
How to Hash into Elliptic Curves?

Thomas Icart1,2

1Sagem Sécurité
2Université du Luxembourg
thomas.icart@m4x.org

Abstract. We describe a new explicit function that given an elliptic curve E defined over Fpn , maps elements
of Fpn into E in deterministic polynomial time and in a constant number of operations over Fpn . The function
requires to compute a cube root. As an application we show how to hash deterministically into an elliptic
curve.

1 Introduction

Some elliptic curve cryptosystems require to hash into an elliptic curve, for instance the Boneh-Franklin
identity based encryption scheme [1]. In this scheme, a particular supersingular elliptic curve is used,
for which there exists a one-to-one mapping f from the base field Fp to the curve. This enables to hash
using f(h(m)) where h is a classical hash function.

Password-based authentication protocols give another context where hashing into an elliptic curve
is sometimes required. For instance, the SPEKE (Simple Password Exponential Key Exchange) [6] and
the PAK (Password Authenticated Key exchange) [4] protocols both require a hash algorithm to map
the password into a point of the curve. However for ordinary curves the classical approach is inherently
probabilistic; this implies that the number of operations required to hash the password may depend on
the password itself. As shown in [3] this can lead to a timing attack. Therefore, it would be useful to be
able to hash into a curve in a constant number of operations.

The first algorithm mapping Fpn into an elliptic curve in deterministic polynomial time was published
by Shallue and Woestijne in ANTS 2006 [9]. The algorithm is based on Skalba’s equality [12] and uses
a modification of the Tonelli-Shanks algorithm for computing square roots; the algorithm runs in time
O(log4 q) for any field size q = pn, and in time O(log3 q) when q = 3 mod 4.

In this paper, we describe another algorithm that given any elliptic curve E defined over Fpn , maps
elements of Fpn into E in deterministic polynomial time, when pn = 2 mod 3. The new algorithm is
based on a rational, explicit function from Fpn to E, which can be implemented in O(log3 q) time and a
constant number of operations over Fpn . Our technique is based on computing a cube root and is simpler
than the Shallue and Woestijne algorithm.

As an application we show how to hash deterministically and efficiently into an elliptic curve. We
provide two different constructions. Our first construction is one-way when the underlying hash function
is one-way. The second construction additionally achieves collision resistance when the underlying hash
function is collision resistant.

? An extended abstract of this paper will appear at crypto 2009. This is the full version.

2

1.1 Related Works

We give a brief description of existing techniques to hash into elliptic curves. An elliptic curve over a
field Fpn where p > 3 is defined by a Weierstrass equation:

Y 2 = X3 + aX + b (1)

where a and b are elements of Fpn . Throughout this paper, we note Ea,b the curve associated to these
parameters. It is well known that the set of points forms a group; we denote by Ea,b(Fpn) this group and
by N its order. We also note q = pn: in particular Fq is the field of pn elements.

‘Try-and-Increment’ Method. The algorithm is described in [2] and works as follows:

Input: u an integer.
Output: Q, a point of Ea,b(Fq).

1. For i = 0 to k − 1
(a) Set x = u+ i
(b) If x3 + ax+ b is a quadratic residue in Fq, then return Q = (x, (x3 + ax+ b)1/2)

2. end For
3. Return ⊥

Heuristically, the algorithm fails to return a point for a fraction 2−k of the inputs, where k is a
security parameter. One drawback of the algorithm is that the number of operations is not constant.
Indeed the number of steps of the algorithm depends on the input u: approximately half of the u are
encoded within 1 step, one fourth within 2 steps, etc. In practice, if the input u has to remain secret,
this can lead to a timing attack.

A simple countermeasure consists in outputting the point Q only after the end of the For loop so
that the number of steps remains constant. However even with this countermeasure, the running time
is not necessarily constant. Namely, if the Legendre symbol is used to determine whether x3 + ax+ b is
a quadratic residue, such operation takes O(log2 q) time using quadratic reciprocity laws but in general
the number of operations is not constant and depends on the input u. Alternatively, one can compute
the Legendre symbol using an exponentiation:(

z
q

)
= z(q−1)/2.

Then the numbers of operations is constant but the running time for computing the Legendre symbol is
now O(log3 q).

