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Abstract

In this paper, first we point out some flaws in the existing fiedéentiability simulations of the pf-MD and
the NMAC constructions, and provide new differentiablaeits on the hash functions based these schemes. Af-
terthat, the indifferentiability of the 20 collision resst PGV hash functions, which are padded under the pf-MD,
the NMAC/HMAC and the chop-MD constructions, are reconséde Moreover, we disclose that there exist 4
PGV schemes can be differentiable from a random oracle Wéipt-MD among 16 indifferentiable PGV schemes
proven by Changet al. Finally, new indifferentiability simulations are prowd for 20 collision-resistant PGV
schemes. The simulations exploit that 20 collision-rasisPGV hash functions, which implemented with the
NMAC/HMAC and the chop-MD, are indifferentiable from a ramd oracle. Our result implies that same com-
pression functions under MD variants might have the samerie®dound with respect to the collision resistance,
but quite different in the view of indifferentiability.

1 Introduction

Cryptographic Hash Functions. Cryptographic hash function, which is defined as an adniessilgorithm that
uniformly maps arbitrary length inputs to fixed length oufpus widely used as a pivotal primitive for ensuring the
integrity of information. In nowadays, the popular desidgeryptographic hash functions still follows the well-know
Merkle-Damgard (MD) construction [L2,21], by iteratingc@ampression function on an input message to realize a
domain extension transform and yields a collision restdtash function if the underlying compression function is.
The primary security goal for cryptographic hash functibias historically been collision resistance. Unfortunatel
hash functions have been used for all kinds of applicatiohigiwthe security requirements are not only satisfied by
collision resistance, but also pseudo-randomness, amdtev® a random oraclgl[2].

In recent years, the hash community starts to argue thatrakéional Merkle-Damgard (MD) construction is
not a good design in the security view as a random or&cle [@keShe well-known extension attack allows one to
take a valueH (x) for =, and then computes the vali&(z, |z|, y), where|z| is the length ofr andy is an arbitrary
suffix. But this extension property is not allowed for anyiyrcandom oracle. For instance, even if the underlying
compression functiorf is assumed to be a fixed-length random oracle, any hashdanigtf under MD construction
will unlikely to be indifferentiable with a random oraclerdin those counter-examples, people realize that collision
resistance alone is insufficient for the security of so madffgrént applications of hash functions. For this reason, a
rich literature analyzed the security of hash functionsintimg variable-input-length (VIL) from an ideal fixed-iap
length (FIL) compression function, such &5[[1, 12,13, 9, 17].

In practice, there exist two main approaches to design a mesgipn function for an iterated hash function. One
is to implicitly design a compression function by impligitising the idea of block ciphers, which is calléedicated
hash function. The other is to explicitly compose a compoasiinction from block ciphers, which is callddock-
cipher-basecdhash function. By now, it seems still hard to design a dedadtabmpression function by witnessing the



recent collision attacks on serval popular hash functiB<24]. The advantage of block-cipher-based hash furetion
is that one can conveniently choose an extensively studaak lzipher (e.g., DES, IDEA, AES, etc) to construct a
compression function, so that the design and implementafiorts could be minimized. Also the latest cryptanalysis
on such a block cipher can be used to avoid the potential vesakin the compression function. Discussions of hash
functions constructed from-bit block ciphers are mainly divided intsingle block lengt{SBL) such as 64 PGV
schemes[[22], andouble block lengtDBL) such as MDC2[]|6], where single and double are relatetthéooutput
range of the underlying block cipher.

The original proposals of block-cipher-based hash funstiosually focus on attacks, not formal proofs. As the
development of provable security, some works have focusdti®provable security of hash function based on block
ciphers by modeling the underlying block cipher as a black [B)[1€]. In [B], Blacket al. described a black-box
analysis of all 64 PGV hash functions and proved that in tiaekbbox model, there exist 20 out of 64 PGV hash
functions are collision resistant.

Indifferentiability Methodology. In TCC’04, Maureret al. introduced a strong security notion called as indifferen-
tiability [IL9] for a hash function based on a compressiorcfiom which is an extension of the classical indistinguisha
bility security notion. The advantage of the indifferebildy is that one can built a secure VIL-RO from smaller (fFIL
idealized components(such as an ideal compression funatiaeal cipher). In Crypto’05, Coroet al. first imple-
mented the indifferentiability in analysis of hash funosocand suggested four secure constructibhs [9], which were
the prefix-free padding(pf-MD), the NMAC/HMAC and the chagnstruction(chop-MD). The compression function
is viewed as a fixed-length random oracle or built from anlib&sck cipher with Davies-Meyer structure. After that,
several works followed to investigate the indifferentiipiof a hash construction, such as [2[3[ 4, 7,13, 14].

