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Abstract. In this paper we propose a new MPKC, called PPS, based on (i) the 2-layer
nonlinear piece in hand method, (ii) PMI, and (iii) STS. The PPS is a specific MPKC
obtained by applying the 2-layer nonlinear piece in hand method to STS, in the manner
that the rank and randomness of the lower rank steps in the original secret polynomial
vector of STS are enhanced by adding a perturbation polynomial vector and moreover
PMI is used in the auxiliary part. The PPS overcomes the drawbacks of the three
schemes by the advantage of the three schemes themself. Thus, PPS can be thought
to be immune simultaneously from the algebraic attacks, such as the Gröbner bases
attacks, from the rank attacks, and from the differential attacks.
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1 Introduction

There are two mainstreams in multivariate public key cryptosystems (MPKCs, for short). One is
the Matsumoto-Imai cryptosystem (MI, for short), proposed by Matsumoto and Imai [19, 20], and
another is an MPKC based on the sequential solution method, invented and developed by Tsujii, et
al. [28, 29, 30], and independently invented by Shamir [26].

MI, which is regarded as the origin of the practical MPKCs at present, was invented around 1983.
After it was presented within Japan [19], it was presented at EUROCRYPT ’88 [20]. Thereafter,
MI was successfully broken by Patarin in 1995 [22]. In the next year, Patarin proposed an MPKC,
called hidden field equation (HFE, for short), by generalizing the trapdoor of MI [23]. HFE is more
secure than MI, as discussed by various researchers so far. However, it is not bijective. In addition,
its security against algebraic attack is limited. Although its security can be increased by increasing
the HFE degree d, the computational complexity of decryption also increases in that case.

In 1985, the MPKC based on the sequential solution method was proposed by Tsujii, et al. [28].
After it was attacked by Kaneko, et al. [15], its improved version was proposed by Tsujii, et al. [30]
in 1989. A signature scheme using almost the same trapdoor as the sequential solution method was
proposed by Shamir [26] at CRYPTO ’93, and was attacked by Coppersmith, et al. [1]. Recently,
an English translation of the Japanese paper [30] was uploaded in the Cryptology ePrint Archive
[33]. Thereafter, the MPKC proposed by [30] was attacked by Ding, et al. [8] in 2008.
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The original sequential solution method appends variables one by one to polynomial components
of the trapdoor secret polynomial vector. Kasahara, et al. [16, 17] proposed MPKCs by generalizing
the sequential solution method, where variables are appended r by r, instead of one by one, to
polynomial components of the trapdoor secret polynomial vector. Later on, this type of MPKCs
was called stepwise triangular scheme (STS, for short) by [41]. Several attacks including Gröbner
bases and rank attacks have been applied to STS (see e.g. [41]).

It was discovered in 1994 that RSA cryptosystems, which rely on the difficulty of prime factor-
ization, and elliptic-curve cryptosystems, which rely on the difficulty to compute discrete logarithm,
would not remain secure in case where sufficiently large quantum computers are made practical
[27]. Afterwards various types of MPKCs have been proposed. This is because solving quadratic
equations over finite fields, which MPKCs rely on in general, is NP-complete and it is believed
that any quantum computer cannot solve any NP-complete problem in polynomial time. However,
almost all MPKCs proposed so far have been solved by appropriate attacks. The major attacks
against MPKCs are classified as follows.

(i) Algebraic attacks, which are applicable to any type of MPKCs and include the computation
of Gröbner bases and XL algorithm. These attacks try to invert the encryption procedure to
obtain a plaintext by directly solving the system of polynomial equations obtained from the
public key and the ciphertext [2, 3, 10].

(ii) Rank attacks, which are applicable to STS-type MPKCs [1, 14, 42, 41].

(iii) Differential attacks, which are applicable to MI-type MPKCs [13, 9] (see below).

Tsujii, et al. have developed the piece in hand method (PH method, for short) which can be
applicable to various types of MPKCs for the purpose of enhancing their security against the above
attacks [31, 32, 33, 34, 35, 36, 37, 38, 39]. The latest one is the 2-layer nonlinear piece in hand
method proposed in 2008 [37, 39]. During the decryption of this PH method, the division is needed
to calculate the random perturbation polynomial vector in the first layer using the information
obtained from the second layer, called the auxiliary part. Thus, the size q of the ground finite field
has to be large in order to keep sufficiently large success probability of the decryption. However,
this results in the increase of the computational complexity of the decryption also.

On the other hand, Ding, et al. [4] proposed a different type of security enhancement method,
called Internal Perturbation. They applied the Internal Perturbation to MI to propose a MPKC,
called Perturbed Matsumoto-Imai (PMI, for short), and discussed the security enhancement by
the Internal Perturbation based on computer experiments. Subsequently, PMI was cryptanalyzed
by the differential attack proposed by Fouque, et al. [13]. In order to inoculate PMI against
the differential attack, Ding, et al. [6] then modified PMI to PMI+ using the Plus method [25].
Note that the Internal Perturbation is not only applicable to MI but also to any type of MPKC.
However, its drawback is that the perturbation dimension has to be increased for enhancing the
security, which leads to the exponential increase of computational complexity in decryption.

