
Boneh-Boyen signatures and the Strong Diffie-Hellman problem

David Jao and Kayo Yoshida?

Department of Combinatorics and Optimization
University of Waterloo, Waterloo ON, N2L 3G1, Canada

{djao,k2yoshid}@ecc.math.uwaterloo.ca

Abstract. The Boneh-Boyen signature scheme is a pairing based short signature scheme which is
provably secure in the standard model under the q-Strong Diffie-Hellman assumption. In this paper,
we prove the converse of this statement, and show that forging Boneh-Boyen signatures is actually
equivalent to solving the q-Strong Diffie-Hellman problem. Using this equivalence, we exhibit an
algorithm which, on the vast majority of pairing-friendly curves, recovers Boneh-Boyen private keys

in O(p
2
5+ε) time, using O(p

1
5+ε) signature queries. We present implementation results comparing the

performance of our algorithm and traditional discrete logarithm algorithms such as Pollard’s lambda
algorithm and Pollard’s rho algorithm. We also discuss some possible countermeasures and strategies
for mitigating the impact of these findings.

1 Introduction

The q-SDH assumption was proposed by Boneh and Boyen [5, 6] as a tool to assist in the security analysis of
the Boneh-Boyen short signature scheme. Versions of this assumption are also used in Mitsunari et al. [21],
Dodis and Yampolskiy [13], and in the Boneh-Boyen IBE scheme [4]. The survey article of Boyen [7] lists
the q-SDH assumption as one of the first in a family of new assumptions that have appeared in the context
of pairing-based cryptography, and the first of these to be analyzed in the generic group model.

Prior to this work, no equivalence was known between the security of the q-SDH assumption and the
security of the Boneh-Boyen signature scheme. Boneh and Boyen [5, 6] provide a security reduction with a
running time of Θ(q2), but it only goes in one direction: namely, if the q-SDH assumption holds, then Boneh-
Boyen signatures are unforgeable. There are two reasons why one might desire to prove the converse result.
One reason is practical: Brown and Gallant [9] and Cheon [11] have shown that, in groups of size p, the q-
SDH problem can be solved in O(

√
p/d+

√
d) exponentiations, instead of the O(

√
p) operations required for

discrete log, for any divisor d ≤ q of p−1 (a similar result holds for p+1). Knowing that q-SDH and Boneh-
Boyen are equivalent thus allows one to forge Boneh-Boyen signatures in faster than square root time; in
our case this is possible via a known or chosen message attack. Although the resulting algorithm remains
exponential, a lower exponent is still interesting in the context of a short signature scheme, especially
for extremely short signature lengths at the lower margins of security. A further motivation for proving
equivalence is given by Koblitz and Menezes [16, 17]. They argue that an equivalence result is preferable
from a philosophical standpoint, since researchers have more incentive to solve the underlying hard problem
(that is, q-SDH) if such solutions lead immediately to cryptanalysis of a concrete scheme.

In this paper, we present an algorithm for performing existential forgeries of Boneh-Boyen signatures
using a q-SDH oracle, whose running time is also Θ(q2). This shows that the security of Boneh-Boyen
cannot be proved under any weaker assumption than SDH; in other words, the security of the Boneh-
Boyen scheme is equivalent to the intractability of the q-SDH problem. Our reduction holds for both
the “basic” and “full” versions of the Boneh-Boyen scheme. Together with the algorithms of Brown and
Gallant and Cheon, our result allows a total break (i.e. recovery of the private key) of the full (resp., basic)
Boneh-Boyen scheme in time O(p

2
5+ε), under a chosen (resp., known) message attack, whenever p± 1 has

a divisor of appropriate size (which in practice is almost always the case; see Section 6.3). This running
time is slightly higher than the generic group bound of Ω(p

1
3) given by Boneh and Boyen [5, 6], because

? The authors were partially supported by NSERC.

2 David Jao and Kayo Yoshida

of the quadratic runtime of our reduction. Nevertheless, it represents a significant improvement over the
O(p

1
2+ε) time required to calculate discrete logarithms.
The techniques we use are not entirely new, although we did discover them independently. A simplified

version of Proposition 4.1 appears in Mitsunari et al. [21], a paper which is cited by Boneh and Boyen [5,
6] and Cheon [11]. However, we are quite confident that our overall result is new. For example, Cheon [11]
applies his results to the cryptanalysis of several different cryptosystems, but omits the Boneh-Boyen scheme
from such consideration, indicating that no such cryptanalysis was available. In addition, the survey article
of Boyen [7] asserts that the MSDH assumption (which amounts to forging Boneh-Boyen signatures) is “an
actually weaker statement” than q-SDH. This sentence implies that no equivalence between Boneh-Boyen
and q-SDH was known at the time of that writing.

We note here that the abovementioned generic group analysis already yields a bound of Ω(p
1
3) on the

security of the q-SDH assumption for large q. Thus, it would be reasonable for a conservative adopter to
view the Boneh-Boyen scheme as having cube root security under large scale chosen message attacks, even
in the absence of any concrete algorithm that runs faster than discrete log. However, an explicit result
showing that forging signatures reduces to the q-SDH problem is still useful, precisely because such a
reduction yields concrete algorithms for forging signatures, and hence helps to validate the conservative
viewpoint.

1.1 Organization of the paper

The rest of this paper is organized as follows. Section 2 contains background material such as security
definitions, bilinear pairings, and the q-SDH and related problems. Section 3 presents the basic and full
versions of the Boneh-Boyen short signature scheme [5, 6]. In Section 4, we give a security analysis of the
signature scheme, and show how to forge Boneh-Boyen signatures using a q-SDH oracle. In Section 5 we
review the algorithms of Brown and Gallant [9] and Cheon [11] for solving the q-SDH problem, and describe
how their algorithms can be used to compute the private key in the Boneh-Boyen scheme. Section 6 contains
theoretical and experimental runtime figures showing that a Boneh-Boyen private key can be computed in
O(p

2
5+ε) time, given access to a signing oracle. We conclude with an analysis of the proportion of curves

for which a divisor of the suitable form exists, together with a list of related open problems.

2 Preliminaries

2.1 Security definitions

We begin by reviewing the two security definitions used in the proof of security for the Boneh-Boyen
signature scheme [5, 6].

Strong Existential Unforgeability. Strong existential unforgeability is defined via the following game be-
tween a challenger and an adversary A.

1. The challenger generates a key pair (PK,SK) and gives PK to the adversary.
2. The adversary A can adaptively make up to qS queries for signatures of messages m1, . . . ,mqS

of its
choice. The challenger must respond to the queries with valid signatures σ1, . . . , σqS

of the messages
m1, . . . ,mqS

.
3. Eventually, the adversary A outputs a pair (m∗, σ∗), and wins the game if (m∗, σ∗) 6= (mi, σi) for
i = 1, . . . , qS and Verify(m∗, σ∗,PK) = true.

The adversary A’s advantage, denoted Adv Sig(A) is defined as the probability that A wins the above
game, where the probability is taken over the coin tosses made by A and the challenger.

Definition 2.1. An adversary A is said to (t, qS , ε)-break a signature scheme if A runs in time at most
t, makes at most qS signature queries, and Adv Sig(A) ≥ ε. We say that a signature scheme is (t, qS , ε)-
existentially unforgeable under an adaptive chosen message attack if there is no adversary that (t, qS , ε)-
breaks it.

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 3

Weak Existential Unforgeability. Weak existential unforgeability is defined via the following game between
a challenger and an adversary A.

1. The challenger generates a key pair (PK,SK).
2. The adversary A chooses up to qS messages m1, . . . ,mqS

and sends them to the challenger.
3. The challenger gives A the public key PK and valid signatures σ1, . . . , σqS

for the messagesm1, . . . ,mqS
.

4. Eventually, the adversary A outputs a pair (m∗, σ∗), and wins the game if m∗ 6= mi for i = 1, . . . , qS
and Verify(m∗, σ∗,PK) = true.

