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Abstract

In this paper, first we point out some flaws in the existing indifferentiability simulations of the pf-MD and
the NMAC constructions, and provide new differentiable attacks on the hash functions based these schemes. Af-
terthat, the indifferentiability of the 20 collision resistant PGV hash functions, which are padded under the pf-MD,
the NMAC/HMAC and the chop-MD constructions, are reconsidered. Moreover, we disclose that there exist 4
PGV schemes can be differentiable from a random oracle with the pf-MD among 16 indifferentiable PGV schemes
proven by Changet al. Finally, new indifferentiability simulations are provided for 20 collision-resistant PGV
schemes. The simulations exploit that 20 collision-resistant PGV hash functions, which implemented with the
NMAC/HMAC and the chop-MD, are indifferentiable from a random oracle. Our result implies that same com-
pression functions under MD variants might have the same security bound with respect to the collision resistance,
but quite different in the view of indifferentiability.

1 Introduction

Cryptographic Hash Functions. Cryptographic hash function, which is defined as an admissible algorithm that
uniformly maps arbitrary length inputs to fixed length outputs, is widely used as a pivotal primitive for ensuring the
integrity of information. In nowadays, the popular design of cryptographic hash functions still follows the well-known
Merkle-Damgård (MD) construction [12, 21], by iterating acompression function on an input message to realize a
domain extension transform and yields a collision resistant hash function if the underlying compression function is.
The primary security goal for cryptographic hash functionshas historically been collision resistance. Unfortunately,
hash functions have been used for all kinds of applications which the security requirements are not only satisfied by
collision resistance, but also pseudo-randomness, and even to be a random oracle [2].

In recent years, the hash community starts to argue that the traditional Merkle-Damgård (MD) construction is
not a good design in the security view as a random oracle [9]. Since the well-known extension attack allows one to
take a valueH(x) for x, and then computes the valueH(x, |x|, y), where|x| is the length ofx andy is an arbitrary
suffix. But this extension property is not allowed for any truly random oracle. For instance, even if the underlying
compression functionf is assumed to be a fixed-length random oracle, any hash function Hf under MD construction
will unlikely to be indifferentiable with a random oracle. From those counter-examples, people realize that collision
resistance alone is insufficient for the security of so many different applications of hash functions. For this reason, a
rich literature analyzed the security of hash functions obtaining variable-input-length (VIL) from an ideal fixed-input-
length (FIL) compression function, such as [1, 2, 3, 9, 17].

In practice, there exist two main approaches to design a compression function for an iterated hash function. One
is to implicitly design a compression function by implicitly using the idea of block ciphers, which is calleddedicated
hash function. The other is to explicitly compose a compression function from block ciphers, which is calledblock-
cipher-basedhash function. By now, it seems still hard to design a dedicated compression function by witnessing the
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recent collision attacks on serval popular hash functions [23, 24]. The advantage of block-cipher-based hash functions
is that one can conveniently choose an extensively studied block cipher (e.g., DES, IDEA, AES, etc) to construct a
compression function, so that the design and implementation efforts could be minimized. Also the latest cryptanalysis
on such a block cipher can be used to avoid the potential weakness in the compression function. Discussions of hash
functions constructed fromn-bit block ciphers are mainly divided intosingle block length(SBL) such as 64 PGV
schemes [22], anddouble block length(DBL) such as MDC2 [6], where single and double are related tothe output
range of the underlying block cipher.

The original proposals of block-cipher-based hash functions usually focus on attacks, not formal proofs. As the
development of provable security, some works have focused on the provable security of hash function based on block
ciphers by modeling the underlying block cipher as a black box [5, 16]. In [5], Blacket al. described a black-box
analysis of all 64 PGV hash functions and proved that in the black box model, there exist 20 out of 64 PGV hash
functions are collision resistant.

Indifferentiability Methodology. In TCC’04, Maureret al. introduced a strong security notion called as indifferen-
tiability [19] for a hash function based on a compression function which is an extension of the classical indistinguisha-
bility security notion. The advantage of the indifferentiability is that one can built a secure VIL-RO from smaller (FIL)
idealized components(such as an ideal compression function or ideal cipher). In Crypto’05, Coronet al. first imple-
mented the indifferentiability in analysis of hash functions and suggested four secure constructions [9], which were
the prefix-free padding(pf-MD), the NMAC/HMAC and the chop construction(chop-MD). The compression function
is viewed as a fixed-length random oracle or built from an ideal block cipher with Davies-Meyer structure. After that,
several works followed to investigate the indifferentiability of a hash construction, such as [2, 3, 4, 7, 13, 14].

At Asiacrypt’06, Changet al. presented a unified way to prove the indifferentiability for block-cipher-based
hash functions [7]. They analyzed 20 collision resistant PGV hash functions with pf-MD and found there are sixteen
schemes are indifferentiable from random oracle and other four schemes are differentiable in the ideal cipher model.
In [15], Gonget al. provided a synthetic indifferentiability analysis of some block-cipher-based hash functions and
claimed that all 20 collision resistant PGV schemes are indifferentiable from random oracle with the pf-MD, the
NMAC/HMAC and the chop-MD constructions, where the length padding should be used in the constructions.

Our Contributions. In this paper, by using the indifferentiability methodology, we revisit the indifferentiability of
hash functions with pf-MD, NMAC/HMAC and chop-MD construction when the compression function is based on
collision resistant PGV structures. We find that there exist8 PGV schemes are differentiable from random oracle with
pf-MD, but indifferentiable from random oracle with NMAC/HMAC and chop-MD. And this give evidence that the
four constructions are not the same in the view of the indifferentiability. In the analysis, we revise the flaws in Coron
et al.[9] and Changet al.[7]’s proofs of Davies-Meyer compression function with pf-MD and NMAC, which allow an
adversary can implement differentiable attacks on them. Furthermore, we find that in the 16 collision resistant PGV
hash functions which are proved indifferentiable from a random oracle in the ideal cipher model with pf-MD in Chang
et al.’s analysis, there are still 4 are really differentiable. According to our analysis, although all of the 20 collision
resistant PGV hash function with NMAC/HMAC and chop-MD are indifferentiable from a random oracle in the ideal
cipher model, the chop-MD construction has a better indifferentiability bound in advance.

Organization. The organization of this paper is as follows. In Section 2, the notation of indifferentiability and
some previous works are reviewed. In Section 3, formal methods of the indifferentiability of a hash function in
the ideal cipher model are described. In Section 4, Coronet al.’s and Changet al.’s proofs of indifferentiability of
hash functions based on the Davies-Meyer structure with pf-MD and NMAC construction are described and flaws
in their works are pointed out, and the right proofs for pf-MDand NMAC construction are given. In Section 5, the
indifferentiability of 20 collision resistant PGV hash functions with pf-MD, NMAC/HMAC, chop-MD construction
are revisited. Finally we draw a conclusion in Section 6.
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Group-1 schemes
Case PGV Case PGV Case PGV

1 Ehi−1
(mi)⊕mi 5 Emi

(hi−1)⊕ hi−1 9 Ewi
(mi)⊕mi

2 Ehi−1
(wi)⊕ wi 6 Emi

(wi)⊕ wi 10 Ewi
(hi−1)⊕ hi−1

3 Ehi−1
(mi)⊕ wi 7 Emi

(hi−1)⊕ wi 11 Ewi
(mi)⊕ hi−1

4 Ehi−1
(wi)⊕mi 8 Emi

(wi)⊕ hi−1 12 Ewi
(hi−1)⊕mi

Table 2.1Group-1 schemes in [5].

