The Security of Abreast-DM in the Ideal Cipher Model

Jooyoung Lee, Daesung Kwon

The Attached Institute of Electronics and Telecommunications Research Institute
Yuseong-gu, Daejeon, Korea 305-390
jlee05@ensec.re.kr,ds_kwon@ensec.re.kr

Abstract. In this paper, we give a security proof for Abreast-DM in terms of collision resistance and preimage resistance. As old as Tandem-DM, the compression function Abreast-DM is one of the most well-known constructions for double block length compression functions. The bounds on the number of queries for collision resistance and preimage resistance are given by $O(2^n)$. Based on a novel technique using query-response cycles, our security proof is simpler than those for MDC-2 and Tandem-DM. We also present a wide class of Abreast-DM variants that enjoy a birthday-type security guarantee with a simple proof.

1 Introduction

A cryptographic hash function takes a message of arbitrary length, and returns a bit string of fixed length. The most common way of hashing variable length messages is to iterate a fixed-size compression function according to the Merkle-Damgård paradigm. The underlying compression function can either be constructed from scratch, or be built upon off-the-shelf cryptographic primitives such as blockciphers. Recently, the blockcipher-based construction is attracting renewed interest, as many dedicated hash functions, including those most common in practical applications, exhibit serious security weaknesses [1, 6, 14, 15, 20, 24–26]. Conveniently choosing an extensively studied blockcipher in the blockcipher-based construction, one can easily transfer the trust in the existing algorithm to the hash function. This approach is particularly useful in highly constrained environments such as RFID systems, since a single implementation of a blockcipher can be used for both a blockcipher and a hash function. Compared to blockciphers, the most dedicated hash functions require significant amounts of state and the operations in their designs are not hardware friendly [3].

Compression functions based on blockciphers have been widely studied [2, 4, 8-11, 13, 16-19, 21-23]. The most common approach is to construct a 2n-to-n bit compression function using a single call to an n-bit blockcipher. However, such a function, called a $single\ block\ length\ (SBL)$ compression function, might be vulnerable to collision attacks due to its short output length. For example, one could successfully mount a birthday attack on a compression function based on AES-128 using approximately 2^{64} queries. This observation motivated substantial research on $double\ block\ length\ (DBL)$ compression functions, where the output length is twice the block length of the underlying blockciphers.

Unfortunately, it turned out that a wide class of DBL compression functions of rate 1 are not optimally secure in terms of collision resistance and preimage resistance [8, 9, 12]. The most classical DBL compression functions of rate less than 1 include MDC-2, MDC-4, TANDEM-DM and ABREAST-DM [5, 13]. In 2007, 20 years after its original proposal, Steinberger first proved the collision resistance of MDC-2 in the ideal cipher model [23]. The author showed that an adversary asking less than $2^{3n/5}$ queries has only a negligible chance of finding a collision. Motivated by this work, Fleischmann et. al. proved the security of TANDEM-DM [7]. Similar to MDC-2, the security of TANDEM-DM is estimated in terms of a parameter, say, α . Optimizing the parameter, they proved the collision resistance of TANDEM-DM up to the birthday bound. Currently, TANDEM-DM and the Hirose's scheme [11] are the only rate 1/2 DBL compression functions that are known to have a birthday-type security guarantee.

Results We give a security proof for ABREAST-DM in terms of collision resistance and preimage resistance. As old as TANDEM-DM, the compression function ABREAST-DM is known to be more advantageous than TANDEM-DM in that two encryptions involved can be computed in parallel. The bounds on the number of queries for collision resistance and preimage resistance are given by $O(2^n)$. Our security proof using certain cyclic structures, called query-response cycles, is much simpler than those for MDC-2 and TANDEM-DM. The query-response cycle technique also allows us to present a wide class of ABREAST-DM variants that enjoy a birthday-type security guarantee with a simple proof. It is shown that this class includes the Hirose's scheme [11] as a special case. We note, however, this technique does not apply directly to MDC-2 and TANDEM-DM, since two encryptions in these compression functions are computed in serial and hence it is infeasible to define query-response cycles. The underlying blockcipher of ABREAST-DM use 2n-bit keys, while MDC-2 accepts n-bit keys. For this reason, it seems to be natural that the security proof of MDC-2 is more challenging.