At Asiacrypt’06, Changet al. presented a unified way to prove the indifferentiability fbock-cipher-based
hash functions’[7]. They analyzed 20 collision resistanVRf@sh functions with pf-MD and found there are sixteen
schemes are indifferentiable from random oracle and othaerdchemes are differentiable in the ideal cipher model.
In [15], Gonget al. provided a synthetic indifferentiability analysis of serlock-cipher-based hash functions and
claimed that all 20 collision resistant PGV schemes areffgrdintiable from random oracle with the pf-MD, the
NMAC/HMAC and the chop-MD constructions, where the leng#alging should be used in the constructions.

Our Contributions. In this paper, by using the indifferentiability methodoypgve revisit the indifferentiability of
hash functions with pf-MD, NMAC/HMAC and chop-MD constriait when the compression function is based on
collision resistant PGV structures. We find that there eXBGV schemes are differentiable from random oracle with
pf-MD, but indifferentiable from random oracle with NMACMAC and chop-MD. And this give evidence that the
four constructions are not the same in the view of the indifiéability. In the analysis, we revise the flaws in Coron
et al.[9] and Chanet al.[/]'s proofs of Davies-Meyer compression function with[D and NMAC, which allow an
adversary can implement differentiable attacks on thenthEtmore, we find that in the 16 collision resistant PGV
hash functions which are proved indifferentiable from al@mn oracle in the ideal cipher model with pf-MD in Chang
et al’s analysis, there are still 4 are really differentiableccarding to our analysis, although all of the 20 collision
resistant PGV hash function with NMAC/HMAC and chop-MD andifferentiable from a random oracle in the ideal
cipher model, the chop-MD construction has a better ingifigability bound in advance.

Organization. The organization of this paper is as follows. In Section 2 tiotation of indifferentiability and
some previous works are reviewed. In Section 3, formal nusthaf the indifferentiability of a hash function in
the ideal cipher model are described. In Section 4, Cetoal.’s and Changet al’s proofs of indifferentiability of
hash functions based on the Davies-Meyer structure witkl[pfand NMAC construction are described and flaws
in their works are pointed out, and the right proofs for pf-MBd NMAC construction are given. In Section 5, the
indifferentiability of 20 collision resistant PGV hash fttions with pf-MD, NMAC/HMAC, chop-MD construction
are revisited. Finally we draw a conclusion in Section 6.



Group-1 schemes

Case| PGV | Case] PGV | Case] PGV
1 Ey,  (m;) ©my 5 Ep,(hi—1) @ hi—1 9 E,,(m;) &m;
2 Ehi—l (wz) D w; 6 E‘mZ (wz) D w; 10 Ewi(hifl) ® h;—1
3 Ey,  (m;) © w; 7 Eni(hi—1) ® w; 11 Ey,(mi) @ hi—
4 Ehi_l (wz) ® my 8 Eml (wl) @ hi*l 12 Ewi(hifl) b m;

Table 2.1Group-1 schemes il[5].

2 Preliminaries

2.1 ldeal Cipher Model and Random Oracle Model

Ideal cipher model, which is often called black box model a&dl,ws a formal model for the security analysis of
block-cipher-based hash functions. An ideal cipher is aaligprimitive that models a random block-ciphgr :
{0,1}* x {0,1}" + {0,1}". Each keyk € {0,1}"* defines a random permutatidiy, = E(k,-) on {0,1}". An
adversary is given forward or inverse queries to oraélesvhen he makes a forward query Bwith (+, &, p), it
returns the point such thatEy(p) = ¢, when he makes an inverse queryHowith (—, k, ¢), it returns the poinp
such thatF(p) = c.

As the ideal cipher model, the random oracle model(ROM) $® @ method of developing provably secure
cryptosystems. Simply says, A random oracle (RO) is an igealitive which provides a random output for each
new query. Identical input queries are given the same andRexently, it was proven by Coraet al. [L1] that the
ideal cipher model is equivalent to the random oracle mogeiding the indifferentiability methodology.

2.2 PGV Hash Functions

At Crypto’93, Preneel, Govaerts and Vandewalle (PGV] [22Jppsed a synthetic approach to design single block
length hash function based on block ciphers. They congidire method of turning a block ciphéf : {0,1}" x
{0,1}" — {0, 1}" into a hash functior : {0,1}* — {0, 1}" using a compression functigh: {0,1}" x {0,1}" —
{0,1}"™ derived fromE. For a fixedn-bit constantv, PGV considered all 64 compression functighsf the form
f(hi—1,m;) = Ex(p) ® a wherek,p,a € {h;—1, m;, hi—1 & m;,v}, wherew; = h;_1 ® m; andv is a constant. The
hash function (m, ..., m;) can subsequently be described as follows:

hi :f(hiflami)ai: 1725"'71

Here f is the underlying compression functiohy is equal to a fixed initial value IMm;| = n for eachi €
[1---1] andh, is the hashcode. Of the 64 such schemes, PGV regards 12 schersecure in the sense of both the
preimage resistance and the collision resistance. AndifBieschemes they classified as backward-attackable, which
means they are subject to a potential attack. The remaitirsgl3emes are subject to fatal attacks. Afterthat, Bédick
al. [B] revisited all the 64 PGV schemes in the ideal cipher mot@lbey proved that the 12 secure schemes that PGV
had singled out remain secure in the black-box analysisctwaie denoted as the Group-1 schemes (listed in Table
2.1). Additionally, there are 8 schemes are also secure igdtation, they denoted these 8 schemes as the Group-2
schemes (listed in Table 2.2).