2 Preliminaries

2.1 Ideal Cipher Model and Random Oracle Model

Ideal cipher model, which is often called black box model as well, is a formal model for the security analysis of
block-cipher-based hash functions. An ideal cipher is an ideal primitive that models a random block-cipherE :
{0, 1}k × {0, 1}n 7→ {0, 1}n. Each keyk ∈ {0, 1}k defines a random permutationEk = E(k, ·) on {0, 1}n. An
adversary is given forward or inverse queries to oraclesE, when he makes a forward query toE with (+, k, p), it
returns the pointc such thatEk(p) = c, when he makes an inverse query toE with (−, k, c), it returns the pointp
such thatEk(p) = c.

As the ideal cipher model, the random oracle model(ROM) is also a method of developing provably secure
cryptosystems. Simply says, A random oracle (RO) is an idealprimitive which provides a random output for each
new query. Identical input queries are given the same answer. Recently, it was proven by Coronet al. [11] that the
ideal cipher model is equivalent to the random oracle model by using the indifferentiability methodology.

2.2 PGV Hash Functions

At Crypto’93, Preneel, Govaerts and Vandewalle (PGV) [22] proposed a synthetic approach to design single block
length hash function based on block ciphers. They considered the method of turning a block cipherE : {0, 1}n ×
{0, 1}n → {0, 1}n into a hash functionH : {0, 1}∗ → {0, 1}n using a compression functionf : {0, 1}n×{0, 1}n →
{0, 1}n derived fromE. For a fixedn-bit constantv, PGV considered all 64 compression functionsf of the form
f(hi−1,mi) = Ek(p)⊕ a wherek, p, a ∈ {hi−1,mi, hi−1 ⊕mi, v}, wherewi = hi−1 ⊕mi andv is a constant. The
hash functionH(m1, . . . ,ml) can subsequently be described as follows:

hi = f(hi−1,mi), i = 1, 2, . . . , l

Heref is the underlying compression function,h0 is equal to a fixed initial value IV,|mi| = n for eachi ∈
[1 · · · l] andhl is the hashcode. Of the 64 such schemes, PGV regards 12 schemes as secure in the sense of both the
preimage resistance and the collision resistance. Another13 schemes they classified as backward-attackable, which
means they are subject to a potential attack. The remaining 39 schemes are subject to fatal attacks. Afterthat, Blacket
al. [5] revisited all the 64 PGV schemes in the ideal cipher model. They proved that the 12 secure schemes that PGV
had singled out remain secure in the black-box analysis, which are denoted as the Group-1 schemes (listed in Table
2.1). Additionally, there are 8 schemes are also secure after iteration, they denoted these 8 schemes as the Group-2
schemes (listed in Table 2.2).

2.3 Four Merkle-Damgård Variants

In [9], Coron et al. proposed four Merkle-Damgård variants such that the arbitrary length hash functionH must
behave as a random oracle when the fixed-length building block is viewed as a random oracle or an ideal block cipher,
namely, the prefix-free padding, the NMAC/HMAC and the chop constructions. In this paper only compression
function based on PGV schemes is considered. The four variants are described in Table 2.3.
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Group-2 schemes
Case PGV Case PGV Case PGV

13 Ewi
(mi)⊕ v 16 Ewi

(hi−1)⊕ v 19 Emi
(wi)⊕ v

14 Ewi
(mi)⊕ wi 17 Emi

(hi−1)⊕mi 20 Emi
(wi)⊕mi

15 Emi
(hi−1)⊕ v 18 Ewi

(hi−1)⊕ wi

Table 2.2Group-2 schemes in [5].

pf-MDf (IV,M) : NMACf1,f2 (IV1,M) :

M = m1|| · · · ||mi, h0 = IV1 M = m1|| · · · ||mi, h0 = IV
For i = 1 to i dohi = f(g(mi), hi−1) For i = 1 to i dohi = f1(mi, hi−1)
Returnhi Returnf2(hi, IV2)

HMACf (IV,M) : chop-MDf
s (IV,M) :

M = m1|| · · · ||mi, h0 = f(0n, IV ) M = m1|| · · · ||mi, h0 = IV
For i = 1 to i dohi = f(mi, hi−1) For i = 1 to i dohi = f(mi, hi−1)
Returnhi+1 = f(hi, IV ) Return the firstn− s bit of hi

Table 2.3 Definitions of the four MD variants [9].1

The famous Davis-Meyer scheme is an instance of PGV schemes,which can be denoted asf(hi−1,mi) =
Emi

(hi−1) ⊕ hi−1. In the pf-MD construction, the message(m1, . . . ,ml) are guaranteed to be prefix-free. This is
because prefix-free encoding enables to eliminate the message expansion attack on hash functions, such as extension
attack on MAC. For example, if a MAC is built from a hash function like MAC(k,m) = H(k ‖ m) wherek is the
secret key. Then this MAC scheme is completely insecure for any Merkle-Damgård construction(including Merkle-
Damgård strengthening). That is to say, given MAC(k,m) = H(k ‖ m), we can extend the messagem with any
single arbitrary blockm′ and obtain MAC(k,m ‖ m′) = H(k ‖ m ‖ m′) without knowing the secret keyk. If we
apply a prefix-free encoding to a message and then call the hash function to get its hash value, we can eliminate the
message expansion attack. In fact, NMAC/HMAC and chop-MD are the same as pf-MD by references to avoid the
message expansion attack.

2.4 Indifferentiability

In this part, we recall the definition for indifferentiability[9, 19], which will be used in the following security analysis
of PGV hash functions on the four MD variants.

Definition 1 A Turing machineH with oracle access to an ideal primitiveE is said to be(tD, tS , q, ǫ)-indifferentiable
from an ideal primitiveF if there exists a simulatorS with oracle access toF and running in time at mosttS , such
that for any distinguisherD it holds that:

|Pr[DH,E = 1]− Pr[DF ,S = 1]| < ǫ

The simulator has oracle access toF and runs in time at mosttS. The distinguisher runs in time at mosttD and
makes at mostq queries. Similarly,HE is said to be (computationally) indifferentiable fromF if ǫ is a negligible
function of the security parameterk (for polynomially boundedtD andtS).

The role of the simulator is to simulate the ideal primitiveE so that no distinguisher can tell whether it is
interacting withH andE, or with F andS; In other words, the output ofS should look consistent with what the

1g(mi) is the prefix-free padding, returns1||mi if mi is the last block, else returns0||mi. f1, f2 are two independent compression functions,
IV1, IV2 are two distinct initial values.
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distinguisher can obtain fromF . Note that the simulator does not see the distinguisher’s queries toF ; however, it
can callF directly when it is required for the simulation. Here the algorithm H will represent the construction of an
iterative hash function based onE. The ideal primitiveE will represent the underlying primitive used to build the
hash function. In this paper, we assumeE is an ideal block cipher.F is a random oracle with same domain and range
as the hash function. In the case of ideal cipher model the distinguisher can access bothE andE−1 oracles and the
simulator has to simulate the both.

It was proven by Maureret al. that if HE is indifferentiable fromF , thenHE can replaceF in any cryptosystem.
The original theorem stated in below is a generic statement of the indifferentiability.

Theorem 1 Let P be a cryptosystem with oracle access to an ideal primitiveF . Let H be an algorithm such that
HE is indifferentiable fromF . Then cryptosystemP is at least as secure in theE model with algorithmH as in the
F model.

Coronet al. stated the indifferentiability of Davies-Meyer block cipher based construction with four MD variants
in the ideal cipher model, the theorem is stated in [9] as follows.