With the background above, in this paper we propose an MPKC, called PPS, as a specific
MPKC obtained by the application of the 2-layer nonlinear piece in hand method.1 We choose
STS as the original MPKC to be enhanced. We increase the rank and randomness of the lower
rank steps in the secret polynomial vector of STS by adding a perturbation polynomial vector

1The name of PPS comes from (i) piece in hand, (ii) PMI, and (iii) STS.
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based on the 2-layer nonlinear piece in hand method. In addition, PMI with a slight modification
is used in the auxiliary part with comparatively small number of variables. This modification on
PMI enhances the security more, compared with the simple use of PMI. Each advantage of the
three constituents: (i) the 2-layer nonlinear piece in hand method, (ii) PMI, and (iii) STS, works
effectively to overcome the drawbacks of these three constituents (see Figure 1).
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Figure 1: Security Enhanced MPKC Integrated by STS, 2-layer PH Method, and Internal Pertur-
bation

This paper is organized as follows. We begin in Section 2 with a review of the general scheme
of MPKCs. We then describe the details and the security features of STS, PMI, and the 2-layer
nonlinear piece in hand method, in particular. Based on these three schemes, in Section 3 we
propose PPS, which overcomes the drawbacks of the three schemes by the advantage of the three
schemes themself. We then consider the security of PPS against various attacks in Section 4,
partially based on computer experiments. We conclude this paper with Section 5. Due to the
12-page limit, supplementary materials are attached in the Optional Appendix for clarity.

2 The existing MPKCs and their features

2.1 General scheme of MPKCs

We first review the general scheme of MPKCs. We begin with some basic notation and definitions,
which will be used in this paper. Fq is a finite field which has q elements with q ≥ 2. Fq[x1, . . . , xk]
is the set of all polynomials in variables x1, x2, . . . , xk with coefficients in Fq. For every nonempty
set S and every positive integers n and ℓ, Sn×ℓ denotes the set of all n × ℓ matrices whose entries
are in S, and Sn denotes the set of all column vectors consisting n components in S. Therefore
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Sn×1 = Sn. We represent a column vector in general by bold face symbols such as p, v, and G.
For every matrix A ∈ Sn×ℓ, AT ∈ Sℓ×n denotes the transpose of A.

In general, MPKC can be used both as encryption and as signature scheme. In this section, we
explain encryption in particular. Most MPKCs are constituted in the way shown in Figure 2. The
meaning of Figure 2 is explained in what follows.

x ∈ Fk
q

plain text

-v = A0x
A0: secret key

¾ v ∈ Fk
q

-w = G(v)
G: secret key

¾ w ∈ Fn
q

-y = B0w
B0: secret key

¾
?

E(x) = B0G(A0x): public key

y ∈ Fn
q

cipher text

Figure 2: Scheme of Multivariate Public Key Cryptosystem

A plain text is represented by a column vector p = (p1, . . . , pk)T ∈ Fk
q , and a cipher text is

represented by a column vector c = (c1, . . . , cn)T ∈ Fn
q . Then, q, k, and a polynomial column

vector E(x) ∈ Fq[x1, . . . , xk]n form the public key of the cryptosystem. The encryption is given
by the transformation c = E(p) from p to c. The secret key of the cryptosystem gives an efficient
method to solve the system E(x) = c of polynomial equations on x = (x1, . . . , xk)T for any given
c ∈ Fn

q . Thus, E(x) has to be constructed so that, without the knowledge about this method, it is
difficult to find p for any given c in polynomial-time.

Normally, the public key E(x) ∈ Fq[x1, . . . , xk]n has the following form:

E(x) = B0 G(A0x). (1)

Here A0 and B0 are invertible matrices in Fk×k
q and Fn×n

q , and G(v) is a polynomial column vector
in Fq[v1, . . . , vk]n, called the secret polynomial vector. In (1), each component of the polynomial
vector A0x ∈ Fq[x1, . . . , xk]k is substituted for the corresponding variables v1, . . . , vk in G(v).
While keeping A0, B0, and G(v) secret from anyone else, the legitimate receiver publishes the public
key E(x) in the form of a system of trimmed multivariate polynomials obtained by simplifying the
right-hand side of (1). Normally, G(v) consists only of polynomials in Fq[v1, . . . , vk] of total degree
at most two in order to avoid the blowup of the size of the public key E(x).

Numerous varieties of MPKCs have been proposed so far by devising the structure of G(v),
which affects the security directly. MPKCs can be categorized as shown in the Table 1, which is a
slight modification of the list in [7] by Ding, et al. Note that, since the unbalanced oil and vinegar
signature scheme (UOV, for short) is specialized in signature scheme, MPKCs fall into two major
classifications: (i) MI-type cryptosystems and (ii) STS-type cryptosystems. In the subsequent
subsections, we review STS and PMI in particular.

2.2 STS

We first note that k = n in STS. The secret polynomial vector w = G(v) = (g1, . . . , gn)T ∈
Fq[v1, . . . , vn]n of STS is given as shown in Figure 3, where r and L are positive integers with
Lr = n.

The components of the polynomial column vector G(v) form L steps. For each i = 1, 2, . . . , L,
the polynomial components g(i−1)r+1, . . . , gir of G(v) in the step i only contain the variables
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Table 1: Taxonomy of the MPKCs based on [7]

System Authors/Paper
Mixed-Field MIA MI Scheme A or C∗ [20]
(or “Big Field”) Matsumoto and Imai

HFE Hidden Field Equation [23]
Patarin
Generalization of MIA

Single-Field UOV Unbalanced Oil and Vinegar [18]
(or “True”) Patarin et al.

