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Abstract. SMS4 is a 32-round unbalanced Feistel block cipher with its block size and key size being
128 bits. As a fundamental block cipher used in the WAPI standard, the Chinese national standard
for WLAN, it has been widely implemented in Chinese WLAN industry. In this paper, we present a
modified branch-and-bound algorithm which can be used for searching multiple linear characteristics
for SMS4-like unbalanced Feistel block ciphers. Furthermore, we find a series of 5-round iterative
linear characteristics of SMS4 when applying the modified algorithm in SMS4. Then based on each
5-round iterative linear characteristic mentioned above, an 18-round linear characteristic of SMS4 can
be constructed, thus leading to a list of 18-round linear characteristics of SMS4. According to the
framework of Biryukov et al. from Crpto 2004, a key recovery attack can be mounted on 22-round
SMS4 by utilizing the above multiple linear characteristics. As a matter of fact, our result has much
lower data complexity than the previously best known cryptanalytic result on 22-round SMS4, which
is also the previously best known result on SMS4.
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bound

1 Introduction

The block cipher SMS4 [1], released by Chinese government in 2006, is an underlying block cipher used
in WLAN Authentication and Privacy Infrastructure (WAPI) standard, the Chinese national standard for
WLAN. Although the WAPI standard hasn’t been approved as the security amendment to the ISO/IEC
8802-11 WLAN standard, it is still officially mandated for Chinese WLAN industry, thus SMS4 has been
widely implemented in China.

SMS4 has an unbalanced Feistel network structure with 32 rounds, a block size of 128 bits as well as a
key size of 128 bits. Up to now, several attacks have been presented on reduced-round SMS4. For instance,
a differential fault analysis of SMS4 has been given in [2], an integral attack on 13-round SMS4 has been
proposed in [3], an analysis of the structure of SMS4 from a viewpoint of algebra has been provided in [4], a
rectangle attack on 14-round SMS4 and an impossible differential attack on 16-round SMS4 have been devised
in [5], a rectangle attack on 16-round SMS4 and a differential attack on 21-round SMS4 have been presented
in [6], a boomerang attack and a rectangle attack on 18-round SMS4, a linear attack and a differential attack
on 22-round SMS4 have been introduced in [7], a more comprehensive analysis for the results given in [5] has
been done in [8], and an improved differential attack on 22-round SMS4 has been demonstrated in [9] . In this
paper, we firstly propose a modified branch-and-bound algorithm which can be used for searching multiple
linear characteristics for SMS4-like unbalanced Feistel block ciphers. Moreover, a series of 5-round iterative
linear characteristics of SMS4 have been obtained by applying the modified algorithm in SMS4. Then for
each 5-round iterative linear characteristic mentioned above, an 18-round linear characteristic of SMS4 can
be constructed, resulting in a list of 18-round linear characteristics of SMS4. Based on the framework given
in [10], a key recovery attack can be mounted on 22-round SMS4 by utilizing the above multiple linear
characteristics. Compared with the previously best known cryptanalytic result on 22-round SMS4, which is
also the previously best known result on SMS4, our result has much lower data complexity.
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The remainder of this paper is organized as follows. Section 2 introduces the notations used throughout
this paper, gives a brief description of SMS4 as well as the method of multiple linear cryptanalysis. Section
3 presents our modified branch-and-bound algorithm which can be used for searching multiple linear char-
acteristics for SMS4-like unbalanced Feistel block ciphers. Section 4 provides a series of 5-round iterative
linear characteristics of SMS4 obtained by the modified algorithm. Section 5 presents our multiple linear
cryptanalysis on 22-round SMS4. Finally, Section 6 summarizes the paper.

2 Preliminaries

2.1 Notations

The following notations are used throughout the paper.

- ⊕ denotes bitwise exclusive OR (XOR).
- · denotes bitwise inner product.
- ‖ denotes concatenation operation.
- |x| denotes the absolute value of a real number x.
- Z8

2 denotes the set {0, 1}8.
- Z32

2 denotes the set {0, 1}32.
- 0x denotes the hexadecimal notation.