The adversary A’s advantage, denoted Adv Sig W(A), is defined as the probability that A wins the
above game, where the probability is taken over the coin tosses made by A and the challenger.

Definition 2.2. An adversary A is said to (t, qS , ε)-weakly break a signature scheme if A runs in time at
most t, makes at most qS signature queries, and Adv Sig W(A) ≥ ε. We say that a signature scheme is
(t, qS , ε)-existentially unforgeable under a weak chosen message attack if there is no adversary that (t, qS , ε)-
weakly breaks it.

2.2 Bilinear pairings

The Boneh-Boyen short signature scheme makes use of bilinear pairings. Let G1, G2, and GT be cyclic
groups of prime order |G1| = |G2| = |GT | = p. The operations in G1, G2, and GT are written multi-
plicatively. Recall that a function e : G1 ×G2 → GT is called a bilinear pairing if it satisfies the following
conditions:

– Bilinearity: For any u1, u2, u ∈ G1 and v1, v2, v ∈ G2,

e(u1u2, v) = e(u1, v) · e(u2, v), and
e(u, v1v2) = e(u, v1) · e(u, v2).

– Non-degeneracy: There exists u ∈ G1 and v ∈ G2 such that e(u, v) 6= 1.

We assume that the pairing function and the group operations are efficiently computable. The pair
(G1,G2) is called a bilinear group pair.

2.3 SDH and related problems

The q-SDH problem and its variants provide the underlying basis for security in several pairing-based
protocols [4–7, 13, 21]. Throughout this section, let (G1,G2) be a bilinear group pair of prime order p, and
let g1 and g2 be generators of G1 and G2, respectively.

q-SDH Problem. In the full version of the Boneh-Boyen paper [6], the q-Strong Diffie-Hellman (q-SDH)
problem on the bilinear group pair (G1,G2) is defined as follows:

Given a (q+3)-tuple (g1, gx
1 , . . . , g

xq

1 , g2, g
x
2) ∈ Gq+1

1 ×G2
2 as input, output (c, g

1
x+c

1) for some c ∈ Zp

such that x+ c 6≡ 0 (mod p).

The advantage Adv q-SDH(A) of an algorithm A in solving the q-SDH problem in (G1,G2) is defined
as

Adv q-SDH(A) = Pr
[
A(g1, gx

1 , . . . , g
xq

1 , g2, g
x
2) = (c, g

1
x+c

1)
]
,

where the probability is taken over the random choices of generators g1 ∈ G1 and g2 ∈ G2, the random
choice of x ∈ Z∗

p, and the coin tosses made by A.

4 David Jao and Kayo Yoshida

Definition 2.3. An algorithm A is said to (t, ε)-break the q-SDH problem in (G1,G2) if A runs in time t
and Adv q-SDH(A) ≥ ε. We say that the (q, t, ε)-SDH assumption holds in (G1,G2) if there is no algorithm
that (t, ε)-breaks the q-SDH problem in (G1,G2).

The definition of the q-SDH problem given in the original version of the Boneh-Boyen paper [5]
is slightly different. The original version uses a (q + 2)-tuple (g1, g2, gx

2 , . . . , g
xq

2) as input rather than
(g1, gx

1 , . . . , g
xq

1 , g2, g
x
2), and it also assumes an efficiently computable isomorphism ψ : G2 → G1 is avail-

able. In this paper, we adopt the definition given in the full version of the Boneh-Boyen paper.

Related Problems. A notable variation of the q-SDH problem for our purposes is the MSDH problem [7,
8]. The Modified q-SDH or q-MSDH problem on a group G is the following computational problem: given

g, gx ∈ G, and a (q− 1)-tuple (c1, g
1

x+c1), . . . , (cq−1, g
1

x+cq−1) where each ci ∈ Zp, output (c, g
1

x+c) for some
c ∈ Zp \ {c1, . . . , cq−1}. Over a group equipped with a type 1 pairing [15], solving the q-MSDH problem
is equivalent to existential forgery of the Boneh-Boyen basic signature scheme under a known message
attack using q signature queries. Boyen remarks in [7] that the MSDH assumption is weaker than SDH.
Our results, however, imply that in groups with a type 1 pairing the q-MSDH problem is equivalent to the
q-SDH problem via a Θ(q2) reduction.

3 Boneh-Boyen signature scheme

Let G1, G2, and GT be cyclic groups of prime order p, and let e : G1×G2 → GT be a bilinear pairing. In [5,
6], Boneh and Boyen present two versions of their signature schemes, a basic scheme and a full scheme,
with the former being used to prove the security of the latter. The protocols in the original version [5] of
their paper are slightly different from those in the full version [6]. Here we use only the schemes from the
full version of the paper [6].

The Basic Signature Scheme

– Key generation: KeyGen outputs random generators g1 and g2 of G1 and G2, respectively, and a
random integer x ∈ Z∗

p. Let ζ ← e(g1, g2) ∈ GT . The public key is PK = (g1, g2, gx
2 , ζ), and the private

key is SK = (g1, x).

– Signing: Given a message m ∈ Zp and a private key SK, Sign(m,SK) outputs a signature σ ← g
1

x+m

1 ,
where the exponent is calculated modulo p. In the unlikely event that x+m ≡ 0 (mod p), Sign(m,SK)
outputs σ ← 1.

– Verification: Verify(m,σ,PK) = true if and only if e(σ, gx
2 · gm

2) = ζ.

The Full Signature Scheme

– Key generation: KeyGen outputs random generators g1 and g2 of G1 and G2, respectively, and
random integers x, y ∈ Z∗

p. Let ζ ← e(g1, g2) ∈ GT . The public key is PK = (g1, g2, gx
2 , g

y
2 , ζ), and the

private key is SK = (g1, x, y).
– Signing: Given a message m ∈ Zp and a private key SK, Sign(m,SK) randomly picks r ∈ Zp such

that x+m+ yr 6≡ 0 (mod p), and calculates σ ← g
1

x+m+yr

1 . The signature is (σ, r).
– Verification: Verify(m, (σ, r),PK) = true if and only if e(σ, gx

2 · gm
2 · (g

y
2)r) = ζ.

The element g1 can be omitted from the public key with no loss of functionality. None of our proofs use
g1, except for the proof of Theorem 4.3, and even this theorem can be modified to hold without g1 (see
remarks at the end of the proof of Theorem 4.3).

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 5

4 Security analysis of the Boneh-Boyen signature scheme

We present our equivalence results in this section. We begin with a partial fraction decomposition which
refines and generalizes a formula given in [21].

Proposition 4.1 Let F be a field, and x ∈ F. Let d, k ∈ Z be such that d ≥ 1, k ≥ 0. Let mi for i = 1, . . . , d
be distinct elements of F such that x+mi 6= 0. Then,

xk∏d
i=1(x+mi)

=

d∑
i=1

(−mi)k

(x+mi)
∏

j 6=i(mj −mi)
for 0 ≤ k < d

1 +
d∑

i=1

(−mi)d

(x+mi)
∏

j 6=i(mj −mi)
for k = d

x+
d∑

i=1

[
−mi +

(−mi)d+1

(x+mi)
∏

j 6=i(mj −mi)

]
for k = d+ 1

Proof. By the principle of permanence of identity [1, p. 456], it suffices to prove that the equations hold
when F = C, since they then form an algebraic identity. Thus, we let

f(x) =
xk

(x+m1) · · · (x+md)
,

and treat f(x) as a complex function in x. We can write f(x) as a partial fraction of the form

f(x) = akx+ bk +
c1

x+m1
+

c2
x+m2

+ · · ·+ cd
x+md

where

ak =

{
1 if k = d+ 1,
0 otherwise,

bk =

−

∑d
i=1mi if k = d+ 1,

1 if k = d, and
0 otherwise,

and each ci is a constant. By symmetry, we only need to prove c1 = (−m1)
kQ

j 6=1(mj−m1)
.