2 Preliminaries

General Notations For a positive integer n, we let $I_n = \{0,1\}^n$ denote the set of all bitstrings of length n. For two bitstrings A and B, A|B and \overline{A} denote the concatenation of A and B, and the bitwise complement of A, respectively. For a set U, we write $u \stackrel{\$}{\leftarrow} U$ to denote uniform random sampling from the set U and assignment to u.

Ideal Cipher Model For positive integers n and k, let

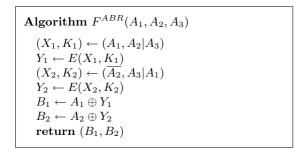
$$BC(n,k) = \{E : I_n \times I_k \to I_n : \forall K \in I_k, \ E(\cdot,K) \text{ is a permutation on } I_n\}.$$

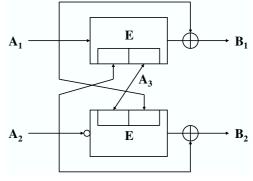
In the ideal cipher model, an (n, k)-blockcipher E is chosen from BC(n, k) uniformly at random. It allows for two types of oracle queries E(X, K) and $E^{-1}(Y, K)$ for $X, Y \in I_n$ and $K \in I_k$. Here, X, Y and K are called a plaintext, a ciphertext and a key, respectively. The response to an inverse query $E^{-1}(Y, K)$ is $X \in I_n$ such that E(X, K) = Y.

The Abreast-DM Compression Function In the ideal cipher model, the ABREAST-DM compression function

$$F^{ABR}:I_n^3\longrightarrow I_n^2$$

has oracle access to an ideal cipher $E \in BC(n,2n)$, and computes $F^{ABR}(A_1,A_2,A_3), (A_1,A_2,A_3) \in I_n^3$, by the algorithm described in Figure 1.





 ${\bf Fig.\,1.}$ The Abreast-DM compression function

Collision Resistance and Preimage Resistance Let $F := F^{ABR}$ be the ABREAST-DM compression function based on an ideal blockcipher $E \in BC(n, 2n)$, and let \mathcal{A} be an information-theoretic adversary with oracle access to E and E^{-1} . Then we execute the experiment $\mathbf{Exp}_{\mathcal{A}}^{\mathsf{coll}}$ described in Figure 2(a), in order to quantify the collision resistance of F. The experiment records the queries that the adversary \mathcal{A} makes into a query history \mathcal{Q} . A pair (X, K, Y) is in the query history if \mathcal{A} asks for E(X, K) and gets back Y, or it asks for $E^{-1}(Y, K)$ and gets back X. For $A = (A_1, A_2, A_3) \in I_n^2$ and $B = (B_1, B_2) \in I_n^2$, we write

$$A \vdash_{\mathcal{O}} B$$
,

if there exist query-response pairs $(X_1, K_1, Y_1), (X_2, K_2, Y_2) \in \mathcal{Q}$, satisfying the following equations.

$$(X_1, K_1) = (A_1, A_2 | A_3), (1)$$

$$(X_2, K_2) = (\overline{A_2}, A_3 | A_1),$$
 (2)

$$B_1 = A_1 \oplus Y_1, \tag{3}$$

$$B_2 = A_2 \oplus Y_2. \tag{4}$$

Informally, $A \vdash_{\mathcal{Q}} B$ means that the query history \mathcal{Q} determines the evaluation $F : A \mapsto B$. Now the *collision-finding advantage* of \mathcal{A} is defined to be

$$\mathbf{Adv}_F^{\mathsf{coll}}(\mathcal{A}) = \Pr\left[\mathbf{Exp}_{\mathcal{A}}^{\mathsf{coll}} = 1\right]. \tag{5}$$

The probability is taken over the random blockcipher E and \mathcal{A} 's coins (if any). For q > 0, we define $\mathbf{Adv}_F^{\text{coll}}(q)$ as the maximum of $\mathbf{Adv}_F^{\text{coll}}(\mathcal{A})$ over all adversaries \mathcal{A} making at most q queries.