To summarize, if we do not use any countermeasure then the average running time is O(log3 q) due
to the square root computation which takes O(log3 q) when q = 3 mod 4. If we use a constant number
of steps k with k = O(log q), while computing the Legendre symbol efficiently, the running time is still
k · O(log2 q) +O(log3 q) = O(log3 q); however one might still be vulnerable to a timing attack. Finally,
if we want to have a constant number of operations, one can use the exponentiation method to compute
the Legendre symbol; however the running time becomes k · O(log3 q) + O(log3 q) = O(log4 q). In this
paper, we describe an algorithm with running time O(log3 q) and constant number of operations1.
1 In principle, it should be possible to implement the ‘try-and-increment’ method in constant time and complexityO(log3 q).

For this, one should monitor the running time and eventually use dummy operations. However this could be cumbersome
to implement in practice.

3

The ‘Twisted’ Curves. Another technique consists in using a curve and its twist as suggested in [5].
Given a curve defined by equation (1), one can define the twisted curve of equation

cY 2 = X3 + aX + b

where c is a quadratic non-residue in Fq. Then any x ∈ Fq is either the abscissa of a point of the original
curve or its twist.

One drawback is that a modification of the cryptosystem is required to hide to the adversary which
curve is used. In other words, this hashing technique cannot be used as a black box. Another drawback
is that it doubles the computation time because the same computations must be performed separately
on both curves.

Supersingular Curves. A curve Ea,b is called supersingular when N = q+ 1. When q 6= 1 mod 3, the
map x 7→ x3 is a bijection, therefore the curves of equations

Y 2 = X3 + b

are supersingular. One can then define the encoding

f : u 7→ ((u2 − b)1/3, u) (2)

and then the hash function
H : m 7→ ((h(m)2 − b)1/3, h(m))

where h is a classical hash function.

However, the discrete logarithm on these curves is much easier than for ordinary curves. Indeed, such
curves have an efficient computable pairing which enables to map the discrete logarithm problem onto a
finite field; this is the MOV attack [7]. Therefore in order to avoid this attack, much larger parameters
must be used. When no pairing operation is required, it is therefore more efficient to use ordinary curves.

The Shallue-Woestijne Algorithm. In ANTS 2006, Andrew Shallue and Christian van de Woestijne
have proposed a new algorithm, that generates elliptic curve points in deterministic polynomial time [9].

Let f(x) = x3 + ax+ b. The algorithm is based on the Skalba’s equality [12]: there exists four maps
X1(t), X2(t), X3(t), X4(t) such that

f(X1(t)) · f(X2(t)) · f(X3(t)) = X4(t)2.

Then in a finite field, for a fixed parameter t, at least one of the f(Xi(t)) must be a quadratic residue,
which implies that this Xi(t) is an abscissa of a point of the elliptic curve y2 = f(x).

The computation of X1(t), X2(t), X3(t), X4(t) and the choice amongst the Xi(t) require to compute
square roots in Fq. Computing square roots in Fq can be done in probabilistic polynomial time using
the Tonelli-Shanks algorithm. Thanks to the Skalba equality, the authors of [9] show how to do it
deterministically using a modification of the Tonelli-Shanks algorithm, in time O(log4 q). We note that
for q = 3 mod 4, computing a square root is simply an exponentiation, which takes O(log3 q). Therefore
the Shallue-Woestijne algorithm runs in time O(log4 q) for any field size q = pn, and in time O(log3 q)
when q = 3 mod 4.

4

Using H(m) = h(m).G We note that for most protocols, it is not possible to hash using H(m) =
h(m).G where h(m) ∈ Z and G is a generator of the group of points of the elliptic curves. Namely in this
case, the discrete logarithm of H(m) with respect to G is known, which makes most protocols insecure.
For example, it is easy to see that for Boneh-Franklin identity encryption scheme, the attacker can then
decrypt any ciphertext. This remains true if we use H(m) = h1(m).G1 + h2(m).G2 or any such linear
combination; in this case, the attacker can compute one Boneh-Franklin private key from a set of other
private keys by solving a linear system.

2 An explicit Encoding from Fq to E(Fq)

We consider the curve Ea,b : Y 2 = X3 + aX + b over the field Fpn where p > 3 and pn = 2 mod 3. In
these finite fields, the function

x 7→ x3

is a bijection with inverse function
x 7→ x1/3 = x(2pn−1)/3.

This enables to create a simple parametrization of a subset of the elliptic-curve Ea,b(Fpn). To our know-
ledge, this parametrization is new. Let

fa,b : Fpn 7→ Ea,b

u 7→ (x, y)

where

x =
(
v2 − b− u6

27

)1/3

+
u2

3
y = ux+ v

where

v =
3a− u4

6u
.