2.2 A Brief Description of SMS4

Fig. 1. Schematic Description of the SMS4 Round Function
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SMS4 is an unbalanced Feistel block cipher with 32 rounds, a block size of 128 bits as well as a key
size of 128 bits. Let (P0, P1, P2, P3) ∈ (Z32

2 )4, and (C0, C1, C2, C3) ∈ (Z32
2 )4 denote the plaintext P and

the ciphertext C respectively. Let (Xi, Xi+1, Xi+2, Xi+3) ∈ (Z32
2 )4, and (Xi+1, Xi+2, Xi+3, Xi+4) ∈ (Z32

2 )4

denote the input and the output of round i respectively, where i = 0, 1, . . . , 31. Note that the first round
is referred to as round 0, the second round is referred to as round 1, and so on. Then the cipher can be
described as follows:
(1). (X0, X1, X2, X3)← (P0, P1, P2, P3),
(2). Xi+4 ← Xi

⊕
F (Xi+1

⊕
Xi+2

⊕
Xi+3

⊕
RKi), for i = 0, 1, . . . , 31,

(3). (C0, C1, C2, C3)← R(X32, X33, X34, X35) = (X35, X34, X33, X32),
where RKi ∈ Z32

2 denotes the round subkey for round i, the function F is composed of a non-linear confusion
function S which applies a same 8 × 8 bijective S-Box four times in parallel and a linear diffusion function
L, and R denotes a switch transformation.

Fig. 1 gives a schematic description of the SMS4 round function. Please refer to [1] for detailed information
about the S-Box, the linear transformation L and the key schedule algorithm. As for the switch transformation
R, we will omit it in the following cryptanalysis of SMS4 since it has no impact on our attack.

2.3 Multiple Linear Cryptanalysis

Here we just review the method of multiple linear cryptanalysis in this subsection. For more details, please
refer to [10].

Linear cryptanalysis [11], proposed by Matsui in 1993, is one of the most powerful known plaintext attacks
against modern block ciphers. It analyzes a block cipher E by investigating a correlation between the inputs
and outputs of E and then obtains a linear approximation (also called linear characteristic and denoted as
ΓP → ΓC) of E with following type:

ΓP · P ⊕ ΓC · C = ΓK ·K, (1)

where P, C and K denote plaintext, ciphertext, and secret key respectively, ΓP , ΓC and ΓK stand for the
mask of plaintext P , ciphertext C, and secret key respectively.

If equation (1) holds with probability p 6= 1/2, we call it an effective linear approximation of the block
cipher E, and the linear approximation can be used to distinguish E from a random permutation since
equation (1) holds with probability 1/2 for a random permutation. Let ε = p − 1/2 be the bias of a linear
approximation on E, then the greater |ε| is, the more effective the corresponding linear approximation will
be.

Based on this technique, Kaliski et al. [12] presented the idea of generalizing linear cryptanalysis using
multiple linear approximations in 1994. However, a strict constraint exists within their method as it requires
to use approximations deriving the same parity bit of the secret key, which greatly restricted the number and
the quality of the approximations available. As a result, an approach removing the constraint was proposed
by Biryukov et al. in 2004 [10], which results in decreasing of data complexity compared with the original
linear cryptanalysis.

Suppose that one has access to m approximations on E of the following form:

Γ i
P · P ⊕ Γ i

C · C = Γ i
K ·K (1 ≤ i ≤ m). (2)

Let εi, ci = 2εi be the bias and the imbalance of the i-th linear approximation respectively. According to
[10], the multiple linear cryptanalysis requires a number of plaintext-ciphertext pairs inversely proportional
to the capacity of the system (linear equations used by adversary as in equation(2)) that is defined as:

C
2

=

m∑

i=1

c2
i = 4×

m∑

i=1

ε2
i . (3)

Therefore, one can reduce the number of necessary plaintext-ciphertext pairs to perform a successful key
recovery attack by increasing the capacity when using the multiple linear cryptanalytic tool.
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3 Modified Branch-and-bound Algorithm

Actually, the first step in a multiple linear cryptanalysis is to find linear approximations with biases as high
as possible. In 1994, Matsui [13] proposed a branch-and-bound algorithm making it possible to effectively
find the best linear approximation of DES. The algorithm works by induction: knowing the maximal bias
on (n − 1)-round DES, it manages to find the maximal bias on n-round DES as well as the corresponding
input and output masks. Based on this idea, we give a modified branch-and-bound algorithm which can be
used for searching multiple linear characteristics for SMS4-like unbalanced Feistel block cipher as below.