Note that f(x)− c1
x+m1

= akx+ bk + c2
x+m2

+ · · ·+ cd

x+md
has an analytic Taylor series expansion about

x = −m1. Thus c1 is the residue of f at the simple pole x = −m1. If we write f(x) = φ(x)
x+m1

where

φ(x) = xk

(x+m2)···(x+md) , then φ(x) is analytic and nonzero at x = −m1. A standard theorem in complex
analysis (see [10, p. 234] or [2, p. 115]) gives

c1 = φ(−m1) =
(−m1)k∏

j 6=1(mj −m1)

as desired.

Corollary 4.2 Let G be a cyclic group of order p, let g ∈ G be a generator, and let x ∈ Zp. Let mi for
i = 1, . . . , d be distinct elements of Zp such that x+mi 6≡ 0 (mod p). Then,

g
xkQd

i=1(x+mi) =

d∏
i=1

g
(−mi)

k

(x+mi)
Q

j 6=i(mj−mi) for 0 ≤ k ≤ d− 1

g ·
d∏

i=1

g
(−mi)

d

(x+mi)
Q

j 6=i(mj−mi) for k = d

gx · g−
Pd

i=1 mi ·
d∏

i=1

g
(−mi)

d+1

(x+mi)
Q

j 6=i(mj−mi) for k = d+ 1

6 David Jao and Kayo Yoshida

Assume that all the values mi and g
1

x+mi are known. Furthermore, assume for k = d and k = d+ 1 that g

is known, and for k = d + 1 that gx is known. Then calculating g
xkQd

i=1(x+mi) for a single value of k takes
Θ(dT + d2Tp) time, where T is the maximum time needed for a single exponentiation in G, and Tp is the

maximum time needed for one operation in Zp. Calculating all of g
1Qd

i=1(x+mi) , g
xQd

i=1(x+mi) , . . . , g
xd+1Qd

i=1(x+mi)

takes Θ(d2T) time.

Proof. The proof of this Corollary is straightforward from Proposition 4.1.

4.1 Security of the basic signature scheme

In this section, we analyze the security of the basic Boneh-Boyen signature scheme. We show that existential
forgery of the basic scheme under a weak chosen message attack (indeed, under a known message attack)
reduces to the q-SDH problem. This result is the converse of [6, Lemma 9], and it also illustrates the main
idea behind the corresponding result for the full scheme (Theorem 4.4).

Theorem 4.3. If there is an algorithm that (t′, ε′)-breaks the q-SDH problem, then we can (t, qS , ε)-weakly
break the Boneh-Boyen basic signature scheme provided that

t ≥ t′ +Θ(q2T), qS ≥ q, and ε ≤ p− 1− q
p− 1

ε′,

where T is the maximum time needed for one exponentiation in G1.

Proof. Let A be an algorithm that (t′, ε′)-breaks the q-SDH problem. We show that an adversary B can
perform existential forgeries of the basic signature scheme under a weak chosen message attack. In fact,
it turns out that a list of valid message-signature pairs suffices. Accordingly, the adversary B receives a
public key (g1, g2, gx

2 , ζ) and a list of distinct messages m1, . . . ,mqS
together with their valid signatures

(σ1, . . . , σqS
) = (g1/(x+m1)

1 , . . . , g
1/(x+mqS

)

1), where qS ≥ q.

Let hk ← g
xk

(x+m1)···(x+mq)

1 for each k = 0, . . . , q. The adversary B calculates (h0, h1, . . . , hq) using Corol-
lary 4.2, and runs the algorithm A on the input (h0, h1, . . . , hq, g2, g

x
2). With probability ε′, A returns

(m∗, g
1

(x+m1)···(x+mq)(x+m∗)

1) for some m∗ ∈ Zp.
We claim that m∗ is not equal to any of the mi except with negligible probability. To show this, observe

that g1 is not disclosed to A and that g1 = h
(x+m1)···(x+mq)

xk

k for all k = 0, . . . , q. Thus, from the point of
view of A, any combination of m1, . . . ,mq is equally likely to give rise to a fixed input (h0, h1, . . . , hq).
That is, A has no better than random chance of choosing an m∗ which coincides with one of m1, . . . ,mq.
Therefore, m∗ 6= mi for all i = 1, . . . , q with probability at least p−1−q

p−1 . If m∗ = mi for some 1 ≤ i ≤ q,
then B aborts. Otherwise, by Proposition 4.1,

1
(x+m1) · · · (x+mq)(x+m∗)

=
1

(x+m∗)
∏q

j=1(mj −m∗)

+
q∑

i=1

1
(x+mi)

∏
j 6=i(mj −mi)

.

Using this equation, B can calculate σ∗ = g
1

x+m∗
1 as follows:

σ∗ ←

[
g

1
(x+m1)···(x+mq)(x+m∗)

1 /

q∏
i=1

(σi)
Q

j 6=i
1

mj−mi

]Qq
j=1(mj−m∗)

= g
1

x+m∗
1 .

In this way B outputs (m∗, σ∗) which is a forgery for the basic signature scheme.
The bounds for ε and qS are obvious from the above construction. The running time is bounded by the

calculation of g
1

(x+m1)···(x+mq)

1 , g
x

(x+m1)···(x+mq)

1 , . . . , g
xq

(x+m1)···(x+mq)

1 , which takes Θ(q2T) time by Corollary
4.2, and the query of A, which takes time t′.

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 7

The above proof requires knowledge of the element g1. If g1 is not part of the public key, Theorem 4.3
remains valid, provided that q is replaced by q + 1 in the inequalities. In this case B uses q + 1 signature

queries, and calculates h′k ← g
xk

(x+m1)...(x+mq+1)

1 for k = 0, . . . , q, in place of h0, . . . , hq.

4.2 Security of the full signature scheme

We now show that strong existential forgery of the full Boneh-Boyen signature scheme under chosen message
attack reduces to the q-SDH problem. This result is the converse of [6, Theorem 8].

Theorem 4.4. If there is an algorithm that (t′, ε′)-breaks the q-SDH problem, then we can (t, qS , ε)-break
the Boneh-Boyen full signature scheme provided that

t ≥ t′ +Θ(q2ST), qS ≥ q + 1, and ε ≤
(p− 2− q)

(
p− 1−

(
q2 + q

)
/2

)
(p− 1)2

ε′,

where T is the maximum time needed for one exponentiation in G1.

Proof. Let A be an algorithm that (t′, ε′)-breaks the q-SDH problem. Using A, we show that an adversary
B can perform existential forgeries for the full signature scheme under a chosen message attack.

First, B receives the public key (g1, g2, gx
2 , g

y
2 , ζ) from the challenger. Next, B randomly selects a message

m∗ ∈ Zp, and queries the challenger for qS different signatures of m∗. Each time the challenger receives
m∗, it sends back a valid signature (σi, ri) = (g1/(x+m∗+yri)

1 , ri) to B, where ri is chosen at random
so that x + m∗ + yri 6≡ 0 mod p. In this way, B obtains qS valid (and hopefully distinct) signatures
(σ1, r1), . . . , (σqS

, rqS
) of the message m∗. If {r1, . . . , rqS

} does not contain q + 1 distinct elements of Zp,
then B aborts. Otherwise, let h← g

1/y
1 and z ← x+m∗

y . Without loss of generality (reindexing if necessary),
assume r1, r2, . . . , rq+1 are distinct. Then, for each i = 1, . . . , q + 1, we have

σi = g
1

x+m∗+yri
1 =

(
g

1
y

1

) 1
x+m∗

y
+ri = h

1
z+ri .

Hence, for each k = 1, . . . , q, the adversary B can calculate

h
zk

(z+r1)···(z+rq+1) =
q+1∏
i=1

σ

(−ri)
kQ

j 6=i(rj−ri)

i

using Corollary 4.2, since B knows each σi and each ri. Also note that if we let g′2 ← gy
2 , then gx

2g
m∗
2 = g′2

z.