For u = 0, we fix fa,b(0) = O, the neutral element of the elliptic curve.

Lemma 1. Let Fpn be a field where pn = 2 mod 3 and p > 3. For any u ∈ Fpn, fa,b(u) is a point of
Ea,b(Fpn) : Y 2 = X3 + aX + b.

Proof. For u 6= 0, let (x, y) = fa,b(u). From the definition of x:(
x− u2

3

)3

= v2 − b− u6

27
.

This expands into:

x3 − u2x2 +
u4

3
x+ b− v2 = 0.

5

Since u4/3 = a− 2uv, this can be rewritten into

x3 − u2x2 + (a− 2uv)x+ b− v2 = 0

which leads to

x3 + ax+ b = u2x2 + 2uvx+ v2 = (ux+ v)2

and finally x3 + ax+ b = y2. ut

We present a similar result in characteristic 2 in appendix A.

Remark 1. We note that if x 7→ x3 is not a bijection, but (v2 − b − u6/27) is a cube in Fq, we can still
use the formulas to compute (x, y) ∈ Ea,b.

3 Properties of our new Encoding fa,b

Lemma 2. The function fa,b can be implemented in deterministic polynomial time, with O(log3 q) run-
ning time and a constant number of operations over Fq.

Proof. When q = 2 mod 3, computing x 7→ x1/3 is an exponentiation with exponent (2q−1)/3. This can
be implemented in a constant number of operations over Fq. We also need to compute v = (3a−u4)/6u,
which requires to compute 1/u = uq−2, which can also be done in a constant number of operations over
Fq. The total running time is then O(log3 q). ut

In the following, we show how to compute f−1
a,b (P) given a point P . This will be used to show the

one-wayness and collision resistance properties of the resulting hash function (see Section 4).

Lemma 3. Let P = (x, y) be a point on the curve Ea,b. The solutions us of fa,b(us) = P are the solutions
of the polynomial equation:

u4 − 6u2x+ 6uy − 3a = 0. (3)

Proof. The proof is very similar to the proof of Lemma 1. We write v = 3a−u4

6u . We show that the two
systems are equivalent:{

y2 = x3 + ax+ b
u4 − 6u2x+ 6uy − 3a = 0

⇔

{(
x− u2

3

)3
= v2 − b− u6

27

y = ux+ v

From the definition of fa,b, this proves the result of the Lemma.

We have: {
y2 = x3 + ax+ b

u4 − 6u2x+ 6uy − 3a = 0
⇔
{
y2 = x3 + ax+ b
y = ux+ v

⇔
{
u2x2 + 2uvx+ v2 = x3 + ax+ b

y = ux+ v
⇔
{
x3 − u2x2 + (a− 2uv)x+ b− v2 = 0

y = ux+ v

⇔
{
x3 − u2x2 + u4

3 x+ b− v2 = 0
y = ux+ v

⇔

{(
x− u2

3

)3
= v2 − b− u6

27

y = ux+ v

ut

6

Lemma 4. f−1
a,b (P) is computable in polynomial time and

∣∣∣f−1
a,b (P)

∣∣∣ ≤ 4, for all P ∈ Ea,b,

Proof. Lemma 3 ensures that to compute f−1
a,b , it is sufficient to solve a degree 4 equation over Fq. Solving

polynomial equations of degree d over a finite field can be solved in O(d2 log3 q) binary operations using
the Berlekamp algorithm [11]. For this reason, f−1

a,b is computable in polynomial time. Furthermore, since
the pre-images are solution of a degree 4 equation over Fq, there are at most 4 solutions for any point

P , which implies that
∣∣∣f−1

a,b (P)
∣∣∣ ≤ 4. ut

From
∣∣∣f−1

a,b (P)
∣∣∣ ≤ 4 we obtain that our function fa,b generates at least a constant fraction of the

elliptic-curve points:

Corollary 1. Let Ea,b be a curve over Fq, where q = pn with p > 3 and pn = 2 mod 3. We have
q

4
≤ |Im(fa,b)| ≤ q

The bounds for |Im(fa,b)| are not tight. We make the following conjecture:

Conjecture 1. There exists a constant λ such that for any q, a, b∣∣∣∣|Im(fa,b)| −
5
8
|Ea,b(Fq)|

