisation phase, where Eve can read the messages but
relays them faithfully, consists of two messages:

1. Alice → Bob: an. (Thus: AcceptKey(an).)
2. Bob → Alice: bn. (Thus: AcceptKey(bn).)

Message authentication: We split the protocol up into n epochs, plus the ini-
tialisation phase. The epochs are denoted by n− 1, . . . , 0 (in that order). Each
epoch allows Alice to send one authenticated message3, and Bob to receive and
verify it. The internal state of each Alice and Bob consists of

– an epoch counter i,
– the most recent value from the other’s hash chain, i.e., bi+1 for Alice, and
ai+1 for Bob (we write AcceptKey(bi+1) and AcceptKey(ai+1)), and

– a one-bit flag, to select between program states A0 and A1 for Alice resp.
B0 and B1 for Bob.

Also, both Alice and Bob store the root a0 resp. b0 of their own hash chain.4

This value does not change during the execution of the protocol. Note that after
the initial phase, and before the first epoch n − 1, Alice’s state is i = n − 1,
AcceptKey(bn), and A0, and Bob’s is i = n − 1, AcceptKey(an), and B0. One
epoch i can be described as follows:

A0 (Alice’s initial program state)
Wait for xi (from the outside), then CommitMessage(xi,i):
1. compute di = m(ai, xi) (using ai as the key to authenticate xi);
2. send (di, xi); goto A1.

3 Several messages can be sent per epoch. For ease of presentation, we combine them.
4 Alice can either store a0 and compute the ai on demand by making i calls to h, or

store all the ai using n units of memory. Her third option is to implement a time-
storage trade-off, requiring only about log2 n units of memory and log2

√
n calls to

h [6]. Similarly for Bob and the bi.



A1 Wait for a message b′ (supposedly from Bob), then
1. if h(b′) = bi+1

then bi := b′; AcceptKey(bi); send ai; set i := i− 1; goto A0
else goto A1.

B0 (Bob’s initial program state)
Wait for a message (d′, x′) (supposedly from Alice), then
1. send bi and goto B1.

B1 Wait for a message a′ (supposedly from Alice), then
1. if h(a′) = ai+1 then

(a) ai := a′; AcceptKey(ai);
(b) if m(ai, x

′) = d′

then xi := x′; AcceptMessage(xi,i)
(else do not accept any message in epoch i);

(c) set i := i− 1; goto B0
else goto B1

Figure 1 gives a simplified view on the protocol.

d := m(a , x )iii
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else wait for new ib if ih(a )=a i+1
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if m(a , x ) = d i i i
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Fig. 1. Simplified description of one epoch of the protocol

Reliability: The following reliability properties are met:

Soundness: The protocol is sound: If all messages are faithfully relayed, Alice
commits to the message xi in the beginning of epoch i and Bob accepts xi

at the end of the same epoch.
Recoverability: Repeating old messages cannot harm security – Eve may know

them anyway. We thus allow Alice to re-send ai+1 and (xi, di) if she is in
state A1 and has been waiting too long for the value bi from Bob. Similarly,
if Bob is in state B1 and has been waiting too long for ai, Bob sends the
value bi again. This allows our protocol to recover. On the other hand, if
Bob receives a faulty (x′, d′) 6= (xi, di), he will refuse to accept any message
in epoch i. Recovering means that soundness can be restored in epoch i− 1.



5 Security

5.1 Building Blocks and Assumptions

The main cryptographic building block in this paper is a MAC

m∗ : {0, 1}s × {0, 1}∗ → {0, 1}s

We fix some constant message const and define the two functions m and h we
actually use in the protocol

h : {0, 1}s → {0, 1}s, h(k) = m∗(k, const), and

m : {0, 1}s × {0, 1}∗ → {0, 1}c, m(k, x) = truncate-to-c-bit(m∗(k, x)).
In the case of m, a restriction is x 6= const. If neccessary, we we can, e.g., define
const as a single zero-bit, and prepend a single one-bit to every message x.

