
A new combinational logic minimization
technique with applications to cryptology.

Joan Boyar ?1 and René Peralta2

1 Department of Mathematics and Computer Science
University of Southern Denmark, joan@imada.sdu.dk

2 Information Technology Laboratory, NIST, peralta@nist.gov

Abstract. A new technique for combinational logic optimization is de-
scribed. The technique is a two-step process. In the first step, the non-
linearity of a circuit – as measured by the number of non-linear gates it
contains – is reduced. The second step reduces the number of gates in
the linear components of the already reduced circuit. The technique can
be applied to arbitrary combinational logic problems, and often yields
improvements even after optimization by standard methods has been
performed. In this paper we show the results of our technique when ap-
plied to the S-box of the Advanced Encryption Standard (AES [5]). This
is an experimental proof of concept, as opposed to a full-fledged circuit
optimization effort. Nevertheless the result is, as far as we know, the cir-
cuit with the smallest gate count yet constructed for this function. We
have also used the technique to improve the performance (in software) of
several candidates to the Cryptographic Hash Algorithm Competition.
Finally, we have experimentally verified that the second step of our tech-
nique yields significant improvements over conventional methods when
applied to randomly chosen linear transformations.

Keywords: AES; S-box; finite field inversion; circuit complexity; multi-
plicative complexity.

1 Introduction

Constructing optimal combinational circuits is an intractable problem un-
der almost any meaningful metric (gate count, depth, energy consump-
tion, etc.). In practice, no known techniques can reliably find optimal cir-
cuits for functions with as few as eight Boolean inputs and one Boolean
output (there are 2256 such functions).

For example, the multiplicative complexity3 of the Boolean function
E8

4 , which is true if and only if exactly four of its eight input bits are true,
is unknown [2]. In practice, we build circuit implementations of functions
using a variety of heuristics. Many of these heuristics have exponential
time complexity and thus can only be applied to small components of a
circuit being built. This works reasonably well for functions that naturally
decompose into repeated use of small components. Such functions include

? Partially supported by the Danish Natural Science Research Council (SNF). Some
of this work was done while visiting the University of California, Irvine.

3 The multiplicative complexity of a function is the number of GF(2) multiplications
necessary and sufficient to compute it.

arithmetic functions (which we often build using full adders), matrix mul-
tiplication (which decomposes into multiplication of small submatrices),
and more complex functions such as cryptographic functions (which are
commonly based on multiple iterations of an algorithm containing linear
steps and one non-linear step).

This work presents a new technique for logic synthesis and circuit
optimization. The technique can be applied to arbitrary functions, and
yields improvements even on programs/circuits that have already been
optimized by standard methods. We apply our technique to the S-box of
AES, which, in addition to being used in AES, has been used in several
proposals for a new hash function standard4. The result is, as far as we
know, the smallest circuit yet constructed for this function. The circuit
contains 32 AND gates and 83 XOR/XNOR gates for a total of 115 gates.
We have also applied these techniques to the logic embedded in the non-
linear components of several candidates to the SHA-3 competition. The
improvements in software performance were significant.

Our circuits are over the basis {⊕,∧, 1}. This basis is logically com-
plete: any Boolean circuit can be transformed into this form using only
local replacements. The circuit operations can be viewed either as per-
forming Boolean logic or arithmetic modulo 2. The number of ∧ gates is
called the multiplicative complexity of the circuit. Connected components
of the circuit containing ∧ gates are called non-linear. Components free
of ∧ gates are called linear.

2 Combinational circuit optimization

The techniques described here would generally be applied to subcircuits
of a larger circuit, such as an S-box in a cryptographic application, which
have relatively few inputs and outputs connecting them to the remain-
der of the circuit. The key observation that led us to our techniques is
that circuits with low multiplicative complexity will naturally have large
sections which are purely linear (i.e. contain only ⊕ gates). Thus

it is plausible that a two-step process, which first reduces multi-
plicative complexity and then optimizes linear components, leads
to small circuits.

We have, of course, no way of proving this hypothesis. But the experi-
ments reported here support it.

First step

The first step of our technique consists of identifying non-linear compo-
nents of the subcircuit to be optimized and reducing the number of ∧
gates. This reduction is not easy to do. For example, the two circuits

4 See http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

2

below compute the same function. But it is not obvious how to algorith-
mically transform one into the other.