Let E be an n-round SMS4-like unbalanced Feistel block cipher. Let the bias of a linear approximation
on the i-th round F -function of E be defined as:

(ΓIi, ΓOi) = δi = Pr{ΓIi · Ii ⊕ ΓOi ·Oi = 0} − 1/2, (4)

where Ii and Oi denote the input and output of the i-th round F -function of E, and ΓIi, ΓOi represent
their masks respectively. We first note that if there are n linear approximations on each round F -function
of E respectively (denoted as ΓIi → ΓOi, 1 ≤ i ≤ n) satisfying

ΓOi = ΓIi−1 ⊕ ΓIi−2 ⊕ ΓIi−3 ⊕ ΓOi−4 (5 ≤ i ≤ n), (5)

the above n one-round linear approximations can be concatenated sequentially to form a linear approximation
on the whole cipher E. According to the piling up lemma in [11], the total bias εtot of the n-round linear
approximation is given by:

εtot = [δ1, δ2, . . . , δn] = 2n−1

n∏

i=1

δi, (6)

and the best linear approximation on E is then defined as:

Bn = max
Γ Oi=Γ Ii−1⊕Γ Ii−2⊕ΓIi−3⊕Γ Oi−4

(5≤i≤n)

|[(ΓI1, ΓO1), (ΓI2, ΓO2), . . . , (ΓIn, ΓOn)]|. (7)

Moreover, let Qn = (q1
n, . . . , qm

n ) denote the queue sorted in the order of decreasing bias, where qi
n =

(patterni
n, Bi

n) stores both the linear mask pattern for all the intermediate rounds and the bias of the i-th
linear approximation on E. Let Bm

n be the initial estimation of Bm
n . Then the framework of our modified

branch-and-bound algorithm for searching m best linear characteristics of E can be designed by the following
procedures including essentially recursive calls:

Procedure Round-1:
Begin the program

For each candidate for ΓI1 and ΓO1, do as follows:
• δ1 ⇐ (ΓI1, ΓO1).
• If |[δ1, Bn−1]| ≥ Bm

n , then call Procedure Round-2.
End the program

Procedure Round-2:
For each candidate for ΓI2 and ΓO2, do as follows:
• δ2 ⇐ (ΓI2, ΓO2).
• If |[δ1, δ2, Bn−2]| ≥ Bm

n , then call Procedure Round-3.
Return to the upper procedure.

Procedure Round-3:
For each candidate for ΓI3 and ΓO3, do as follows:
• δ3 ⇐ (ΓI3, ΓO3).
• If |[δ1, δ2, δ3, Bn−3]| ≥ Bm

n , then call Procedure Round-4.
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Return to the upper procedure.

Procedure Round-4:
For each candidate for ΓI4 and ΓO4, do as follows:
• δ4 ⇐ (ΓI4, ΓO4).
• If |[δ1, δ2, δ3, δ4, Bn−4]| ≥ Bm

n , then call Procedure Round-5.
Return to the upper procedure.

Procedure Round-i (5 ≤ i ≤ n− 1):
For each candidate for ΓIi, do as follows:
• ΓOi ⇐ ΓIi−1 ⊕ ΓIi−2 ⊕ ΓIi−3 ⊕ ΓOi−4.
• δi ⇐ (ΓIi, ΓOi).
• If |[δ1, δ2, . . . , δi, Bn−i]| ≥ Bm

n , then call Procedure Round-(i+1).
Return to the upper procedure.

Procedure Round-n:
For each candidate for ΓIn, do as follows:
• ΓOn ⇐ ΓIn−1 ⊕ ΓIn−2 ⊕ ΓIn−3 ⊕ ΓOn−4.
• δn ⇐ (ΓIn, ΓOn).
• If |[δ1, δ2, . . . , δn]| ≥ Bm

n , then insert [δ1, δ2, . . . , δn] and corresponding linear mask pattern into Qn,
and do Bm

n ⇐ min
1≤j≤m

{Bj
n}.

Return to the upper procedure.

4 5-Round Iterative Linear Characteristics of SMS4

Let E be an n-round SMS4-like unbalanced Feistel block cipher. As mentioned above, if there are n linear
approximations ΓIi → ΓOi (1 ≤ i ≤ n) on each round F -function of E respectively satisfying

ΓOi = ΓIi−1 ⊕ ΓIi−2 ⊕ ΓIi−3 ⊕ ΓOi−4 (5 ≤ i ≤ n), (8)

these n one-round linear approximations can be concatenated sequentially to formulate a linear approxima-
tion on the whole cipher E. Thus the linear approximation on E can be explicitly expressed as

ΓO1 · P0 ⊕ ΓI1 · P1 ⊕ ΓO2 · P1 ⊕ ΓI1 · P2 ⊕ ΓI2 · P2 ⊕ ΓO3 · P2⊕

ΓI1 · P3 ⊕ ΓI2 · P3 ⊕ ΓI3 · P3 ⊕ ΓO4 · P3 ⊕ ΓOn · C3 ⊕ ΓIn · C2 ⊕ ΓOn−1 · C2⊕

ΓIn · C1 ⊕ ΓIn−1 · C1 ⊕ ΓOn−2 · C1 ⊕ ΓIn · C0 ⊕ ΓIn−1 · C0 ⊕ ΓIn−2 · C0 ⊕ ΓOn−3 · C0

= ΓI1 · RK0 ⊕ ΓI2 · RK1 ⊕ . . .⊕ ΓIn · RKn−1.