2.3 Four Merkle-Damgard Variants

In [9], Coronet al. proposed four Merkle-Damgard variants such that thetraryi length hash functiodd must
behave as a random oracle when the fixed-length buildingklidodewed as a random oracle or an ideal block cipher,
namely, the prefix-free padding, the NMAC/HMAC and the chamatructions. In this paper only compression
function based on PGV schemes is considered. The four va@ae described in Table 2.3.



Group-2 schemes

Case| PGV | Case] PGV | Case] PGV
13 Ey;(m;)®v 16 Ey,(hi—1) v 19 En,(w;) v
15 Eml (hifl) Do 18 Ewi(hifl) D w;

Table 2.2Group-2 schemes il[5].

pf-MD/ (IV, M) : NMAC/1/2 (TVy, M)
M:mlH---Hmi,ho:IVl M:mlH---Hmi,ho:IV
Fori=1toidoh; = f(g(mi),hifl) Fori =1to:doh; = fl(mi, hifl)
Returnh; Returnfa(h;, IV3)

HMAC/ (IV, M) : chop-MD/ (IV, M) :

M =my||- - |fmi, ho = fO,IV) | M =ma]|---|[mi, ho = IV

Fori =1to:do h; = f(ml, hz‘_l) Fori =1to: do h; = f(mi,hi_l)
Returnh; 1 = f(hi, IV) Return the first — s bit of h;

Table 2.3 Definitions of the four MD variants [d].!

The famous Davis-Meyer scheme is an instance of PGV schenteésh can be denoted a&h;_1,m;) =
Ep,(hi—1) @ hi—1. In the pf-MD construction, the message, ..., m;) are guaranteed to be prefix-free. This is
because prefix-free encoding enables to eliminate the gessgansion attack on hash functions, such as extension
attack on MAC. For example, if a MAC is built from a hash fuoctilike MAC(k, m) = H(k || m) wherek is the
secret key. Then this MAC scheme is completely insecurerfgi\erkle-Damgard construction(including Merkle-
Damgard strengthening). That is to say, given MAGn) = H(k || m), we can extend the messagewith any
single arbitrary blockn’ and obtain MAQk, m || m') = H(k || m || m') without knowing the secret kefy. If we
apply a prefix-free encoding to a message and then call thefbastion to get its hash value, we can eliminate the
message expansion attack. In fact, NMAC/HMAC and chop-M®the same as pf-MD by references to avoid the
message expansion attack.

2.4 Indifferentiability

In this part, we recall the definition for indifferentialbylj9l, [19], which will be used in the following security analy
of PGV hash functions on the four MD variants.

Definition 1 A Turing machingd with oracle access to an ideal primitivéis said to betp, ts, g, €)-indifferentiable
from an ideal primitiveF if there exists a simulatof with oracle access t& and running in time at mosts, such
that for any distinguishep it holds that:

|Pr[DHE = 1) — PrD7¥ =1]| < €

The simulator has oracle access foand runs in time at mosts. The distinguisher runs in time at masy and
makes at mosj queries. Similarly, /¥ is said to be (computationally) indifferentiable frafif ¢ is a negligible
function of the security parametér(for polynomially boundedp andig).

The role of the simulator is to simulate the ideal primitizeso that no distinguisher can tell whether it is
interacting withH and E, or with 7 and.S; In other words, the output o should look consistent with what the

Yg9(m,) is the prefix-free padding, returitgm; if m; is the last block, else returfgm;. f1, f are two independent compression functions,
1V4, IV, are two distinct initial values.



distinguisher can obtain fror¥. Note that the simulator does not see the distinguishe®sigs toF; however, it
can callF directly when it is required for the simulation. Here thealthm H will represent the construction of an
iterative hash function based dih The ideal primitiveE will represent the underlying primitive used to build the
hash function. In this paper, we assufiés an ideal block cipherF is a random oracle with same domain and range
as the hash function. In the case of ideal cipher model thimgissher can access bofhand E—! oracles and the
simulator has to simulate the both.

It was proven by Mauregt al. that if H ¥ is indifferentiable from7, thenH ¥ can replaceF in any cryptosystem.
The original theorem stated in below is a generic statemiethieandifferentiability.

Theorem 1 Let P be a cryptosystem with oracle access to an ideal primiffiveLet H be an algorithm such that
HP is indifferentiable fromF. Then cryptosyster® is at least as secure in thB model with algorithm/H as in the
F model.

Coronet al. stated the indifferentiability of Davies-Meyer block cgrtbased construction with four MD variants
in the ideal cipher model, the theorem is stated’in [9] a®vadl.