∣∣∣∣ ≤ λ√q
In the following, we motivate our conjecture. From lemma 3, the size of Im(fa,b) depends on the existence
of a solution of the equation u4 − 6u2x + 6uy − 3a = 0 for a given point (x, y) of Ea,b(Fq). A degree 4
polynomial has no root if and only if it is irreducible or if it is the product of two degree 2 irreducible
polynomials. Over any finite field Fq with large q, it is known that random polynomials of degree d
are irreducible with asymptotic probability 1/d as q goes to infinity [8]. For this reason, there exist

approximately q2/2 irreducible degree 2 monic polynomials. Hence, there exist
(
q2/2

2

)
≈ q4/8 products

of two irreducible degree 2 polynomials. This implies that there exist approximately q4/4+q4/8 = 3q4/8
degree 4 monic polynomials with no root in Fq. For this reason, we can estimate that a fraction 5/8
of random monic degree 4 polynomials have roots. As a consequence the size of Im(fa,b) should be
approximately 5/8 of the size of Ea,b. Our conjecture is made by analogy of the Hasse bound.

Theorem 1 (Hasse Bound). ||Ea,b(Fq)| − q − 1| ≤ 2
√
q

We have tested our conjecture for all curves Ea,b over base field Fp such that p = 2 mod 3 with
p < 10000. For all these curves, we have computed the number of points of the curve and we also have
computed the number of points in Im(fa,b). After this computation, we found a lower bound for λ as
2.3114.

From this conjecture, we have the following corollary, which gives a deterministic, surjective function
onto Ea,b(Fq).

Corollary 2. If Conjecture 1 is true with λ ≤ 3, if q = 2 mod 3 and q > 1070, then:

F : (Fq)2 7→ Ea,b(Fq)
(u1, u2) 7→ fa,b(u1) + fa,b(u2)

is a surjective map.

7

Proof. To prove that F is surjective, we use the drawer principle. Given a point P ∈ Ea,b(Fq), the set
S1 = {P − fa,b(u)}u∈Fq

is made of at least 5q/8− 3
√
q + 1 + 2

√
q points. The set S2 = {fa,b(u)}u∈Fq

is
also made of the same number of points. This implies that the set S1 ∩ S2 is not empty if |S1|+ |S2| >
|Ea,b(Fq)|. This is always true when

2
(

5q
8
− 3
√
q + 1 + 2

√
q

)
> q + 1 + 2

√
q

which leads to q > 1070. ut

Finally, we note that computing discrete logarithms of fa,b(u) is hard if computing discrete logarithms

in Ea,b(Fq) is hard. This is because the function fa,b is efficiently invertible and
∣∣∣f−1

a,b (P)
∣∣∣ ≤ 4 for any

P . Let G be a generator of Ea,b(Fq). If we are given as input a random point P , with probability at
least 1/4 we have that P ∈ Im(fa,b), so we can compute u ∈ Fq such that P = fa,b(u). Then if an
algorithm can compute x such that fa,b(u) = x.G, this gives x such that P = x.G. This shows that if an
algorithm can compute the discrete logarithm of fa,b(u), then such algorithm can be used to compute
the discrete logarithm in Ea,b(Fq). The same argument applies to any encoding function f which is
polynomially invertible on its outputs and with a polynomially bounded pre-image size. The argument
can be easily extended to show that for any generator base (G1, ..., Gn), computing x1, . . . , xn such that
fa,b(x) =

∑
i xi.Gi is hard if computing discrete logarithms in Ea,b(Fq) is hard.

4 How to Hash onto Elliptic Curves

Given a function f into an elliptic curve E, we describe two constructions of hash functions into E. We
define L as the maximal size of f−1(P) where P is any point on E:

L = max
P∈E

(
∣∣f−1(P)

∣∣)
For our encoding function fa,b, we have L ≤ 4 (see lemma 4). We note that if we work in a subgroup of
E of order n with cofactor r, we can use the encoding function f ′a,b = r.fa,b. If r is relatively prime to n,
then we must have L ≤ 4r.

Our first construction is as follows: given a hash function h : {0, 1}∗ 7→ Fq, we define

H(m) = f(h(m))

as a hash function into the curve Ea,b(Fq). In the following, we show that H is one-way if h is one way.

4.1 One-Wayness

Definition 1. A hash function is (t, ε)-one-way, if any algorithm running in time t, when given a
random y ∈ Im(h) as input, outputs m such that h(m) = y with probability at most ε. A hash function
is one-way if ε is negligible for any polynomial t in the security parameter.

Lemma 5. If h is a (t, ε)-one-way hash function then H is (t′, ε′)-one-way where ε′ = L2ε, where
L = maxP∈E(

∣∣f−1(P)
∣∣). Therefore, if L is polynomial in the security parameter and h is one-way, then

H is one-way.