When B runs the algorithm A on the input (h
1

(z+r1)···(z+rq+1) , h
z

(z+r1)···(z+rq+1) , . . . , h
zq

(z+r1)···(z+rq+1) , g′2, g
′
2
z),

the algorithm A returns (r∗, h
1

(z+r1)···(z+rq+1)(z+r∗)) for some r∗ ∈ Zp with probability ε′. If r∗ = ri for some
1 ≤ i ≤ q+ 1, then B aborts, but this event occurs with only negligible probability, by the same argument
as in Theorem 4.3. Otherwise, by Proposition 4.1,

1
(z + r1) · · · (z + rq+1)(z + r∗)

=
1

(z + r∗)
q+1∏
j=1

(rj − r∗)

+
q+1∑
i=1

1

(z + ri)
∏
j 6=i

(rj − ri)

and thus B can calculate

σ∗ ←

[
h

1
(z+r1)···(z+rq+1)(z+r∗) /

q+1∏
i=1

(σi)
Q

j 6=i
1

rj−ri

]Qq+1
j=1(rj−r∗)

= h
1

z+r∗ = g
1

x+m∗+yr∗
1

8 David Jao and Kayo Yoshida

In this way B outputs (m∗, (σ∗, r∗)) which, as indicated below, is with high probability an existential forgery
for the full signature scheme.

The bound for qS is obvious from the above construction. The running time is determined by the time

needed to calculate h
1

(z+r1)···(z+rq+1) , h
z

(z+r1)···(z+rq+1) , . . . , h
zq

(z+r1)···(z+rq+1) , which is Θ(q2T) by Corollary
4.2, and the query of A, which takes time t′.

The probability that B succeeds is P1P2ε
′ where P1 is the probability that the sequence of random

elements {r1, . . . , rqS
} chosen by the signing oracle comprises at least q+1 distinct elements, and P2 is the

probability that the r∗ returned by A differs from the q+1 values ri used by B. We know that P2 ≥ p−2−q
p−1

using the argument from the proof of Theorem 4.3. Moreover, P1 ≥ 1−Q where Q is the probability that
among the original r1, . . . , rq+1 there exist 1 ≤ i < j ≤ q + 1 such that ri = rj . We have

Q ≤
q+1∑
j=2

Pr (∃i < j such that ri = rj) ≤
q+1∑
j=2

j − 1
p− 1

=
q(q + 1)
2(p− 1)

so P1 ≥ 1−Q ≥ p−1−q(q+1)/2
p−1 , which yields the bound for ε.

5 Cheon’s algorithms

In [11], Cheon presents an algorithm which in certain cases computes the secret exponent x from the input
of an instance of the q-SDH problem. Portions of this algorithm were also independently discovered by
Brown and Gallant [9] in the context of a different problem. In what follows, we refer to this algorithm as
Cheon’s algorithm. Specifically, Cheon proves the following:

Theorem 5.1. Let G be a cyclic group of prime order p and let g be a generator. Let T denote the
maximum time needed for one exponentiation in G.

1. Let d divide p − 1. Given the group elements g, gx, and gxd

, the value of x can be recovered in time
O((

√
p/d+

√
d)T).

2. Let d divide p+1. Given the group elements g, gx, gx2
, . . . , gx2d

, the value of x can be recovered in time
O((

√
p/d+ d)T).

Note that, if q ≥ d in the first case or q ≥ 2d in the second, then the algorithm in the theorem can solve
the q-SDH problem; in fact, such an algorithm will reveal the secret exponent x. We show in this section
that the algorithm can be applied to find the secret exponent in the Boneh-Boyen signature scheme over
a bilinear group pair (G1,G2).

Theorem 5.2. (Basic scheme) Let T and Tp denote the maximum time needed to perform one group
exponentiation in G1 and one modular multiplication mod p, respectively.

1. Let d divide p−1. Given d+1 valid message-signature pairs, the private key x in the basic Boneh-Boyen
signature scheme can be computed in time O((

√
p/d+ d)T + d2Tp).

2. Let d divide p+1. Given 2d+1 valid message-signature pairs, the private key x in the basic Boneh-Boyen
signature scheme can be computed in time O((

√
p/d+ d2)T).

If g1 is included in the public key, then d and 2d message-signature pairs are sufficient for the above two
parts respectively.

Theorem 5.3. (Full scheme) Let T and Tp be as in Theorem 5.2.

1. Let d divide p − 1. Then the private key pair (x, y) of the full Boneh-Boyen signature scheme can be
computed under a chosen message attack, using 2d+2 signature queries, in time O((

√
p/d+d)T+d2Tp),

with probability at least
(

p−1−d(d+1)/2
p−1

)2

.

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 9

2. Let d divide p + 1. Then the private key pair (x, y) of the full Boneh-Boyen signature scheme can be
computed under a chosen message attack, using 4d + 2 signature queries, in time O((

√
p/d + d2)T),

with probability at least
(

p−1−d(2d+1)
p−1

)2

.

Proof. The proofs of these two theorems are similar. We will give the proof for Theorem 5.3.
(1) Let d be a positive divisor of p − 1. We will construct an algorithm A which recovers the private

key of the signature scheme under a chosen message attack, using Cheon’s algorithm. Suppose A is given
the public key (g1, g2, gx

2 , g
y
2 , ζ). The algorithm A randomly selects a message ma ∈ Zp, and queries for

signatures of this same message d + 1 times. As a result, A obtains d + 1 valid (and hopefully distinct)

signatures (σ1, r1), . . . , (σd+1, rd+1), where σi = g
1

x+ma+yri
1 for each i = 1, . . . , d + 1. Let h ← g

1/y
1 and

za ← x+ma

y . Then, we have

σi =
(
g

1
y

1

) 1
x+ma

y
+ri = h

1
za+ri

for each i = 1, . . . , d + 1. If the set {r1, . . . , rd+1} does not consist of distinct elements, then A aborts.
Otherwise, assume r1, . . . , rd+1 are distinct. Using Corollary 4.2, the algorithm A calculates

h
1

(za+r1)···(za+rd+1) , h
za

(za+r1)···(za+rd+1) , and h
zd

a
(za+r1)···(za+rd+1) .

Then, it runs Cheon’s algorithm in G1 with these inputs, and obtains za = x+ma

y as output.
Next, A repeats the above process with a different random message mb, and obtains zb = x+mb

y . Since
A knows za, zb, ma, and mb, it can solve a linear system of equations to obtain the private exponents x
and y.

Since calculating h
1

(z+r1)···(z+rd+1) , h
z

(z+r1)···(z+rd+1) , and h
zd

(z+r1)···(z+rd+1) for z = za and zb takes time
Θ(dT + d2Tp) and Cheon’s algorithm has a running time of Θ((

√
p/d +

√
d)T), the overall runtime is

Θ((
√
p/d+ d)T + d2Tp). The attack succeeds if the set {r1, . . . , rd+1} for ma consists of distinct elements

(and likewise for mb). Using an argument analogous to the one used in Theorem 4.4, we see that a lower

bound for this probability is
(

p−1−d(d+1)/2
p−1

)2

.

(2) We now suppose d is a divisor of p+ 1. The proof here is similar, except that A needs to calculate

h
1

(z+r1)···(z+r2d+1) , h
z

(z+r1)···(z+r2d+1) , . . . , h
z2d

(z+r1)···(z+r2d+1) .

from the signatures h
1

z+r1 , . . . , h
1

z+r2d+1 , for each of z = za and zb. This takes Θ(d2T) time, and Cheon’s
algorithm takes Θ((

√
p/d+ d)T) time, for a total runtime of Θ((

√
p/d+ d2)T). The attack succeeds if the

set {r1, . . . , r2d+1} for each of za and zb consists of distinct elements, and the probability of this is at least(
p−1−d(2d+1)

p−1

)2

.