Theorem 2 The Davis-Meyer scheme &h;_1,m;) = Ey,, (hi—1) & h;—1) pf-MD, chop-MD, NMAC and HMAC
are (tp, ts, q, ¢)-indifferentiable from a random oracle in the ideal cipheodel. For anytp ,withtg = O(q?), with
e=2"".12.0(¢?) for pf-MD, e = 275 - 1? - O(¢?) for chop-MD,e = 27" - I? - O(¢?) for NMAC and HMAC, where
[ is the maximum length of a query made by the distinguigher

It was observed that Coraat al.s bound of chop-MD is not tight. In[8], Chang and Nandi presel an improved
indifferentiability security bound for chop-MD and statie following theorem:

Theorem 3 The chop-MD construction i$p, ts, ¢, o, €)-indifferentiable from a random oracle, in the random oeacl
2

model for the compression function, for any, withts = - O(¢?) ande = (3(”_5)“;2”(”_5)‘“ + gt + 5T =

O3 + 72 + ‘2’—5), whereq = ¢1 + ¢ is the total number of queries andis the total number of queried message

blocks.

3 Proofs of Indifferentiability of PGV Hash Functions

It is easy to see that any PGV compression functions are diftérentiable from a random oracle ]18]. But when the
initial value 1V is fixed, then there exist some PGV hash fioret are indifferentiable from random oracle. To prove a
scheme indifferentiable from a random oracle is not trivimlCoronet al’s paper[[9], the proof of indifferentiability
involved two steps. First, a simulator is built to simulate task of the ideal cipher. Secondly, they showed that the
view of any distinguisher in the random oracle model, withabe access to the actual random oracle and the ideal
cipher simulator, didn't differ from its view in the idealpgfier model, with oracle access to the RO construction and
the ideal cipher, by more than a negligible amount. Eachfprobindifferentiability consisted of a hybrid argument
that presented a sequence of mutually indistinguishabieegastarting in the random oracle model, with the RO
and the ideal cipher simulatsi{denoted byS7), leading up to the ideal cipher model, with the RO constomcand

the ideal ciphe® (denoted byH ¥). To prove the indifferentiability of a construction, thplayed six games and the
proof is complicated.

Later Changet al. presented a formal method to prove the indifferentiabflitymany designs of hash functions
with pf-MD construction which was in fact the same to Comtnal.s proof. Since Changt al’s proof is more
mathematical and formal, we adopt their method in our aisly$ere we describe Chamgal’s proof on pf-MD in
below.

Let D be a distinguisher anfl be a simulator for the formal analysis of indifferentiatyili By following Defi-
nition 1, D is interacting with two cryptosystem®;, Os), where eitheO;, O,) = (H, E) or (01,0) = (F, S).

The distinguisher’s goal is to distinguish which scenatiowolves after the queries t@;,03). H : M — Y
denotes a hash function constructed from a block-cigher{0,1}" x {0,1}" — {0,1}" whereM € {0,1}* and
Y € {0,1}". Fis arandom oracle which has the same domain and rangewvith denotes the hash value of théh
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query. Letr; — (hi_1 — h;) be thei-th query-response obtain from the query to the orétlevherem,; € {0, 1}".

R; = (r1,---,r;) denotes the query-response set on the ora@leafter thei-th query. Letr, — (IV M, h;) be
thei-th query-response to the oracl®s whereM € M. R} = (r},--- ,r) denotes the query-response set on the

oraclesO; after thei-th query. Afunctional closureR* onR is the set with the following properties.

mg||lmiq1

Lo hioy 5 hi by ™5 iy € Ry, thenhy_y 5 hipy € RE

mg||mip1 M1

2. Ifhioy =5 by hioy == higq € Ry, thenh; =5 hipq € RE .

TheO:-query inputs an arbitrary length message and outputs aléixgth hash value, while th®,-query inputs
a fixed length key and plaintext or ciphertext and outputsctiteesponding ciphertext or plaintext, respectively. The
details of the two categories of queries are described imwbel

e QueryonO; =Hor O, =F.

— For thei-th query on®,, distinguisherD selects an arbitrary length message € M. The response of
O1ish; = H(IV, M;) or h; = F(M;) whereh; € V.

- LetR, =R, , UV M, h;) be the query-response set on the oraclesafter thei-th query. The
query-response s@;, is the complete view of distinguishép on the oracleg); after the maximuny
gueries. Note that the simulatSrnever see the distinguisher's queriesxo

e QueryonOy, = Eor Oy = S

— For thei-th forward query or®., distinguisherD queries(+, k;, p;) wherek;,p; € {h;—1,m;,hi—1 ®
m;,v} and the response is = Ey, (p;) or ¢; = S(k;, pi), wherec; € {0,1}". By computing the hash
valueh; from the tuple(k;, p;, ¢;), thei-th query-response s&; = R;_1 U (h;—1 RGN h;).