The preimage resistance of F is quantified similarly using the experiment $\mathbf{Exp}_{\mathcal{A}}^{\mathsf{pre}}$ described in Figure 2(b). The adversary \mathcal{A} chooses a single target image $B \in I_n^2$ before it begins making queries to $E^{\pm 1}$. The preimage-finding advantage of \mathcal{A} is defined to be

$$\mathbf{Adv}_F^{\mathsf{pre}}(\mathcal{A}) = \mathsf{Pr}\left[\mathbf{Exp}_{\mathcal{A}}^{\mathsf{pre}} = 1\right]. \tag{6}$$

For q > 0, $\mathbf{Adv}_F^{\mathsf{pre}}(q)$ is the maximum of $\mathbf{Adv}_F^{\mathsf{pre}}(\mathcal{A})$ over all adversaries \mathcal{A} making at most q queries. The security definitions given in this section can be extended easily to any compression function built upon ideal primitives by appropriately defining the relation " $\vdash_{\mathcal{Q}}$ ".

```
Experiment \operatorname{Exp}^{\operatorname{coll}}_{\mathcal{A}}

E \stackrel{\$}{\leftarrow} BC(n,2n)

\mathcal{A}^{E,E^{-1}} updates \mathcal{Q}

if \exists A \neq A', B \text{ s.t. } A \vdash_{\mathcal{Q}} B \text{ and } A' \vdash_{\mathcal{Q}} B

then

output 1

else

output 0

(a) Collision resistance

(b) Preimage resistance
```

Fig. 2. Experiments for quantification of collision resistance and preimage resistance

3 Security of Abreast-DM

3.1 Query-response Cycle and Modified Adversary

Let $F := F^{ABR}$ be the Abreast-DM compression function based on a blockcipher $E \in BC(n, 2n)$, and let \mathcal{Q} be the query history obtained by oracle access to E and E^{-1} . Now we associate the

query history \mathcal{Q} with a direct graph \mathcal{G} on \mathcal{Q} , where $\overrightarrow{QQ'} \in \mathcal{G}$ if and only if $Q = (A_1, A_2 | A_3, Y_1)$ and $Q' = (\overline{A_2}, A_3 | A_1, Y_2)$ for some A_s 's and Y_t 's. A (direct) cycle in \mathcal{G} is called a *query-response cycle*. The following properties can be easily proved.

Property 1. If query-response pairs Q and Q' are obtained by the first blockcipher call and the second blockcipher call, respectively, in an evaluation of F, then $\overrightarrow{QQ'} \in \mathcal{G}$. Conversely, each edge in \mathcal{G} represents a valid evaluation of F.

Property 2. Each query-response cycle in \mathcal{G} is of length 2 or length 6. If $\Delta = (Q_1, \ldots, Q_6) \in \mathcal{G}$ is a cycle of length 6, then we have

$$\begin{aligned} Q_1 &= (A_1, A_2 | A_3, Y_1), & Q_2 &= (\overline{A_2}, A_3 | A_1, Y_2), & Q_3 &= (\overline{A_3}, A_1 | \overline{A_2}, Y_3), \\ Q_4 &= (\overline{A_1}, \overline{A_2} | \overline{A_3}, Y_4), & Q_5 &= (A_2, \overline{A_3} | \overline{A_1}, Y_5), & Q_6 &= (A_3, \overline{A_1} | A_2, Y_6), \end{aligned}$$

for some A_s 's and Y_t 's. If $\Delta = (Q_1, Q_2) \in \mathcal{G}$ is a cycle of length 2, then we have $Q_1 = (A_1, A_1 | \overline{A_1}, Y_1)$ and $Q_2 = (\overline{A_1}, \overline{A_1} | A_1, Y_2)$ for some A_1 , Y_1 and Y_2 . Here we see that the first three blocks of the query-response pairs are moving cyclically under the permutation

$$\pi: I_n^3 \longrightarrow I_n^3 (A_1, A_2, A_3) \longmapsto (\overline{A_2}, A_3, A_1).$$

Property 3. For query-response cycles Δ and Δ' , either $\Delta = \Delta'$ or $\Delta \cap \Delta' = \emptyset$.

Given an adversary \mathcal{A} with oracle access to E and E^{-1} , one can transform \mathcal{A} into an adversary \mathcal{B} that records its query history in terms of query-response cycles. The modified adversary \mathcal{B} is described in Figure 3. We can easily check the following properties of \mathcal{B} .

Property 4. If A makes at most q queries, then the corresponding adversary B makes at most q queries, and records at most q query-response cycles.