Finding circuits with minimum multiplicative complexity is, in all
likelihood, a highly intractable problem. However, recent work on multi-
plicative complexity contains an arsenal of reduction techniques that in
practice yield circuits with small, and often optimal, multiplicative com-
plexity [2]. That work focuses exclusively on symmetric functions (those
whose value depends only on the Hamming weight of the input). In this
paper we use ad-hoc heuristics to construct a circuit with low multi-
plicative complexity for inversion in GF (24). The technique is partially
described in Section 3.

Second step

The second step of our technique consists of finding maximal linear com-
ponents of the circuit and then minimizing the number of XOR gates
needed to compute the target functions computed in these linear com-
ponents. A new heuristic for this computationally intractable problem is
described in Section 4.

3 AES’s S-box

The non-linear operation in AES’s S-box is to compute an inverse in the
field GF (28). A recursive method for building a circuit for inverses in
GF (2mn), given a circuit for inverses in GF (2m), is due to Itoh and Tsu-
jii [6]. The circuits produced by this method are said to have a tower
fields architecture. Since there are multiple possible representations for
Galois fields, several authors have concentrated on finding representa-
tions that yield efficient circuits under the tower fields architecture. We
use the same general technique for the reduction from inversion in GF (28)
to GF (24) inversion, but we use a completely different technique for com-
puting the inversion in GF (24). We then place the optimized circuit for
GF (24) inversion in its appropriate place in AES’s S-box and apply a
novel optimization technique on the linear parts of the resulting circuit.

3

GF (24) inversion – A non-linear component

The tower fields architecture for inversion in GF (28) has (non-trivial)
easily identifiable non-linear components corresponding to inversion in
subfields. The first step in our method is to focus on one of these com-
ponents and derive a circuit that uses few ∧ gates. The component for
inversion in GF (22) is too small for us to benefit significantly from opti-
mizing it. Instead we focus on inversion in GF (24).

There are many representations of GF (24). We construct

– GF (22) by adjoining a root W of x2 + x+ 1 over GF (2);
– GF (24) by adjoining a root Z of x2 + x+W 2 over GF (22).

Following Canright [4], we represent GF (22) using the basis (W,W 2)
and GF (24) using the basis (Z2, Z8). Thus, an element δ ∈ GF (24) is
written as δ1Z2 + δ2Z

8, where δ1, δ2 ∈ GF (22). Similarly, an element γ
in GF (22) is written as γ1W + γ2W

2, where γ1, γ2 ∈ GF (2). Since Z
satisfies x2 +x+W 2 = 0 and W satisfies x2 +x+1 = 0, one can calculate
that Z4 = Z2 + W , Z8 = Z2 + 1, Z10 = Z4 + Z2 = W , Z16 = Z8 + W ,
W 3 = W 2 + W , W 4 = W , and W 5 = W 2. These equations can be used
to reduce expressions to check equalities.

Using this representation, an element of GF (24) can be written as
∆ = (x1W +x2W

2)Z2 + (x3W +x4W
2)Z8, where x1, x2, x3, x4 ∈ GF (2).

The inverse of this element, ∆′ = (y1W + y2W
2)Z2 + (y3W + y4W

2)Z8,
can then be calculated using the following polynomials over GF (2):

– y1 = x2x3x4 + x1x3 + x2x3 + x3 + x4

– y2 = x1x3x4 + x1x3 + x2x3 + x2x4 + x4

– y3 = x1x2x4 + x1x3 + x1x4 + x1 + x2

– y4 = x1x2x3 + x1x3 + x1x4 + x2x4 + x2

The fact that ∆′ is the inverse of ∆ can be verified by multiplying the
two elements together and reducing using the equations mentioned above
(along with x2 = x and x + x = 0). The symbolic result is (QW +
QW 2)Z2 + (QW +QW 2)Z8, where Q = x1x2x3x4 + x1x2x3 + x1x2x4 +
x1x3x4+x2x3x4+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4+x1+x2+x3+x4.
The fact that the value of Q is 1 unless all four variables have the value
0, when it is 0, can be seen by observing that it is the symmetric function
Σ4

4 +Σ4
3 +Σ4

2 +Σ4
1 . If exactly four variables are set, then the first term

gives the value 1 (and the others 0); if three are set, then the second,
third and fourth terms give the value 1; if exactly two are set, then only
the third gives the value 1; and if only one is set, then only the last gives
the value 1. Hence, the result is 1, except for the zero input.5

Thus the task at hand is to construct a circuit with four inputs and
four outputs that calculates the above system of equations using as few
5 A circuit for finite field inversion must have some output for the non-invertible zero

element. In the following constructions we follow the AES convention that the output
on input zero is zero.