STS Stepwise Triangular System [14, 41]
Tsujii, et al. [29]
Shamir [26], Moh [21]
Kasahara and Sakai [16, 17]

Step 1


w1 = g1(v1, . . . , vr, . . . , v(L−i)r+1, . . . , v(L−i+1)r, . . . , v(L−1)r+1, . . . , vLr)
...

wr = gr(v1, . . . , vr, . . . , v(L−i)r+1, . . . , v(L−i+1)r, . . . , v(L−1)r+1, . . . , vLr)
...

Step i


w(i−1)r+1 = g(i−1)r+1(v1, . . . , vr, . . . , v(L−i)r+1, . . . , v(L−i+1)r)

...
wir = gir(v1, . . . , vr, . . . , v(L−i)r+1, . . . , v(L−i+1)r)

...

Step L


w(L−1)r+1 = g(L−1)r+1(v1, . . . , vr)

...
wLr = gLr(v1, . . . , vr)

Figure 3: The step-structure of G(v) in STS

v1, . . . , v(L−i+1)r, and chosen randomly during the key-generation. On the decryption, the cal-
culation from w = (w1, . . . , wn)T to v = (v1, . . . , vn)T with w = G(v) is performed as follows,
based on the step-structure of G:

First, find v1, . . . , vr with w(L−1)r+1 = g(L−1)r+1(v1, . . . , vr), . . . , wLr = gLr(v1, . . . , vr) in Step L
by exhaustive search. In general, after substituting v1, . . . , v(L−i)r obtained already, find v(L−i)r+1, . . . ,
v(L−i+1)r with

w(i−1)r+1 = g(i−1)r+1(v1, . . . , v(L−i)r, v(L−i)r+1, . . . , v(L−i+1)r),
...

wir = gir(v1, . . . , v(L−i)r, v(L−i)r+1, . . . , v(L−i+1)r)

in Step i by exhaustive search. In this manner, based on the step-structure of G(v), the system
G(v) = w of the polynomial equations on v can be solved for any given w.

The security features of STS against the known attacks are described as follows.
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The strength against the Gröbner bases attacks and XL algorithm: As the number L
of steps decreases, the strength against the attack increases. To the extent to which computer
experiments can be applicable, the strength against the Gröbner bases attack is comparable level
between MI and STS.

The strength against the rank attacks: Wolf, et al. [41] proposed the rank attack against STS.
The attack first calculates an equivalent matrix to B0, based on the difference of the ranks of the
quadratic forms of constituent polynomials between the steps shown in Figure 3. The equivalent
matrix is then used to recover the plain text based on the step-structure of G(v) again. The
computational complexity of the rank attack is almost the same as the decryption by the legitimate
receiver. It would seem necessary to reconsider the validity of the attack from a mathematical point
of view. However, STS would seem to involve the weakness against the rank attack inherently.

The strength against the differential attacks: The differential attack was proposed against
PMI, and it cannot be applicable to STS, as explained in Section 2.3.

As L decreases, the secret polynomial vector G becomes random. In the extreme case of L = 1,
it consists of completely random quadratic polynomials in v. For example, consider the case of
n = 160 and r = 4. Then L = 40 and each polynomial in Step i with i ≤ 24 contains more than 64
variables. If we can regard each polynomial in Step i with i ≤ 24 as a random polynomial in all 160
variables, it would be expected that the secret polynomial vector G(v) can be made sufficiently
random as a whole by adding a highly random perturbation polynomial vector to Steps i with
i ≥ 25. In this paper, we propose a 2-layer nonlinear PH method, called PPS, where STS is used
as the original MPKC and is enhanced by the perturbation polynomial vector in this manner.

2.3 PMI and PMI+

In order to enhance the security of MI against the algebraic attacks such as the Gröbner bases
attack, PMI is constructed by applying the Internal Perturbation to MI as shown in Figure 4.

x ∈ Fk
q

v = A0x- v ∈ Fk
q -w1 = G1(v) w1 ∈ Fn

q -

?
z = Rv

z ∈ Fs
q

ŵ = Q(z) - ŵ ∈ Fn
q

6
+ - w ∈ Fn

q
y = B0w- y ∈ Fn

q

?

E(x) = B0(G1(v) + Q(Rv)) = B0(G1(A0x) + Q(RA0x)) = B0(w1 + ŵ) = B0w

Figure 4: MPKC enhanced by Internal Perturbation

We first note that k = n in PMI. The secret polynomial vector G(v) of PMI is constructed by
adding a perturbation polynomial vector Q(Rv) to the secret polynomial vector G1(v) of MI:

G(v) =
def

G1(v) + Q(Rv).

Here Q(z) is a randomly chosen polynomial vector in Fq[z1, . . . , zs]n, called a perturbation polyno-
mial vector. R is a matrix in Fs×n

q of full row rank. The positive integer s is called the perturbation
dimension.
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On the decryption of PMI, the system G(v) = w of the polynomial equations on v can be solved
as follows for any given w. For each λ ∈ Fs

q, calculate v– ∈ Fn
q which satisfies G1(v–)+Q(λ) = w,

using the secret key of MI for G1(v). By the exhaustive search for all λ ∈ Fs
q, the legitimate

receiver can eventually find v– ∈ Fn
q such that λ = Rv–. This v– satisfies G(v) = w, obviously.