— For thei-th inverse query o, distinguisherD queries(—, k;, ¢;) wherek; € {h;_1,m;, h;—1 & m;, v}
andc; € {0,1}" and the responsejis = E,;l(ci) orp; = S~Y(k;, c;), wherep; € {0,1}". By computing
hi_1, h; from the tuple(k;, p;, ¢;), thei-th query-response s&; = R;_1 U (hi—1 — h;).

— LetR, be the query-response set of the ora@jeafter the maximung queries. According to the transitive

and substitute properties &, the functional closur&; is the complete view of distinguishé? on the
oracles®,. Here the simulatof also has this view.

When D interacts with(F, S), the simulator should simulate the ideal ciptieiperfectly except a negligible
probability. WhenD makes queries to the oraq®;, 0-), there may be some bad events happen, and the distin-
guisherD can exploit these bad events to decide which scenario it i$ rad events don’t happen, the distinguisher
can never distinguish which scenario it is in except for digdae probability.

In Changet al’s indifferentiability analysisF, E» are the bad events whéninteracts with H, £') and(F, S),
respectively. The oracledd, E) and (F, S) are identically distributed in the past view of the distirgler when
E1, E, do not happenAdv(D) is the measure of the maximal advantage of indifferentigtilver all distinguishers
D. For brevity, D, denotes the eve®-¥ = 1 and D, denotes the ever®?”* = 1. Let the functionmaz() returns
the largest value of inputs, The advantagebak given in [/] as follows.

Adv(D) = |Pr[Dy] — Pr[Ds]| < 2 x max(Pr[E1], Pr[Es]).

Now the proof of indifferentiability of a scheme is clear.rdtj one should construct a simulat®isuch thatD
interacting with(F, S) is indifferentiable with( H, E'). Next, one must calculate the upper bound of the probaluaifity
the differentiable events, when interacts with(F, S) and(H, E) respectively. Finally, one can deduce the maximal
advantage of the differentiability over all distinguistiép.
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4  Flaws in Previous Indifferentiability Analysis of the Davies-Meyer Scheme.

The Davies-Meyer scheme is a well-known construction irdéssgn of compression function based on block ciphers,
which also belongs to 20 collision resistant PGV structuligs also used implicitly implemented in the constructon
of MD5 and SHA-1. Cororet al’s full paper [9] presented the detailed proof of the ineli#intiability of the pf-MD,

the chop-MD and NMAC based on the Davies-Meyer scheme. Chtal [[7] also proposed a proof of the indif-
ferentiability of pf-MD, which uses the Davis-Meyer scheasethe underlying compression function. Unfortunately,
we find that there exist some flaws in Coretral.'s proofs of pf-MD and NMAC, and also Charg al.'s proof of the
pf-MD such that a new type distinguisher can implement diffidiable attacks on the Davies-Meyer scheme while
extends its domain by using the pf-MD and the NMAC constauctiThis section will be divided into three parts. In
the first part, Cororet als and Changet al's simulators for pf-MD and NMAC are recalled. In the secomtpnew
differentiable attacks on these simulators are presemially, according to our new attacks, the indifferentiipi
simulations for the Davies-Meyer scheme with pf-MD and NM&A@ refined in the third part.

4.1 Previous Simulators of pf-MD and NMAC

Coronet al’s and Changet al’s simulators of pf-MD and NMAC based on Davies-Meyer stune are described in
the appendix A. When these simulators are built, then tharatdges of the distinguishers can be calculated by using
the method in[I9] orlli7]. In the next part, we will show how tdfdientiable attack these simulations and refine the
simulations to against this type of attacks.

4.2 A New Type of Differentiable Attacks on the Simulations épf-MD and NMAC.

In this part, some differentiable attacks are presentedsitiage the fact that the plausible simulations(which are
recalled in Appendix A) will be failed in the ideal cipher neddAfter pointed out the attacks, the simulations and the
proofs for pf-MD and NMAC are refined to avoid the above atsackhe following distinguishers demonstrate how
to attack Cororet afs and Changet als simulators.

Attack on the Simulations of pf-MD.

The following distinguisher can distinguigt#/, £') and(F, S) with a non-negligible probability when the simulator
behaves as Coragt al’'s and Changpet al’s simulator of pf-MD construction.

DistinguisherD can access to oraclé®;, O;) where(O;, 02) is
(H,E) or (F,S).

1. D selects a messagée such thayy(M) = m where|m| = n,
then he makes the quefy to O, and receives.

2. D makes an inverse quefy-, m, h & IV) to Oy and receives
v,

3. If IV = IV* output 1, otherwise output 0.

If the D outputs 1, thenlO1, O) is (H, E), otherwise(F, S). Since receiving an inverse query by the first time

and there does not exigt’ s h;—1 € R} 4, the simulatorS~! can output the righfV with a negligible probability
27", such that
Adv(D) = |Pr[D?F = 1) — Pr[D7 =1]| =1-27".