6 Runtime analysis

In this section we calculate, both theoretically and experimentally, the complexity of recovering a Boneh-
Boyen private key using the algorithms of Theorems 5.2 and 5.3, for various values of d. We also determine,
both theoretically and experimentally, the optimal values of d for a given p. To simplify the analysis, we
only consider divisors d of p − 1. In what follows, we refer to this algorithm as the “SDH algorithm” and
consider only the case of the basic scheme, where d+ 1 valid signatures are required (assuming that g1 is
not included in the public key). The running time and signature requirements for breaking the full scheme
are almost exactly twice as large as for the basic scheme.

10 David Jao and Kayo Yoshida

6.1 Experimental analysis

Using a 2.4 GHz Core 2 duo, we implemented the SDH algorithm on a collection of 14 different Barreto-
Naehrig curves [3] ranging in size from 32 bits to 60 bits, and compared its running time to that of Pollard’s
lambda and Pollard’s rho algorithms for discrete logarithms1. We chose Barreto-Naehrig curves because
they are highly suitable for pairing-based short signature schemes. For Cheon’s algorithm, we chose the
Pollard’s lambda variant of Cheon’s algorithm instead of the baby-step-giant-step variant or variants such
as Kozaki et al. [18]; the use of the lambda variant saves memory and is also necessary in order to benefit
from parallelization.

Implementing the SDH algorithm is straightforward. We wrote a small program based on the PBC li-
brary [19] to compute the products listed in Corollary 4.2. Our program is multithreaded and makes use of
multiple processor cores, with parallelization being achieved by dividing the main product into subproducts
and computing each subproduct separately. For Cheon’s algorithm, we used the existing sdhkangaroo
program [22], which is also based on PBC. The original sdhkangaroo program maintains a list of dis-
tinguished points, defined as those for which the MD5 hash of the point ends in a sufficiently long string
of zeros. To improve performance, we modified this program to change the distinguished points to those
for which the x-coordinate itself ends in a long string of zeros. For comparison purposes, we also con-
ducted trials of Pollard’s lambda and Pollard’s rho algorithms for discrete logarithms. Our implementation
of Pollard’s lambda algorithm was obtained by modifying the sdhkangaroo program, and for Pollard’s
rho algorithm we used the optimized implementation included in the MAGMA Computer Algebra Sys-
tem [20], based on Teske’s work [23]. All programs, except for the MAGMA implementation of Pollard’s
rho algorithm, supported multithreading and made use of both processor cores.

For each curve, we performed a number of trials of the SDH algorithm (at least 50 for each curve),
from which we determined empirically the optimal value of the divisor d to use in Cheon’s algorithm. In
general, this optimal value does not correspond to an actual divisor of p − 1, but using nearby divisors
we were able to estimate the hypothetical performance of the SDH algorithm at the optimal choice of d.
(Note that, even when the optimal value of d does not divide p − 1, near-optimal divisors almost always
exist, c.f. Section 6.3.) Figure 1 compares the measured performance of Pollard’s lambda and Pollard’s
rho algorithms against the empirically determined optimal runtime of the SDH algorithm for each curve.
Based on the best fit curves, we estimate that the SDH algorithm with the optimal d outperforms Pollard’s
lambda (resp., Pollard’s rho) algorithm for curve sizes greater than 32.5 bits (resp., 50.8 bits).

6.2 Theoretical analysis

We now calculate the theoretical cost of computing Boneh-Boyen private keys using the SDH algorithm.
Using an appropriately sized collection of distinguished points, the most optimized version of Pollard’s
lambda algorithm requires ≈ 2

√
p random walk steps [12]; our implementation, however, averaged 7.9

√
p

steps. Each step represents an elliptic curve scalar multiplication, and hence requires 1.5 log p elliptic curve
operations if naive methods are used. Over a prime field, each elliptic curve operation takes roughly 15 field
multiplications [12]. Hence, our running time for Cheon’s algorithm is roughly 7.9(

√
d+

√
p/d)(1.5 log p) ·

15Tp where Tp represents the cost of a field multiplication. In addition, we also need to compute a triplet
of the form g, gx, and gxd

. This requires three applications of Corollary 4.2, at a cost of ≈ 3d2Tp; however,
since almost all of the multiplications in each computation are identical, the true cost is only ≈ d2Tp. (Note
also that this step parallelizes linearly, since one can compute subproducts of the outer product on different
processors.) Thus the total cost t of the SDH algorithm is

t = (7.9(
√
d+

√
p/d)(1.5 log p) · 15 + d2)Tp. (1)

This cost is minimized by taking d = Θ(p
1
5 (log p)

2
5), yielding a corresponding overall running time of

Θ(p
2
5 (log p)

4
5Tp) for the SDH algorithm. In Figure 2 we compare the optimal values of d predicted by Equa-

1 All comparisons took place over the base field, i.e., the group G1 in the pairing e : G1 × G2 → GT . Such a
comparison is valid even though the public key in the Boneh-Boyen scheme lies in G2, because given a single
valid message-signature pair one can recover the secret key of the basic scheme using a discrete log in G1.

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 11

Pollard' s Λ

SDH algorithm

35 40 45 50 55 60
size HbitsL

10

100

1000

104
time HsecL

Pollard' s Ρ

SDH algorithm

35 40 45 50 55 60
size HbitsL

10

100

1000

104
time HsecL

Fig. 1: Log-log plots comparing the optimal running time of the SDH algorithm
to Pollard’s lambda (left) and Pollard’s rho (right) algorithms for discrete log,
for Barreto-Naehrig curves of various bit sizes.

curve size optimal d optimal d
(bits) (predicted) (observed)

32.95 1527 1173
34.68 1985 1545
37.20 2900 2351
40.03 4428 3773
42.05 5977 5676
43.98 7956 7599
46.24 11112 10722
47.34 13066 14508
49.81 18781 19873
51.82 25202 26564
54.23 35828 43795
56.04 46668 56469
57.95 61669 71572
59.97 82715 98733

Fig. 2: Table comparing the opti-
mal values of d predicted in Sec-
tion 6.2 vs. those observed in Sec-
tion 6.1.

tion (1) to those observed in Section 6.1. We remark that the asymptotic running time of Θ(p
2
5 (log p)

4
5Tp)

for optimal d is independent of the precise assumptions used in deriving Equation (1).

6.3 Existence of suitable divisors

Other than increasing the key length, the most obvious defense against the above attack is to use a curve
of order p for which p − 1 and p + 1 admit no divisors of suitable size. We can estimate the preva-
lence of such curves using Equation (1). Examining the graph of this equation reveals that the curve is
fairly flat for a wide range of values surrounding the optimal value of d. Hence, most sufficiently large
pairing-friendly curves admit a divisor d of p − 1 for which the SDH algorithm runs in nearly optimal
time. As an experiment, we enumerated for each of 280, 290, . . . , 2160 the 100 smallest Barreto-Naehrig
curves having at least that many points. Out of these 900 curves, all curves except one (the curve with
1461501641662054988059088728056207736278975404329 points) admit a divisor for which the runtime pre-
dicted by Equation (1) is within a factor of 4 of the optimal time. In addition, Ford [14] has shown
asymptotically that a large proportion of primes p admit a divisor d within the interval required for our al-
gorithm. These results indicate that pairing-friendly curves are unlikely to resist the SDH algorithm unless
specifically chosen with this property in mind.