Note that the computational complexity of the decryption is proportional to qs, which comes from
the exhaustive search for all λ ∈ Fs

q.
PMI was cryptanalyzed by Fouque, et al. [13] using the differential attack, and thereby improved

into PMI+ by Ding, et al. [6]. The differential attack is based on the fact that the differential of
the public key polynomial vector E(x) forms an affine transformation. The attack calculates the
dimension of the kernel of the linear part of this affine transformation in order to determine the
kernel of R, which results in the elimination of Q(Rv) from G(v) in the public key E(x).

Subsequently, in order to inoculate PMI against the differential attack, Ding et al. modified
PMI to PMI+ by using the Plus method [25], i.e., by adding random polynomials to the secret
polynomial vector G(v) of PMI in a parallel fashion. However, PMI+ still seems to have the
following drawbacks.

In order to enhance the randomness of the perturbation polynomial vector Q(z), it is necessary
to increase s. In PMI+ (and PMI), the n polynomial components of Q(z) have to be linearly
independent at least for keeping the randomness of Q(z). Thus the following has to hold for the
relation between s and n:

s(s + 1)
2

≥ n.

Note that s(s − 1)/2 ≥ n has to hold instead in the case of q = 2. For example, s ≥ 18 has to
hold in the case of n = 160. During the decryption of PMI, qs trials are needed at most. Thus,
in the case of q = 2 and s = 18, 218 trials (i.e., about 2.6 × 105 trials) are needed. Ding, et al. [5]
performed the computer experiments for the parameters q = 2, 0 ≤ s ≤ 10, and 14 ≤ n ≤ 59. They
then reported that, in the case of 21 ≤ n ≤ 26, PMI with s = 6 acquires a substantial immunity
from the Gröbner bases attack in comparison with PMI with s = 5. This phenomenon can be
thought to result from the fact that s(s + 1)/2 equals to 21 and is close to 26 in the case of s = 6.

2.4 The 2-layer nonlinear PH method

The 2-layer nonlinear PH method, shown in Figure 5, was proposed for the aim of enhancing the
security of various reasonable MPKCs mainly against the algebraic attacks such as the Gröbner
bases attacks [37, 39]. In the method, the public key polynomial vector E of the original MPKC
is made more random by adding a random perturbation polynomial vector D0J , which can be
eliminated during the decryption using the information obtained from the auxiliary part Ch0. For
the detail, see [37, 39].

Unlike Internal Perturbation, the 2-layer nonlinear PH method does not cause the increase of
the computational complexity during the decryption in exchange for the security against algebraic
attacks. However, it is thought to have the following two drawbacks: (i) During the decryption,
the division is needed to calculate the random perturbation polynomial vector D0J using the
information obtained from the auxiliary part. (ii) The randomness of the auxiliary part is not so
high.
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Figure 5: Constitution of the 2-layer nonlinear PH method

3 A new MPKC: PPS

In this section, based on the three schemes described in the above three subsections we propose a
new MPKC, called PPS, which overcomes the drawbacks of the three schemes by the advantage of
the three schemes themself. PPS can be thought to be immune simultaneously from the algebraic
attacks, such as the Gröbner bases attack, from the rank attacks, and from the differential attacks.
PPS is constructed based on the following design guide, and is depicted in Figure 6.

Ẽ = B
6

?

low
rank

6

?

high
rank G

original
STS

···

+ Q(f)
add
nonlinear piece in hand
perturbation
polynomial vector

unnecessary to add
perturbation
polynomial vector

H(f) +

Auxiliary Part

r(a)
enhanced by
Internal Perturbation

Figure 6: Constitution of PPS

(i) The low rank part of the secret polynomial vector G of the original STS is randomized and
strengthened by the perturbation polynomial vector Q(f) constructed based on the auxiliary
part.

(ii) The randomness of the auxiliary part is enhanced by adding another perturbation polynomial
vector r(a) to it.

(iii) The perturbation polynomial vector r(a) is added to the auxiliary part based on the Internal
Perturbation in a similar manner to PMI. Since the number of polynomial components of
the auxiliary part is less than one-tenth of the number of polynomial components of G, the
perturbation dimension s does not have to be chosen large, unlike PMI.
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(iv) Unlike the 2-layer nonlinear PH method, during the decryption the division is not needed to
calculate Q(f) using the information obtained from the auxiliary part.

Note that additional variables, called the random variables, can be introduced in a series of the
PH methods [34, 35, 36, 37, 38, 39] in addition to the latest one, the 2-layer nonlinear PH method
[37, 39], described in Subsection 2.4 above. This is a crucial property of the PH method in general,
and we can introduce the random variables in PPS as well. The aim of introducing the random
variables is

(i) to enhance the security against the algebraic attacks, such as the Gröbner bases attacks, and

(ii) to make the PH method available as a signature scheme.

However, a naive introduction of the random variables only in the perturbation polynomial vector
Q(f) or the auxiliary part might allow another type of attack based on the distinction between
the plaintext variables and the random variables. In order to fend off such an attack we have
to insert linear combinations of the random variables among plaintext variables in the public key
polynomial vector of the original MPKC. However, the introduction of the random variables results
in the decrease of the number of real plaintext variables. Thus, we have to determine appropriately
the sizes of the random variables to keep the efficiency of the PH method.

