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Abstract

We show how, when given an irreducible bivariate polynomial with
coefficients in a finite prime field and an approximation to one of its
roots, one can recover that root efficiently, if the approximation is
good enough. This result has been motivated by the predictability
problem for non-linear pseudorandom number generators and other
potential applications to cryptography.

1 Introduction

For a prime p, we denote by Fp the field with p elements and assume that it
is represented by the set {0, 1, . . . , p − 1}. In particular, where obvious, we
treat elements of Fp as integers in the above range.

Here we consider the following problem: given a bivariate polynomial
f(X, Y ) ∈ Fp[X, Y ] and a point (w0, w1) whose components approximate
those of (v0, v1) ∈ F2

p, where f(v0, v1) = 0, the goal is to recover (v0, v1).
The question has applications to, and has been motivated by, the pre-

dictability problem for non-linear pseudorandom number generators over Fp

and the linear congruential generator on elliptic curves (see [2, 4, 5, 9, 11,
14, 16]).

1



The task we solve can be considered as a special case of the problem of
finding small solutions of multivariate polynomial congruences. For polyno-
mial congruences in one variable, an algorithm for solving this problem has
been given by Coppersmith [6], see also [3, 8, 7, 12, 13]. However, in the
general case only heuristic results are known. Here we are able to obtain
rigorous results for a big class of irreducible bivariate polynomials modulo a
prime number.

The remainder of the paper is structured as follows. We start with a very
short outline of some basic facts about the closest vector problem in lattices
in Subsection 2.1 and the number of Fq-rational points on algebraic curves
in Subsection 2.2. In Section 3 we formulate the algorithm and prove its
correction on the average when the approximation is good enough. Finally,
Section 4 analyzes the algorithm in a particular case: recovering roots for
elliptic curve polynomials.

2 Preliminaries

2.1 Closest Vector Problem in Lattices

This brief introduction is given in order to keep this article auto-contained.
For more details and references, we recommend consulting [10, 14, 18, 19, 20].

Let {b1, . . . ,bs} be a set of linearly independent vectors in Rr. The set

L = {c1b1 + . . . + csbs : c1, . . . , cs ∈ Z}

is called an s-dimensional lattice with basis {b1, . . . ,bs}.
One basic lattice problem is the closest vector problem (CVP): given a

basis of a lattice L in Rs and a vector t in Rs, the goal consists in finding
a vector in L whose distance to the target vector t is minimum. It is well-
known that CVP is NP-hard when the dimension grows. However, CVP is
solvable in polynomial time provided that the dimension of L is fixed (see
[15], for example).

For the slightly weaker task of finding a vector whose distance to the tar-
get approximates the smallest possible, we use a result which follows from [1],
and which is based on the celebrated LLL algorithm of Lenstra, Lenstra and
Lovász [17].
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Lemma 1 There exists a polynomial time algorithm which, when given an
s-dimensional lattice L and a vector t ∈ Rr, finds a lattice vector u ∈ L
satisfying the inequality

‖t− u‖ ≤ λs min{‖t− v‖ : v ∈ L},

where
λs = 2s/2.

2.2 Number of Fq-rational Points on Plane Algebraic
Curves

Our second basic result is an upper bound on the number of roots of a
bivariate polynomial with coefficients in a finite field. We denote by Fq the
finite field with q = pt elements.

Given a polynomial f(X,Y ) ∈ Fq[X, Y ] and a positive integer r, we
denote by Nqr(f) the number of solutions of the equation f(x, y) = 0 in the
finite field Fqr . We use the following well-known result (see for instance [21,
22]).

Suppose that f is an absolutely irreducible polynomial of total degree m.
Then, the inequality

|Nqr(f)− qr| ≤ c(f)qr/2

holds for a certain function c(f) < m2. As a consequence, we have the
following:

Lemma 2 Suppose that f is an absolutely irreducible polynomial of total
degree m > 1. Then, the inequality

Mqr(f) ≥ (qr − c(f)qr/2)/m

is valid for the number Mqr(f) = #{x ∈ Fqr | ∃y ∈ Fqr , f(x, y) = 0}.

Proof. By the above result, a lower bound for the number of roots is

Nqr(f) ≥ qr − c(f)qr/2.

For any a ∈ Fqr , we have that f(a, Y ) ∈ Fqr [Y ] has at most m roots. So, the
following inequality holds:

mMqr(f) ≥ Nqr(f) ≥ qr − c(f)qr/2

and finishes the proof. �

3



3 Root Recovering Algorithm

In this section we formulate and prove our main result.

3.1 Algorithm Description

Given a positive integer ∆, we say that a pair (w0, w1) ∈ Z2 is a ∆-approximation
to another pair (v0, v1) ∈ F2

p if there exist integers ε0, ε1 satisfying |εi| ≤ ∆
and such that vi is the residue class of wi + εi modulo p.