Theorem 2 The Davis-Meyer scheme isf(hi−1,mi) = Emi
(hi−1) ⊕ hi−1) pf-MD, chop-MD, NMAC and HMAC

are (tD, tS , q, ǫ)-indifferentiable from a random oracle in the ideal cipher model. For anytD ,with tS = O(q2), with
ǫ = 2−n · l2 ·O(q2) for pf-MD, ǫ = 2−s · l2 ·O(q2) for chop-MD,ǫ = 2−n · l2 ·O(q2) for NMAC and HMAC, where
l is the maximum length of a query made by the distinguisherD.

It was observed that Coronet al.’s bound of chop-MD is not tight. In [8], Chang and Nandi presented an improved
indifferentiability security bound for chop-MD and statedthe following theorem:

Theorem 3 The chop-MD construction is(tD, tS , q, σ, ǫ)-indifferentiable from a random oracle, in the random oracle

model for the compression function, for anytD, with tS = l ·O(q2) andǫ = (3(n−s)+1)q2+(n−s)q1

2s + q
2n−s−1 + σ2

2n+1 =

O(nq
2s + q

2n−s + σ2

2n ), whereq = q1 + q2 is the total number of queries andσ is the total number of queried message
blocks.

3 Proofs of Indifferentiability of PGV Hash Functions

It is easy to see that any PGV compression functions are not indifferentiable from a random oracle [18]. But when the
initial value IV is fixed, then there exist some PGV hash functions are indifferentiable from random oracle. To prove a
scheme indifferentiable from a random oracle is not trivial. In Coronet al.’s paper [9], the proof of indifferentiability
involved two steps. First, a simulator is built to simulate the task of the ideal cipher. Secondly, they showed that the
view of any distinguisher in the random oracle model, with oracle access to the actual random oracle and the ideal
cipher simulator, didn’t differ from its view in the ideal cipher model, with oracle access to the RO construction and
the ideal cipher, by more than a negligible amount. Each proofs of indifferentiability consisted of a hybrid argument
that presented a sequence of mutually indistinguishable games starting in the random oracle model, with the ROF
and the ideal cipher simulatorS(denoted bySF ), leading up to the ideal cipher model, with the RO construction and
the ideal cipherE (denoted byHE). To prove the indifferentiability of a construction, theyplayed six games and the
proof is complicated.

Later Changet al. presented a formal method to prove the indifferentiabilityfor many designs of hash functions
with pf-MD construction which was in fact the same to Coronet al.’s proof. Since Changet al.’s proof is more
mathematical and formal, we adopt their method in our analysis. Here we describe Changet al.’s proof on pf-MD in
below.

Let D be a distinguisher andS be a simulator for the formal analysis of indifferentiability. By following Defi-
nition 1,D is interacting with two cryptosystems(O1,O2), where either(O1,O2) = (H,E) or (O1,O2) = (F , S).
The distinguisher’s goal is to distinguish which scenario it involves after the queries to(O1,O2). H : M → Y
denotes a hash function constructed from a block-cipherE : {0, 1}n × {0, 1}n → {0, 1}n whereM ∈ {0, 1}∗ and
Y ∈ {0, 1}n. F is a random oracle which has the same domain and range withH. hi denotes the hash value of thei-th
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query. Letri ← (hi−1
mi−→ hi) be thei-th query-response obtain from the query to the oracleO2 wheremi ∈ {0, 1}

n.

Ri = (r1, · · · , ri) denotes the query-response set on the oraclesO2 after thei-th query. Letr′i ← (IV
M
−→ hi) be

the i-th query-response to the oraclesO1 whereM ∈ M. R′
i = (r′1, · · · , r

′
i) denotes the query-response set on the

oraclesO1 after thei-th query. Afunctional closureR∗ onR is the set with the following properties.

1. If hi−1
mi−→ hi, hi

mi+1
−→ hi+1 ∈ Ri+1, thenhi−1

mi||mi+1
−→ hi+1 ∈ R

∗
i+1.

2. If hi−1
mi−→ hi, hi−1

mi||mi+1
−→ hi+1 ∈ Ri+1, thenhi

mi+1
−→ hi+1 ∈ R

∗
i+1.

TheO1-query inputs an arbitrary length message and outputs a fixedlength hash value, while theO2-query inputs
a fixed length key and plaintext or ciphertext and outputs thecorresponding ciphertext or plaintext, respectively. The
details of the two categories of queries are described in below.

• Query onO1 = H or O1 = F :

– For thei-th query onO1, distinguisherD selects an arbitrary length messageMi ∈ M. The response of
O1 is hi = H(IV,Mi) or hi = F(Mi) wherehi ∈ Y.

– Let R′
i = R′

i−1 ∪ (IV
Mi−→ hi) be the query-response set on the oraclesO1 after thei-th query. The

query-response setR′
q is the complete view of distinguisherD on the oraclesO1 after the maximumq

queries. Note that the simulatorS never see the distinguisher’s queries toO1.

• Query onO2 = E or O2 = S:

– For thei-th forward query onO2, distinguisherD queries(+, ki, pi) whereki, pi ∈ {hi−1,mi, hi−1 ⊕
mi, v} and the response isci = Eki

(pi) or ci = S(ki, pi), whereci ∈ {0, 1}
n. By computing the hash

valuehi from the tuple(ki, pi, ci), thei-th query-response setRi = Ri−1 ∪ (hi−1
mi−→ hi).

– For thei-th inverse query onO2, distinguisherD queries(−, ki, ci) whereki ∈ {hi−1,mi, hi−1 ⊕mi, v}
andci ∈ {0, 1}

n and the response ispi = E−1
ki

(ci) orpi = S−1(ki, ci), wherepi ∈ {0, 1}
n. By computing

hi−1, hi from the tuple(ki, pi, ci), thei-th query-response setRi = Ri−1 ∪ (hi−1
mi−→ hi).

– LetRq be the query-response set of the oracleO2 after the maximumq queries. According to the transitive
and substitute properties ofRq, the functional closureR∗

q is the complete view of distinguisherD on the
oraclesO2. Here the simulatorS also has this view.

WhenD interacts with(F , S), the simulator should simulate the ideal cipherE perfectly except a negligible
probability. WhenD makes queries to the oracle(O1,O2), there may be some bad events happen, and the distin-
guisherD can exploit these bad events to decide which scenario it is in. If bad events don’t happen, the distinguisher
can never distinguish which scenario it is in except for a negligible probability.

In Changet al.’s indifferentiability analysis,E1, E2 are the bad events whenD interacts with(H,E) and(F , S),
respectively. The oracles(H,E) and (F , S) are identically distributed in the past view of the distinguisher when
E1, E2 do not happen.Adv(D) is the measure of the maximal advantage of indifferentiability over all distinguishers
D. For brevity,D1 denotes the eventDH,E = 1 andD2 denotes the eventDF ,S = 1. Let the functionmax() returns
the largest value of inputs, The advantage ofD is given in [7] as follows.

Adv(D) = |Pr[D1]− Pr[D2]| ≤ 2×max(Pr[E1], P r[E2]).

Now the proof of indifferentiability of a scheme is clear. First, one should construct a simulatorS such thatD
interacting with(F , S) is indifferentiable with(H,E). Next, one must calculate the upper bound of the probabilityof
the differentiable events, whenD interacts with(F , S) and(H,E) respectively. Finally, one can deduce the maximal
advantage of the differentiability over all distinguishers D.
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4 Flaws in Previous Indifferentiability Analysis of the Davies-Meyer Scheme.