Property 5. $\mathbf{Adv}_F^{\mathsf{sec}}(\mathcal{A}) \leq \mathbf{Adv}_F^{\mathsf{sec}}(\mathcal{B}) \text{ for sec} \in \{\mathsf{coll}, \mathsf{pre}\}.$

3.2 Security Results

Given Property 5, we will analyze the security of the ABREAST-DM compression function with respect to the modified adversary \mathcal{B} . We denote the query history of \mathcal{B} by

$$\mathcal{Q}_{\Delta} = \{ \Delta^i : 1 \le i \le q \},\$$

where we write $\Delta^i=(Q_1^i,Q_2^i,Q_3^i,Q_4^i,Q_5^i,Q_6^i)$ or (Q_1^i,Q_2^i) for $1\leq i\leq q$. Here we assume that query-response pair Q_j^i is obtained after $Q_{j'}^i$ if j>j'.

Collision Resistance Let \mathcal{E} denote the event that \mathcal{B} makes a collision of F. Then, by definition, $\mathbf{Adv}_F^{\mathsf{coll}}(\mathcal{B}) = \mathsf{Pr}[\mathcal{E}]$. In order to estimate $\mathsf{Pr}[\mathcal{E}]$, we decompose \mathcal{E} as follows.

$$\mathcal{E} = \bigcup_{i=1}^{q} \left(\mathcal{E}^i \cup \bigcup_{j=1}^{i-1} \mathcal{E}^{i,j} \right), \tag{7}$$

where

$$\mathcal{E}^i \Leftrightarrow \text{two evaluations from a single cycle } \Delta^i \text{ determines a collision},$$
 (8)

$$\mathcal{E}^{i,j} \Leftrightarrow \text{two evaluations from } \Delta^i \text{ and } \Delta^j \text{ determine a collision.}$$
 (9)

Then it follows that

$$\Pr\left[\mathcal{E}\right] = \sum_{i=1}^{q} \left(\Pr\left[\mathcal{E}^{i}\right] + \sum_{j=1}^{i-1} \Pr\left[\mathcal{E}^{i,j}\right]\right). \tag{10}$$

```
Algorithm \mathcal{B}^{E,E^{-1}}
   Q_{A} \leftarrow \emptyset
   Run A
   if A makes a fresh query for E(A_1, A_2|A_3) then
         Make queries for
                                                                                      Y_3 = E(\overline{A_3}, A_1 | \overline{A_2}),
          Y_1 = E(A_1, A_2|A_3), 	 Y_2 = E(\overline{A_2}, A_3|A_1),
          Y_4 = E(\overline{A_1}, \overline{A_2}|\overline{A_3}), \quad Y_5 = E(A_2, \overline{A_3}|\overline{A_1}),
                                                                                      Y_6 = E(A_3, \overline{A_1}|A_2),
         Q_{\Delta} \leftarrow Q_{\Delta} \cup \{\Delta\} (\Delta=the cycle defined by the above six queries)
         Return Y_1 to \mathcal{A}
   else if A makes a fresh query for E^{-1}(Y_1, A_2|A_3) then
        Make queries for
         A_1 = E^{-1}(Y_1, A_2|A_3), \quad Y_2 = E(\overline{A_2}, A_3|A_1), \quad Y_3 = E(\overline{A_3}, A_1|\overline{A_2}),
         Y_4 = E(\overline{A_1}, \overline{A_2}|\overline{A_3}),
                                                 Y_5 = E(A_2, \overline{A_3}|\overline{A_1}), \quad Y_6 = E(A_3, \overline{A_1}|A_2),
         \mathcal{Q}_{\Delta} \leftarrow \mathcal{Q}_{\Delta} \cup \{\Delta\}
         Return A_1 to A
         Return the response using query history Q_{\Delta}
```

Fig. 3. Modified algorithm \mathcal{B} . A query is called "fresh" if its response is not obtained from the query history of \mathcal{B}

Lemma 1. Let $N' = 2^n - 6q \ge 15$ and $1 \le i < j \le q$. Then, 1. $\Pr[\mathcal{E}^i] \le 1/N'$, 2. $\Pr[\mathcal{E}^{i,j}] \le 36/(N')^2$.

Proof. Inequality 1: First, assume that Δ^i consists of two distinct query-response pairs. A collision within this cycle implies that $Q_1^i = (A_1, A_1 | \overline{A_1}, Y_1), Q_2^i = (\overline{A_1}, \overline{A_1} | A_1, Y_2)$ and $(A_1 \oplus Y_1, \overline{A_1} \oplus Y_2) = (\overline{A_1} \oplus Y_2, A_1 \oplus Y_1)$ for some A_1, Y_1 and Y_2 . Since the second query-response pair Q_2^i is obtained by a forward query, and Y_2 should be equal to $\overline{Y_1}$, the probability that this type of collision occurs is not greater than 1/N'.