We consider a bivariate polynomial over the finite field with p elements:

f(X,Y ) =

m1∑
i=0

m2∑
j=0

ai,jX
iY j ∈ Fp[X, Y ],

where m1 < p and m2 < p. Assume that f has an unknown root (v0, v1) ∈ Fp

for which we have a ∆-approximation (w0, w1) ∈ Z2. We derive a proba-
bilistic algorithm (Algorithm 1) for recovering that root. The parameter ∆
measures how well the value (w0, w1) approximates the root (v0, v1) and it
is assumed to vary independently of p subject to satisfying the inequality
∆ < p (and is not involved in the complexity estimates of our algorithms).

Using the notation εi for the approximation errors, as defined above, the
Taylor expansion of f at (w0, w1) provides:

m1∑
i=0

m2∑
j=0

f (i,j)(w0, w1)

i!j!
εi
0ε

j
1 ≡ 0 mod p.

Our algorithm will try to find vector

e :=
(
∆m1+m2−i−jεi

0ε
j
1 | 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, i + j > 0

)
,

which is a solution of the following linear system of congruences in (m1 +
1)(m2 + 1)− 1 variables:

∑
0≤i≤m1,0≤j≤m2

0<i+j

∆i+j f
(i,j)(w0, w1)

i!j!
Xi,j ≡ −∆m1+m2f(w0, w1) mod p

Xi,j ≡ 0 mod ∆m1+m2−i−j.

(1)
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Algorithm 1: Recovering algorithm

Input: (f, ∆, w0, w1) such that (w0, w1) is a ∆-approximation to a
root (v0, v1) of f .

Output: (v0, v1)
Compute a solution h of (1) with small Euclidean norm.1

v′0 ← w0 + h1,0/∆
m1+m2−1

2

v′1 ← w1 + h0,1/∆
m1+m2−1

3

a← f(v′0, v
′
1)4

if a = 0 then5

return (v′0, v
′
1)6

else7

return failure8

end9

The computation of a small solution of an unhomogeneous system of
congruences is done by a polynomial time algorithm for the approximated
version of CVP [1].

3.2 Algorithm Correctness

Recall that we define λs to be the approximation factor given in Lemma 1.
Now we introduce a class of polynomials for which we will prove the correct-
ness of the algorithm. We say that a bivariate polynomial of total degree m
is in the class C if there exist indexes i, j ∈ {0, . . . ,m− 1} such that X iY m−i

and Xj+1Y m−j−1 occur in f and X i+1Y m−i−1 and XjY m−j do not. We are
now ready to state the main theorem of the paper.

Theorem 3 With the above notations and definitions, if f(X,Y ) ∈ C is an
irreducible polynomial with m1m2 > 1, then Algorithm 1 recovers (v0, v1) in
deterministic polynomial time in m1, m2 and log p provided that v0 does not
lie in a certain set V(∆, f) ⊆Mp(f) ⊆ Fp of cardinality

#V(∆, f)� (
√

sλs)
s∆ωm1,m2 ,

where s = m1m2 + m1 + m2 and

ωm1,m2 = 2 + (m1 + m2)
s− 1

2
.
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Proof. Let L be the lattice associated to linear system of congruences (1),
that is, L is the set of integer solutions

x = (Xi,j | 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, i + j > 0) ∈ Zs

satisfying:


∑

0≤i≤m1,0≤j≤m2
0<i+j

∆i+j f
(i,j)(w0, w1)

i!j!
Xi,j ≡ 0 mod p

Xi,j ≡ 0 mod ∆m1+m2−i−j.

(2)

We compute a solution t of the linear system of congruences (1). Then,
algorithm of Lemma 1 applied to vector t and lattice L returns a vector u.
We aim to show that h := t − u contains sufficient information about e,
provided that v0 does not lie in the “bad” set V(∆, f) which we define below.

The vector

d := e− h =
(
∆m1+m2−i−jdi,j | 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, i + j > 0

)
lies in L and using (2), we obtain:∑

0≤i≤m1,0≤j≤m2
0<i+j

f (i,j)(w0, w1)

i!j!
di,j ≡ 0 mod p. (3)

On the other hand, the norm of vector d satisfies:

‖d‖ ≤ ‖h‖+ ‖e‖ ≤ (λs + 1)‖e‖ ≤ 2
√

sλs∆
m1+m2 .

Hence,
|di,j| ≤ 2

√
sλs∆

i+j,
0 ≤ i ≤ m1, 0 ≤ j ≤ m2, i + j > 0.