The Davies-Meyer scheme is a well-known construction in thedesign of compression function based on block ciphers,
which also belongs to 20 collision resistant PGV structures. It is also used implicitly implemented in the constructions
of MD5 and SHA-1. Coronet al.’s full paper [9] presented the detailed proof of the indifferentiability of the pf-MD,
the chop-MD and NMAC based on the Davies-Meyer scheme. Changet al. [7] also proposed a proof of the indif-
ferentiability of pf-MD, which uses the Davis-Meyer schemeas the underlying compression function. Unfortunately,
we find that there exist some flaws in Coronet al.’s proofs of pf-MD and NMAC, and also Changet al.’s proof of the
pf-MD such that a new type distinguisher can implement differentiable attacks on the Davies-Meyer scheme while
extends its domain by using the pf-MD and the NMAC construction. This section will be divided into three parts. In
the first part, Coronet al’s and Changet al’s simulators for pf-MD and NMAC are recalled. In the second part, new
differentiable attacks on these simulators are presented.Finally, according to our new attacks, the indifferentiability
simulations for the Davies-Meyer scheme with pf-MD and NMACare refined in the third part.

4.1 Previous Simulators of pf-MD and NMAC

Coronet al.’s and Changet al.’s simulators of pf-MD and NMAC based on Davies-Meyer structure are described in
the appendix A. When these simulators are built, then the advantages of the distinguishers can be calculated by using
the method in [9] or [7]. In the next part, we will show how to differentiable attack these simulations and refine the
simulations to against this type of attacks.

4.2 A New Type of Differentiable Attacks on the Simulations of pf-MD and NMAC.

In this part, some differentiable attacks are presented to disclose the fact that the plausible simulations(which are
recalled in Appendix A) will be failed in the ideal cipher model. After pointed out the attacks, the simulations and the
proofs for pf-MD and NMAC are refined to avoid the above attacks. The following distinguishers demonstrate how
to attack Coronet al’s and Changet al’s simulators.

Attack on the Simulations of pf-MD.

The following distinguisher can distinguish(H,E) and(F , S) with a non-negligible probability when the simulator
behaves as Coronet al.’s and Changet al.’s simulator of pf-MD construction.

DistinguisherD can access to oracles(O1,O2) where(O1,O2) is
(H,E) or (F , S).

1. D selects a messageM such thatg(M) = m where|m| = n,
then he makes the queryM toO1 and receivesh.

2. D makes an inverse query(−,m, h⊕ IV ) toO2 and receives
IV ∗.

3. If IV = IV ∗ output 1, otherwise output 0.

If the D outputs 1, then(O1,O2) is (H,E), otherwise(F , S). Since receiving an inverse query by the first time

and there does not existIV
M ′

−→ hi−1 ∈ R
∗
i−1, the simulatorS−1 can output the rightIV with a negligible probability

2−n, such that
Adv(D) = |Pr[DH,E = 1]− Pr[DF ,S = 1]| = 1− 2−n.

The reason why this attack can be succeed is that Coronet al. didn’t consider the scenario when the distinguisher
makes an inverse query to the simulator and the goal of the distinguisher is to receive a value he already knows. So
the response of the simulatorS can’t be random for each inverse query. Changet al. may observe Coronet al.’s flaw
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in pf-MD since their simulator is different from Coronet al.’s. Their correction has avoided attacks which involve
queries which the length are at least two blocks . But they didn’t consider the scenario that an attack which applied
in only one block length and the distinguisher’s goal is to receive the initial valueIV . We can see the distinguisher
can distinguish(H,E) from (F , S) with an overwhelming probability. The similar attack can beextended to Coron
et al.’s simulator of NMAC.

Attack on Coron et al’s Simulation of NMAC.

The following distinguisher can distinguish(H,E) and(F , S) with a non-negligible probability when the simulator
behaves as Coronet al’s simulator of NMAC construction.

DistinguisherD can access to oracles(O1,O2) where(O1,O2) is
(H, {E1, E2}) or (F , {S1, S2}).

1. D selects a messagem where |m| = n, then he makes the
querym toO1 and receivesh.

2. D makes a forward query(1,+,m, IV1) to O2 and receives
c1, then he getsh1 = IV1 ⊕ c1.

3. D makes an inverse query(2,−, h1, h ⊕ IV2) to O2 and re-
ceivesIV ∗

2 .

4. If IV2 = IV ∗
2 output 1, otherwise output 0.

If D outputs 1, then(O1,O2) is (H, {E1, E2}), otherwise it is(F , {S1, S2}). Since the inverse is never queried
before, the simulatorS2 can output the rightIV2 with a negligible probability of2−n, whilst

Adv(D) = |Pr[DH,E1,E2 = 1]− Pr[DF ,S1,S2 = 1]| = 1− 2−n.

Hence, the distinguisherD can distinguish(H, {E1, E2}) from (F , {S1, S2}) with an overwhelming probability.

4.3 Corrections

Though there are some flaws in simulators mentioned above, they can be corrected easily. In fact, all problems are
from the inverse queries of the last block of a message. So thesimulator’s response to an inverse query to the last
block needs to be treated with caution. Now corrections for each of the simulators mentioned above are given in
below.

1. Corrections on Coronet al.’s and Changet al.’s simulator of pf-MD.

• For thei-th query(−, ki, ci) onS whereki = mi:

(a) If ∃hj−1
mi−→ (hj−1 ⊕ ci) ∈ Ri−1 for j < i, this is a repetition query,S returnshj−1.

(b) ElseS runsF(mi) and obtains the responseh. If h ⊕ ci = IV , then returnsIV and updates
Ri = Ri−1 ∪ {IV

mi−→ h}.

(c) Else for eachIV
M ′

−→ hi−1 ∈ R
∗
i−1 andg(M) = M ′ ‖ mi, runsF(M) = hi. If hi ⊕ hi−1 = ci,

returnshi−1 and updatesRi = Ri−1 ∪ {hi−1
mi−→ hi}

(d) ElseS randomly selects an intermediate valueh
′

i−1 ∈ {0, 1}
n and updatesRi = Ri−1 ∪ {h

′
i−1

mi−→
ci ⊕ h′

i−1}, then returnsh′
i−1.

2. Corrections on Coronet al.’s simulator of NMAC.
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• For thej-th query(2,−, kj , cj) onS2 wherekj = mj :

(a) If ∃hk−1
mj
−→ (hk−1 ⊕ cj) ∈ Qj−1 wherek < j, this is a repetition query,S returnshk−1.

(b) Else If∃IV1
M
−→ (kj) ∈ R

∗
i whereR∗

i is the simulator’s view of the past queries onS1 and thenS

runsF(M) and getsh. If IV2 ⊕ h = cj , S updatesQj = Qj−1 ∪ {IV2
mj
−→ h}, then returnsIV2.

(c) ElseS randomly selects an intermediate valueh
′

j−1 ∈ {0, 1}
n and updatesQj = Qj−1 ∪ {h

′
j−1

mj
−→

cj ⊕ h′
j−1}, then returnsh′

j−1.

When these simulators are corrected, then the advantage of any distinguisher can be calculated as in [9] or [7]. It
is easy to see that the time complexity of the simulator and the advantage of any distinguishers are not affected. Thus
one can easily obtain the following corollary.

Corollary 1 The Davis-Meyer scheme with pf-MD, chop-MD, NMAC and HMAC are (tD, tS , q, ǫ)-indifferentiable
from a random oracle in the ideal cipher model. For anytD ,with tS = O(q2), with ǫ = 2−n · l2 ·O(q2) for pf-MD,
ǫ = 2−s · l2 · O(q2) for chop-MD,ǫ = 2−n · l2 · O(q2) for NMAC and HMAC, wherel is the maximum length of a
query made by the distinguisherD.