Next, assume that Δ^i consists of six distinct query-response pairs. Suppose that, say, $\overline{Q_1^iQ_2^i}$ and $\overline{Q_2^iQ_3^i}$ determines a collision. With the notations in Property 2, it should be the case that $(A_1 \oplus Y_1, \overline{A_2} \oplus Y_2) = (\overline{A_2} \oplus Y_2, \overline{A_3} \oplus Y_3)$. In this case, we have $Y_2 = A_1 \oplus Y_1 \oplus \overline{A_2}$ and $Y_3 = \overline{A_2} \oplus Y_2 \oplus \overline{A_3}$. The probability that Y_2 and Y_3 satisfy these equations is not greater than $(1/N')^2$. The same argument applies to every pair of edges in Δ^i . Since the number of such pairs is $\binom{6}{2} = 15$ and $15/(N')^2 \leq 1/N'$ for $N' \geq 15$, the first inequality is proved.

Inequality 2: Let $\overrightarrow{Q_h^i Q_{h+1}^i}$ and $Q_{h'}^j Q_{h'+1}^j$ be edges contained in Δ^i and Δ^j , respectively. Then we can write

$$\begin{aligned} Q_h^i &= (A_1, A_2 | A_3, Y_1), & Q_{h+1}^i &= (\overline{A_2}, A_3 | A_1, Y_2), \\ Q_{h'}^j &= (A_1', A_2' | A_3', Y_1'), & Q_{h'+1}^j &= (\overline{A_2'}, A_3' | A_1', Y_2'), \end{aligned}$$

for some A_s 's, A_s' 's, Y_t 's and Y_t' 's. If two edges $\overrightarrow{Q_h^i Q_{h+1}^i}$ and $\overrightarrow{Q_{h'}^j Q_{h'+1}^j}$ determine a collision, then it should be the case that $(A_1 \oplus Y_1, \overline{A_2} \oplus Y_2) = (A_1' \oplus Y_1', \overline{A_2'} \oplus Y_2')$, or equivalently $Y_1' = A_1 \oplus Y_1 \oplus A_1'$ and $Y_2' = \overline{A_2} \oplus Y_2 \oplus \overline{A_2'}$. The probability that such an event occurs is not greater than $(1/N')^2$. Since each cycle contains at most 6 edges, we obtain $\Pr\left[\mathcal{E}^{i,j}\right] \leq 36/(N')^2$.

By Lemma 1, equality (10) and Property 5, we obtain the following theorem.

Theorem 1. Let F^{ABR} be the compression function ABREAST-DM and let q > 0. Then,

$$\mathbf{Adv}_{F^{ABR}}^{\mathsf{coll}}(q) \le \frac{q}{(2^n - 6q)} + \frac{18q^2}{(2^n - 6q)^2}.$$

Preimage Resistance Suppose that a modified adversary \mathcal{B} is given a target image $B = (B_1, B_2)$. Let \mathcal{E} denote the event that \mathcal{B} makes an evaluation $F(A_1, A_2, A_3) = (B_1, B_2)$ for some A_s 's. Then, by definition, $\mathbf{Adv}_F^{\mathsf{pre}}(\mathcal{B}) = \mathsf{Pr}[\mathcal{E}]$. Define

$$\mathcal{E}^i \Leftrightarrow \Delta^i \text{ determines a preimage of } B.$$
 (11)

Then it follows that

$$\Pr\left[\mathcal{E}\right] = \sum_{i=1}^{q} \Pr\left[\mathcal{E}^{i}\right]. \tag{12}$$

Let $\overrightarrow{Q_h^i Q_{h+1}^i}$ be an edge contained in Δ^i . Then we can write $Q_h^i = (A_1, A_2 | A_3, Y_1)$ and $Q_{h+1}^i = (\overline{A_2}, A_3 | A_1, Y_2)$ for some A_s 's and Y_t 's. If $\overrightarrow{Q_h^i Q_{h+1}^i}$ determines a preimage of $B = (B_1, B_2)$, then it should be the case that $(A_1 \oplus Y_1, \overline{A_2} \oplus Y_2) = (B_1, B_2)$, or equivalently $Y_1 = B_1 \oplus A_1$ and $Y_2 = B_2 \oplus \overline{A_2}$. The probability that such an event occurs is not greater than $(1/N')^2$. Since each cycle contains at most 6 edges, we obtain $\Pr[\mathcal{E}^i] \leq 6/(N')^2$ for $1 \leq i \leq q$, and the following theorem