Security against adaptive chosen message attacks has been established as a
standard requirement for MACs:

Assumption 1 It is infeasible for the adversary to provide an existential
forgery in an adaptive chosen message attack scenario against m∗. I.e., the
adversary is given access to an authentication oracle, computing ti = m(y, xi)
for the adversary, where y ∈r {0, 1}s is secret and the adversary is allowed to
choose arbitrary messages xi. “Adaptive” means that the adversary is allowed to
choose xi after having seen ti−1. The adversary wins if she can produce a pair
(x′, t′) with m(y, x′) = t′, without previously asking the oracle for m(y, x′).

Unfortunately, this standard assumption is not quite sufficient for our purposes.
Below, we will not make use of assumption 1 at all, but instead, define two similar
assumptions. Firstly, we use m instead of m∗ as a MAC, i.e., the truncation of
m∗ to c ≤ s bit. The security of m does not follow from the security of m∗. So
we need to make the same assumption for m instead of m∗:

Assumption 2 It is infeasible for the adversary to provide an existential
forgery in an adaptive chosen message attack scenario against m.

Furthermore, we use h to build a hash chain, which implies that h must be
one-way. It may be surprising, but m∗ being secure against existential forgery
is not sufficient for the one-wayness of h = m∗(·, const). If, given k∗ = h(k) =
m∗(k, const), the adversary can find the secret k, then she can forge messages.
But the adversary could just as well find some value k′ 6= k with k∗ = h(k′) =
m∗(k′, const) without necessarily being able to to generate existential forgeries.
We thus need to exclude this case:

Assumption 3 The function m∗ is one-way. I.e., given a random k ∈ {0, 1}s,
and a message const, it is infeasible to find any k′ ∈ {0, 1}s with m∗(k, const) =
m∗(k′, const).

Note that inverting m∗ (i.e., breaking the one-wayness of h) would either al-
low us to find a secret key and thus to forge messages, or provide a 2nd preimage,
i.e., a value k′ 6= k with h(k) = h(k′). Indeed, for our formal proof of security
we could replace assumption 3 by assuming 2nd preimage resistance. The proof
would be slightly more complicated, though.



5.2 Proving Security for Epoch 0

Theorem 1. If the adversary can efficiently break epoch 0 of the protocol, she
can efficiently break either assumption 2 or assumption 3.
Concrete security. If she can break the protocol in time t with probability p, she
can either invert h or forge a message for m in time ≤ t + 2t∗ with probability
p/2. Here, t∗ is the time to evaluate either h or m, which ultimately boils down
to the time for evaluating m∗.

Proof. Eve can send the following messages (see also left side of Figure 2):

(1) If Alice’s program state is A0: x0 to Alice.
Alice responds d0 := m(a0, x0) (and x0, but x0 is known to Eve, anyway).

(2) If Bob’s program state is B0: (x′, d′) to Bob – with x′ 6= x0.
(3) If Alice’s program state is A1: b′ to Alice – with h(b′) = b1.
(4) If Bob’s program state is B1: a′ to Bob – with h(a′) = a1.

Remember that she is successful if she gets Bob to AcceptMessage(x′,i) for a
message x′ that Alice has not send in epoch i.

Left: The four types of messages Right: Eve, connected to some game

Fig. 2. Eve in epoch i

Note that (3)-like messages b′ with h(b′) 6= b1 to Alice do not affect Alice’s
state; Alice ignores them. Since Eve can check h(b′) = b1 on her own, we assume
w.l.o.g. Eve not to send any message b′ with h(b′) 6= b1 to Alice. Similarly, for
(4)-like messages, we assume, Eve not to send any a′ with h(a′) 6= a1 to Bob.