7 Conclusion

In this paper, we show that the existential forgery of signatures for both the basic and full versions of the
Boneh-Boyen signature scheme can be reduced to the q-SDH problem via an algorithm which is quadratic
in q. This result establishes the equivalence of the q-SDH assumption and the security of Boneh-Boyen
signatures, thus resolving an open problem posed in [7, 17]. Together with Cheon’s solution to q-SDH, the
reduction algorithm allows us to recover Boneh-Boyen private keys in time O(p

2
5+ε) for groups of order p

whenever p± 1 satisfies certain divisibility properties.
It would be worthwhile to design a new short signature scheme whose security can be proved in the

standard model under a weaker assumption than q-SDH. Our proofs of equivalence rely on the fact that
the denominator in the exponent of g

1
x+m+yr is linear in both m and r. One natural starting point would

be to look for signature schemes with nonlinear denominators. One examples of such a scheme is given

12 David Jao and Kayo Yoshida

in [24], and another example is the scheme σ ← (g
1

x+mr+yr2

1 , r). Alternatively, one might hash the message
as in [6, §5] or [25], and try to give a security proof without random oracles. We emphasize that we have
not studied the security proofs for these schemes, nor have we made any systematic effort to examine the
security assumptions underlying them.

8 Acknowledgments

We thank Paulo S. L. M. Barreto, Daniel Brown, Steven Galbraith, Alfred Menezes, and Igor Shparlinski
for their helpful comments and suggestions.

References

1. Michael Artin. Algebra. Prentice Hall, United States edition, 1991.
2. Joseph Bak and Donald J. Newman. Complex Analysis. Springer, 2nd edition, 1996.
3. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In Selected areas

in cryptography, volume 3897 of Lecture Notes in Computer Science, pages 319–331. Springer, Berlin, 2006.
4. Dan Boneh and Xavier Boyen. Efficient selective-ID identity-based encryption without random oracles. In

Advances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 223–
238. Springer, 2004.

5. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Advances in Cryptology—
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 56–73. Springer, 2004.

6. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assumption in bilinear
groups. Journal of Cryptology, 21(2):149–177, 2008.

7. Xavier Boyen. The uber-assumption family – a unified complexity framework for bilinear groups. In 2nd Interna-
tional Conference on Pairing-based Cryptography—PAIRING 2008, volume 5209 of Lecture Notes in Computer
Science, pages 39–56. Springer, 2008. Available at http://www.cs.stanford.edu/∼xb/pairing08/.

8. Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures. In Proceedings
of PKC 2007, volume 4450 of Lecture Notes in Computer Science, pages 1–15. Springer, 2007.

9. Daniel R. L. Brown and Robert P. Gallant. The static diffie-hellman problem. Cryptology ePrint Archive:
Report 2004/306, 2004. http://eprint.iacr.org/2004/306.

10. James Ward Brown and Ruel V. Churchill. Complex Variables and Applications. McGraw-Hill, seventh edition,
2004.

11. Jung Hee Cheon. Security analysis of the Strong Diffie-Hellman problem. In Advances in Cryptology—
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 1–13. Springer, 2006.

12. Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, and Frederik
Vercauteren, editors. Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its
Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006.

13. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In
Proceedings of PKC 2005, volume 3386 of Lecture Notes in Computer Science, pages 416–431. Springer, 2005.

14. Kevin Ford. The distribution of integers with a divisor in a given interval. Ann. of Math. (2), 168(2):367–433,
2008.

15. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 2008.

16. Neal Koblitz and Alfred Menezes. Another look at generic groups. Advances in Mathematics of Communications,
1(1):13–28, 2007.

17. Neal Koblitz and Alfred Menezes. Another look at non-standard discrete log and Diffie-Hellman problems.
Journal of Mathematical Cryptology, 2(4):311–326, 2008.

18. Shunji Kozaki, Taketeru Kutsuma, and Kazuto Matsuo. Remarks on Cheon’s algorithms for pairing-related
problems. In Pairing 2007, volume 4575 of Lecture Notes in Computer Science, pages 302–316. Springer, 2007.

19. Ben Lynn. The Pairing-Based Cryptography Library, version 0.4.18, 2008. http://crypto.stanford.edu/
pbc/.

20. MAGMA Computational Algebra System. http://magma.maths.usyd.edu.au/magma/.
21. Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IEICE Trans. Fundamentals,

E85-A(2):481–84, 2002.

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 13

22. Joel Reardon. sdhkangaroo: A kangaroo attack against the strong Diffie Hellman problem, 2007. http:
//www.cs.uwaterloo.ca/∼jreardon/programs.html.

23. Edlyn Teske. On random walks for Pollard’s rho method. Math. Comp., 70(234):809–825, 2001.
24. Victor K. Wei and Tsz Hon Yuen. More short signatures without random oracles. Cryptology ePrint Archive,

Report 2005/463, 2005. http://eprint.iacr.org/2005/463.
25. Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An efficient signature scheme from bilinear pairings

and its applications. In Public Key Cryptography—PKC 2004, Lecture Notes in Computer Science, pages
277–290, 2004.

14 David Jao and Kayo Yoshida

A Appendix: Implementation results

We implemented the SDH algorithm for recovering Boneh-Boyen private keys over a collection of Barreto-
Naehrig curves [3] ranging in size from 32 to 60 bits. In this appendix we present the details of our
experimental setup and the results of our trials.

The SDH algorithm consists of two parts. The first part consists of calculating a triplet of values of the
form (g, gx, gxd

) given a Boneh-Boyen public key and d+1 message-signature pairs, via Corollary 4.2. Here
x is the corresponding Boneh-Boyen private key, and d is a divisor of p − 1, where p is the order of the
groups G1,G2,GT in the pairing. The second part consists of using Cheon’s p−1 algorithm (Theorem 5.1)
to compute x given the triplet (g, gx, gxd

). In what follows, we refer to the first part as the “reduction”
phase and the second part as the “Cheon’s algorithm” phase of the algorithm. In our context, the reduc-
tion phase requires Θ(d2) modular multiplications and Cheon’s algorithm requires Θ(

√
p/d) elliptic curve

scalar multiplications, with all other contributions to the running times being negligible. We used Joel
Reardon’s sdhkangaroo program [22], based on the PBC library [19], to implement Cheon’s algorithm
and Pollard’s lambda algorithm. For Pollard’s rho algorithm, a highly optimized implementation (based
on Teske’s work [23]) is included as part of the MAGMA Computer Algebra System [20]; we chose to use
this implementation rather than re-implement the algorithm ourselves. Although this implementation is
derived from a different code base, the running time is comparable to what we would expect based on the
outcome of our measurements of Pollard’s lambda algorithm, and we believe that the comparison between
these implementations remains valid and interesting.

All trials were performed on a 2.4 GHz Intel Core 2 Duo E4600 with 2GB RAM running Fedora 9.
Multithreading was used in the reduction phase, the Cheon’s algorithm phase, and in Pollard’s lambda
algorithm for discrete logarithms to distribute the workload equally among the two cores. For Pollard’s
rho algorithm, multithreading was not used, since the MAGMA program does not support it. We have
not attempted to correct for this discrepancy, since we prefer to report the actual numbers, and leave the
reader to perform such adjustments if desired (for example by dividing the numbers by two).

Recall that a Barreto-Naehrig curve is an elliptic curve over a prime field of the form y2 = x3 + b, with
cardinality equal to

36u4 + 36u3 + 18u2 + 6u+ 1

for some u. In general, we chose the smallest possible value of b; this constraint along with the value of u
suffices to uniquely specify the curve. Figure 3 lists, for each curve appearing in our experiments, the value
of u used to generate the curve, the size of the curve in bits, the list of divisors d of p − 1 that we used,
and for each divisor the running times of the two phases of the algorithm. For the running time of Cheon’s
algorithm, we report the average and standard deviation measured from ten trials of the sdhkangaroo
algorithm for each divisor. For the reduction phase, there is very little variation in the running time, and
hence we report for each divisor the running time measured for a single trial. We also report the estimated
optimal values of d and the total running time at the optimal value, using best fit curves of the form
c1

√
p/d and c2d2 + c3d for the Cheon’s algorithm and reduction phases, respectively. Figure 4 contains the

corresponding table for Pollard’s lambda and Pollard’s rho algorithms for discrete logarithm, along with
the observed values of d for which the SDH algorithm outperforms Pollard’s lambda and Pollard’s rho
algorithm respectively.