(9)

Specifically, let n be 5 in equation (9). Let ΓI1, ΓO1, ΓI2, ΓO2, ΓI3 and ΓO3 be 0, and let ΓI4, ΓO4,
ΓI5, ΓO5 be any mask Γm ∈ Z32

2 such that the bias of the one-round linear characteristic Γm → Γm (denoted
as (Γm, Γm)) is not equal to 0. Then we can obtain a series of 5-round iterative linear characteristics of SMS4
as follows:

Γm ·X3 ⊕ Γm ·X8 = Γm · RK3 ⊕ Γm · RK4. (10)

The bias of the above 5-round iterative linear characteristic is 2× (Γm, Γm)2. Let Γ ′
P = (0, 0, 0, Γm) ∈ (Z32

2 )4

and Γ ′
C = (0, 0, 0, Γm) ∈ (Z32

2 )4 be the input mask and the output mask of the 5-round SMS4 respectively,
then the above 5-round iterative linear characteristic of SMS4 can also be denoted as Γ ′

P → Γ ′
C .

Furthermore, regarding the one-round linear characteristic Γm → Γm on F -function, suppose that the
input mask Γm (denoted as (m1, m2, m3, m4) ∈ (Z8

2 )4) goes to Γ ′
m (denoted as (m′

1, m
′
2, m

′
3, m

′
4) ∈ (Z8

2 )4)
through the non-linear layer S with biases α1, α2, α3 and α4 for each S-Box respectively(where αi corresponds
to the bias of the linear characteristic mi → m′

i on SMS4 S-Box, 1 ≤ i ≤ 4), and Γ ′
m goes to Γm again through
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the linear layer L, then the bias (Γm, Γm) can be calculated as 23α1α2α3α4. Accordingly, in order to use our
modified branch-and-bound algorithm to search multiple 5-round iterative linear characteristics with bias
as high as possible, we investigate the linear distribution table of the SMS4 S-Box and then find that the
most effective linear characteristics of the SMS4 S-Box have the biases ±2−4 and the second most effective
ones have the biases ±14/256 (approximately ±2−4.19). After that, we have gained 32 best 5-round iterative
linear characteristics of SMS4 by applying our modified branch-and-bound algorithm. Table 1 illustrates the
search results in detail.

Table 1. Γm/Γ ′

m
for the Above 5-Round Iterative Linear Characteristics of SMS4 with Best Biases