In order to successfully attack, Eve must send exactly one message (1) to
Alice (to ensure CommitMessage(x0, 0)) and both messages (2) and (4) to Bob
(for AcceptMessage(x′, 0)). Eve may send at most one message (3) to Alice.
W.l.o.g., we assume Eve to send exactly one message (3). (If she wins her attack
game without sending message (3), she has sent message (2) and did learn b0
from Bob. She can always send a final message (3) with b′ = b0.)

While (1,2,3,4) is the protocol-defined “natural” order for sending the mes-
sages, Eve is not bound to this order. There are some restrictions though:

– Message (1) must be sent before message (3). Until she knows and has com-
mitted to x0, Alice wouldn’t even listen to message (3).



– Also, Bob wouldn’t listen to (4) before having received (2).

In the context of this proof, we just need to distinguish between two cases, which
we represent by two games: Either message (2) is sent before message (3), or the
other way. Consider disconnecting Eve from Alice and Bob, and connecting her
with either of two games (cf. right side of Figure 2). If we win such a game, we
can either invert h or forge messages. We will show that Eve cannot distinguish
her participation in such a game from the “real” attack against the protocol and
show that a successful attack by Eve is essentially the same as us winning one of
our games. So at the end, if Eve can feasibly attack the protocol, we can feasibly
invert h(·) = m(·, const) or forge messages for m∗. The games are the following:

1st game (inverting h): Given k∗ = h(k) = m∗(k, 0), for a uniformly distributed
random k, find some k′ with m∗(k′, 0) = k∗.

– Randomly choose a0, compute a1 := h(a0).
– If Eve sends message
• (1), the value x0: compute and respond d0 := m(a0, x0).
• (2): abort the game.
• (4): Report an error! (Message (2) must be sent before message (4), and

this algorithm aborts after message (2).)
– When Eve sends (3), the value b′: print k′ := b′ and stop.

The values provided to Eve during the 1st game are distributed exactly as in
the case of the real attack game. Namely, a0 and b0 are independent uniformly
distributed random values, and all the other values are derived from a0 and b0.
Note that if Eve sends message (3) before message (2), the game succeeds; else
it doesn’t. To compute a1, we call h. To compute d0, we call m. Thus, we need
two function calls. As Eve herself runs in time t, the game takes time t+ 2t∗.

2nd game (existential forgery for m): Consider an unknown random y, known
y∗ = h(y), and the ability to ask an oracle for m(y, ·). Proceed as follows.

– Set a1 := y∗; randomly choose b0; compute b1 := h(b0).
– If Eve sends message
• (1), the value x0: ask the oracle for the response d0 = m(y, x0).
• (3): abort the game.
• (4): Report an error!

– When Eve sends (2), the pair (x′, d′): print (x′, d′) and stop.

Eve’s attack succeeds if and only if (x′, d′) is an existential forgery.
Similarly to above, the distribution of values provided during the game is

identical to the real attack game. The only computation during the game is the
one for b1 := h(b0), so the game needs time t+ t∗ ≤ t+ 2t∗.

Completing the proof: The 1st game is the counterpart of the second game: one
succeeds if message (2) is sent before message (3), the other one, if message (3) is
sent before message (2). Eve doesn’t know which game we play – or rather, that
we are playing games with her at all, instead of mounting the “real” attack. So
Eve still succeeds with probability p. If we randomly choose the game we play,
we succeed with p/2. Neither game takes more than time t+ 2t∗. ut



5.3 Security in any Epoch i

At a first look, it may seem that the security proof for epoch 0 is also valid for
epochs i > 0. But in epoch 0, the keys for the MAC m∗ are uniformly distributed
random values a0 and b0 in {0, 1}s, while later, we use ai and bi. The problem
is as follows.

– Our security assumptions for m∗ require uniformly distributed random keys.
– Our security assumptions for m∗ do not ensure the uniform distribution of

the output values ai = h(ai−1) = m∗(ai−1, 0) and bi = . . .