In [15], Gonget al. also provided an indifferentiability analysis of 20 PGV schemes with pf-MD and claimed
that all 20 schemes are indifferentiable from random oracles with prefix-free padding (the length padding is also
implemented). There is an obvious error in their simulatorsthat the simulators needed to record the distinguisher’s
queries to the random oracleF . In fact, the simulator can never have the record of the distinguisher’s queries, which
can be derived from the definition of indifferentiability.

5 Indifferentiability Analysis of PGV Hash Functions

Due to the new flaws disclosed in the our analysis, the indifferentiability of PGV schemes with pf-MD, NMAC/HMAC
and chop-MD are reconsidered in this section. Based on our analysis of pf-MD, the necessary conditions for a PGV
hash construction to be indifferentiable from a random oracle are analyzed. Filtered by those necessary conditions,
there are only twelve schemes survived in 64 PGV schemes, which include eight of the Group-1 and four of the
Group-2 schemes. [5].

At AsiaCrypt’06, Changet al.[7] presented an indifferentiability security analysis of these schemes with pf-MD.
They claimed that there are 4 schemes among 20 collision-resistant PGV schemes are differentiable from random
oracle with pf-MD. And the remaining 16 schemes are indifferentiable from a random oracle with pf-MD. The four
insecure schemes(in the sense of indifferentiability withpf-MD) are case 1, 2, 3 and 4 of the Group-1 schemes. Here
we find that in the remaining 16 schemes, there are another four schemes are differentiable from random oracle with
pf-MD. These four schemes are case 15, 17, 19 and 20 from the Group-2 schemes.

When analyze these 20 collision resistant PGV hash functionfor NMAC/HMAC and chop-MD construction, we
found all of them are indifferentiable from a random oracle in the ideal cipher model, and the chop-MD construction
has the better indifferentiability security bound than NMAC/HMAC construction. This exploits that the four MD
variants are not the same in the sense of indifferentiability. According to our synthetic analysis, we exploit the fact
that in 20 PGV collision resistant constructions, there exist schemes that are differentiable from random oracle for the
pf-MD construction, but are indifferentiable from random oracle for the NMAC/HMAC and chop-MD construction,
while the chop-MD construction has the better indifferentiability security bound. This fact gives the evidence that the
four popular MD variants, namely pf-MD, NMAC/HMAC, the chopconstruction, are not the same in the sense of
indifferentiability.

5.1 Indifferentiability of PGV Hash Functions with pf-MD

Here we use the indifferentiability methodology to revisitPGV schemes with the pf-MD construction. We analyze
the properties of 64 PGV schemes and find the necessary conditions for a PGV schemes to be indifferentiable from a
random oracle. The necessary conditions are described as follows. First we present the theorem with respect to the
compression function which is not a collision resistant PGVscheme.
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Theorem 4 A hash functionH built from any PGV schemehi = f(hi−1,mi) with pf-MD is differentiable from a
random oracle ifH is not collision resistant.

The proof is given in Appendix B.1. Based on Theorem 4, it is easy to see that 44 out of the total 64 PGV
schemes are not collision resistant, thus they are differentiable from random oracle with pf-MD.

Theorem 5 A hash functionH built from any PGV constructionhi = f(hi−1,mi) with pf-MD is differentiable from
a random oracle if(hi,mi) ⇒ hi−1. That is to say, it is trival to deducehi−1 from (hi,mi) with access to the block
cipher. For example,hi = Emi

(hi−1), if we know the value of(hi,mi), thenhi−1 = E−1
mi

(hi).

The proof is given in Appendix B.2. Based on Theorem 5, the 4 PGV schemes, which are case 15, 17, 19 and 20
of the Group-2 schemes, are differentiable from a random oracle.

Theorem 6 A hash functionH built from any PGV schemeshi = f(hi−1,mi) with pf-MD is differentiable from a
random oracle if given(hi−1, k, c) wherek ∈ {hi−1, v} is the key to the block cipherE andc is a linear combination
of {hi−1,mi, hi, v} and the cipher text of the block cipherE, it is infeasible to deducemi without access to the block
cipher. For example, ifhi = Ehi−1

(mi)⊕mi, thenk = hi−1 andc = hi ⊕mi, from the triple(hi−1, hi−1, hi ⊕mi),
it is infeasible to deducemi without access toE.

The proof is given in Appendix B.3. Based on theorem 6, the 4 PGV schemes, which are case 1, 2, 3, 4 of
the group-1 schemes, are differentiable from a random oracle. From the the above analysis, one can easily get the
following corollary.

Corollary 2 A hash functionH built from the PGV compression functionhi = f(hi−1,mi) with pf-MD is differen-
tiable from a random oracle if it satisfies one of the following conditions.

A. The hash functionH is not collision resistant.

B. (hi,mi)⇒ hi−1. That is to say, it is trival to deducehi−1 from (hi,mi) with access to the block cipher.

C. Given (hi−1, k, c) wherek ∈ {hi−1, v} is the key to the block cipherE and c is a linear combination of
{hi−1,mi, hi, v} and the cipher text of the block cipherE, it is infeasible to deducemi without access to the
block cipher.

The case 15, 17, 19, 20 of the group-2 schemes(see table 1.2) satisfy the conditionB, and the case 1, 2, 3, 4
of the group-1 schemes(see table 1.1) satisfy the conditionC, so they are differentiable from a random oracle with
pf-MD construction. Those 8 differentiable schemes are listed in Table C.1.

Since the necessary conditions for the indifferentiability of a PGV structure with the pf-MD construction are
given, it is easy to analyze a construction by checking if it satisfies any one of the conditions mentioned above.
If anyone of these conditions holds, then the PGV scheme is differentiable from a random oracle with the pf-MD
construction. After checking these conditions for every 64PGV construction, there are only 12 PGV schemes are
secure against differentiable attack with pf-MD construction, which are listed in table C.2. The following theorem is
proven in Appendix B.4.

Theorem 7 The twelve PGV schemes, which are list in table C.2, are(tD, tS , q, ǫ) indifferentiable from a random
oracle in the ideal cipher model. For anytD, with tS = l ·O(q2), with ǫ = 2−n · l2 ·O(q2) for pf-MD, wherel is the
maximum length of a query made by the distinguisherD.

5.2 Indifferentiability of PGV Hash Functions with NMAC/HM AC

In the above analysis, there are only 12 of the 20 collision-resistant PGV schemes are indifferentiable from random
oracle with pf-MD construction. In this part we will show it is not the same in the analysis of NMAC/HMAC con-
struction. For brevity, we only analyze the NMAC construction. The results can be easily extended to the HMAC
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construction because HMAC is a special case of NMAC. In our analysis, all of 20 collision-resistant PGV construc-
tions are indifferentiable from random oracle with NMAC/HMAC construction, which implies that the NMAC/HMAC
construction is better than the pf-MD construction.

Furthermore, we will show even if a collision resistant PGV construction satisfies condition B or C in corollary
2, it can be indifferentiable from random oracle with NMAC/HMAC construction. For simplicity, we only show the
case 15 from group-2 schemes(table 2.2) satisfies conditionB, but is indifferentiable from a random oracle for the
NMAC construction. For other cases, one can make a similar analysis and the proof of the indifferentiability will be
deduced similarly.

Lemma 1 The collision resistant PGV compression functionhi = Emi
(hi−1) which satisfies condition B in theorem

3 is (tD, tS , q, ǫ) indifferentiable from a random oracle in the ideal cipher model. For anytD, with tS = O(q2), with
ǫ = 2−n · l2 ·O(q2) for NMAC, wherel is the maximum length of a query made by the distinguisherD.