4

∧ gates as possible. Currently, our heuristic search programs can handle
functions with one output and up to eight inputs. This means that we
can directly construct optimal circuits for each of the four equations in-
dividually, but not for the system itself. For the full system we took the
following approach:

– pick an equation and construct an efficient circuit for it;
– store intermediate functions computed in the previous steps for pos-

sible use in constructing a circuit for the next equation to be tackled;
– iterate until all equations have been computed.

The first step is non-trivial even for predicates on few inputs. The heuristic
we used is inspired by methods from automatic theorem proving. We omit
its description here due to space constraints6. We can report, however,
that we succeeded in determining the multiplicative complexity of all 216

predicates on four bits. It turns out that 3 multiplications are enough to
compute any predicate on four variables.7 This is of interest to designers
of cryptographic functions since many constructions have been proposed
which use 4x4 S-boxes. We have not yet been able to do the same for all
predicates on 5 bits.

We performed the three steps above for each of the 24 orderings of
{y1, y2, y3, y4}. The ordering (y4, y2, y1, y3) gave the best results. The re-
sulting circuit, expressed as a straight-line program over GF(2), is shown
in Figure 1 (outputs are indicated by an (*)).

t1 = x1 + x2 t2 = x1 × x3 t3 = x4 + t2
t4 = t1 × t3 y4 = x2 + t4 (∗) t5 = x3 + x4

t6 = x2 + t2 t7 = t6 × t5 y2 = x4 + t7 (∗)
t8 = x3 + y2 t9 = t3 + y2 t10 = x4 × t9
y1 = t10 + t8 (∗) t11 = t3 + t10 t12 = y4 × t11
y3 = t12 + t1 (∗)

Fig. 1. Inversion in GF (24).

This circuit contains 5 ∧ gates and 11 ⊕ gates. It is a significant
improvement over previous constructions, e.g. Paar’s construction [8] has
a gate count of 10 ∧ gates and 15 ⊕ gates for the same function. It is
harder to compare to Canright’s construction [4]. In his original, he had
9 ∧ gates (and NAND gates) and 14 ⊕ gates (and XNOR gates), but he
optimized, allowing NOR gates. After this, he had 8 NAND gates, 2 NOR
gates, and 9 XOR/XNOR gates.

6 A description can be found in the patent application by NIST and the University of
Southern Denmark ([3]).

7 Lest the reader think this trivial, he/she may attempt to compute the function
f() = x1x2x3x4 + x1x2x3 + x1x2x4 + x2x3x4 + x1x2 + x1x3 + x1x4 + x2x3 + x3x4

using only three multiplications.

5

The multiplicative complexity of a function is the number of GF(2) mul-
tiplications necessary and sufficient to compute it. Under the given repre-
sentation for GF (24), the multiplicative complexity of inversion is 5. This
can be argued as follows: the upper bound is given by the construction.
The four outputs that have to be computed all have degree 3. One ∧ is
needed to compute a polynomial of degree 2. Then, an additional ∧ is
necessary to produce each of the four linearly independent polynomials,
since each is of degree 3.

A view of the structure of AES’s S-box

In the previous section, using the tower fields architecture, we identified
and optimized (with respect to multiplicative complexity) a major non-
linear component in an implementation of the AES S-box. That completes
the first step of our technique for circuit optimization, but in other cir-
cuits, one may be able to identify more non-linear components with few
enough inputs that they can also be optimized before continuing. In the
case of AES, after the non-linear portions of the circuit are optimized,
as expected, a bird’s-eye view of the resulting circuit reveals large linear
connected components. In fact, from a cryptanalyst’s point of view, the
topology of the resulting circuit is potentially of interest: the S-box of
AES consists of an initial linear expansion U from 8 to 22 bits, followed
by a non-linear contraction F from 22 to 18 bits, and ending with a lin-
ear contraction B from 18 to 8 bits. The U and B matrices are given in
Appendix A. AES’s S-box is S(x) = B · F (U · x) + [11000110]T , where ·
is matrix multiplication and x is the 8-bit S-box input. We do not know
if there are any cryptanalytic implications to the structure of these ma-
trices. The first row and last columns of U should raise an eyebrow, as
should the 12th and the last three columns of B. Note that the initial lin-
ear expansion and the linear contraction were defined to contain as much
of the circuit as possible while still being linear. Thus, the portion of the
circuit defined by U , for example, overlaps with the GF (28) inversion.
The next step was to minimize the circuits for computing U and B.