Due to the 12-page limit and also for clarity, we only describe a simplification of PPS, which
does not have the random variables, in the main part of this paper as follows. For the complete
specification of PPS and its application to signature scheme, see Optional Appendix.

3.1 The specification of primitive PPS

The MPKC: PPS without the random variables, called primitive PPS, is specified as follows. We
first describe the parameters in PPS.

(i) Parameters on the original STS

• q: the size of the finite field Fq.

• k: the size of the plain text.

• n: the number of components of the public key. Normally, n = k.

(ii) Parameters on the auxiliary part

• f : the number of variables in the secret polynomial vector H in the auxiliary part.

• ℓ: the number of polynomial components of the auxiliary part. Normally, ℓ = f .

(iii) Parameters on the whole MPKC

• g = n + ℓ: the number of components of the public key.

• n0: the number of components of the perturbation polynomial vector Q(f) in the layer
of the original STS with n0 ≤ n.

• s: the perturbation dimension for Internal Perturbation in the auxiliary part.
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A plain text vector is represented by p = (p1, . . . , pk)T ∈ Fk
q while a cipher text vector is

represented by c̃ = (c̃1, . . . , c̃g)T ∈ Fg
q .

Secret Key. The following seven form the secret key: (i) A secret polynomial vector G ∈
Fq[x1, . . . , xk]n of the original STS, (ii) A secret polynomial vector H ∈ Fq[x1, . . . , xf ]ℓ of the
MPKC in the auxiliary part, (iii) An invertible matrix B ∈ Fq

g×g, (iv) A matrix C ∈ Fq
f×k, (v)

A matrix D ∈ Fq
s×f , (vi) A perturbation polynomial vector Q ∈ Fq[x1, . . . , xf ]n0 in the layer of

the original MPKC, and (vii) A perturbation polynomial vector r ∈ Fq[x1, . . . , xs]ℓ in the auxiliary
part.

Public Key. The following forms the public key:

Ẽ = B

 G(x) +
(
0n−n0

Q(f)

)
H(f) + r(a)

 ,

where x = (x1, . . . , xk)T ∈ Fq[x1, . . . , xk]k, f = (f1, . . . , ff )T = Cx ∈ Fq[x1, . . . , xk]f , a =
(a1, . . . , as)T = Df ∈ Fq[x1, . . . , xk]s. Finally, 0n−n0 denotes the zero vector in Fn−n0

q .

Encryption. Given a plain text vector p ∈ Fk
q , calculate the cipher text vector c̃ ∈ Fg

q by c̃ = Ẽ(p)
using the public key Ẽ .

Decryption. The decryption is performed as follows.

(i) First, calculate w = (w1, . . . , wg)T = B−1c̃ and then set w1 := (w1, . . . , wn)T ∈ Fn
q and

w2 := (wn+1, . . . , wn+ℓ)T ∈ Fℓ
q.

(ii) For each p′′ ∈ Fs
q, calculate p̃′ = H−1(w2 − r(p′′)), and then check whether Dp̃′ = p′′ holds

or not. If this holds, set p′ := p̃′.

(iii) Calculate c = w1 −
(
0n−n0

Q(p′)

)
.

(iv) Since c = G(p), the plain text p is recovered from c based on the decryption of the original
STS.

Note that the legitimate receiver may fail to recover the plain text uniquely. This is because p′

obtained in the stage (ii) of the decryption may not be unique. However, it is possible to eliminate
this nonuniqueness, using the familiar method based on a hash function H, i.e., we use a part
(p1, . . . , pu)T of the whole plain text vector p = (p1, . . . , pk)T to represent a real plain text and
substitute H(p1, . . . , pu) to the remaining part (pu+1, . . . , pk)T of p on the encryption.

4 Security of PPS

4.1 Security against the Gröbner bases attack

As discussed in the previous works e.g. [39], the security of various MPKCs including STS can be
enhanced by the PH methods. For example, MI with n = 25 and q = 256 is enhanced against the
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Gröbner bases attack by the order of 103 times in the 2-layer nonlinear PH method with ℓ = 15.
The purpose of the PH methods is to enhance the security of MPKCs, and therefore it is desirable
that the computational complexity of the Gröbner bases attack increases exponentially with the
parameter n in the enhanced cryptosystem (see also [5]). In PPS proposed in this paper, it is
expected that the computational complexity of the Gröbner bases attack is exponential to the n
while the size n0 of the perturbation polynomial vector Q(f) is comparable to the dimension of
the linear space spanned by the quadratic polynomials fifj , where fi and fj are components of f
and i ̸= j, with the parameters k = 60 and ℓ = 12. Although, the perturbation effect would decline
when the size n0 becomes far more than the dimension mentioned above. This is tested by the
computer experiments reported in what follows.

4.1.1 Experiment of computing Gröbner bases

We perform the experiments of the Gröbner bases attacks against PPS whose parameters are set
as follows.

PMI Auxiliary Part: In the auxiliary part, f = ℓ = 10 or 12. The perturbation dimension s
is 5 for all experiments.