(4)

We remark that if d1,0 ≡ d0,1 ≡ 0 mod p, then the first two components of
h, i.e., h1,0 and h0,1 contain the approximation errors. It implies that we can
recover (v0, v1). Hence, we may assume that either d1,0 or d0,1 is non-zero
modulo p.

Substituting w0 = X − ε0, w1 = Y − ε1 in (3), we obtain a bivariate
polynomial

g(X, Y ) =

m1−1∑
i=0

m2−1∑
j=0

bi,jX
iY j ∈ Fp[X, Y ],
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where bi,j ∈ Z[ε0, ε1, d1,0, . . . , dm1,m2 ], verifying: g(v0, v1) = 0. Moreover,
the fact that f lies in class C and not both of d1,0, d0,1 are zero implies
that g(X, Y ) is not the zero polynomial modulo p. Now, we consider the
polynomial system in Fp :{

g(X,Y ) ≡ 0 modp
f(X,Y ) ≡ 0 modp

(5)

Then, for every choice of ε0, ε1 and vector d with not both d0,1, d1,0 zero,
only a constant number of values v0 are posible. This is because the classical
Bézout Theorem for algebaic curves applies. We note that f(X,Y ) is an
irreducible polynomial and g(X, Y ) is not a multiple of f . Then, the number
of the solutions of system (5) is at most (m1 + m2)

2. We place any solution
v0 to (5) for any possible values of di,j and ε0, ε1 into the set V(∆, f). We
need to show that the cardinality of V(∆, f) is as claimed in the statement
of the theorem.

By the bounds obtained in (4), the total number of possible choices for
the integers ε0, ε1 and di,j, i = 0, . . . ,m1, j = 0, . . . ,m2 is at most:

4∆2 ×
∏

0≤i≤m1,0≤j≤m2
0<i+j

(4
√

sλs∆
m1+m2−i−j) ≤ (16

√
sλs)

s∆ωm1,m2 ,

where

ωm1,m2 = 2 + (m1 + m2)
s− 1

2
.

To finish the proof, we note that L is defined using given information,
and recall that the approximated version of the closest vector problem can
be solved in deterministic polynomial time in the bit size of the given lattice
basis and in the lattice dimension.

�
The quality of the approximation (w0, w1) becomes a measure of the suc-

cess probability of the algorithm. A “bad” set of values for the component
v0 has been described, proving that whenever that value lies outside the
set, the algorithm works correctly. The size of the set is asymptotically
(
√

sλs)
s∆ωm1,m2 . Therefore, when the polynomial f is absolutely irreducible,

using Lemma 2, the error probability of Algorithm 1 is upper bounded by:

#V(∆, f)

#Mp(f)
� m(

√
sλs)

s∆ωm1,m2

p− c(f)p1/2
� m

p
(
√

sλs)
s∆ωm1,m2 .
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This bound provides the threshold(
p

m(
√

sλs)s

)1/ωm1,m2

for the tolerance ∆, in such a way that when the tolerance remains below
that threshold and p is large enough the method is unlikely to fail.

We believe that the requierement for the polynomial to be absolutely
irreducible is not neccesary for the algorithm to work. However, several
aspects must be taken into account before considering the threshold expressed
above for the error tolerance upon which the algorithm fails. Firstly, the
constants hidden in the asymptotic reasoning (namely, the size of the prime
p). Second, the threshold could be higher, as the “bad” set does not guarantee
that the method need fail. And the most important fact, the behavior of the
proposed algorithm has been studied for dense bivariate polynomials, but in
many applications we need to work with a special bivariate polynomial and,
maybe, for that polynomial we can obtain a much better tolerance. Finally,
we have introduced somehow artificially the class C in order to prove the
correctness of the algorithm but we also believe that this approach works for
other polynomials. The following section will illustrate the last two remarks
for elliptic curve equations.

4 Elliptic Curve Case

Let E(Fp) be an elliptic curve defined over Fp given by an affine Weierstrass
equation, which for gcd(p, 6) = 1 takes form

Y 2 = X3 + aX + b, (6)

for some a, b ∈ Fp with 4a3 + 27b2 6= 0. We note that this polynomial does
not belong to the class C.

Lemma 4 With the above conditions and definitions. Algorithm 1, with
input polynomial (6), recovers (v0, v1) in polynomial time in log p provided
that v0 does not lie in a certain set V(∆, a) ⊆ Fp of cardinality #V(∆, a)�
∆27.

Proof. Apply the Theorem 3 with m1 = 3 and m2 = 2. Even though
polynomial (6) does not belong to class C, the condition d1,0 or d0,1 non-zero
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in the proof of Theorem 3 for this particular polynomial can be seen to still
imply that the corresponding polynomial g is non-zero.

�
However, we can obtain a better result for this sparse polynomial (6).