4 Minimizing linear components

Gate optimization of circuits for linear functions has been extensively
studied. It has been shown that the problem of linear-circuit optimiza-
tion is NP-hard [1]. That paper further shows that unless P=NP, this
problem does not even have efficient ε-approximation schemes. Thus, our
goal in this research is restricted to improving on known heuristics. As
far as we know, the most successful heuristics are variations on a greedy
algorithm due to Paar [9]. We report significant improvements over the
latter methods.

A linear straight-line program over a field F is a variation on a
straight-line program which does not allow multiplication of variables.

6

That is, every line of the program is of the form u := λv+µw where λ, µ
are in F and v, w are variables. Constructing a linear circuit for a given
function f is equivalent to constructing a linear straight-line program over
GF(2) which computes f . (Note that, over GF(2) λ, and µ are always 1
and thus are never written explicitly.)

A linear straight-line program over GF(2) is said to be cancellation-
free if, for every line of the program u := v + w, none of the variables in
the expression for v are also present in the expression for w, i.e., there is
no cancellation of variables in the computation.

Previous work on circuit minimization for AES S-boxes (e.g. [8, 10, 4])
only consider cancellation-free straight-line programs for producing a set
of linear forms over GF(2). Some authors appear to make the incorrect
assumption that there always exists a cancellation-free optimal linear pro-
gram over GF(2). A small counter-example showing this is not the case
is the following:

x1 + x2; x1 + x2 + x3; x1 + x2 + x3 + x4; x2 + x3 + x4.

It is not hard (although somewhat tedious) to see that the optimum
cancellation-free straight-line program has length 5. A solution of length
4 which allows cancellations is

v1 = x1 + x2; v2 = v1 + x3; v3 = v2 + x4; v4 = v3 + x1.

In [1], we show that any algorithm for computing linear programs that
is restricted to cancellation-free programs is at most 3

2 -approximating.
Thus, even optimal cancellation-free circuits can be far from optimal in
the unrestricted model. The heuristic we present below is not restricted
to producing cancellation-free circuits. Furthermore, there appears to be
little reason for restricting the search to cancellation-free circuits, as we
have shown that finding an optimal cancellation-free circuit is NP-hard
([1]).

A new heuristic

Let S be a set of linear functions. For any linear predicate f , we define the
distance δ(S, f) as the minimum number of additions of elements from S
necessary to obtain f .

The problem is to find a short linear program that computes f(x) =
Mx where M is an m× n matrix over GF(2). The heuristic is as follows.
We keep a “base” S of “known” functions. Initially S is just the set of
variables x1, . . . , xn. We maintain the vector Dist[] of distances from S
to the linear functions given by the rows of M . That is, Dist[i] = δ(S, fi)
where fi is the ith row of M multiplied by the input vector x. Initially,
Dist[i] is just one less than the Hamming weight of row i. We then perform
the following loop

– pick a new base element by adding two existing base elements;

7

– update Dist[];

until Dist[i] = 0 for all i.
The current criterion for picking the new base element is

– pick one that minimizes the sum of new distances;
– resolve ties by maximizing the Euclidean norm of the vector of new

distances.

This tie resolution criterion, which we term “Norm”, may seem counter-
intuitive. The basic idea is that we prefer a distance vector like 0,0,3,1 to
one like 1,1,1,1. In the latter case, we would need 4 more gates to finish.
In the former, 3 might do it.

The bulk of the time of the heuristic is spent on picking the new base
element. Our experiments show that the following “pre-emptive” choice
usually improves running time without increasing the size of the output
circuit:

– if any two bases S[i], S[j] are such that S[i]⊕S[j] is a row in M , then
pick this sum as the new base element.

The tie resolution criterion is a critical part of the heuristic. It does
well on most matrices we have tried, but we have found specific matrices
for which other decision rules do better. Intuitively, no one simple rule
should work for all matrices. The effectiveness of the heuristic most likely
depends on the topology of the digraph represented by the input matrix.
We have not pursued this line of inquiry. We have, however tested our
heuristic with various tie resolution methods against Paar’s algorithm [9].
On random matrices, our heuristic gives significant improvements under
Norm as well as under three other tie-breaking rules (see Section 6 and
Appendix B).

The distance vector in our heuristics is computed by exhaustive search.
The reason the heuristic is practical for moderate-size matrices is that the
distance can only decrease. In fact, it can only decrease by 1. So when a
new base is being considered, if a distance is d, then only combinations
of exactly d − 1 old base elements and the new base element need to be
considered.