Now m∗ could be defined such that the one-way function h(x) = m∗(x, 0) per-
mutes over {0, 1}s. This would solve our problem, but restrict our choices m∗

too much. In practice, however, most cryptographic MACs can reasonably be
assumed to behave pseudorandomly. Thus, we make an additional assumption.

Let u ∈r {0, 1}s be a random variable chosen according to the uniform
distribution. Let w be a random variable chosen by applying the function h to
a uniformly distributed input, i.e.,

v ∈r {0, 1}s, and w := h(v).

Let A be a distinguishing adversary for u and w. The advantage AdvA of A in
distinguishing u from w is defined in the usual way:

AdvA =
∣∣Pr[A(u) = 1]− Pr[A(w) = 1]

∣∣
Assumption 4 No efficient adversary A can feasibly distinguish the distribu-
tion of the random variable w = h(v), v ∈r {0, 1}s, from the distribution of
u ∈r {0, 1}s. I.e., for all efficient A the advantage AdvA is negligible.

Recall that h is defined by h(·) = m∗(·, const). For typical MACs m∗, this
assumption is highly plausible.

We use assumption 4 to prove the pseudorandomness of values a1 := h(a0),
. . . , an := h(an−1) for a random a0, along an entire hash chain.

Lemma 1. If, for any i ∈ {1, 2, . . . , n− 1}, the adversary can efficiently distin-
guish ai from ai−1, she can also distinguish a1 from a0, thus breaking Assump-
tion 4.
Concrete security. Let i ∈ {1, 2, . . . , n− 1} be given. If the adversary can distin-
guish ai from ai−1 in time t with an advantage α, she can distinguish a1 from
a0 im time at most t + (i − 1) ∗ t∗ with the same advantage α. Here, t∗ is the
time for evaluating h.

Proof. Let a value r0 be given, either distributed like a0 or like a1. Compute
r1 := h(r0) . . . , ri−1 := h(ri−2). Now, ri−1 is either distributed like ai−1, or like
ai, and we can distinguish between both options for ri−1 in the same time and
with the same advantage as for ai−1 and ai. Computing ri−1 takes at most i− 1
calls to h. ut



One more issue has to be taken into account. In the single-epoch case, we
argued that finding 2nd preimages, i.e., values a′ 6= ai with h(a′) = h(ai) = ai+1

when given ai, is infeasible under our assumptions. But when dealing with more
than one epoch, Eve might possibly trick Alice into committing to some new
message xi−1 and sending di := m(ai−1, xi−1) – even before Bob has seen ai

(see below). In contrast to an ordinary 2nd preimage attack, Eve now does not
just know ai, but she also has some additional information about ai−1. Driven
by the usual reasonable pessimism, we even assume Eve to know ai−1 itself. We
consider finding an a′ 6= ai with h(a′) = h(ai) = ai+1 as a guided 2nd preimage.
Theoretically, such guided 2nd preimages might be possible, even under all the
assumptions we made so far. Thus, we make one additional assumption.

Assumption 5 It is infeasible to find guided 2nd preimages for h. I.e., given
a0 ∈r {0, 1}s, a1 = h(a0), and a2 = h(a1), it is infeasible to find any a′ 6= a1

with h(a′) = a2.

Recall that the adversary wins in epoch i if she can make Alice to Com-
mitMessage(xi,i) and Bob to AcceptMessage(x′, i) for any x′ 6= xi.

Theorem 2. If there is any epoch i ∈ {0, . . . , n−1} in which the adversary can
feasibly win with significant probability, at least one of the assumptions 2, 3, 4,
or 5 is false.
Concrete security. If she can win in epoch i, in time t with probability p, she
can either invert h, forge a message for m, or generate a guided 2nd preimage
for h in time ≤ t+ 2t∗ with probability p/4. Or she can distinguish (ai, bi) from
(ai−1, bi−1) with advantage p/4. Here, t∗ is the time for calling either h or m,
which ultimately boils down to calling m∗.