Bias of the 5-round linear characteristic |(Γm, Γm)| Γm Γ ′

m

2−19.38 2−10.19 (0x11, 0xff, 0xba, 0x00) (0x84, 0xbe, 0x2f, 0x00)
2−19.38 2−10.19 (0x78, 0x52, 0xb3, 0x00) (0x58, 0x2b, 0x15, 0x00)
2−19.38 2−10.19 (0x79, 0x05, 0xe1, 0x00) (0x5a, 0xfb, 0xc6, 0x00)
2−19.38 2−10.19 (0xa1, 0xb4, 0x33, 0x00) (0xf1, 0x02, 0x7a, 0x00)
2−19.38 2−10.19 (0xed, 0xca, 0x7c, 0x00) (0x83, 0xff, 0xaa, 0x00)
2−19.38 2−10.19 (0xfa, 0x70, 0x99, 0x00) (0xd2, 0x0b, 0x1d, 0x00)
2−19.38 2−10.19 (0x05, 0xe1, 0x00, 0x79) (0xfb, 0xc6, 0x00, 0x5a)
2−19.38 2−10.19 (0x52, 0xb3, 0x00, 0x78) (0x2b, 0x15, 0x00, 0x58)
2−19.38 2−10.19 (0x70, 0x99, 0x00, 0xfa) (0x0b, 0x1d, 0x00, 0xd2)
2−19.38 2−10.19 (0xb4, 0x33, 0x00, 0xa1) (0x02, 0x7a, 0x00, 0xf1)
2−19.38 2−10.19 (0xca, 0x7c, 0x00, 0xed) (0xff, 0xaa, 0x00, 0x83)
2−19.38 2−10.19 (0xff, 0xba, 0x00, 0x11) (0xbe, 0x2f, 0x00, 0x84)
2−19.38 2−10.19 (0x33, 0x00, 0xa1, 0xb4) (0x7a, 0x00, 0xf1, 0x02)
2−19.38 2−10.19 (0x7c, 0x00, 0xed, 0xca) (0xaa, 0x00, 0x83, 0xff)
2−19.38 2−10.19 (0x99, 0x00, 0xfa, 0x70) (0x1d, 0x00, 0xd2, 0x0b)
2−19.38 2−10.19 (0xb3, 0x00, 0x78, 0x52) (0x15, 0x00, 0x58, 0x2b)
2−19.38 2−10.19 (0xba, 0x00, 0x11, 0xff) (0x2f, 0x00, 0x84, 0xbe)
2−19.38 2−10.19 (0xe1, 0x00, 0x79, 0x05) (0xc6, 0x00, 0x5a, 0xfb)
2−19.38 2−10.19 (0x00, 0xfa, 0x70, 0x99) (0x00, 0xd2, 0x0b, 0x1d)
2−19.38 2−10.19 (0x00, 0xed, 0xca, 0x7c) (0x00, 0x83, 0xff, 0xaa)
2−19.38 2−10.19 (0x00, 0xa1, 0xb4, 0x33) (0x00, 0xf1, 0x02, 0x7a)
2−19.38 2−10.19 (0x00, 0x79, 0x05, 0xe1) (0x00, 0x5a, 0xfb, 0xc6)
2−19.38 2−10.19 (0x00, 0x78, 0x52, 0xb3) (0x00, 0x58, 0x2b, 0x15)
2−19.38 2−10.19 (0x00, 0x11, 0xff, 0xba) (0x00, 0x84, 0xbe, 0x2f)
2−19.76 2−10.38 (0x1d, 0xde, 0xab, 0x00) (0xae, 0xc5, 0x71, 0x00)
2−19.76 2−10.38 (0x38, 0xa5, 0x45, 0x00) (0x82, 0x87, 0x33, 0x00)
2−19.76 2−10.38 (0x0f, 0x8c, 0x00, 0xe0) (0xb8, 0x54, 0x00, 0x34)
2−19.76 2−10.38 (0x19, 0xd8, 0x00, 0x70) (0xdb, 0xb4, 0x00, 0x03)
2−19.76 2−10.38 (0x19, 0x00, 0x99, 0x7e) (0xe6, 0x00, 0x07, 0x5e)
2−19.76 2−10.38 (0x28, 0x00, 0x7a, 0xc3) (0x4c, 0x00, 0x6d, 0x45)
2−19.76 2−10.38 (0x00, 0xe0, 0x0f, 0x8c) (0x00, 0x34, 0xb8, 0x54)
2−19.76 2−10.38 (0x00, 0xd7, 0x3c, 0x60) (0x00, 0xc6, 0xa6, 0x82)

5 Multiple Linear Cryptanalysis on 22-Round SMS4

Based on each 5-round iterative linear characteristics mentioned above, an 18-round linear characteristic can
be constructed as follows:

1. (0, 0, 0, Γm)→ (0, 0, 0, Γm) for the 5-round SMS4 from the i-th round to the (i + 4)-th round with bias
2× (Γm, Γm)2.

2. (0, 0, 0, Γm)→ (0, 0, 0, Γm) for the 5-round SMS4 from the (i+5)-th round to the (i+9)-th round with
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bias 2× (Γm, Γm)2.
3. (0, 0, 0, Γm)→ (0, 0, 0, Γm) for the 5-round SMS4 from the (i + 10)-th round to the (i + 14)-th round

with bias 2× (Γm, Γm)2.
4. (0, 0, 0, Γm)→ (Γm, 0, 0, 0) for the 3-round SMS4 from the (i + 15)-th round to the (i + 17)-th round

with bias 1/2.
Then we obtain a linear characteristic (0, 0, 0, Γm)→ (Γm, 0, 0, 0) for the 18-round SMS4 from the i-th round
to the (i + 17)-th round, and the total bias of the 18-round linear characteristic is 25 × (Γm, Γm)6.