Original STS: The number n of the polynomial components in the secret polynomial vector
G of the original STS varies from 24 to 64. Note that k = n in general due to the specification of
STS. The number of variables and polynomials are adjusted to equal in the public key Ẽ of PPS by
introducing random variables to the auxiliary part and perturbation polynomials. To be specific, ℓ
random variables are introduced to make the number of variables and polynomial components equal
in the public key Ẽ.) For example, when n = 32 and ℓ = 12, 12 random variables are introduced
to make z = 32 + 12 = n + ℓ. See Appendix A for the detailed description of the random variables
and their effects. The step height and width r of the original STS is 4. n0 = n − 8, i.e., the two
steps from the top of the secret polynomial vector G of the original STS are left unperturbed.

Computing Environment: We perform the experiments using the computational algebra sys-
tem Magma. Gröbner bases are computed by F4 algorithm implemented in Magma as the function
GroebnerBasis(). The attack is repeated 5 times for each condition. All computer experiments
are performed with the following environment: (i) Computer: Japan Computing System (JCS)
VC98220WSA-4U/T workstation, with CPU AMD Opteron 8220 (2.80 GHz) quadcore and 128
Gbyte Memory (ii) Magma ver. 2.15-15 running on Red Hat Enterprise Linux Advanced Platform
Standard. The computation time is counted by the function Cputime() in Magma.

In PPS, the effect of the PH method in enhancing the security of the STS against the Gröbner
bases attacks is shown in Figures 7 and 8. The relationship between the F4 computation time and
the number n of the polynomial components in the secret polynomial vector G of the original STS
in PPS is shown in Figure 7. On the other hand, the binary logarithm of the F4 computation time
vs. n is plotted in Figure 8. The time of the Gröbner basis computation by F4 algorithm against
the corresponding single STS is also shown in Figure 7. In these experiments, it is observed that
the time of the Gröbner basis computation by F4 algorithm is increased by at least 200 times in the
PPS, compared with the corresponding single STS. We may observe, in Figure 8, that the linear
relationship is maintained until n = 48 (i.e., n0 = 40), but this linear relationship begins to decline
at around n = 56 and deviates rather significantly when n = 64 (i.e., n0 = 56).

The above experimental results suggest that the computational complexity of the Gröbner bases
attack increases exponentially as n0 increases, as long as n0 lies within the dimension ℓ(ℓ− 1)/2 of
the linear space spanned by the quadratic polynomials fifj with i ̸= j. Therefore, in the case of
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ℓ = 25, the computational complexity would be expected to increase exponentially until n0 reaches
300 (= 25 × (25 − 1)/2). Moreover, it is possible to increase the computational complexity further
by making the public key Ẽ underdefined based on the introduction of more random variables. See
Appendix A for the effects of the random variables.

4.1.2 Recommended parameter setting

We suggest a secure parameter setting of PPS in Table 2, where p is the size of the plain text vector,
z is the total number of variables including both the plain text variables and the random variables,
and t is the number of the random variables which are included in the secret polynomial vector G
of the original STS. See Appendix A for the meaning of these parameters. Since the exhaustive

Table 2: Recommended parameter setting
Parameters Public Key

q p k n z g f ℓ n0 s t Size

The original STS 2 260 260 1.10 MB

PPS 2 256 260 260 340 280 20 20 190 6 42 2.03 MB

search among 280 candidates is thought to be impossible at present, the complexity 280 seems to be
selected as the standard security level in present cryptographic community. Thus, in suggesting the
parameters in Table 2, we assume that the security level is greater than the complexity 280. In the
parameters in Table 2, the information transmission rate (i.e., the size p of plain text divided by
the size g of cipher text) of PPS is 256/280 ≈ 0.914. The public key size of PPS is about 1.8 times
as large as that of the original STS. In the original STS, the number of both plain text variables
and cipher text variables are 260.

While measuring the F4 computation time at the experiments above, we also measured the
maximal degree d of polynomials during the Gröbner basis computation by F4 algorithm. We
observed that d ≤ 3 in all cases of STS and d ≥ 4 in our PPS with f ≥ 10 and s ≥ 5. Note that,
in our PPS, the observed value of d is not constant but takes various values independently of the
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number of public key polynomials. Based on the consideration on the complexity of Gröbner basis
computation in [11, 12], we estimate that the complexity of Gröbner bases attack against our PPS
with the parameters in Table 2 is at least 2100, though that of the corresponding single STS is at
most 272. It is expected with certainty that the complexity is far greater than 2100 in practice.

4.2 Security against the rank attack

Wolf, et al. [41] proposed the rank attack against STS. In our PPS, the secret polynomial vector
G of STS is used in the 1st layer. Thus, at first glance, the rank attack might seem effective to the
1st layer of PPS. However, the low rank part of the secret polynomial vector G of the original STS
in the 1st layer is covered by the perturbation polynomial vector Q(f) and therefore the stepwise
triangular structure of the original STS is broken. Thus it is expected that the rank attack does
not work properly against PPS.

4.3 Security against the differential attack

The differential attack was proposed by Fouque, et al. [13] against PMI, which is used in the
auxiliary part of our PPS. In order to inoculate PMI against the differential attack, Ding, et al. [6]
then modified PMI to PMI+ using the Plus method [25]. This method is the countermeasure which
adds some random polynomial vector to the public key polynomial vector. In the 1st layer (i.e.,
the layer of the original STS) of PPS, the polynomials in the higher steps of the secret polynomial
vector G of the original STS are virtually random and the polynomials in the lower steps of G
is randomized by the perturbation polynomial vector Q(f). Thus, all the polynomials in the 1st
layer are considered to be virtually random and are therefore expected to work as the plus part to
protect the auxiliary part, PMI, from the differential attack.