Figures 5 and 6 present the information from Figures 3 and 4 in graphical form. Figure 5 contains
quartile plots of the running times for Cheon’s algorithm on each curve, showing the average, min, max,
and interquartile range, together with the best fit curve. Figure 6 compares the running time of the SDH
algorithm with those of Pollard’s lambda and Pollard’s rho algorithms, using the best fit curves given in
Figure 5.

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 15

curve size
(in bits)

u d
average time for

standard
deviation

running time
total
time

optimal d
Cheon’s algorithm of reduction and running

(in seconds) phase (seconds) time t

32.95 123

1004 1.57 0.65 0.38 1.95

d = 1173
t = 1.50

1319 0.69 0.36 0.52 1.21
1394 0.58 0.26 0.55 1.13
1476 0.85 0.22 0.59 1.44
1506 0.59 0.18 0.60 1.19
2091 0.73 0.36 0.92 1.65
2259 0.60 0.27 1.02 1.62
2638 0.41 0.20 1.26 1.67
2788 0.81 0.57 1.40 2.21
3012 0.94 0.49 1.52 2.46
3957 0.38 0.17 2.37 2.75
4182 0.39 0.10 2.48 2.87
4267 0.36 0.14 2.56 2.92
4518 0.39 0.13 2.95 3.34
5276 0.48 0.20 3.58 4.06
6273 0.31 0.09 5.13 5.44
7914 0.28 0.14 6.96 7.24
8364 0.41 0.22 8.16 8.57
8534 0.33 0.17 7.91 8.24
9036 0.55 0.23 9.37 9.92
10291 0.33 0.13 10.87 11.20
11871 0.23 0.08 15.57 15.80
12546 0.26 0.08 15.71 15.97
12801 0.24 0.08 17.59 17.83
15828 0.35 0.14 26.64 26.99
17068 0.30 0.13 30.22 30.52

34.68 166

996 2.24 1.01 0.39 2.63

d = 1545
t = 2.28

1446 1.02 0.58 0.59 1.61
2892 1.91 0.95 1.44 3.35
20003 0.37 0.14 36.73 37.10
40006 0.28 0.12 135.01 135.29

37.20 257

1028 4.47 2.12 0.42 4.89

d = 2351
t = 4.32

1424 5.00 0.76 0.61 5.61
1691 2.45 1.73 0.76 3.21
2136 2.68 1.75 1.02 3.70
2848 6.11 2.32 1.52 7.63
3382 2.01 1.01 1.91 3.92
3779 2.47 1.15 2.21 4.68
4272 1.80 0.65 2.69 4.49
4883 1.62 0.78 3.36 4.98
5073 1.99 0.67 3.62 5.61
6168 2.28 0.78 4.63 6.91
6764 1.70 0.33 5.35 7.05
7558 1.58 0.88 6.53 8.11
8544 1.97 1.18 8.42 10.39
9766 1.87 0.79 10.07 11.94
10146 1.34 0.70 11.47 12.81
11337 1.47 0.46 12.85 14.32
12336 1.56 0.65 16.62 18.18
13528 1.23 0.62 17.60 18.83
15116 1.13 0.64 21.48 22.61

Fig. 3: Running times for the SDH algorithm.

16 David Jao and Kayo Yoshida

curve size
(in bits)

u d
average time for

standard
deviation

running time
total
time

optimal d
Cheon’s algorithm of reduction and running

(in seconds) phase (seconds) time t

40.03 420

2051 9.25 5.29 1.01 10.26

d = 3773
t = 9.12

2520 11.31 6.80 1.35 12.66
2930 5.82 3.19 1.65 7.47
3516 5.29 3.19 2.07 7.36
4102 4.76 2.03 2.61 7.37
5274 6.79 2.56 3.77 10.56
5860 6.13 3.13 4.46 10.59
6153 5.89 2.89 5.04 10.93
7032 5.40 3.95 5.90 11.30
8204 4.28 2.39 8.26 12.54
8790 4.41 1.95 8.56 12.97
10255 3.76 1.88 11.07 14.83

42.05 596

1192 30.47 19.57 0.55 31.02

d = 5676
t = 18.44

1788 18.64 11.79 0.89 19.53
1822 24.08 8.49 0.92 25.00
2733 21.28 4.97 1.52 22.80
3576 25.08 9.02 2.20 27.28
3644 14.81 4.65 2.29 17.10
5466 16.48 6.48 4.14 20.62
7288 19.63 5.81 6.77 26.40
10932 8.64 3.08 12.48 21.12
21864 11.36 6.21 48.25 59.61

43.98 833

2352 32.25 15.61 1.31 33.56

d = 7599
t = 30.56

2856 36.53 12.35 1.70 38.23
3332 32.52 14.03 2.11 34.63
3808 43.07 21.12 2.55 45.62
4704 47.02 15.60 3.45 50.47
5433 32.82 13.64 4.19 37.01
6664 22.26 12.54 5.96 28.22
7244 18.36 10.99 6.76 25.12
9996 16.68 9.30 10.95 27.63
10866 15.51 8.02 12.78 28.29
11424 22.49 14.02 13.75 36.24
12677 15.98 4.36 18.00 33.98
13328 14.17 6.48 19.30 33.47
14488 14.75 6.31 20.70 35.45

46.24 1233

2192 140.71 44.18 1.25 141.96

d = 10722
t = 60.14

2466 77.69 44.33 1.44 79.13
3288 68.83 33.46 2.11 70.94
3699 67.36 26.55 2.52 69.88
4384 68.28 15.23 3.17 71.45
4932 49.64 18.93 3.79 53.43
6576 63.70 21.68 6.04 69.74
7398 69.22 35.11 7.28 76.50
8768 92.30 45.57 9.08 101.38
9864 47.84 20.33 10.98 58.82
13152 41.90 15.41 17.80 59.70
14796 39.10 19.70 23.70 62.80
19728 24.62 13.09 40.90 65.52

Fig. 3: Running times for the SDH algorithm (continued).

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 17

curve size
(in bits)

u d
average time for

standard
deviation

running time
total
time

optimal d
Cheon’s algorithm of reduction and running

(in seconds) phase (seconds) time t

47.34 1492

2984 181.09 104.45 1.89 182.98

d = 14508
t = 99.38

4476 140.84 63.75 3.30 144.14
7087 88.54 28.38 6.84 95.38
8952 129.02 57.08 10.09 139.11
14714 72.46 33.93 21.99 94.45
21261 39.20 15.06 48.07 87.27
28348 44.80 20.82 72.58 117.38
42522 36.16 10.02 177.33 213.49
56696 67.22 31.42 267.78 335.00
85044 26.60 12.71 648.44 675.04

49.81 2289

2088 502.15 179.30 1.26 503.41

d = 19873
t = 174.95

2436 312.33 131.14 1.57 313.90
2994 295.97 152.87 1.97 297.94
3488 186.09 101.16 2.46 188.55
4032 240.02 97.29 2.97 242.99
5232 320.04 186.83 4.24 324.28
6496 237.38 125.92 5.90 243.28
7424 185.56 126.12 7.65 193.21
8352 232.65 89.76 9.27 241.92
9156 228.17 126.65 10.62 238.79
9744 267.98 113.66 11.10 279.08
10752 395.97 162.02 14.01 409.98
11976 177.22 71.87 15.72 192.94
12992 198.68 91.44 19.32 218.00
13952 164.80 102.68 23.63 188.43
14848 243.71 86.97 24.70 268.41
15968 142.30 72.06 27.94 170.24
17964 145.50 71.33 34.65 180.15
19433 179.55 61.06 36.46 216.01
22127 145.72 93.93 46.63 192.35
25288 184.08 82.86 65.08 249.16
28449 112.86 62.01 73.54 186.40
29232 106.86 49.87 92.76 199.62
32256 174.39 59.88 96.47 270.86
35928 80.81 48.72 113.13 193.94
37932 49.74 39.59 143.12 192.86
41856 98.42 35.73 150.84 249.26
44254 88.36 29.05 168.37 256.73
47904 70.61 28.55 196.79 267.40
50576 77.61 30.72 214.62 292.23
54391 69.85 29.28 247.10 316.95
57884 62.65 35.56 279.29 341.94
62784 69.64 23.07 323.61 393.25
66381 66.31 18.20 424.16 490.47
71856 61.42 19.85 421.50 482.92
75864 95.42 35.52 470.53 565.95
77952 75.55 37.68 498.27 573.82
83832 76.85 35.06 671.00 747.85
88508 69.20 34.94 635.71 704.91
95808 66.65 28.57 743.79 810.44
97664 62.52 31.60 904.66 967.18

Fig. 3: Running times for the SDH algorithm (continued).