The reason why this attack can be succeed is that Getrahdidn’t consider the scenario when the distinguisher
makes an inverse query to the simulator and the goal of thieglissher is to receive a value he already knows. So
the response of the simulatSrcan’t be random for each inverse query. Chahgl. may observe Coroat al’s flaw
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in pf-MD since their simulator is different from Coraat al’s. Their correction has avoided attacks which involve
queries which the length are at least two blocks . But thep'timbnsider the scenario that an attack which applied
in only one block length and the distinguisher’s goal is toeree the initial valug/V. We can see the distinguisher
can distinguish H, E) from (F, S) with an overwhelming probability. The similar attack canex¢ended to Coron
et al’s simulator of NMAC.

Attack on Coron et al’s Simulation of NMAC.

The following distinguisher can distinguigli{, E') and(F, S) with a non-negligible probability when the simulator
behaves as Corogt als simulator of NMAC construction.

DistinguisherD can access to oraclé®,, O;) where(O;, 09) is
(H,{E1,E2}) or (F,{S1,52}).

1. D selects a message where|m| = n, then he makes the
querym to O; and receives.

2. D makes a forward queryl, +,m, IV;) to O, and receives
c1,then he getd; = IV] & ¢4.

3. D makes an inverse quef®, —, hi,h @ IV;) to O, and re-
ceives/Vy'.

4. If IV, = IV output 1, otherwise output O.

If D outputs 1, thedO,, O,) is (H,{E1, E2}), otherwise itigF, {S1,52}). Since the inverse is never queried
before, the simulatof2 can output the right V5 with a negligible probability o2, whilst

Adv(D) = |Pr[DTELE2 — 1] — pr[DTS092 = 1] =1 - 27

Hence, the distinguishdp can distinguisi H#, { E1, E2}) from (F, {51, S2}) with an overwhelming probability.

4.3 Corrections

Though there are some flaws in simulators mentioned abosg,ddin be corrected easily. In fact, all problems are
from the inverse queries of the last block of a message. Seitingator's response to an inverse query to the last
block needs to be treated with caution. Now corrections &mheof the simulators mentioned above are given in
below.

1. Corrections on Coroet al’s and Changet al’s simulator of pf-MD.

e For thei-th query(—, k;, ¢;) on S wherek; = m;:

@) 1f3h;_1 % (hj_1 © ¢;) € Ry for j < i, this is a repetition quenyg returnsh;_;.

(b) Else S runs F(m;) and obtains the responge If h & ¢; = IV, then returns/V and updates
Ri=Ri1 U {IV AN h}

(c) Else for eacl'V’ Mo iy € Ri_yandg(M) = M'" || m;, unsF(M) = h;. If by ® hiq = ¢,
returnsh;_, and update®R; = R;_1 U {h;_1 —5 h;}

(d) ElsesS randomly selects an intermediate vad‘té(g1 € {0,1}" and update®R,;, = R;_1 U {h]_, RN
¢ @ h_,}, thenreturng_,.

2. Corrections on Coroet al’s simulator of NMAC.



e Forthej-th query(2, —, k;, c;) on S2 wherek; = m;:
(@) If 3hy_q M, (hk—1 @ ¢;) € Qj—1 wherek < j, this is a repetition query; returnshy,_.
(b) Else If4I'V; M, (k;) € R} whereR; is the simulator’s view of the past queries 6h and thenS
runsF (M) and getsh. If IV, @ h = ¢, S updateQ; = Q;_; U {IV; g, h}, then returnd V.

mj

(c) ElseS randomly selects an intermediate Vahégl € {0,1}" and update®; = Q;_; U {h}ﬂ )
cj ®h;_,}, thenretuns) ;.

When these simulators are corrected, then the advantage distinguisher can be calculated aslih [9]lar [7]. It
is easy to see that the time complexity of the simulator aacittvantage of any distinguishers are not affected. Thus
one can easily obtain the following corollary.

Corollary 1 The Davis-Meyer scheme with pf-MD, chop-MD, NMAC and HMAE(8p, ts, g, €)-indifferentiable
from a random oracle in the ideal cipher model. For any,withts = O(¢?), withe = 27" - 12 . O(¢?) for pf-MD,

e =27%-12.0(q?) for chop-MD,e = 27" - 2 - O(¢?) for NMAC and HMAC, wheré is the maximum length of a
query made by the distinguishér.

In [15], Gonget al. also provided an indifferentiability analysis of 20 PG\hsmes with pf-MD and claimed
that all 20 schemes are indifferentiable from random ogwlh prefix-free padding (the length padding is also
implemented). There is an obvious error in their simulatbeg the simulators needed to record the distinguisher’s
queries to the random oracle. In fact, the simulator can never have the record of themdjsisher’s queries, which
can be derived from the definition of indifferentiability.