8

Proof. We receive y = h(m) as input and we must compute m′ such that y = h(m′), using an algorithm
A that breaks the one-wayness of H. Given y = h(m), we first compute f(y) = f(h(m)) = H(m) and
we use A to get a preimage of H(m). While using this way of proceedings, two problems occur:

1. f(y) does not follow the uniform distribution even if y does,
2. a preimage m′ to H(m) is not necessarily a preimage of y.

Let A be an algorithm, which computes preimages of H in time t with a probability at least ε′. Let S
be the event that A succeeds. When A receives an input P which is uniformly distributed in Im(H), we
have:

Pr [S] =
∑

p∈Im(H)

Pr [S|P = p] Pr [P = p] =
∑

p∈Im(H)

Pr [S|P = p]
1

|Im(H)|
≥ ε′

However, we use f(y) as input to A, which is not uniformly distributed even if y is uniformly distributed.
We thus need to compute the success probability of A given P computed as f(y). Let Pr(S′) be this
success probability. We have:

Pr
[
S′
]

=
∑

y∈Im(h)

Pr [S|P = f(y)] Pr [P = f(y)]

=
∑

p∈Im(H)

Pr [S|P = p]

 ∑
y∈f−1(p)

1
|Im(h)|

By definition of L, |Im(H)| ≥ |Im(h)| /L. This leads to:

Pr
[
S′
]
≥

∑
p∈Im(H)

Pr [S|P = p]
1

|Im(h)|
≥

∑
p∈Im(H)

Pr [S|P = p]
1

L |Im(H)|
≥ ε′

L
.

This proves thatA has a probability at least ε′/L to successfully compute a preimage to f(y) = H(m).
Assume that A has successfully computed one preimage of f(y). Since each point has possibly L different
preimages through f , this preimage is the preimage of y = h(m) with probability 1/L. This implies that
this algorithm has a probability at least ε′/L2 to succeed. This gives ε′/L2 ≤ ε. ut

4.2 Collision Resistance

Definition 2. A family H of hash functions is (t, ε)-collision-resistant, if any algorithm running in time
t, when given a random h ∈ H, outputs (m,m′) such that h(m) = h(m′) with probability at most ε.

Our first construction is easily extended to hash function families: given a family H of hash functions,
we define for each h ∈ H the function H = f ◦ h. We then study whether the family of hash functions
formed by the H is collision resistant.

A collision to one H occurs if and only if:

1. there exists m and m′ such that h(m) = h(m′); this is a collision for h,
2. or f(u) = f(u′) for u = h(m), u′ = h(m′) and u 6= u′; this is a collision for f .

9

In the following, we argue that we cannot prove the collision resistance of H based on the collision
resistance of h only. Namely, we note that given a hash function h, it is easy to construct an elliptic
curve with collisions on H = fa,b ◦ h. Indeed, given (m,m′), let u = h(m) and u′ = h(m′). From this
couple (u, u′), we compute the degree 4 polynomial:

(X − u)(X − u′)(X2 + (u+ u′)X − w) (4)

where w is a randomly chosen element in Fq. This polynomial is equal to:

X4 − 6xX2 + 6yX − 3a

where

x = −uu
′ + w − (u+ u′)2

6
, y =

(u+ u′)(uu′ − w)
6

, a = −uu
′w

3
.

Let b = y2− x3− ax. Hence (x, y) is a point on the elliptic curve Ea,b by definition of b. For this reason,
a preimage of (x, y) through fa,b is a solution of the equation:

X4 − 6xX2 + 6yX − 3a = 0 (5)

which is exactly the polynomial (4) by definition of x, y and a. For this reason, u and u′ are solutions of
the equations (4) and are preimages of (x, y). Hence (m,m′) is a collision for H = fa,b ◦ h.

However, if Ea,b is defined independently from h, it seems difficult to find (m,m′) such that fa,b(y) =
fa,b(y′) where y = h(m) and y′ = h(m′). In this case, H should be collision resistant. We cannot prove
that H is collision resistant based only on the collision resistance of h, and we clearly need some additional
properties on h. In the next section, we provide a different construction for which collision resistance can
be proved based only on the collision resistance of h.

4.3 Making f Collision Free

In this section, we show how to construct a family G of functions derived from an encoding function f ,
which is collision free except with negligible probability. Then given a hash function h and given g ∈ G,
H ′(m) = g(h(m)) will be collision resistant assuming that h is collision resistant.