5 Conclusion

In this paper we have proposed a new MPKC, called PPS, based on (i) the 2-layer nonlinear piece
in hand method, (ii) PMI, and (iii) STS. We have shown that PPS overcomes the drawbacks of
these three schemes by the advantage of the three schemes themself. In particular, based on the
computer experiments we have shown that PPS can be immune from the Gröbner bases attacks.

Acknowledgments

We appreciate Professor Jintai Ding of University of Cincinnati for the various active discussion
with us.
This work was supported by SCOPE (Strategic Information and Communications R&D Promotion
Programme) from the Ministry of Internal Affairs and Communications of Japan. The second
author was also supported by Japan Science and Technology Agency, CREST.

13



References

[1] D. Coppersmith, J. Stern, and S. Vaudenay. Attacks on the birational permutation signa-
ture schemes. Proc. CRYPTO ’93, Lecture Notes in Computer Science, Vol.773, pp.435–443,
Springer, 1994.

[2] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving overdefined
systems of multivariate polynomial equations. Proc. EUROCRYPT 2000, Lecture Notes in
Computer Science, Vol.1807, pp.392–407, Springer, 2000.

[3] N. Courtois, M. Daum, and P. Felke. On the security of HFE, HFEv- and Quartz. Proc. PKC
2003, Lecture Notes in Computer Science, Vol.2567, pp.337–350, Springer, 2003.

[4] J. Ding. A new variant of the Matsumoto-Imai cryptosystem through perturbation. Proc. PKC
2004, Lecture Notes in Computer Science, Vol.2947, pp.305–318, Springer, 2004.

[5] J. Ding, J. E. Gower, D. Schmidt, C. Wolf, and Z. Yin. Complexity estimates for the F4 attack
on the perturbed Matsumoto-Imai cryptosystem. Proc. IMA Int. Conf. 2005, Lecture Notes
in Computer Science, Vol.3796, pp.262–277, Springer, 2005.

[6] J. Ding and J. E. Gower. Inoculating multivariate schemes against differential attacks.
Proc. PKC 2006, Lecture Notes in Computer Science, Vol.3958, pp.290–301, Springer, 2006.

[7] J. Ding, C. Wolf, and B. Y. Yang. ℓ-Invertible Cycles for Multivariate Quadratic (MQ) public
key cryptography. Proc. PKC 2007, Lecture Notes in Computer Science, Vol.4450, pp.266–281,
Springer, 2007.

[8] J. Ding and J. Wagner. Cryptanalysis of rational multivariate public key cryptosystems.
Proc. PQCrypto 2008, Lecture Notes in Computer Science, Vol.5299, pp.124–136, Springer,
2008.

[9] V. Dubois, P. A. Fouque, A. Shamir, and J. Stern. Practical cryptanalysis of SFLASH.
Proc. CRYPTO 2007, Lecture Notes in Computer Science, Vol.4622, pp.1–12, Springer, 2007.

[10] J. C. Faugère and A. Joux. Algebraic cryptanalysis of hidden field equation (HFE) cryptosys-
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Optional Appendix

In what follows, we present supplementary discussion about random variables and signature
scheme.

A PPS in a complete form

In this section, we give the full specification of PPS by describing the random variables explicitly.
This full PPS is depicted in Figure 6 again.

A.1 The specification of PPS

The MPKC: PPS in its complete form is specified as follows. We first describe the parameters in
the PPS.

(i) Parameters on the original STS

• q: the size of the finite field Fq.

• k: the size of the plain text.

• n: the number of components of the public key. Normally, n = k.

(ii) Parameters on the auxiliary part

• f : the number of variables in the secret polynomial vector H of the MPKC in the
auxiliary part.

• ℓ: the number of polynomial components of the auxiliary part. Normally, ℓ = f .

(iii) Parameters on the whole MPKC

• p: the size of the plain text with p ≤ k.

• z: the total number of variables including both the plain text variables and the random
variables with z ≥ k, where z − p is the number of the random variables.

• t: the number of the random variables which, in particular, are included in the secret
polynomial vector G of the original STS with 0 ≤ t ≤ z − p. This t is introduced for
generality, and it is possible to set t = z − p.

• g = n + ℓ: the number of components of the public key.

• n0: the number of components of the perturbation polynomial vector Q(f) in the layer
of the original STS with n0 ≤ n.

• s: the perturbation dimension for Internal Perturbation in the auxiliary part.

A plain text vector is represented by p = (p1, . . . , pp)T ∈ Fp
q while a cipher text vector is

represented by c̃ = (c̃1, . . . , c̃g)T ∈ Fg
q .

Secret Key. The following eight form the secret key: (i) A secret polynomial vector G ∈
Fq[x1, . . . , xk]n of the original STS, (ii) A secret polynomial vector H ∈ Fq[x1, . . . , xf ]ℓ of the
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MPKC in the auxiliary part, (iii) A matrix A ∈ F(k−p)×t
q , (iv) An invertible matrix B ∈ Fg×g

q ,
(v) A matrix C ∈ Fq

f×z, (vi) A matrix D ∈ Fq
s×f , (vii) A perturbation polynomial vector

Q ∈ Fq[x1, . . . , xf ]n0 in the layer of the original MPKC, and (viii) A perturbation polynomial
vector r ∈ Fq[x1, . . . , xs]ℓ in the auxiliary part.