5 Indifferentiability Analysis of PGV Hash Functions

Due to the new flaws disclosed in the our analysis, the irdiffeeability of PGV schemes with pf-MD, NMAC/HMAC
and chop-MD are reconsidered in this section. Based on alysia of pf-MD, the necessary conditions for a PGV
hash construction to be indifferentiable from a random lerace analyzed. Filtered by those necessary conditions,
there are only twelve schemes survived in 64 PGV schemeshwhclude eight of the Group-1 and four of the
Group-2 schemes.][5].

At AsiaCrypt'06, Changet al.[7] presented an indifferentiability security analysfgteese schemes with pf-MD.
They claimed that there are 4 schemes among 20 collisiastaias PGV schemes are differentiable from random
oracle with pf-MD. And the remaining 16 schemes are indéfeiable from a random oracle with pf-MD. The four
insecure schemes(in the sense of indifferentiability \pithviD) are case 1, 2, 3 and 4 of the Group-1 schemes. Here
we find that in the remaining 16 schemes, there are anothesétemes are differentiable from random oracle with
pf-MD. These four schemes are case 15, 17, 19 and 20 from thgpc schemes.

When analyze these 20 collision resistant PGV hash funéioNMAC/HMAC and chop-MD construction, we
found all of them are indifferentiable from a random oracldhie ideal cipher model, and the chop-MD construction
has the better indifferentiability security bound than NBYAMAC construction. This exploits that the four MD
variants are not the same in the sense of indifferentighilitccording to our synthetic analysis, we exploit the fact
that in 20 PGV collision resistant constructions, thersesthemes that are differentiable from random oracle for th
pf-MD construction, but are indifferentiable from randomade for the NMAC/HMAC and chop-MD construction,
while the chop-MD construction has the better indifferabiiity security bound. This fact gives the evidence that th
four popular MD variants, namely pf-MD, NMAC/HMAC, the chapnstruction, are not the same in the sense of
indifferentiability.

5.1 Indifferentiability of PGV Hash Functions with pf-MD

Here we use the indifferentiability methodology to revRiBEV schemes with the pf-MD construction. We analyze
the properties of 64 PGV schemes and find the necessary iomsdibr a PGV schemes to be indifferentiable from a
random oracle. The necessary conditions are describedl@sdo First we present the theorem with respect to the
compression function which is not a collision resistant Ps&e\leme.
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Theorem 4 A hash functionH built from any PGV schemk; = f(h;—1,m;) with pf-MD is differentiable from a
random oracle ifH is not collision resistant.

The proof is given in Appendix B.1. Based on Theorem 4, it isye® see that 44 out of the total 64 PGV
schemes are not collision resistant, thus they are diffeele from random oracle with pf-MD.

Theorem 5 A hash function” built from any PGV constructioh; = f(h;—1, m;) with pf-MD is differentiable from
a random oracle if h;, m;) = h;—1. Thatis to say, it is trival to deduck;_, from (h;, m;) with access to the block
cipher. For examplel; = E,,,, (hi_1), if we know the value dfi;, m;), thenh; 1 = E.1(h;).

m;

The proof is given in Appendix B.2. Based on Theorem 5, the ¥ BGemes, which are case 15, 17, 19 and 20
of the Group-2 schemes, are differentiable from a randor®ra

Theorem 6 A hash functionH built from any PGV schemés = f(h;_1, m;) with pf-MD is differentiable from a
random oracle if giverih;_1, k, ¢) wherek € {h;_1,v} is the key to the block ciphdf andc is a linear combination
of {h,—1,m;, h;,v} and the cipher text of the block ciphér; it is infeasible to deducer; without access to the block
cipher. For example, if; = E}, , (m;) & m;, thenk = h;_; andc = h; & m;, from the triple(h;_1, hi—1, h; & m;),

it is infeasible to deduce:; without access td.

The proof is given in Appendix B.3. Based on theorem 6, the 4/ RBGhemes, which are case 1, 2, 3, 4 of
the group-1 schemes, are differentiable from a random @rdéfom the the above analysis, one can easily get the
following corollary.

Corollary 2 A hash functiond built from the PGV compression functién = f(h;_1, m;) with pf-MD is differen-
tiable from a random oracle if it satisfies one of the follogvtonditions.

A. The hash functiod{ is not collision resistant.
B. (h;,m;) = h;—1. Thatis to say, it is trival to dedude,_; from (h;, m;) with access to the block cipher.

C. Given(hj_1,k,c) wherek € {h;_1,v} is the key to the block ciphdf and c is a linear combination of
{hi—1,m;, hi,v} and the cipher text of the block ciphér, it is infeasible to deduce:; without access to the
block cipher.

The case 15, 17, 19, 20 of the group-2 schemes(see tableatis?y she conditionB, and the case 1, 2, 3, 4
of the group-1 schemes(see table 1.1) satisfy the conditioso they are differentiable from a random oracle with
pf-MD construction. Those 8 differentiable schemes atedi$n Table C.1.