Definition 3. A family G of functions is ε-collision-free if the probability that g ∈ G has a collision is
at most ε.

In other words, a collision-free family of functions is a family in which most functions are injective.
To construct such collision free family, we use the notion of family of pair-wise independent functions.

Definition 4 (Pair-wise Independence). A family V of functions v : R 7→ S is ε-pair-wise indepen-
dent if given any couple (r1, r2) ∈ R2 with r1 6= r2 and any couple (s1, s2) ∈ S2:

Pr
v∈V

[v(r1) = s1 ∧ v(r2) = s2] ≤ ε.

The following theorem shows that the family G = {f ◦ v}v∈V is collision free.

10

Theorem 2. Let f : S 7→ T be a function such that
∣∣f−1(t)

∣∣ ≤ L for all t ∈ T . Let V be a family of
ε-pair-wise independent functions from R to S. Then the family G = (f ◦ v)v∈V is ε′-collision-free where

ε′ = |R|2 · |S| · L · ε.

Proof. We consider the number of collisions for f . A collision is an unordered pair (s, s′) with s 6= s′ such
that f(s) = f(s′). If

∣∣f−1(t)
∣∣ = L for all t ∈ T , then the number of collisions is exactly |S| (L − 1)/2.

Namely, every preimage gives L(L − 1)/2 collisions and they are |S| /L such preimages. The following
lemma shows this is actually the maximum number of collisions that can be obtained.

Lemma 6. If
∣∣f−1(t)

∣∣ ≤ L for all t ∈ T , then the number of collisions Ncol of f verifies Ncol ≤
|S| (L− 1)/2.

Proof. The proof of this lemma is given in Appendix B.

We consider a particular collision (s1, s2) for f . We consider (r1, r2) ∈ R2 with r1 6= r2, hence by
definition of V:

Pr [v(r1) = s1 ∧ v(r2) = s2] ≤ ε.

Since there are at most |R|2 such couples (r1, r2), the probability that there exists at least one couple
(r1, r2) such that v(r1) = s1 and v(r2) = s2 is at most |R|2 · ε.

Given a collision s1, s2 for f , we must consider both couples (s1, s2) and (s2, s1). Moreover we must
also consider couples of the form (s1, s1) for all s1 ∈ S, since these couples lead to collisions for v.
Therefore the probability to have a collision for f ◦ v is at most

(2Ncol + |S|) · |R|2 · ε ≤ |R|2 · |S| · L · ε.

which terminates the proof. ut

Therefore, our second construction is as follows. Given a security parameter k and an integer q = pn

with q ≥ 2k, we consider the following family of functions:

(vc,d)c,d∈Fq
: {0, 1}k 7→ Fq

x 7→ c · x+ d

where x is seen as an element in Fq. It is easy to see that this family is 1/q2-pair-wise independent.

Given an elliptic curve E, we combine the encoding function f with the functions in the vc,d family
to get a collision-free family G:

G = (f ◦ vc,d)c,d∈Fq
: {0, 1}k 7→ E(Fq)

x 7→ f(c · x+ d)

Finally, given a family H of collision-resistant functions h : {0, 1}∗ 7→ {0, 1}k, we construct the following
family of hash functions into the curve E:

HE = (f ◦ vc,d ◦ h) c, d ∈ Fq

h ∈ H
: {0, 1}∗ 7→ E(Fq)

m 7→ f(c · h(m) + d)

11

Theorem 3. If H is a (t, ε)-collision resistant family of hash functions, then HE is a (t′, ε′)-collision
resistant family of hash functions where

ε′ = ε+ L
22k

q
.

Proof. Theorem 2 ensures that G is a ε1-collision free family where:

ε1 =
4 · 22k · q

q2
=
L22k

q
.

For this reason, given a random g ∈ G, g does not have any collision except with probability at most
L22k

q . In this case, a collision to hE ∈ HE is exactly a collision of h ∈ H, the underlying hash function.

Let A be an algorithm which attacks the collision resistance of HE with a success probability ε′. For
a given hE ∈ HE , let g ∈ G and h ∈ H be such that hE = g ◦ h. In the case where g is collision free and
when A succeeds to attack g ◦ h, it indeed finds a collision to h. Let S be the event that A succeeds to
attack the collision resistance of HE . We have

Pr [S] = Pr [S|g is CF] · Pr [g is CF] + Pr [S|g is not CF] · Pr [g is not CF] = ε′

≤ Pr [S|g is CF] · Pr [g is CF] +
L22k

q
≤ ε+

L22k

q

ut

Note that if we take q of size 5k/2 bits, we obtain ε′ ≤ ε + 2−k/2. Therefore if we have a family H
of k-bit ε-collision resistant hash functions where ε = 2−k/2, we obtain the same security level for HE ,
namely ε′ = 2−k/2+1.