18 David Jao and Kayo Yoshida

curve size
(in bits)

u d
average time for

standard
deviation

running time
total
time

optimal d
Cheon’s algorithm of reduction and running

(in seconds) phase (seconds) time t

51.82 3241

20461 215.30 108.79 40.79 256.09

d = 26564
t = 320.94

23384 303.41 185.10 52.52 355.93
25928 261.15 158.33 62.26 323.41
34262 228.84 88.91 117.28 346.12
38892 176.64 77.73 132.31 308.95
46768 262.05 138.55 186.08 448.13
51856 251.92 143.32 251.03 502.95
61383 154.63 64.46 312.11 466.74
68524 165.26 47.44 453.10 618.36
73154 120.97 77.30 437.14 558.11
77784 174.68 80.36 577.40 752.08
81844 159.18 68.87 603.36 762.54
102786 127.19 64.03 842.97 970.16

54.23 4918

14754 972.69 202.82 25.28 997.97

d = 43795
t = 812.99

20654 660.99 128.14 41.60 702.59
29508 1001.36 596.09 81.68 1083.04
30981 745.61 284.50 87.43 833.04
41308 1090.91 590.50 150.64 1241.55
56557 468.01 193.67 311.91 779.92
61962 416.84 203.31 320.34 737.18
113114 498.24 188.56 1033.22 1531.46

56.04 6732

8874 1929.99 1159.99 10.72 1940.71

d = 56469
t = 1407.48

12771 1505.63 680.92 18.23 1523.86
16082 1017.31 719.57 27.06 1044.37
20196 1106.45 535.75 44.70 1151.15
24123 894.96 497.72 63.08 958.04
27434 997.73 718.27 70.46 1068.19
32164 1300.73 586.14 94.25 1394.98
35496 1527.55 917.02 113.11 1640.66
40392 1898.90 714.81 147.81 2046.71
48807 992.79 365.96 204.12 1196.91
54868 755.08 342.15 254.70 1009.78
64328 1103.86 654.88 345.04 1448.90
68904 926.47 588.88 436.13 1362.60
78948 493.77 129.63 593.43 1087.20
84796 589.86 183.23 590.22 1180.08
96492 381.06 217.74 754.08 1135.14
102168 871.60 498.97 991.40 1863.00

57.95 9379

9379 4262.57 2535.77 11.90 4274.47

d = 71572
t = 2094.10

18758 2152.00 1043.85 35.89 2187.89
28137 2688.96 1530.03 84.10 2773.06
37516 4421.34 2711.74 138.67 4560.01
51377 1904.58 817.78 226.17 2130.75
56274 1865.67 409.99 310.73 2176.40
69947 1387.84 628.00 406.34 1794.18
102754 1382.66 916.93 861.20 2243.86
112548 1765.93 1326.17 1058.57 2824.50
139894 1008.50 557.78 1577.60 2586.10

Fig. 3: Running times for the SDH algorithm (continued).

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 19

curve size
(in bits)

u d
average time for

standard
deviation

running time
total
time

optimal d
Cheon’s algorithm of reduction and running

(in seconds) phase (seconds) time t

59.97 13308

27144 7351.51 3611.18 78.12 7429.63

d = 98733
t = 4029.20

39924 4047.05 1647.40 142.74 4189.79
57668 3473.59 1783.98 325.06 3798.65
64322 2807.24 1023.31 386.01 3193.25
79848 3777.75 1719.38 583.59 4361.34
86502 2524.81 989.76 721.42 3246.23
96483 2097.68 914.98 886.83 2984.51
115336 6044.95 2567.84 1190.53 7235.48
129753 3017.17 1694.44 1496.18 4513.35
173004 1822.12 1194.14 2414.70 4236.82

Fig. 3: Running times for the SDH algorithm (continued).

curve
size

(bits)

Pollard’s λ
avg. time
(seconds)

Pollard’s λ
std. dev.
(runtime)

Pollard’s λ
avg. # of

steps

Pollard’s λ
std. dev.

(# of steps)

Pollard’s ρ
avg. time
(seconds)

Pollard’s ρ
std. dev.
(runtime)

dλ
min dλ

max dρ
min dρ

max

32.95 1.19 0.78 598140.5 398893.1 0.82 0.47 - - - -
34.68 2.37 0.91 1191051.6 457466.8 1.01 0.40 1113 2073 - -
37.20 5.71 3.22 2817514.4 1595634.5 2.08 0.91 821 5034 - -
40.03 17.77 5.20 8680161.8 2552190.8 6.92 3.83 562 11645 - -
42.05 36.07 17.16 17541406.6 8394859.9 12.92 8.50 901 16279 - -
43.98 74.33 41.59 35980247.8 20099792.6 22.60 11.85 757 26022 - -
46.24 147.28 74.38 69746834.0 35363891.5 49.23 40.50 1108 35190 - -
47.34 224.91 79.84 105809907.7 37207371.2 61.53 51.45 1743 44667 - -
49.81 551.45 327.06 253471890.7 150399968.9 182.12 84.54 1253 74399 14195 26525
51.82 1174.83 565.79 536513434.4 259357762.7 311.32 117.00 1286 112618 - -
54.23 2843.83 2063.27 1289321991.2 938829405.4 861.28 540.66 2192 179523 29530 61046
56.04 4622.31 2772.68 2070262591.5 1244353765.0 1462.00 1318.38 3397 210101 44877 67577
57.95 n/a n/a n/a n/a 2458.46 1651.48 n/a n/a 35906 120406
59.97 n/a n/a n/a n/a 8671.82 5883.56 n/a n/a 13113 297745

Fig. 4: Observed running times of Pollard’s lambda and Pollard’s rho algorithms for discrete logarithms. The right
side of the table lists the observed minimum and maximum values of d for which the SDH algorithm outperforms
Pollard’s lambda and Pollard’s rho algorithm respectively. (Note: Information on the number of steps performed in
the random walk was not available for the MAGMA implementation of Pollard’s rho algorithm.)

20 David Jao and Kayo Yoshida

Fig. 5: Quartile plots of the running times for Cheon’s algorithm.

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 21

Fig. 5: Quartile plots of the running times for the Cheon’s algorithm (continued).

22 David Jao and Kayo Yoshida

Fig. 5: Quartile plots of the running times for the Cheon’s algorithm (continued).

Fig. 6: Comparison of running times for the SDH algorithm, Pollard’s lambda algorithm, and Pollard’s rho algorithm.

Boneh-Boyen signatures and the Strong Diffie-Hellman problem 23

Fig. 6: Comparison of running times for the SDH algorithm, Pollard’s lambda algorithm, and Pollard’s rho algorithm
(continued).

24 David Jao and Kayo Yoshida

Fig. 6: Comparison of running times for the SDH algorithm, Pollard’s lambda algorithm, and Pollard’s rho algorithm
(continued).