Proof. For simplicity, we prove the qualitative security claimed in theorem 2,
while just sketching how to prove the concrete security claims.

We say, the protocol in a “synchronised state”, if there is an i ∈ {0, . . . , n}
such that Bob knows ai but not ai−1, while Alice knows bi but not bi−1. I.e.,
the protocol is in a synchronised state if both Alice and Bob are in the same
epoch i− 1. After the initialisation, both are in epoch n− 1, hence the protocol
is in a synchronised state.

The remainder of this proof is organised as follows. We start by analysing to
what degree Eve can benefit from a non-synchronised state. We then proceed to
consider the case of a synchronised state. We conclude by sketching how concrete
security can be added to the proof.

Non-synchronised states: Consider Alice and Bob to be in epoch i, thus the
protocol state is synchronised. Alice will not move forward into epoch i − 1
without having seen bi with h(bi) = bi+1. If Eve could provide such a bi without
obtaining it from Bob, she could win in epoch i anyway. Thus we can safely
assume that Alice does not move forward before Bob sends bi. For the same
reason, we may assume Bob not moving forward to epoch i− 1 without having
seen ai from Alice. Bob only sends bi after having seen ai from Alice. Thus, Bob



can never be ahead of Alice. Temporarily, Alice can be ahead of Bob – especially
if Eve does not forward ai to Bob. This would give a protocol state with Alice
living in epoch i − 1 while Bob still lives in epoch i. But without having seen
bi−1, Alice cannot move ahead into epoch i−2, and Bob does not send this while
he is still in epoch i.

At this point, Eve has but two options to proceed. One is to forward ai to
Bob, thus creating a new synchronised state. The second is to choose a message
xi−1 and send it to Alice, who responds with the authentication tag di−1 =
m(ai−2, xi−1). If, after sending xi−1 to Alice, Eve sends the value ai to Bob
which she has seen before, there is no gain for Eve. The order of messages has
changed, but the messages are the same, anyway. To benefit from the second
option, Even has to send a value a′ 6= ai with h(a′) = h(ai) = ai+1 to Bob.
If Eve could find such a value a′, she could find guided 2nd preimages, thus
breaking assumption 5.

Synchronised states: Now consider both Alice and Bob being in some epoch i,
and Eve trying to win in this epoch. This part of the proof is done by induction.
We start with epoch 0. Recall that if both assumption 2 and assumption 3 hold,
the adversary cannot feasibly win in epoch 0.

Now assume that no efficient adversary can win in epoch epoch (i-1), but
there is an efficient algorithm to win epoch i with significant probability. Clearly,
we can use this algorithm to distinguish (ai−1, bi−1) from (ai−2, bi−1), thus break-
ing assumption 4.

Concrete security (sketch): This part is quite similar to the proof of theorem 1,
the single-epoch case. Instead of two different games, we need to define four:

1. One game to invert h (like the 1st game in the proof of theorem 1).
2. One game to forge messages for m (like the 2nd game above).
3. One game to generate guided 2nd preimages for h.
4. One game to distinguish (ai−1, bi−1) from (ai−2, bi−1).

If Eve wins, we succeed in at least one of the games. Which game we succeed in
depends on Eve’s behaviour. As we must commit to one game in advance (i.e.
before we know how Eve behaves), the probability of success decreases from p
(for Eve) to p/4 (for us). ut

6 Final Remarks and Conclusion

Attacks Circumventing the Protocol Logic: In practice, many protocols are bro-
ken by attacks which circumvent the protocol logic.

A replay attack means that the adversary repeats authentic messages sent
before, in a different context. Consider message xi, which Alice has committed
to in epoch i. A successful replay attack is tantamount to making Bob accept xi

in a later epoch j, while Alice did not commit to xi in epoch j. By our security
analysis, we have proven that this is infeasible (if our assumptions hold, that is).