In practice, given a curve E defined modulo a prime p, we randomly select c, d ∈ Fp and a function
h ∈ H; this defines a hash function:

HE : {0, 1}∗ 7→ E(Fp)
m 7→ f(c · h(m) + d)

Finally, we have that HE is a one way hash function when c 6= 0:

Lemma 7. If h is a (t, ε)-one-way hash function, then for any c, d with c 6= 0, HE = f ◦ vc,d ◦ h is a
(t′, ε′)-one way hash function ,with ε′ = L2 · ε.

Proof. Given y = h(m), we want to compute m′ such that y = h(m′). Let A be an algorithm that solves
the one-wayness of HE with a success probability ε′. Since c 6= 0, vc,d is an injective map from {0, 1}k to
Fp. For this reason, f ◦ vc,d has at most L preimages for a given point on E.

Furthermore, we want to use A on the input HE(m) where HE(m) is computed from f(vc,d(y)). As
in the proof of Lemma 6, f introduces a bias on the distribution of f(vc,d(y)) compared to the uniform
distribution on the image of HE . However, this bias can be bounded by the same factor 1/L as in Lemma
6. For these reasons, HE = f ◦ vc,d ◦ h is L2ε-one-way. ut

We note that this second construction requires a much larger q than the previous construction. For
example, for a 160-bit hash function h, the first construction requires a 160-bit integer q, whereas our
second construction requires q to be of size 5 · 160/2 = 400 bits.

12

5 Practical Implementations

In this section we compare the running time needed by various encodings into elliptic-curves. We first
consider our function fa,b with Euclide’s algorithm to implement the inversion in Fp; we also consider
fa,b (v2) with an exponentiation instead in order to have a constant number of operations over Fp.

We have also implemented the various ‘try-and-increment’ algorithms: the classic algorithm, the
algorithm with a constant number of steps but with fast Legendre symbol (v2) and the algorithm with
a constant number of operations using an exponentiation for the Legendre symbol (v3). We have also
implemented the encoding defined by equation (2) for a supersingular elliptic-curve; in this case we have
used a finite field ensuring the same security level as for ordinary elliptic curves.

The implementation has been done on 10 different 160-bit primes, randomly chosen such that p = 2
mod 3 and p = 3 mod 4. For every prime, 10 different couples of parameters (a, b) have been randomly
chosen. And on these 10 different curves, we runned every algorithm 1000 times on random inputs. We
used a 512-bit prime for the supersingular curves case.

Algorithm Constant Running Time Running Time

fa,b No 0.22 ms
Try and Increment No 0.24 ms
Try and Increment v2 No 1.86 ms

fa,b v2 Yes 0.40 ms
Try and Increment v3 Yes 16.1 ms
Supersingular Curves Yes 3.67 ms

Table 1. Average Time of each Algorithms using the Number Theory Library (NTL) [10] and running on a laptop using
the Intel R©CoreTM2 Duo T7100 chip at a frequency of 1, 80 Ghz.

We obtain that when a constant running time is required, our method performs much better than
the ‘try-and-increment’ algorithm and the algorithm for supersingular curves. It also performs slightly
better even when a constant running time is not required.

6 Conclusion

We have provided a new algorithm that encodes an integer into an elliptic curve point in a constant
number of field operations. This encoding exists for any curve under the condition that the map x 7→ x3

is a bijection on the base field. This encoding is efficiently computable with the same complexity as one
exponentiation and one inversion on the base field.

From our encoding, we have defined two constructions, which enable to hash into an elliptic curve.
The first construction is provably one-way and the second is provably one-way and collision resistant in
the standard model. Our algorithm can be used for password based authentication protocol over elliptic
curves. Indeed, it enables to efficiently encode passwords or PIN-codes into points of the curve in a
constant number of field operations.

We also note that our encoding enables to compute points of elliptic curves over RSA rings without
knowing the factorization of N = pq. Consider the following problem: given N = pq where p and q are

13

prime integers and a, b in ZN , find (x, y) such that y2 = x3 +ax+b mod N . Previously, factoring N was
required to compute such (x, y). Our function fa,b proves that a cube root oracle is actually sufficient.