A small example using the heuristic

Suppose we need a circuit that computes the following system of equa-
tions.

y0 = x0 + x1 + x2

y1 = x1 + x3 + x4

y2 = x0 + x2 + x3 + x4

y3 = x1 + x2 + x3

y4 = x0 + x1 + x3

y5 = x1 + x2 + x3 + x4

8

Equivalently, we need a circuit for multiplication by the following 6×5
matrix

M =

1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1

The target signals to be computed are simply the rows of M . The

initial base is {x0, x1, x2, x3, x4}, which corresponds to

S = {
[
1 0 0 0 0

]
,
[
0 1 0 0 0

]
,
[
0 0 1 0 0

]
,[

0 0 0 1 0
]
,
[
0 0 0 0 1

]
}

The initial distance vector is

D =
[
2 2 3 2 2 3

]
The heuristic must find two base vectors whose sum, when added to

the base, minimizes the sum of the new distances. It turns out the right
choice is to calculate x1 + x3. So the new base S is expanded to contain
the signal [

0 1 0 1 0
]

=
[
0 1 0 0 0

]
+

[
0 0 0 1 0

]
The new distance vector is

D =
[
2 1 3 1 1 2

]
The full run of the program is below. The tie breaking criteria is used

in Step 2. If one had chosen x1 + x2 instead of x0 + t5, the new distance
vector would be [1 1 3 1 1 2], which has norm

√
17, while the one

found has norm
√

19. Note that there is cancellation in the last step.
Step 1 : t5 = x1 + x3. New D : [2 1 3 1 1 2].
Step 2 : t6 = x0 + t5 (found target signal y4 = [1 1 0 1 0]). New D : [2 1
3 1 0 2].
Step 3 : t7 = x2 + t5 (found target signal y3 = [0 1 1 1 0]). New D : [2 1
3 0 0 1].
Step 4 : t8 = x4 + t5 (found target signal y1 = [0 1 0 1 1]). New D : [2 0
3 0 0 1].
Step 5 : t9 = x2 + t8 (found target signal y5 = [0 1 1 1 1]). New D : [2 0
2 0 0 0].
Step 6 : t10 = x0 + x1. New D : [1 0 1 0 0 0].
Step 7 : t11 = x2 + t10 (found target signal y0 = [1 1 1 0 0]) . New D : [0
0 1 0 0 0].
Step 8 : t12 = t8 + t11 (found target signal y2 = [1 0 1 1 1]). New D : [0
0 0 0 0 0]. (DONE!)

9

5 A circuit for the S-box of AES

Our techniques yield a circuit for the AES S-box composed of three parts:
a “top” linear transformation; a middle non-linear part; and a “bottom”
linear transformation. The linear transformations are defined by the ma-
trices U and B of Appendix A.

For matrix U , the smallest circuits we found had 23 ⊕ gates. Among
the many such circuits, the shortest ones have depth 7. It is worthwhile
to note that if 24 ⊕ gates are allowed, circuits with depth 4 exist for U .
Figure 2 in Appendix C shows a circuit of size 23 and depth 7. The circuit
maps inputs x0 . . . x7 to outputs x7, y1 . . . y21.

Figure 3 in Appendix C shows the non-linear middle part of the S-box
circuit. It is a function from 22 to 18 bits. The circuit contains 32 ∧ gates
and 32 ⊕ gates. It maps inputs x7, y1 . . . y21 to outputs z0 . . . z17.

For matrix B, the randomized version of our heuristic yields many
circuits with 30 ⊕ gates. The heuristic is fast enough that we are able
to pick a circuit which is both small and short. Figure 4 in Appendix C
shows a circuit of depth 6. The circuit maps inputs z0 . . . z17 to outputs
s0 . . . s7.

6 Experiments with different tie-breaking methods

In order to compare the effects of using different tie-breakers, we tested
our heuristics on matrices generated as follows

– We first chose a size (for example, 10× 20 matrices, which represent
10 linear forms on 20 distinct variables);

– We then picked a bias ρ between 0 and 1;
– For each entry of the matrix, we set the bit to 1 with probability ρ

and to 0 with probability 1 − ρ. Thus ρ is the expected fraction of
variables that appears in each linear form.

– Matrices with rows which are all zeros were discarded, as were matrices
containing duplicate rows.

The testing was performed with a C++ program, compiled with g++
-O3, on a quadcore x86 64, running Ubuntu 9.10, with Intel Xenon 5150
processors running at 2.66 GHz, with 8 GB memory. There were no other
users on the machine. We compared the different heuristics on sets of one
hundred random matrices with different sizes and densities. The exper-
iment showed that the heuristics were slower when the bias was larger.
This was expected, since the initial “distances” (number of operations on
the base vectors to obtain the target vectors) were then larger on average
when there were more ones in the matrices.