Cryptographic protocols often can be attacked if several protocol sessions
run in parallel. E.g., an authentic message from one protocol run is put into a
different context by repeating it in another session. In our case, however, note
that we required the keys a0 and b0 to be chosen independently from the keys
of other sessions. If messages from other protocol runs could help the adversary,
the adversary could as well simulate the other protocol runs for herself, and
thus attack even a single protocol run, without any parallel sessions. From our
security analysis, we know this isn’t feasible.

The Jane Doe protocol does not provide security against denial of service
attacks. I.e., if Eve sends a fake di in epoch i, Bob will send bi and then not
accept the “real” di Alice may later send.

Freshness means that a message has been committed to recently. In our case,
when Bob accepts message xi in epoch i, he can be sure that Alice (following the
protocol rules) did not commit to that message before she had seen and verified
Bob’s response bi+1 from the previous epoch. In this sense, our protocol ensures
the freshness of the messages authenticated.

The messages are “fresh” by belonging to the current epoch. But Eve is able
to stretch any epoch at her will. Assume, e.g., that Alice commits to a message
mi =“I am well”, but Eve delays forwarding di = m(ai, “all is well”) to Bob.
Later, Alice would need to raise an alarm, but instead Eve forwards di to Bob
who sends bi, which Eve immediately forwards to Alice. The protocol logic would
require Alice to reply ai, thus confirming that she is well. Instead of confirming
such an outdated message, Alice could simply terminate communication with
Bob. Eve has the power to cut the communication between Alice and Bob,
anyway, and Bob will eventually notice that Alice doesn’t respond any more.

Our Assumptions: One might note that our assumptions are nonstandard. Our
first objective was to improve the existing flawed protocol from [21] in such a
way that it preserves efficiency and suitability for low-end devices while closing
the security weakness. We claim that our assumptions are very plausible for any
decent message authentication code, such as the AES-based CMAC [16] and
any instance of the HMAC5 [17] when based on a secure hash function. In a
theoretical setting, it is easy to see that instantiating m∗ by HMAC based on
an underlying random oracle would satisfy our requirements.

In fact, assuming
some underlying primitive (from which we derive m∗) to behave like a random

oracle is theoretically sound and would allow us to greatly simplify our security
proofs. But in practice, cryptographic primitives never behave like random or-
acles. Results in the random oracle model hardly provide any guideline for the
choice of a good primitive. Our very specific standard model assumptions on m∗

are meant to serve as such a guideline.
Note that we have two functions, a message authentication code (MAC) m

and a hash function h, both of which are derived from another MAC m∗. In

5 The basic structure of HMAC is as follows. Given two constants ipad 6= opad and a
hash function H, HMAC(K, x) is defined as H(K ⊕ opad, H(K ⊕ ipad, x)).



principle, one could choose m and h independently from each other, without
deriving them from the same underlying primitive, as has been suggested in
[13]. Under appropriate assumptions, one can still prove the security of the Jane
Doe protocol. This requires more complex and less natural assumtions than those
made here. Even if m is a secure MAC and h is modelled as a random oracle, the
protocol may actually be insecure. We give a pathological example in Appendix
C. Deriving both m and h from one single primitive m∗ thus saves us from some
difficult technical issues.

Furthermore, we believe that deriving both h and m from the same under-
lying primitive is natural and meets practical necessities very well.

Conclusions: Entity recognition is an adopted security goal especially useful for
constrained pervasive applications. An attack following the Dolev-Yao adversary
model against an entity recognition protocol published at SAC 2003 [21] was
presented. The Jane Doe protocol provides entity recognition. The protocol is
efficient, runs on on very low-end devices, and is provably secure. We believe
this to be a significant step into the direction of provably secure protocols for
low-end devices.
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Appendix

A Bi-Directional Schemes

Note that in the Jane Doe protocol, the role of the sender is always assigned to
Alice, while Bob is always on the receiving end. In practical applications, it may
be desirable to have both Alice and Bob change roles at will. In this case, each
of them should have two hash chains: One that is used for committing to sent
messages and one for acknowledging received ones.