Lemma 1 is proven in Appendix B.5. In fact, for any one of the 20collision resistant PGV constructions, one can
build the similar simulator with NMAC/HMAC construction such that any distinguisher fails. Since the proof of the
indifferentiability for each PGV scheme is similar to the proof of Lemma 1, we have the following theorem.

Theorem 8 The 20 collision resistant PGV schemes are(tD, tS , q, ǫ) indifferentiable from a random oracle in the
ideal cipher model. For anytD, with tS = O(q2), with ǫ = 2−n · l2 · O(q2) for NMAC/HMAC, wherel is the
maximum length of a query made by the distinguisherD.

5.3 Indifferentiability of PGV Hash Functions with chop-MD

In this part the indifferentiability of chop-MD for the 20 collision resistant PGV schemes will be analyzed. We show
that all the 20 collision resistant PGV schemes are indifferentiable from random oracle in the ideal cipher model for the
chop-MD construction. In [10], Coronet al. analyzed the indifferentiability of chop-MD based on the Davies-Meyer
construction. They had the following lemma:

Lemma 2 The Merkle-Damg̊ard construction with truncated output chop-MDE
s based on the Davies-Meyer construc-

tion applied to an ideal cipherE : {0, 1}n×{0, 1}n → {0, 1}n is (tD, tS , q, ǫ) indifferentiable from a random oracle
F : {0, 1}∗ → {0, 1}n−s in the ideal cipher model forE, for anytD andtS = l ·O(q2), with ǫ = 2−s · l2 ·O(q2).

Coronet al.’s bound of chop-MD is not very tight. In [20], Maurer and Tessaro firstly presented a prefix-free
chop-MD construction which has indifferentiability security beyond the birthday barrier. Later, Chang and Nandi
presented an improved indifferentiability security boundfor chop-MD which stated in theorem 3. Though Chang
and Nandi’s improved indifferentiability security bound is proved when looks the compression function as a random
oracle, their proof of the security bound can be applied in the ideal cipher model when the compression function
is based on Davies-Meyer structure. Some collision resistant PGV schemes satisfy condition B or C in theorem 2
can be indifferentiable from random oracle for chop-MD in the ideal cipher model. Take the PGV schemehi =
Ehi−1

(mi)⊕mi as an example, ifn = 2s, we can build the following distinguisher:

DistinguisherD can access to oracles(O1,O2) where(O1,O2) is
(chop-MDE

s , E) or (F , S).

1. D selects a messageM such thatg(M) = m where|m| = n,
then makes the queryM toO1 and receivesh.

2. For eachh′ from 0 to 2s − 1 , D makes an inverse query
(−, IV,m⊕ (h ‖ h′)) toO2 and receivesm′.

3. If there exist anm′ such thatm′ = m, D output 1, otherwise
output 0.
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Since the simulator never knows the right messagem, it gives the right response only with probability2−s afterq = 2s

queries. After queriedq times toO2,

Adv(D) = |Pr[DH,E,E−1

= 1]− Pr[DF ,S,S−1

= 1]| =
q

2s
−

q

22s
≈

q

2s
.

It is obvious that the advantage of the distinguisher is lessthan the birthday bound, and this advantage is less than
Chang and Nandi’s improved security bound and so that this type of differentiable attack fails. The result can be
extended to other 19 collision resistant PGV schemes. For any one of 20 collision resistant PGV schemes, the
following simulator can be built such that the advantage of any distinguisher is in Chang and Nandi’s improved
bound.

Simulator:

1. For thei-th query(+, ki, pi) on S whereki, pi ∈ {hi−1,mi, hi−1 ⊕mi}, hi−1 andmi can be deduced from
(ki, pi):

(a) If ∃hi−1
mi−→ hi ∈ Ri−1, then this is a repetition query, deducesci from (hi−1, hi,mi), S returnsci.

(b) Else if ∃IV
M ′

−→ hi−1 ∈ R
∗
i−1 and g(M) = M ′ ‖ mi, S runsF(M) and obtains the responsehi,

randomly choose as-bit string h′, updatesRi = Ri−1 ∪ {hi−1
mi−→ (hi ‖ h′)}, then deducesci from

{hi−1,mi, (hi ‖ h′), v} and returnsci;

(c) ElseS randomly selects a hash valuehi ∈ {0, 1}
n and updatesRi = Ri−1∪{hi−1

mi−→ hi}, then deduces
ci from {hi−1,mi, hi, v} and returnsci.

2. For thei-th query(−, ki, ci) onS whereki ∈ {hi−1,mi, hi−1 ⊕mi}:

(a) If ∃hi−1
mi−→ hi ∈ Ri−1 whereki, ci can be deduced from(hi−1,mi, hi) , then this is a repetition query,

S deducespi from (hi−1,mi, hi), then returns thepi.

(b) ElseS randomly selects a messagehi−1 ∈ {0, 1}
n, deducesmi, hi from {hi−1, ki, ci} and updatesRi =

Ri−1 ∪ {hi−1
mi−→ hi}, then returnshi−1.

For anyone of the 20 collision PGV schemes, we can calculate the advantage of any distinguisher using the
method explained in [8]. So combined our analysis of PGV schemes and Chang and Nandi’s improved bound. We
get the following theorem:

Theorem 9 The chop-MDEs construction based on anyone of 20 collision resistant collision PGV schemes is(tD, tS , q, σ, ǫ)
indifferentiable from a random oracle, in the ideal cipher model for anytD, with tS = l · O(q2) and ǫ = O(nq

2s +
q

2n−s + σ2

2n ), whereq is the total number of queries andσ is the total number of message blocks queried.

The above theorem shows that the distinguisher needs at least 2s/(3s + 1) query complexity to have an indiffer-
entiability attack whenn = 2s. In [8], the result implies the chop-MD hash function is almost optimally secure with
respect to second preimage and multicollision attack. Notethat it doesn’t improve the security bound for resisting
collisions to chop-MD, but does improve the bound for indifferentiability in the ideal cipher model.

6 Conclusion

The indifferentiability of 20 collision resistant PGV hashfunctions for pf-MD, NMAC/HMAC and chop-MD con-
struction are revisited. It is shown that the indifferentiability is really a method to verify the security of a construction.
There are some schemes can be differentiable from random oracle with pf-MD, but are indifferentiable from random
oracle with NMAC/HMAC and chop-MD construction. Our results exploit that the four Merkle-Damgård variants are
not the same in the sense of the indifferentiability. And thelater two constructions are better than pf-MD. Since the pf-
MD construction has lower input domain and the chop-MD construction has lower output range, the NMAC/HMAC
would be a better choice for practice use. We also suggest that one should take care of the proof of the indifferentia-
bility of a construction, since some flaws have been found in previous works.
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A Previous Simulators of pf-MD and NMAC

Coronet al.’s and Changet al.’s simulators of pf-MD and NMAC based on Davies-Meyer structure are described as
follows:

Coron et al.’s Simulation of pf-MD.

The simulatorS accepts either forward ideal cipher queries,(+, ki, pi), or inverse ideal cipher queries,(−, ki, ci),
such thatki ∈ {0, 1}

n andpi, ci ∈ {0, 1}
n. In either case, the simulatorS responses with an-bit string that is

interpreted asEki
(pi) in the case of a forward query(+, ki, pi) and asE−1

ki
(ci) in the case of an inverse query.

The simulator keeps the relations(R1, . . . ,Ri−1). To answer the distinguisherD’s forward and inverse queries, the
simulatorS responses as follows.

1. For thei-th query(+, ki, pi) onS whereki = mi andpi = hi−1:

(a) If ∃hi−1
mi−→ hi ∈ Ri−1, then this is a repetition query which the response is already known. S returns

ci = hi ⊕ hi−1.