The tie-breakers we compared were the following:

– Norm: maximizing the Euclidean norm
– Norm-largest: maximizing the square of the Euclidean norm minus

the largest distance

10

– Norm-diff: maximizing the square of the Euclidean norm minus the
difference of the largest two distances

– Random: In processing the possible new base vectors, if the current
possible new base vector has the same sum of distances as the previ-
ous best (current choice), then flip an unbiased coin. If heads, then
keep the current choice. If tails, then apply the Norm criterion. This
heuristic may end up choosing a pair with non-maximum Euclidean
norm. On the other hand, it allows substitution of one optimum (by
sum-of-distances and Euclidean norm) pair by another found later in
the search.

In all cases, except the “Random” one, when there were still ties after
applying the “tie-breaker”, the first pair with both the minimum sum of
distances and the optimal value for the tie-breaker was chosen. This was
the base pair with lexicographically minimum indices (i, j). Randomized
tie-breaking allows running the heuristic several times and picking the
best result. In our tests we ran the heuristic with “Random” tie-breaking
three times.

We also compared these heuristics to Paar’s heuristic [9] on the same
matrices. Paar’s heuristic repeatedly finds the most frequently occurring
base pair and adds that as the next base pair. It is significantly faster
than our heuristic, but it produces only cancellation-free circuits. Its per-
formance, relative to the heuristics proposed here, decreases as the bias
increases, using more than 30% extra gates when the bias is 3/4 (when
the number of rows is at least 15) and 40% extra when the bias is 9/10.

Among the biases tried, the number of gates in the circuits found
by our heuristics is similar with biases 1/2 and 3/4. It is not a strictly
increasing function of the bias, since when nearly all of the variables are
used in nearly all of the forms, the outputs from many of the gates can
be reused for many targets. Thus, circuits with fewer gates were found
when the bias was 9/10 than when it was 1/2 or 3/4. This was also true
for Paar’s heuristic, but less dramatically so.

All the tie resolution criteria performed fairly similarly, producing
circuits of nearly the same size, with Random apparently doing slightly
better (more often producing smaller circuits), presumably because it
tries three different circuits and uses the best. Random also runs for
about three times as long as the others. The results of these tests are
presented in tables in Appendix B. In the tables, the column headings
specify the matrix size and the bias. For each heuristic, and all matrix
sizes and biases, 100 randomly chosen matrices were tested.

For each tie-breaker rule and Paar’s heuristic, for each matrix size and
bias, the average number of gates in the circuits found and the number
of matrices where that heuristic did not obtain the minimum value of all
of the heuristics is given, along with the running time in seconds. Note
that this means the Paar heuristic was beaten by at least one of the other
heuristics on all 700 matrices except for 17 of the 100 with bias 1/4 (and

11

there was only one matrix on which Paar’s heuristic beat any of the other
heuristics). In fact, for the tests with bias larger than 1/4, Paar’s heuristic
did worse than any of the other heuristic on every one of the matrices;
usually the values obtained for the newer heuristics were similar, with
Random possibly being marginally better, but with the value for Paar’s
heuristic being significantly larger.

Paar’s heuristic (and, for matrices between size 4 and 10, a variant
which does at most one gate better on average in the data presented) was
tested [9] on square matrices of sizes 4×4 through 16×16 and the average
number of XOR gates is presented, along with the relative improvement
over the straightforward implementation. These square matrices came
from applying Mastrovito’s [7] matrix description of multiplication in
GF (2n) to constant multiplication. Paar tries all possible constants in
GF (2n) for n between 4 and 16, giving these square matrices. Since our
heuristics are so much slower and the matrices in the cryptographic ap-
plications we are interested in do not necessarily have this form, we have
not tested on all of these restriced matrices of those sizes, but rather on
random matrices with different biases. For 15×15 matrices, Paar gets an
average of 52.9 gates. This is similar to our results for Paar’s algorithm
with 15× 15 matrices with biases 1/2 and 3/4, where the Paar heuristic
gets averages of 51.7 and 53.3 gates, respectively. For bias 1/2, our de-
terministic heuristics get average gate counts between 44.21 and 44.28,
while Random gets 43.81. For bias 3/4, our deterministic heuristics all
get average count 40.82, while Random gets 40.38. Thus, our relative im-
provement over the Paar heuristic is between 17% and 32% for these types
of matrices. Paar’s result of 52.9 gates for 15 × 15 matrices is a relative
improvement of 45.5% over the straightforward approach.

The last row in each table in Appendix B shows the sums of the values
which are the minimum of those calculated by the different heuristics for
each matrix. This shows that for each of the tie-breakers, there are cases
where it gets a worse result than at least one of the others.