Of course, it is tempting to build a bi-directional scheme, using just one hash
chain per party. This way, memory and/or computing power could be saved for
both Alice and Bob. However, if both Alice and Bob can initiate a message, the
following middleperson attack becomes possible:

(1) Eve sends random values (xi, di) to Alice, who responds with ai.
(2) For the fake message x̂i, Eve computes d̂i := m(ai, x̂i) and sends x̂i, d̂i to

Bob.



(3) Bob replies with bi.
(4) Eve sends ai to Bob, who conducts both tests (hash chain and message

authentication) and concludes that the message is indeed from Alice.

Obviously, the same attack can be used to impersonate Bob. Also note that Eve
knows an unused value bi, but since she has already sent random values (xi, di)
to Alice, she can not use it to fake a message from Bob.

Things get even worse if we build a bi-directional scheme on only one hash
chain using less protocol steps. One idea could be to have Bob reply immediately
on every message originated by Alice, and vice versa. This way, a communication
round can be initiated by either Alice or Bob and consists of one message per
party. In the original protocol, the protocol steps would be as follows:

1. Alice sends (xi, di).
2. Bob replies bi.
3. Alice verifies bi and sends ai.
4. Bob verifies ai and di and sends (xi+1, di+1).
5. Alice replies ai+1.
6. Bob verifies ai+1 and sends bi+1.
7. Alice verifies bi+1 and di+1.

Note that Alice sends ai (in step 3) and ai+1 (in step 5) without any verification
in between. Thus, we might want to save on protocol steps by leaving out step
5. But then the following attack becomes possible:

(1) Eve sends sends random values (xi, di) to Alice, who responds with ai.
(2) (step 1) For the fake message x̂i, Eve computes d̂i := m(ai, x̂i) and sends

x̂i, d̂i to Bob.
(3) (step 2) Bob replies bi.
(4) (step 3) Eve sends ai.
(5) (step 4) Bob verifies ai and d̂i and sends (x′i+1, d

′
i+1).

(6) (step 6) Bob also sends bi+1.

At this point, an epoch is concluded for Bob, and he has accepted Eve’s faked
message. At the same time, Alice is waiting for bi. Now Eve proceeds as follows:

(7) Eve sends bi to Alice.
(8) Alice checks di and sees that the value is wrong. She asks for re-transmission.
(9) Eve chooses a message x̂i+1, computes d̂i+1 and sends (x̂i+1, d̂i+1) to Alice.
(10) Alice checks for correctness, but does not accept the message as authentic.

Depending on the protocol definition, she either replies (delivering another
ai+1 to Eve) or starts a new protocol round.

Note that at this point, Eve has an unused value bi+1 from Bob and possibly
even an unused value ai+1 from Alice. Thus, she can send one or two faked
messages with even less effort.

Concluding, a bi-directional scheme where both Alice and Bob can initiate
a message must use two hash chains. Things look different if Alice and Bob



communicate in duplex mode, meaning that messages originate with Alice and
Bob in a strictly alternating fashion. In this case, Alice and Bob go through the
states A1-A2-B1-B2, in strictly that order. The proof of security can be adapted
to suit this expansion of the protocol.

B Public-Key Techniques: A Crude Comparison

Public-key techniques are not always an option. Below, however, we assume that
it is possible to use public-key techniques. Solving the entity recognition problem
by the means of digital signatures is straightforward: In the initialisation
phase, Alice sends her public verification key to Bob. Later, Alice signs each
message, and Bob verifies all the signatures. Even if our devices are able to
compute digital signatures (or to verify them) at all, doing so for every single
message can be too expensive. One could, however, employ the Diffie-Hellman
key exchange during the initialisation phase, to create a secret authentication
key k shared by Alice and Bob. Later, Alice authenticates each message xi by a
MAC di := m(k, xi). (If we care about the freshness of messages, we would have
to extend xi by some additional nonce value chosen by Bob, while our proposed
protocol provides freshness for free.)