(b) Else if∃IV
M ′

−→ hi−1 ∈ R
∗
i−1 andg(M) = M ′ ‖ mi, S runsF(M) and obtains the responsehi, updates

Ri = Ri−1 ∪ {hi−1
mi−→ hi}, then returnsci = hi ⊕ hi−1;

(c) ElseS randomly selects a hash valuehi ∈ {0, 1}
n and updatesRi = Ri−1 ∪{hi−1

mi−→ hi}, then returns
ci = hi ⊕ hi−1.

2. For thei-th query(−, ki, ci) onS whereki = mi:

(a) If ∃hj−1
mi−→ (hj−1 ⊕ ci) ∈ Ri−1 for j < i, then this is a repetition query.S returnshj−1.

(b) ElseS randomly selects a messageh
′

i−1 ∈ {0, 1}
n and updatesRi = Ri−1 ∪{h

′
i−1

mi−→ ci⊕h′
i−1}, then

returnsh′
i−1.

Chang et al.’s Simulation of pf-MD

Generally speaking, Changet al.’s simulator is the same as Coronet al.’s except for the inverse query. To answer the
distinguisherD’s forward and inverse queries, the simulatorS responses as follows.

1. For thei-th query(+, ki, pi) on S whereki = mi and pi = hi−1: S behaves the same as Coronet al.’s
simulator.
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2. For thei-th query(−, ki, ci) onS whereki = mi:

(a) If ∃hj−1
mi−→ (hj−1 ⊕ ci) ∈ Ri−1 for j < i, this is a repetition query.S returnshj−1.

(b) Else for eachIV
M ′

−→ hi−1 ∈ Ri−1 andg(M) = M ′ ‖ mi, runF(M) = hi. If hi ⊕ hi−1 = ci, return
hi−1 and updatesRi = Ri−1 ∪ {hi−1

mi−→ hi}

(c) ElseS randomly selects a messageh
′

i−1 ∈ {0, 1}
n and updatesRi = Ri−1 ∪{h

′
i−1

mi−→ ci⊕h′
i−1}, then

returnsh′
i−1.

Coron et al.’s Simulation of NMAC.

The NMAC construction NMACE1,E2 essentially applies the Davies-Meyer construction using the block cipherE1 to
the inputm1 ‖ . . . ‖ ml to get the final outputhl. It then applies another independent the Davies-Meyer construction
usingE2 to this outputhl. For simplicity the output lengthn of E1 is the same as the key length ofE2. And one use
IV1 for the Davies-Meyer construction applied toE1, and useIV2 for the Davies-Meyer construction withE2.

The simulator gets forward/inverse queries for either of the block ciphersE1 andE2. Thus the queries that
simulatorS responds to are as follows:

1. (1,+, ki, pi): A forwardsE1 query ,where(ki, pi) ∈ {0, 1}
n × {0, 1}n. The expected response isE1ki

(pi).

2. (1,−, ki, ci): A inversesE1 query ,where(ki, ci) ∈ {0, 1}
n × {0, 1}n. The expected response isE1−1

ki
(ci).

3. (2,+, ki, pi): A forwardsE2 query ,where(ki, pi) ∈ {0, 1}
n × {0, 1}n. The expected response isE2ki

(pi).

4. (2,−, ki, ci): A inversesE2 query ,where(ki, ci) ∈ {0, 1}
n × {0, 1}n. The expected response isE2−1

ki
(ci).

The simulatorS also maintains the relations(R1, . . . ,Ri−1) and(Q1, . . . ,Qj−1) where(R1, . . . ,Ri−1) records the
triples that obtained from queries onE1 and(Q1, . . . ,Qj−1) records the triples that obtained from queries onE2. To
answer the distinguisherD’s forward and inverse queries onE1 or E2, the simulatorS should simulateE1, E2 as
S1, S2 and responses as follows.

• Query on S1:

1. For thei-th query(1,+, ki, pi) onS1 whereki = mi andpi = hi−1:

(a) If ∃hi−1
mi−→ hi ∈ Ri−1, then this is a repetition query.S returnsci = hi ⊕ hi−1.

(b) ElseS randomly selects a hash valuehi ∈ {0, 1}
n and updatesRi = Ri−1 ∪ {hi−1

mi−→ hi}, then
returnsci = hi ⊕ hi−1.

2. For thei-th query(1,−, ki, ci) onS1 whereki = mi:

(a) If ∃hj−1
mi−→ (hj−1 ⊕ ci) ∈ Ri−1 wherej < i, S returnshj−1.

(b) ElseS randomly selects a messageh
′

i−1 ∈ {0, 1}
n and updatesRi = Ri−1 ∪ {h

′
i−1

mi−→ ci⊕ h′
i−1},

then returnsh′
i−1.

• Query on S2:

1. For thej-th query(2,+, kj , pj) onS2 wherekj = mj andpj = hj−1:

(a) If ∃hj−1
mj
−→ hj ∈ Qj−1, then this is a repetition query.S2 returnscj = hj ⊕ hj−1.

(b) Else if∃IV1
M ′

−→ mj ∈ R
∗
i andpj = IV2, S runsF(M ′ ‖ mj) and obtains the responsehj , updates

Qj = Qj−1 ∪ {IV2
mj
−→ hj}, then returnscj = IV2 ⊕ hj .

(c) ElseS randomly selects a hash valuehj ∈ {0, 1}
n and updatesQj = Qi−1 ∪ {hj−1

mj
−→ hj}, then

returnscj = hj ⊕ hj−1.
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2. For thej-th query(2,−, kj , cj) onS2 wherekj = mj :

(a) If ∃hk−1
mj
−→ (hk−1 ⊕ cj) ∈ Qj−1 wherek < j, S returnshk−1.

(b) ElseS randomly selects a messageh
′

j−1 ∈ {0, 1}
n and updatesQj = Qj−1∪{h

′
j−1

mj
−→ cj⊕h′

j−1},
then returnsh′

j−1.

B Proofs

B.1 Proof of Theorem 4

The distinguisherD accesses to oracles(O1,O2) where(O1,O2) is (H,E) or (F , S). If it is easy to find a collision
(M,M ′) such thatH(M) = H(M ′) when makes queries toE, D can queryM andM ′ to O1 and receive the
responses. If the responses are different, thenD is interacting with(F , S), otherwise it is interacting with(H,E).
Then we have

Adv(D) = |Pr[DH,E = 1]− Pr[DF ,S = 1]| = 1− 2−n.

Since the advantage is non-negligible, so the constructionis differentiable from a random oracle. �

B.2 Proof of Theorem 5

If a PGV scheme satisfies(hi,mi) ⇒ hi−1, then we know the keyki to the block cipherE must be a linear combi-
nation of{mi, v} andci is a linear combination of{hi,mi, v}, herev is a constant, then we can build the following
distinguisherD such that any simulator fails.

DistinguisherD can access to oracles(O1,O2) where(O1,O2) is
(H,E) or (F , S).

1. D selects a messageM,M ′ such thatg(M) = (m1 ‖ m2) and
g(M ′) = (m1 ‖ m′

2) wherem2 6= m′
2 and |m1| = |m2| =

|m′
2| = n, then makes the queryM toO1 and receivesh2 and

the queryM ′ toO1 and receivesh′
2.

2. D computes (k2, c2) from (m2, h2) and (k′
2, c

′
2) from

(m′
2, h

′
2), then makes an inverse query(−, k2, c2) to O2 and

receivesp2 and computesh1 from (m2, k2, h2, p2) , then
makes an inverse query(−, k′

2, c
′
2) toO2 and receivesp′2 and

computesh′
1 from (m′

2, k
′
2, h

′
2, p

′
2).