Theorem 5 With the above notations and definitions. A slight modifica-
tion of Algorithm 1 and with input polynomial (6), allows to recover (v0, v1)
in polynomial time in log p provided that v0 does not lie in a certain set
V(∆, a) ⊆ Fp of cardinality, #V(∆; a) = O(∆8).

Proof. In this case, we are looking for the vector e ∈ Z4 which is of the form

e :=
(
∆2ε0, ∆

2ε1, ∆ε2
0,−ε2

1 + ε3
0

)
,

and also a solution of the following linear system of congruences:
C1∆X1 + C2∆X2 + C3∆

2X3 + C4∆
3X4 ≡ −∆3C mod p
X1 ≡ 0 mod ∆2

X2 ≡ 0 mod ∆2

X3 ≡ 0 mod ∆;

(7)

where

C1 = 3w2
0 + a, C2 = −2w1, C3 = 3w0, C4 = 1, C = w3

0 + aw0 + b− w2
1.

Let f be a vector with smallest Euclidean norm satisfying the above linear
system of congruences (7). We may hope that e and f are the same, or at
least, that we can recover the approximation errors from f . If not, we will
show that v0 belongs to the subset V(∆, a) ⊆ Fp. Let us bound the “bad”
possibilities for which this process does not succeed. Vector d = e − f =
(∆2d1, ∆

2d2, ∆d3, d4) lies in the lattice associated to (7):
C1∆X1 + C2∆X2 + C3∆

2X3 + C4∆
3X4 ≡ 0 mod p
X1 ≡ 0 mod ∆2

X2 ≡ 0 mod ∆2

X3 ≡ 0 mod ∆.

(8)

Since ‖e‖ <
√

7∆3, we have that

|d1| ≤ 2
√

7∆, |d2| ≤ 2
√

7∆, |d3| ≤ 2
√

7∆2, |d4| ≤ 2
√

7∆3. (9)
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If d1 ≡ d2 ≡ 0 mod p, then we can recover the root (v0, v1). Hence, we may
assume that either d1 or d2 is non-zero.

Substituting w0 = X − ε0, w1 = Y − ε1 in the first equation of lattice (8),
we obtain a bivariate polynomial:

g(X,Y ) = (3(X − ε0)
2 + a)d1 − 2(Y − ε1)d2 + 3(X + ε0)d3 + d4,

whose coefficients are in Z[d1, d2, d3, d4, ε0, ε1] and verifies:{
g(v0, v1) ≡ 0 mod p
f(v0, v1) ≡ 0 mod p.

(10)

Now, for every choice of ε0, ε1 and d1, d2, d3, d4 with not both d1, d2 zero,
the number of values v0 satisfying system (10) is at most 6 because g(X, Y )
is a non-zero polynomial of degree at most two.

We place any such solution v0 into the set V(∆, a). We need to show that
the cardinality of V(∆, a) is as claimed in the statement of the theorem.

We write

g(X,Y ) = (3X2 − 6Xε0 + a)d1 − 2Y d2 + 3Xd3 + A,

where A ≡ −3ε0d1 + 2ε1d2 − 3ε0d3 + d4 mod p.
By (9), the total number of possible choices for d1, d2, d3, ε0 is O(∆5).

On the other hand, A can take O(∆3) distinct values. Hence there are only
O(∆8) values of v0 that satisfy the system of congruences (10).

Again, to finish the proof we note that the lattice is defined using given
information, and that the CVP can be solved in deterministic polynomial
time in log p in any fixed dimension.

�
It is well known that the elliptic curve polynomial is absolutely irre-

ducible, then Lemma 2 applies. Obviously this result is non-trivial only for
∆ < p1/8. Thus increasing the size of the admissible values of ∆ is very
interesting.
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[3] Johannes Blömer and Alexander May. A tool kit for finding small roots
of bivariate polynomials over the integers. In Advances in cryptology—
EUROCRYPT 2005, volume 3494 of Lecture Notes in Comput. Sci.,
pages 251–267. Springer, Berlin, 2005.

[4] Dan Boneh, Shai Halevi, and Nick Howgrave-Graham. The modu-
lar inversion hidden number problem. In Advances in cryptology—
ASIACRYPT 2001 (Gold Coast), volume 2248 of Lecture Notes in Com-
put. Sci., pages 36–51. Springer, Berlin, 2001.

[5] Joan Boyar. Inferring sequences produced by pseudo-random number
generators. J. Assoc. Comput. Mach., 36(1):129–141, 1989.

[6] Don Coppersmith. Small solutions to polynomial equations, and low
exponent RSA vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[7] Don Coppersmith. Finding small solutions to small degree polynomials.
In Cryptography and lattices (Providence, RI, 2001), volume 2146 of
Lecture Notes in Comput. Sci., pages 20–31. Springer, Berlin, 2001.
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