Note that our protocol limits the number of messages to be authenticated in
advance, while the signature-based and the key-exchange-based approach can be
used indefinitively. Here, however, we focus on power consumption. For wireless
sensor networks, power consumption is a major issue. So which approach con-
sumes less power: the Jane Doe protocol or a method using Diffie-Hellman key
exchange? The power consumption for receiving messages and for computing the
MAC is considered negligible, compared to the expensive operations of sending
messages and doing the Diffie-Hellman key exchange.

To exemplify this issue with some numbers, we estimate that the public-key
operation (one Elliptic-Curve point multiplication) needs (at least) 300 mJoules
(cf. [11]). Similarly, we estimate that the transmission of one bit over a distance
of 5 ft ≈ 1.6 m requires 1µJ [5]. For larger distances, we generalise this: Trans-
mitting x bit over y m requires xy2/2.56µJ. We assume that Bob’s messages
bi are of the size s = 80 bit, and there are n such messages. So our protocol is
better if

80y2n

2.56
< 300 000,

i.e. if the distance y between Alice and Bob is less than 31 m for n = 10 or less
than 9.8 m for n=100.

This is a very sketchy comparison of the costs for Bob to compute an authen-
tication key in a Diffie-Hellman setting to the cost for Bob sending links of his
hash chain during the Jane Doe protocol. We ignored Alice’s point of view, the
size of packet headers, the influence of noise and corrupted messages, the cost
for maintaining the hash chain (cf. Footnote 4), the cost for sending messages
during the initial Diffie-Hellman key exchange, . . . and we made assumptions on



the power consumption. Our point was to give a brief outline, how one can com-
pare protocols, given the correct power consumption numbers of a real system.
A more thorough comparison can be based, e.g., on the methodology in [22].

Also recall that in many application scenarios, the usage of public-key tech-
niques may be prohibitive, and power consumption is not always the main bot-
tleneck. E.g., RFID-tags are typically required to respond quickly, given some
inductive power supply for a short amount of time.

C Deriving both h and m from m∗

Why do we derive both h and m from the same underlying primitive
m∗? A Pathological Example. The one-wayness of h and the security of m
are not quite sufficient for the protocol’s security, even in the single-epoch case.
Recall that a secret a0 is used as a MAC-key, d1 = m(a0, x1) is authentication
tag for the message x1, and a1 = h(a0) is a link in the hash chain, known to the
adversary. So h and m interact by using the same “key” a0. In an unpublished
version of this paper, we made an additional assumption of h and m being
“combinedly secure”. This introduced a rather unusual kind of assumption, and
complicated the proofs a lot, compared to our current approach.

To illustrate why some kind of “combined security” is required, consider the
following pathological example:

– Model h as a random oracle.
– Define a MAC m(y, x) = (m′(y, x), h(y)⊕ y), where m′ is another MAC.

Clearly, a random oracle h is one-way. And, with h being a random oracle,
breaking Assumption 1 implies breaking the same assumption for m′. Thus, if
m′ is secure, then so is m.

But in the case of the Jane Doe protocol, Eve does learn a1 = h(a0). Given
the authentication tag d1 = m(a0, x1) = (m′(a0, x1), h(a0)⊕a0) for any message
x1, she can easily compute the secret a0 and then forge authentication tags at
will. This allows her to replace d1 by d′ = m(a0, x

′) for an arbitrary x′ 6= x1,
and then present a0 to Bob, who will accept x′.

In spite of using individually secure h and m, the protocol is completely
broken, since the combined usage of h and m under the same “key” a0 is insecure.