3. If h1 = h′
1 output 1, otherwise output 0.

Since the simulator doesn’t know whether the two inverse queries lead to a same internal value, the simulatorS
can output the right response only with probability2−n,

Adv(D) = |Pr[DH,E,E−1

= 1]− Pr[DF ,S,S−1

= 1]| = 1− 2−n

This is not negligible. So the construction is differentiable from a random oracle. �

B.3 Proof of Theorem 6

In this case, the following distinguisher is built.
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DistinguisherD can access to oracles(O1,O2) where(O1,O2) is
(H,E) or (F , S).

1. D selects a messageM such thatg(M) = m where|m| = n,
then makes the queryM toO1 and receivesh.

2. D computes(k, c) from (h,m, IV, v), then makes an inverse
query(−, k, c) to O2 and receivesp, then computesm′ from
(IV, k, c, p).

3. If m = m′ output 1, otherwise output 0.

Since the simulator never knows the right messagem, it gives the right response only with probability2−n,

Adv(D) = |Pr[DH,E,E−1

= 1]− Pr[DF ,S,S−1

= 1]| = 1− 2−n.

So the construction is differentiable from a random oracle. �

B.4 Proof of Theorem 7

The Davies-Meyer construction(case 5 ) has been shown to be indifferentiable from random oracle with pf-MD. For
the other 11 cases, we can make similar analysis. Thus, we candefine a general simulator for these 12 PGV functions.
The simulator is defined as follows:

Simulator:

1. For thei-th query(+, ki, pi) on S whereki, pi ∈ {hi−1,mi, hi−1 ⊕ mi}, we can deducehi−1 andmi from
(ki, pi):

(a) If ∃hi−1
mi−→ hi ∈ Ri−1, then this is a repetition query.S deducesci from {hi−1,mi, hi} and returnsci.

(b) Else if∃IV
M ′

−→ hi−1 ∈ R
∗
i−1 andg(M) = M ′ ‖ mi, S runsF(M) and obtains the responsehi, updates

Ri = Ri−1 ∪ {hi−1
mi−→ hi}, then deducesci from {hi−1,mi, hi, v} and returnsci;

(c) ElseS randomly selects a hash valuehi ∈ {0, 1}
n and updatesRi = Ri−1 ∪{hi−1

mi−→ hi}, then deduce
ci from {hi−1,mi, hi, v} and returnsci.

2. For thei-th query(−, ki, ci) onS whereki ∈ {hi−1,mi, hi−1 ⊕mi}:

(a) For eachM ′ such thatIV
M ′

−→ hi−1 ∈ R
∗
i−1(M ′ can be the empty string, in that case,hi−1 = IV ),

deducemi from {hi−1, ki}. If ∃M such thatg(M) = M ′ ‖ mi, runsF(M) and obtains the responseh′
i.

At the same time, we can deducehi from {hi−1,mi, ci} for each PGV scheme.

(b) If hi = h′
i, S returns the corresponding plaintext which belongs to{hi−1,mi, hi−1 ⊕ mi} and updates

Ri = Ri−1 ∪ {hi−1
mi−→ hi}.

(c) ElseS randomly selects a messagehi−1 ∈ {0, 1}
n, deducemi, hi from {hi−1, ki, ci} and updatesRi =

Ri−1 ∪ {hi−1
mi−→ hi}, then returnshi−1.

By using Theorem 4 and Theorem 5 in [7], or Theorem 4.1 in [10],we can computetS = l · O(q2) and
ǫ = 2−n · l2 ·O(q2), wherel is the maximum length of a query made by the distinguisherD. �
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B.5 Proof of Lemma 1

The NMACE1,E2 applies this compression function using the block cipherE1 to the inputm1 ‖ . . . ‖ ml to get the
final outputhl, then applies another independent compression function using E2 to this outputhl. We can build the
following simulator:

Simulator:

• Query on S1:

1. For thei-th query(1,+, ki, pi) onS1 whereki = mi andpi = hi−1:

(a) If ∃hi−1
mi−→ hi ∈ Ri−1, then this is a repetition query.S returnshi.

(b) ElseS randomly selects a hash valuehi ∈ {0, 1}
n and updatesRi = Ri−1 ∪ {hi−1

mi−→ hi}, then
returnshi.

2. For thei-th query(1,−, ki, ci) onS1 whereki = mi:

(a) If ∃hj−1
mi−→ (ci) ∈ Ri−1 wherej < i, S returnshj−1.

(b) ElseS randomly selects a messageh
′

i−1 ∈ {0, 1}
n and updatesRi = Ri−1 ∪ {h

′
i−1

mi−→ ci}, then
returnsh′

i−1.

• Query on S2:

1. For thej-th query(2,+, kj , pj) onS2 wherekj = mj andpj = hj−1:

(a) If ∃hj−1
mj
−→ hj ∈ Qj−1, then this is a repetition query.S2 returnscj = hj .

(b) Else if ∃IV1
M
−→ mj ∈ R

∗
i andpj = IV2, S runsF(M) and obtains the responsehj , updates

Qj = Qj−1 ∪ {IV2
mj
−→ hj}, then returnscj = hj .

(c) ElseS randomly selects a hash valuehj ∈ {0, 1}
n and updatesQj = Qi−1 ∪ {hj−1

mj
−→ hj}, then

returnscj = hj .

2. For thej-th query(2,−, kj , cj) onS2 wherekj = mj :

(a) If ∃hk−1
mj
−→ (cj) ∈ Qj−1 wherek < j, this is a repetition query,S returnshk−1.

(b) Else If∃IV1
M
−→ (kj) ∈ R

∗
i thenS runsF(M) and getsh. If h = cj , S updatesQj = Qj−1 ∪

{IV2
mj
−→ h}, then returnsIV2.

(c) ElseS randomly selects a messageh
′

j−1 ∈ {0, 1}
n and updatesQj = Qj−1 ∪ {h

′
j−1

mj
−→ cj}, then

returnsh′
j−1.

It is easy to show the distinguisher which was succeeding in the pf-MD will fail in the NMAC construction.tS =
l ·O(q2) andǫ = 2−n · l2 ·O(q2) are calculated according the proof of Lemma A.8 in [10] , where l is the maximum
length of a query made by the distinguisherD. �

C Tables

Case PGV Case PGV Case PGV

1 Ehi−1
(mi)⊕mi 4 Ehi−1

(wi)⊕mi 19 Emi
(wi)⊕ v

2 Ehi−1
(wi)⊕ wi 15 Emi

(hi−1)⊕ v 20 Emi
(wi)⊕mi

3 Ehi−1
(mi)⊕ wi 17 Emi

(hi−1)⊕mi

Table C.1Eight differentiable PGV schemes with pf-MD.wi = hi−1 ⊕ mi , v is a constant.
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Case PGV Case PGV Case PGV

5 Emi
(hi−1)⊕ hi 9 Ewi

(mi)⊕mi 13 Ewi
(mi)⊕ v

6 Emi
(wi)⊕ wi 10 Ewi

(hi−1)⊕ hi−1 14 Ewi
(mi)⊕ wi

7 Emi
(hi−1)⊕ wi 11 Ewi

(mi)⊕ hi−1 16 Ewi
(hi−1)⊕ v

8 Emi
(wi)⊕ hi−1 12 Ewi

(hi−1)⊕mi 18 Ewi
(hi−1)⊕ wi

Table C.2Twelve Indifferentiable PGV schemes with pf-MD.wi = hi−1 ⊕ mi , v is a constant.
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