In our attack, the linear characteristics for the 18-round SMS4 from the second round to the 18th round
will be used, and eight 5-round iterative linear characteristics of SMS4 from Table 1 with Γm = (0x11, 0xff,
0xba, 0x00), (0x78, 0x52, 0xb3, 0x00), (0x79, 0x05, 0xe1, 0x00), (0xa1, 0xb4, 0x33, 0x00), (0xed, 0xca, 0x7c,
0x00), (0xfa, 0x70, 0x99, 0x00), (0x1d, 0xde, 0xab, 0x00), (0x38, 0xa5, 0x45, 0x00) will be chosen to derive
eight 18-round linear characteristics respectively which can be expressed as below:

(0x11, 0xff, 0xba, 0x00) · (X4 ⊕X19)

= (0x11, 0xff, 0xba, 0x00) · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15),
(11)

(0x78, 0x52, 0xb3, 0x00) · (X4 ⊕X19)

= (0x78, 0x52, 0xb3, 0x00) · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15),
(12)

(0x79, 0x05, 0xe1, 0x00) · (X4 ⊕X19)

= (0x79, 0x05, 0xe1, 0x00) · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15),
(13)

(0xa1, 0xb4, 0x33, 0x00) · (X4 ⊕X19)

= (0xa1, 0xb4, 0x33, 0x00) · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15),
(14)

(0xed, 0xca, 0x7c, 0x00) · (X4 ⊕X19)

= (0xed, 0xca, 0x7c, 0x00) · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15),
(15)

(0xfa, 0x70, 0x99, 0x00) · (X4 ⊕X19)

= (0xfa, 0x70, 0x99, 0x00) · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15),
(16)

(0x1d, 0xde, 0xab, 0x00) · (X4 ⊕X19)

= (0x1d, 0xde, 0xab, 0x00) · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15),
(17)

(0x38, 0xa5, 0x45, 0x00) · (X4 ⊕X19)

= (0x38, 0xa5, 0x45, 0x00) · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15),
(18)

where equations (11), (12), (13), (14), (15) and (16) hold with bias 2−56.14, and equations (17), (18) hold
with bias 2−57.28.

5.1 Attack Procedure

Following the framework given in [10], a key recovery attack can be mounted on the 22-round SMS4 from
the first round to the 22nd round by applying the above eight 18-round linear characteristics. Based on the
Attack Algorithm MK 2 in [10], we perform partial encryptions of the first round and partial decryptions
of the 20th, 21st and 22nd rounds by guessing the partial bits of RK0, RK19, RK20 and RK21 involved in
the linear characteristics, and then determine the probability that the guessed subkey bits are correct by
exploiting the linear characteristics over the remaining 18 rounds. For the linear system consisting of the
above eight linear equations, the capacity of the system is about 2−107.38 according to equation (3). Thus
the necessary number of known plaintext-ciphertext pairs to perform a successful key recovery attack on the
22-round SMS4 is about O(2107.38).

Before applying the Attack Algorithm MK 2 , we extend the above eight equations to the expressions of
a plaintext P = (P0, P1, P2, P3), its corresponding 22-round ciphertext C = (C0, C1, C2, C3) and subkeys of
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the first, 20th, 21st and 22nd rounds (RK0, RK19, RK20, RK21) similarly as in [7]. The extended expressions
can be described as follows:

Γ i
m · (P0 ⊕ C1)⊕ Γ i

m · F (P1 ⊕ P2 ⊕ P3 ⊕RK0)⊕

Γ i
m · F (C0 ⊕ C2 ⊕ C3 ⊕RK19 ⊕ F (C0 ⊕ C1 ⊕ C2 ⊕RK21)⊕

F (C0 ⊕ C1 ⊕ C3 ⊕RK20 ⊕ F (C0 ⊕ C1 ⊕ C2 ⊕RK21)))

= Γ i
m · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15), 1 ≤ i ≤ 8,

(19)

where Γ i
m corresponds to the Γm included in the above eight linear equations. Moreover, from table 1 we

observe that Γ i
m goes to (Γ i

m)′ through the inverse of the linear layer L, which only influences 3 active S-Boxes
in the non-linear layer S. Thus for the left side of equation (19), 3 active S-Boxes are involved for the first
and 20th round respectively, and 4 active S-Boxes are impacted for the 21st and 22nd round respectively. If
we rewrite equation (19) in a more compact form as below:

Γ i
m · (P0 ⊕ C1)⊕ Γ i

m · f(RK, P, C)