Theorem 2. Let F^{ABR} be the compression function ABREAST-DM and let q > 0. Then,

$$\mathbf{Adv}_{F^{ABR}}^{\mathsf{pre}}(q) \le \frac{6q}{(2^n - 6q)^2}.$$

4 Abreast-DM Variants

In this section, we present a wide class of ABREAST-DM variants that enjoy a birthday-type security guarantee. Let π be a permutation on $I_n^3 (\equiv I_n \times I_n^2)$ such that every cycle in π is of length $2 \leq l \leq L$ for a positive integer L. Then we can associate the permutation π with an ABREAST-DM variant F_{π}^{ABR} as follows.

$$F_{\pi}^{ABR}: I_n^3 \longrightarrow I_n^2$$

$$(A_1, A_2, A_3) \longmapsto (E(X_1, K_1) \oplus X_1, E(X_2, K_2) \oplus X_2),$$

$$(13)$$

where $(X_1, K_1) = (A_1, A_2 | A_3)$ and $(X_2, K_2) = \pi(A_1, A_2, A_3)$. An ABREAST-DM variant is illustrated in Figure 4. By essentially the same argument as the previous section, we can prove the following theorem.

Theorem 3. Let F_{π}^{ABR} be the compression function defined in (13), and let $2^n \geq q + {L \choose 2}$. Then,

$$\begin{split} \mathbf{Adv}^{\mathsf{coll}}_{F_\pi^{ABR}}(q) &\leq \frac{q}{(2^n - Lq)} + \frac{L^2 q^2}{2(2^n - Lq)^2}, \\ \mathbf{Adv}^{\mathsf{pre}}_{F_\pi^{ABR}}(q) &\leq \frac{Lq}{(2^n - Lq)^2}. \end{split}$$

If π contains no cycle of length 2, then

$$\mathbf{Adv}^{\mathsf{coll}}_{F_{\pi}^{ABR}}(q) \leq rac{L^2(q+q^2)}{2(2^n-Lq)^2}.$$

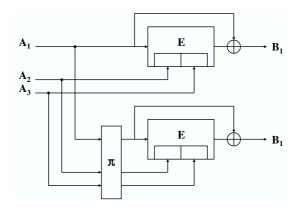


Fig. 4. ABREAST-DM variant

We conclude this section with some examples.

Example 1. Let $\pi:(A_1,A_2,A_3)\mapsto (A_1\oplus C,A_2,A_3)$ for a constant $C\in I_n$. Then F_{π}^{ABR} is reduced to the Hirose's scheme [11].

Example 2. Let $\pi:(A_1,A_2,A_3)\mapsto (\overline{A_1},A_3,\overline{A_2})$. Then every cycle in π is of length 4. By Theorem 3, we have

$$\mathbf{Adv}^{\mathsf{coll}}_{F_\pi^{ABR}}(q) \le rac{8(q+q^2)}{(2^n-4q)^2}.$$

In numerical terms with n = 128, any adversary asking less than $2^{125.0}$ queries cannot find a collision with probability greater than 1/2.

5 Conclusion

In this paper, we analyzed collision resistance and preimage resistance of ABREAST-DM with a novel technique using query-response cycles. As a result, we have shown that ABREAST-DM is both collision resistant and preimage resistant up to $O(2^n)$ query complexity. With essentially the same proof as ABREAST-DM, we also presented a wide class of ABREAST-DM variants that enjoy a birthday-type security guarantee. We note that, however, our result for preimage resistance might not be optimal, since a truly random function with a 2n-bit output would require $O(2^{2n})$ queries to find any preimage. For this reason, it will be an interesting further research to improve the security proof for premiage resistance.

References

- 1. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby. Collisions of SHA-0 and reduced SHA-1. Eurocrypt 2005, LNCS 3494, pp. 36–57, Springer-Verlag, 2005.
- 2. J. Black, M. Cochran and T. Shrimpton. On the impossibility of highly-efficient blockcipher-based hash functions. Eurocrypt 2005, LNCS 3494, pp. 526–541, Springer-Verlag, 2005.
- 3. A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw and Y. Seurin. Hash functions and RFID tags: mind the gap. CHES 2008, LNCS 5154, pp. 283–299, Springer-Verlag, 2008.
- 4. J. Black, P. Rogaway and T. Shrimpton. Black-box analysis of the block-cipher-based hash-function construction from PGV. Crypto 2002, LNCS 2442, pp. 320–325, Springer-Verlag, 2002.
- 5. B. Brachtl, D. Coppersmith, M. Heyden, S. Matyas, C. Meyer, J. Oseas, S. Pilpel and M. Schilling. Data authentication using modification detection codes based on a public one-way encryption function. US Patent #4,908,861. Awarded March 13, 1990 (filed August 28, 1987).