7 Conclusions and work in progress

We tested new techniques for decreasing circuit size. The techniques were
applied to the extensively studied AES S-box. We obtained the smallest
circuit yet constructed for this function. The circuit contains 32 AND
gates and 83 XOR/XNOR gates for a total of 115 gates. As by-products
of the experiment we obtained very small circuits for inversion in GF (24)
and GF (28).

The experiments with linear circuit optimization indicate that our
techniques are likely to be superior to previous techniques which produced
only cancellation-free circuits. We expect this to be particularly useful for
cryptographic applications where many XOR operations are used, along
with some AND operations to introduce nonlinearity.

12

Along with the many implications of our experiments, our results lead
us to question the common wisdom that multiplication in GF (2n) using
Mastrovito Multipliers requires about n2 additions and n2 multiplications
(see, for example, [11]). In future work we intend to re-examine this body
of work.

It would be interesting to determine how close to optimal the circuits
found by these techniques usually are and how much better they are
than the optimal cancellation-free circuits. Finding even better techniques
which are not restricted to finding cancellation-free circuits would also be
very interesting.

References

1. J. Boyar, P. Matthews, and R. Peralta. On the shortest linear straight-line program
for computing linear forms. In Mathematical Foundations of Computer Science,
volume 5162 of Lecture Notes in Computer Science, pages 168–179, 2008.

2. J. Boyar and R. Peralta. Tight bounds for the multiplicative complexity of sym-
metric functions. Theoretical Computer Science, 396(1-3):223–246, 2008.

3. J. Boyar and R. Peralta. Patent application number 61089998 filed with the
U.S. Patent and Trademark Office. A new technique for combinational circuit op-
timization and a new circuit for the S-Box for AES, 2009.

4. D. Canright. A very compact Rijndael S-box. Technical Report NPS-MA-05-001,
Naval Postgraduate School, 2005.

5. FIPS. Advanced Encryption Standard (AES). National Institute of Standards and
Technology, 2001.

6. T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in
GF (2m) using normal bases. Inf. Comput., 78(3):171–177, 1988.

7. E. Mastrovito. VLSI architectures for computation in Galois fields. PhD thesis,
Linköping University, Dept. Electr. Eng., Sweden, 1991.

8. C. Paar. Some remarks on efficient inversion in finite fields, 1995. In 1995 IEEE
International Symposium on Information Theory, page 58, Whistler, B.C. Canada.

9. C. Paar. Optimized arithmetic for Reed-Solomon encoders. In IEEE International
Symposium on Information Theory, page 250, 1997.

10. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A compact Rijndael hardware
architecture with S-Box optimization. In Advances in Cryptology - Proceedings
of ASIACRYPT 01, volume 2248 of Lecture Notes in Computer Science, pages
239–254. Springer-Verlag, 2001.

11. B. Sunar and Ç. K. Koç. Mastrovito multiplier for all trinomials. IEEE Trans.
Comput., 48(5):522–527, 1999.

13

Appendix A: The matrices U and B for the top and
bottom linear parts of the AES S-box

U =

0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 0 0 1 1 0 1 1
0 1 0 0 1 1 1 1
1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0
1 1 1 1 1 0 1 0
0 1 0 0 1 1 1 0
1 0 0 1 0 1 1 0
1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0
1 0 0 1 1 0 1 0
0 0 1 0 1 1 1 0
1 0 1 1 0 1 0 0
1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0

B =

0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0
1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0
0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0

Appendix B: Experimental results on samples of 100
random matrices

15× 15 matrices, Bias=1
4 15× 15 matrices, Bias=1

2

Heuristic Average Not min Seconds Average Not min Seconds
Norm 29.65 16 12 44.21 48 125

Norm-largest 29.63 14 12 44.23 49 121
Norm-diff 29.65 15 11 44.28 51 119
Random 29.59 10 29 43.81 23 322

Paar 31.07 83 0.01 51.70 100 0.02
Minimum 29.48 0 - 43.50 0 -

14

15× 15 matrices, Bias=3
4 15× 15 matrices, Bias= 9

10

Heuristic Average Not min Seconds Average Not min Seconds
Norm 40.82 47 291 30.28 31 388

Norm-largest 40.82 46 290 30.28 31 428
Norm-diff 40.82 46 292 30.29 32 388
Random 40.39 23 838 30.01 14 1145