Acknowledgments: I wish to thank Jean-Sébastien Coron for the time he spent to help me write this
paper. I also thank Julien Bringer, Hervé Chabanne, Bruno Kindarji and the anonymous referees for
their helpful comments.

References

1. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian, editor, CRYPTO,
volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

2. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptology, 17(4):297–319,
2004.

3. Colin Boyd, Paul Montague, and Khanh Quoc Nguyen. Elliptic curve based password authenticated key exchange
protocols. In Vijay Varadharajan and Yi Mu, editors, ACISP, volume 2119 of Lecture Notes in Computer Science,
pages 487–501. Springer, 2001.

4. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated key exchange using
diffie-hellman. In EUROCRYPT, pages 156–171, 2000.

5. Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry, and David Pointcheval. The twist-augmented technique for
key exchange. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography,
volume 3958 of Lecture Notes in Computer Science, pages 410–426. Springer, 2006.

6. David P. Jablon. Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev., 26(5):5–26,
1996.

7. Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite
field. IEEE Transactions on Information Theory, 39(5):1639–1646, 1993.

8. Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley Publishing
Company, 1996. 512 pages. (ISBN 0-201-40009-X).

9. Andrew Shallue and Christiaan van de Woestijne. Construction of rational points on elliptic curves over finite fields.
In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors, ANTS, volume 4076 of Lecture Notes in Computer
Science, pages 510–524. Springer, 2006.

10. Victor Shoup. Ntl, Number Theory C++ Library. http://www.shoup.net/ntl/.
11. Victor Shoup. A new polynomial factorization algorithm and its implementation. J. Symb. Comput., 20(4):363–397,

1995.
12. M. Skalba. Points on elliptic curves over finite fields. Acta Arith, 117:293–301, 2005.

A An explicit Encoding from F2n to E(F2n)

The equations which define elliptic curves in characteristic 2 are somehow different from the Weierstrass
equation:

Y 2 +XY = X3 + aX2 + b

where a and b are elements of F2n . For an odd n, the map x 7→ x3 is a bijection. Let

fa,b : F2n 7→ (F2n)2

u 7→ (x, ux+ v2)

where
v = a+ u+ u2, x = (v4 + v3 + b)1/3 + v.

14

Lemma 8. Let F2n be a field with n odd. For any u ∈ F2n, fa,b(u) is a point of Ea,b : Y 2 + XY =
X3 + aX2 + b.

Proof. Given a parameter u, let (x, y) be fa,b(u). We have the following equations for x, u and v:

0 = (x+ v)3 + b+ v3 + v4

= x3 + vx2 + v2x+ b+ v4.

Since v = a+ u+ u2, this can be rewritten into:

x3 + ax2 + b = ux2 + u2x2 + v2x+ v4

= (ux+ v2)((u+ 1)x+ v2) = y(x+ y)

Hence, (x, y) = fa,b(u) is a point of Ea,b. ut

A.1 Cardinality of Im(fa,b) in Characteristic 2

As in the case of the characteristic p, it is possible to bound the |Im(fa,b)|.

Theorem 4. 2n−2 < |Im(fa,b)| ≤ 2n

Proof. The inequality |Im(fa,b)| ≤ 2n is the consequence that fa,b is a function.

The other side of the inequality 2n−2 < |Im(fa,b)| can be explained thanks to the equation y =
ux+ a2 + u2 + u4. As for the characteristic p, the second equation of the Lemma 9 is enough to inverse
fa,b. This equation can be rewritten as

0 = y + a+ ux+ u2 + u4

Given a point (x, y), if u is a solution of this equation then fa,b(u) = (x, y). Since the equation is of
degree 4, there are at most 4 different u for each point image of fa,b. For this reason, there are at least
2n/4 = 2n−2 points in Im(fa,b). ut

B Proof of Lemma 7

Proof. We want to bound the number Ncol of collisions of f . We have that:

Ncol =
L∑

i=2

 ∑
x∈Im(f)||f−1(x)|=i

(
i
2

) .

Indeed a t collision is in fact
(
t
2

)
collisions. Let λi =

∑
x∈Im(f)||f−1(x)|=i 1. Since

∑B
i=2 iλi ≤ |S|, this

implies that:

Ncol =
B∑

i=2

λi
i(i− 1)

2
≤ B − 1

2

B∑
i=2

iλi ≤
|S| (B − 1)

2

This inequality about Ncol is tight because in the case where f has only B-collisions, Ncol is equal to
|S| (B − 1)/2. ut