- De. Canniere and C. Rechberger. Preimages for reduced SHA-0 and SHA-1. Crypto 2008, LNCS 5157, pp. 179-202, Springer-Verlag, 2008.
- E. Fleischmann, M. Gorski and S. Lucks. On the security of TANDEM-DM. Preproceedings of FSE 2009, pp. 85–105, 2009.
- 8. M. Hattori, S. Hirose and S. Yoshida. Analysis of double block length hash functions. IMA 2003, LNCS 2898, pp. 290–302, Springer-Verlag, 2003.
- 9. S. Hirose. A security analysis of double-block-length hash functions with the rate 1. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E89-A, NO. 10, pp. 2575–2582, 2006.
- 10. S. Hirose. Provably secure double-block-length hash functions in a black-box model. ICISC 2004, LNCS 3506, pp. 330–342, Springer-Verlag, 2005.
- S. Hirose. Some plausible construction of double-block-length hash functions. FSE 2006, LNCS 4047, pp. 210–225, Springer-Verlag, 2006.
- 12. L. R. Knudsen, J. L. Massey and B. Preneel. Attacks on fast double block length hash functions. Journal of Cryptology, Vol. 11, NO. 1, pp. 59–72, 1998.
- 13. X. Lai and J. L. Massey. Hash function based on block ciphers. Eurocrypt 1992, LNCS 658, pp. 55–70, Springer-Verlag, 1993.
- 14. G. Leurent. MD4 is not one-way. FSE 2008, LNCS 5086, pp. 412-428, Springer-Verlag, 2008.
- 15. F. Mendel, N. Pramstaller, C. Rechberger and V. Rijmen. Analysis of step-reduced SHA-256. FSE 2006, LNCS 4047, pp. 126–143, Springer-Verlag, 2006.
- 16. B. Preneel, R. Govaerts and J. Vandewalle. Hash functions based on block ciphers: A synthetic approach. Crypto 1993, LNCS 773, pp. 368–378, Springer-Verlag, 1994.
- 17. T. Ristenpart and T. Shrimpton. How to build a hash function from any collision-resistant function. Asiacrypt 2007, LNCS 4833, pp. 147–163, Springer-Verlag, 2007.
- 18. P. Rogaway and J. Steinberger. Constructing cryptographic hash functions from fixed-key blockciphers. Crypto 2008, LNCS 5157, pp. 433–450, Springer-Verlag, 2008.
- P. Rogaway and J. Steinberger. Security/efficiency tradeoffs for permuation-based hashing. Eurocrypt 2008, LNCS 4965, pp. 220–236, Springer-Verlag, 2008.
- Y. Sasaki and K. Aoki. Finding preimages in full MD5 faster than exhaustive search. Eurocrypt 2009, LNCS 5479, pp. 134–152, Springer-Verlag, 2008.
- 21. T. Shrimpton and M. Stam. Building a collision-resistant function from non-compressing primitives. ICALP 2008, LNCS 5126, pp. 643–654, Springer-Verlag, 2008.
- 22. M. Stam. Beyond uniformity: Better security/efficiency tradeoffs for compression functions. Crypto 2008, LNCS 5157, pp. 397–412, Springer-Verlag, 2008.
- 23. J. Steinberger. The collision intractability of MDC-2 in the ideal-cipher model. Eurocrypt 2007, LNCS 4515, pp. 34–51, Springer-Verlag, 2008.
- 24. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu. Cryptanalysis of the hash functions MD4 and RIPEMD. Eurocrypt 2005, LNCS 3494, pp. 1–18, Springer-Verlag, 2005.
- X. Wang, X. Lai and H. Yu. Finding collisions in the full SHA-1. Crypt0 2005, LNCS 3621, pp. 17–36, Springer-Verlag, 2005.
- 26. X. Wang and H. Yu. How to break MD5 and other hash functions. Eurocrypt 2005, LNCS 3494, pp. 19–35, Springer-Verlag, 2005.