Paar 53.27 100 0.03 43.11 100 0.02
Minimum 40.11 0 - 29.86 0 -

20× 20 matrices, Bias=3
4

Heuristic Average Not min Seconds
Norm 67.47 62 86,465

Norm-largest 67.43 60 82,597
Norm-diff 67.40 58 82,780
Random 66.87 30 234,815

Paar 90.86 100 0.11
Minimum 66.43 0 -

20× 10 matrices, Bias=3
4 10× 20 matrices, Bias=3

4

Heuristic Average Not min Seconds Average Not min Seconds
Norm 31.44 25 1.35 42.04 44 30,626

Norm-largest 31.43 24 1.38 42.08 44 30,490
Norm-diff 31.44 25 1.34 42.12 44 30,740
Random 31.23 11 4.08 41.76 22 84,540

Paar 43.32 100 0.02 50.02 100 0.02
Minimum 31.12 0 - 41.50 0 -

Appendix C: The circuit definition for the AES S-box

y14 = x3 + x5 y13 = x0 + x6 y9 = x0 + x3

y8 = x0 + x5 t0 = x1 + x2 y1 = t0 + x7

y4 = y1 + x3 y12 = y13 + y14 y2 = y1 + x0

y5 = y1 + x6 y3 = y5 + y8 t1 = x4 + y12

y15 = t1 + x5 y20 = t1 + x1 y6 = y15 + x7

y10 = y15 + t0 y11 = y20 + y9 y7 = x7 + y11

y17 = y10 + y11 y19 = y10 + y8 y16 = t0 + y11

y21 = y13 + y16 y18 = x0 + y16

Fig. 2. Top linear transformation: Inputs are x0, x1, ..., x7. Outputs to the next level
are x7, y1, y2, ..., y21.

15

t2 = y12 × y15 t3 = y3 × y6 t4 = t3 + t2
t5 = y4 × x7 t6 = t5 + t2 t7 = y13 × y16

t8 = y5 × y1 t9 = t8 + t7 t10 = y2 × y7

t11 = t10 + t7 t12 = y9 × y11 t13 = y14 × y17

t14 = t13 + t12 t15 = y8 × y10 t16 = t15 + t12
t17 = t4 + t14 t18 = t6 + t16 t19 = t9 + t14
t20 = t11 + t16 t21 = t17 + y20 t22 = t18 + y19

t23 = t19 + y21 t24 = t20 + y18

t25 = t21 + t22 t26 = t21 × t23 t27 = t24 + t26
t28 = t25 × t27 t29 = t28 + t22 t30 = t23 + t24
t31 = t22 + t26 t32 = t31 × t30 t33 = t32 + t24
t34 = t23 + t33 t35 = t27 + t33 t36 = t24 × t35
t37 = t36 + t34 t38 = t27 + t36 t39 = t29 × t38
t40 = t25 + t39

t41 = t40 + t37 t42 = t29 + t33 t43 = t29 + t40
t44 = t33 + t37 t45 = t42 + t41 z0 = t44 × y15

z1 = t37 × y6 z2 = t33 × x7 z3 = t43 × y16

z4 = t40 × y1 z5 = t29 × y7 z6 = t42 × y11

z7 = t45 × y17 z8 = t41 × y10 z9 = t44 × y12

z10 = t37 × y3 z11 = t33 × y4 z12 = t43 × y13

z13 = t40 × y5 z14 = t29 × y2 z15 = t42 × y9

z16 = t45 × y14 z17 = t41 × y8

Fig. 3. The middle non-linear section: Inputs are x7, y1, y2, ..., y21. Outputs to the next
level are z0, z1, ..., z17. Note that the computation of t25 through t40 is the inversion in
GF (24).

t46 = z15 + z16 t47 = z10 + z11 t48 = z5 + z13

t49 = z9 + z10 t50 = z2 + z12 t51 = z2 + z5

t52 = z7 + z8 t53 = z0 + z3 t54 = z6 + z7

t55 = z16 + z17 t56 = z12 + t48 t57 = t50 + t53
t58 = z4 + t46 t59 = z3 + t54 t60 = t46 + t57
t61 = z14 + t57 t62 = t52 + t58 t63 = t49 + t58
t64 = z4 + t59 t65 = t61 + t62 t66 = z1 + t63
s0 = t59 + t63 s6 = t56 XNOR t62 s7 = t48 XNOR t60
t67 = t64 + t65 s3 = t53 + t66 s4 = t51 + t66
s5 = t47 + t65 s1 = t64 XNOR s3 s2 = t55 XNOR t67

Fig. 4. Bottom linear transformation: Inputs are z0, z1, ..., z17. Outputs are s0, s1, ..., s7.

16