Public Key. The following forms the public key:

Ẽ = B

 G

(
x

Aµ

)
+

(
0n−n0

Q(f)

)
H(f) + r(a)

 ,

where x = (x1, . . . , xp)T ∈ Fq[x1, . . . , xp]p, µ = (xp+1, . . . , xp+t)T ∈ Fq[xp+1, . . . , xp+t]t, f =

(f1, . . . , ff )T = C

(
x
λ

)
∈ Fq[x1, . . . , xz]f , λ = (xp+1, . . . , xz)T ∈ Fq[xp+1, . . . , xz]z−p, a =

(a1, . . . , as)T = Df ∈ Fq[x1, . . . , xz]s. Finally, 0n−n0 denotes the zero vector in Fn−n0
q .

Encryption. Given a plain text vector p ∈ Fp
q , first choose a random vector u = (u1, . . . , uz−p)T ∈

Fq
z−p which is substituted for the random variables, and then calculate the cipher text vector c̃ ∈ Fg

q

by c̃ = Ẽ(z) using the public key Ẽ, where

z =
(

p
u

)
∈ Fz

q .

Decryption. Note that the vector u is decomposed into u1 ∈ Ft
q and u2 ∈ Fz−p−t

q by

u =
(

u1

u2

)
∈ Fz−p

q .

The decryption is performed as follows.

(i) First, calculate w = (w1, . . . , wg)T = B−1c̃ and then set w1 := (w1, . . . , wn)T ∈ Fn
q and

w2 := (wn+1, . . . , wn+ℓ)T ∈ Fℓ
q.

(ii) For each z′′ ∈ Fs
q, calculate z̃′ = H−1(w2 − r(z′′)), and then check whether Dz̃′ = z′′ holds

or not. If this holds, set z′ := z̃′.

(iii) Calculate c = w1 −
(
0n−n0

Q(z′)

)
.

(iv) Since c = G

(
p

Au1

)
, the plain text p is recovered from c based on the decryption of the

original STS.

Note that the legitimate receiver may fail to recover the plain text uniquely. This is because z′

obtained in the stage (ii) of the decryption may not be unique. However, it is possible to eliminate
this nonuniqueness, using the familiar method based on a hash function H, i.e., we use a part
(p1, . . . , pu)T of the whole plain text vector p = (p1, . . . , pk)T to represent a real plain text and
substitute H(p1, . . . , pu) to the remaining part (pu+1, . . . , pk)T of p on the encryption.
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A.2 Effects of random variables to the security against the Gröbner bases attack

In PPS described in Subsection A.1, it is possible to make the public key Ẽ underdetermined,
i.e., to make the parameter z greater than the parameter g. The computational complexity of
the Gröbner bases attack against PPS can be increased by appropriately adjusting the number
of the random variables in the public key. This is because the strength against algebraic attacks
increases as the total number of variables increases, in general. Note that the inclusion of the
random variables to the public key does not increase the size of the cipher text although the one of
the public key increases somewhat. Therefore the inclusion of the random variables in the public
key does not detract the efficiency of information transmission. We made experiments to observe
the relationship between the number of the random variables and the computational complexity
of the Gröbner bases attack against PPS with other parameters fixed. Figures 9 and 10 show the
relationship between the F4 computation time and the number of the random variables for the
PPS with n = 32 and f = ℓ = 12 fixed. The number of the random variables are increased from
12(z = n + ℓ) to 30. We may see that the complexity increases exponentially, in particular, from
Figure 10 where the binary logarithm of the F4 computation time vs. the number of the random
variables is plotted.

0

1

2

3

12 15 20 25 30

z−k: the number of the random variables

F4
 c

om
pu

ta
tio

n 
tim

e 
(×

10
00

 s
ec

on
d)

Figure 9: F4 computation time vs. the length
of the random variables

5

6

7

8

9

12 15 20 25 30

z−k: the number of the random variables

B
in

ar
y 

lo
ga

ri
th

m
 o

f 
th

e 
F4

 c
om

pu
ta

tio
n 

tim
e

Figure 10: Binary logarithm of the F4 com-
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B PPS as signature scheme

In PPS described in Appendix A, the decryption can be performed without calculating the random
variables. The PPS can be converted into a signature scheme by calculating the random variables
in addition to the plain text variables as follows. The difficulty to overcome for converting PPS into
a signature scheme is that the public key Ẽ might not be a surjection onto Fg

q in general. Since the
secret polynomial vector G in the main part (i.e., the 1st layer of Ẽ) is chosen to be STS in PPS, this
part can be a surjection onto Fn

q . On the other hand, the auxiliary part might not be a surjection
onto Fℓ

q due to the existence of the perturbation polynomial vector r(a). To overcome this difficulty,
it is effective to append to the auxiliary part a polynomial vector OV ∈ Fq[x1, . . . , xz]ℓ, where a
certain part of the random variables appears only as a variable of degree one in each monomial in
OV . When we generate the signature z given a message c̃, by decomposing w2 into w2 = d1 +d2
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appropriately and then solving H(f) + r(a) = d1 and OV = d2 with respect to f and the part
of the random variables, the decryption in the auxiliary part can be performed. Note here that we
can use the technique of the oil and vinegar signature scheme [24] in order to solve OV = d2. The
detail will be described in a sequel to this paper.
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