= Γ i
m · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15), 1 ≤ i ≤ 8,

(20)

the value of f(RK, P, C) depends on 24 bits from (P1 ⊕ P2 ⊕ P3) and RK0 respectively, 24 bits from
(C0 ⊕ C2 ⊕ C3) and RK19 respectively, 32 bits from (C0 ⊕ C1 ⊕ C3) and RK20 respectively, and 32 bits
from (C0 ⊕ C1 ⊕ C2) and RK21 respectively according to the above analysis. Let η = η1 ‖ η2 ‖ η3 ‖ η4

represent the impacted 112 subkey bits, where η1, η2, η3 and η4 denote the impacted 24 bits of RK0, the
impacted 24 bits of RK19, RK20 and RK21 respectively. Let θ = θ1 ‖ θ2 ‖ θ3 ‖ θ4 represent the impacted
112 plaintext-ciphertext bits, where θ1, θ2, θ3 and θ4 denote the impacted 24 bits of (P1 ⊕ P2 ⊕ P3), the
impacted 24 bits of (C0⊕C2⊕C3), (C0⊕C1⊕C3), and (C0⊕C1⊕C2) respectively. Let ξ = ξ1 ‖ ξ2 ‖ ξ3 ‖ ξ4

represent the 112 bits of η⊕ θ, where ξ1 = η1⊕ θ1, ξ2 = η2⊕ θ2, ξ3 = η3⊕ θ3 and ξ4 = η4⊕ θ4. Then we have

Γ i
m · f(RK, P, C)

= Γ i
m · (F (ξ1)⊕ F (ξ2 ⊕ F (ξ4)⊕ F (ξ3 ⊕ F (ξ4))) 1 ≤ i ≤ 8.

(21)

According to the success probability formula given in [14], the success probability of linear cryptanalysis
depends not only on the amount of plaintext-ciphertext pairs, but also on the number of guessed subkey
bits. Consequently, we need to prepare 2112 (that is, 24.62×2107.38) plaintext-ciphertext pairs in our multiple
linear attack so as to achieve a high success probability of 88% approximately. Following gives the detailed
description of our multiple linear cryptanalysis on 22-round SMS4.

Pre-computation phase

Initialize eight vectors Zi (1 ≤ i ≤ 8), each consisting of 2112 elements which correspond to all possible
values of ξ. Then for each value of ξ, compute the parity of Γ i

m · f(RK, P, C) according to equation (21)
(i.e., the parity is calculated by partial encryptions of the first round and partial decryptions of the 20th,
21st and 22nd rounds). Keep the value +1 in the relative element of Zi if the parity is 0, and −1 otherwise.
Thus eight 2112 × 2112 matrices M i (1 ≤ i ≤ 8) can be derived from the above eight vectors Zi respectively,
with M i[η][θ] = Zi[ξ], where ξ = η ⊕ θ.

Distillation phase

• Initialize eight vectors T i (1 ≤ i ≤ 8), each composed of 2112 counters which correspond to all possible
values of θ. Then for each plaintext-ciphertext pair, compute the parity of Γ i

m · (P0 ⊕C1). Increase the
the relevant counter in T i by 1 if the parity is 0, and decrease by 1 otherwise.
• Let ĉ = (ĉi,η)1≤i≤8, 0≤η≤2112−1 denote a vector consisting of 8× 2112 elements, where ĉi,η represents

the estimated imbalance for the i-th linear characteristic and the subkey candidate η. Then for a given
i, 1 ≤ i ≤ 8, compute the estimated imbalance ĉi,η for each possible subkey candidate η by the
matrix-vector product M iT i (ĉi,η is equal to the corresponding entry of M iT i divided by 2112, the
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number of plaintext-ciphertext pairs).

Analysis phase

• Compute ‖ĉ‖2 =
∑8

i=1

∑2
112−1

η=0
ĉ2
i,η, and for each subkey candidate η, calculate ‖ĉη‖

2 =
∑8

i=1
ĉ2
i,η.

• Let k = (ki)1≤i≤8 denote a vector composed of eight elements, where ki represents the parity of
Γ i

m · (RK4 ⊕RK5 ⊕RK9 ⊕RK10 ⊕RK14 ⊕RK15). For a given k and a given subkey candidate η, a
vector ck,η of theoretical imbalances with 8× 2112 elements is then constructed as follows:

ck,η = (0, . . . , 0, (−1)k1c1, . . . , (−1)k8c8, 0, . . . , 0), (22)

where ci (1 ≤ i ≤ 8) corresponds to the imbalance of the i-th linear characteristic used in our attack,
and the location of the subvector ((−1)k1c1, . . . , (−1)k8c8) depends on the value of η.
• For each possible value of k ∈ Z8

2 and each possible subkey candidate η, the Euclidean distance
between the vector of estimated imbalances and the vector of theoretical imbalances is measured by
the following equation:

‖ĉ− ck,η‖
2 =

8∑

i=1

(ĉi,η − (−1)kici)
2 +

∑

η′ 6=η

8∑

i=1

ĉ2
i,η′

=
8∑

i=1

(ĉi,η − (−1)kici)
2 + (‖ĉ‖2 − ‖ĉη‖

2).

(23)

• Take the value of k and the subkey candidate η as the correct key information if the corresponding
Euclidean distance ‖ĉ− ck,η‖

2 is minimal.

The data complexity of the attack is 2112 known plaintext-ciphertext pairs. The time complexity of the
attack is dominated mainly by the eight matrix-vector products M iT i ( 1 ≤ i ≤ 8) in the distillation phase,
and the calculation of the Euclidean distance between the vector of estimated imbalances and the vector of
theoretical imbalances for each possible value of k and each possible subkey candidate η in the analysis phase.
Regarding each matrix-vector product M iT i, the time complexity is about 3×112×2112 ≈ 2120.39 arithmetic
operations by applying the technique given in [15], thus leading to a time complexity of 2123.39 arithmetic
operations for all of the eight matrix-vector products. As for the calculations of all above possible Euclidean
distances, the time complexity is about 28 × 2112 × 8 = 2123 arithmetic operations. Consequently, the total
time complexity of our attack is approximately 2123.39 + 2123 ≈ 2124.21 arithmetic operations. Furthermore,
the memory complexity of the attack is primarily owing to keeping the eight vectors T i (1 ≤ i ≤ 8) in the
distillation phase. In order to keep a vector T i of 2112 elements, 2112-bit memory is required, equivalently
2109-byte memory, which results in the total memory complexity of our attack being 8 × 2109 = 2112 bytes
approximately.

6 Conclusion

In this paper, firstly we propose a modified branch-and-bound algorithm which allows searching multiple
linear characteristics for SMS4-like unbalanced Feistel block ciphers. Then a series of 5-round iterative linear
characteristics of SMS4 are obtained by applying the modified algorithm in SMS4. Furthermore, for each
5-round iterative linear characteristic mentioned above, an 18-round linear characteristic of SMS4 can be
derived, resulting in a list of 18-round linear characteristics of SMS4. After that, a key recovery multiple
linear attack is presented on 22-round SMS4 by exploiting the above multiple linear characteristics. As far
as we know, our result has much lower data complexity than the previously best known cryptanalytic result
on 22-round SMS4, which is also the previously best known result on SMS4. The complexities of our attack
as well as the previously known attacks on SMS4 are summarized in Table 2. However, it should be noted
that neither the previously known attacks nor our attack can endanger the full 32-round SMS4. We hope
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our result can be helpful in evaluating the security of SMS4 against multiple linear cryptanalysis. As a scope
of further research, assessing SMS4 against combined attacks such as differential-linear cryptanalysis should
be done and such work is in progress.

Table 2. Summary of Attacks on SMS4 with Reduced Number of Rounds

Number of Rounds Type of Attack
Complexity

Data Time Memory

13 Integral [3] 216 CP 2114 Enc 220 B
14 Rectangle [5] 2121.82 CP 1 2116.66 Enc 1 2125.82 B
14 Rectangle [8] 2107.89 CP 2107.89 MA 2111.89 B
16 Impossible differential [5] 2105 CP 1 2107 Enc 1 2109 B
16 Impossible differential [8] 2117.06 CP 2132.06 MA 2121.06 B
16 Rectangle [6] 2125 CP 2116 Enc 2125 B
18 Boomerang [7] 2120 ACPC 2116.83 Enc 2123 B
18 Rectangle [7] 2124 CP 2112.83 Enc 2128 B
21 Differential [6] 2118 CP 2126.6 Enc 2123 B
22 Differential [7] 2118 CP 2125.71 Enc 2123 B
22 Linear [7] 2119.18 KP 2 2109.86 Enc + 2120.39 AO 2109 B
22 Differential [9] 2117 CP 2112.3 Enc 2122 B
22 Multiple linear (this paper) 2112 KP 2124.21 AO 2112 B

KP - Known plaintexts, CP - Chosen plaintexts, ACPC - Adaptive chosen plaintexts and ciphertexts
Enc - Encryptions, MA - Memory accesses, AO - Arithmetic operations, B - Bytes.
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14. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. Journal of Cryptology 21(1)
(2008) 131–147

15. Collard, B., Standaert, F.X., Quisquater, J.J.: Improving the time complexity of Matsui’s linear cryptanalysis.
In Nam, K.H., Rhee, G., eds.: ICISC. Volume 4817 of Lecture Notes in Computer Science., Springer (2007) 77–88