Since the necessary conditions for the indifferentigbitif a PGV structure with the pf-MD construction are
given, it is easy to analyze a construction by checking ifatisfies any one of the conditions mentioned above.
If anyone of these conditions holds, then the PGV scheméeffereintiable from a random oracle with the pf-MD
construction. After checking these conditions for everyF83V construction, there are only 12 PGV schemes are
secure against differentiable attack with pf-MD constiarct which are listed in table C.2. The following theorem is
proven in Appendix B.4.

Theorem 7 The twelve PGV schemes, which are list in table C.2,(arets, g, €) indifferentiable from a random
oracle in the ideal cipher model. For anty, withts = 1 - O(¢?), withe = 27" - 2 - O(¢?) for pf-MD, wherel is the
maximum length of a query made by the distinguisber

5.2 Indifferentiability of PGV Hash Functions with NMAC/HM AC

In the above analysis, there are only 12 of the 20 collisgsistant PGV schemes are indifferentiable from random
oracle with pf-MD construction. In this part we will show & not the same in the analysis of NMAC/HMAC con-
struction. For brevity, we only analyze the NMAC constranti The results can be easily extended to the HMAC
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construction because HMAC is a special case of NMAC. In oahsis, all of 20 collision-resistant PGV construc-
tions are indifferentiable from random oracle with NMAC/H@ construction, which implies that the NMAC/HMAC
construction is better than the pf-MD construction.

Furthermore, we will show even if a collision resistant PGIstruction satisfies condition B or C in corollary
2, it can be indifferentiable from random oracle with NMAGQMAC construction. For simplicity, we only show the
case 15 from group-2 schemes(table 2.2) satisfies condtjdout is indifferentiable from a random oracle for the
NMAC construction. For other cases, one can make a similalysis and the proof of the indifferentiability will be
deduced similarly.

Lemma 1 The collision resistant PGV compression functign= E,,, (h;—1) which satisfies condition B in theorem
3is(tp,ts, q,¢) indifferentiable from a random oracle in the ideal cipheraeb For anytp, withts = O(q¢?), with
e =27".12.0(q?) for NMAC, wherd is the maximum length of a query made by the distinguigher

Lemma 1 is proven in Appendix B.5. In fact, for any one of thec2llision resistant PGV constructions, one can
build the similar simulator with NMAC/HMAC construction sh that any distinguisher fails. Since the proof of the
indifferentiability for each PGV scheme is similar to th@pf of Lemma 1, we have the following theorem.

Theorem 8 The 20 collision resistant PGV schemes &g, ts, q, €) indifferentiable from a random oracle in the
ideal cipher model. For anyp, with ts = O(g¢?), withe = 27" - [2 . O(¢?) for NMAC/HMAC, wherd is the
maximum length of a query made by the distinguisber

5.3 Indifferentiability of PGV Hash Functions with chop-MD

In this part the indifferentiability of chop-MD for the 20 ltision resistant PGV schemes will be analyzed. We show
that all the 20 collision resistant PGV schemes are indifféable from random oracle in the ideal cipher model for the
chop-MD construction. In10], Coroet al. analyzed the indifferentiability of chop-MD based on thavizs-Meyer
construction. They had the following lemma:

Lemma 2 The Merkle-Damgrd construction with truncated output chop-Nilbased on the Davies-Meyer construc-
tion applied to an ideal cipheE : {0,1}" x {0,1}" — {0,1}"is (tp, ts, q, €) indifferentiable from a random oracle
F :{0,1}* — {0,1}"* in the ideal cipher model foF, for anytp andts = 1 - O(q¢?), withe = 275 - 12- O(¢?).

Coronet al’s bound of chop-MD is not very tight. In_[20], Maurer and $ago firstly presented a prefix-free
chop-MD construction which has indifferentiability seityrbeyond the birthday barrier. Later, Chang and Nandi
presented an improved indifferentiability security boudod chop-MD which stated in theorem 3. Though Chang
and Nandi's improved indifferentiability security bourglproved when looks the compression function as a random
oracle, their proof of the security bound can be applied aitteal cipher model when the compression function
is based on Davies-Meyer structure. Some collision redif?&V schemes satisfy condition B or C in theorem 2
can be indifferentiable from random oracle for chop-MD ie fildeal cipher model. Take the PGV scheme=
En,_,(m;) & m; as an example, it = 2s, we can build the following distinguisher:

DistinguisherD can access to oraclé®;, O;) where(O;, 07) is
(chop-MDF, E) or (F, S).

1. D selects a message such thaiy(M) = m where|m| = n,
then makes the querd/ to O; and receives.

2. For eachh’ from 0 to 25 — 1 , D makes an inverse query
(=, IV,m & (h || h')) to O and receivesn’.

3. If there exist ann’ such thatn’ = m, D output 1, otherwise
output 0.
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Since the simulator never knows the right messag gives the right response only with probability* afterq = 2°
queries. After queried times toO,,

Adv(D) = |Pr[DHEET =) pp[pFSST =)= L - 1 L 4

It is obvious that the advantage of the distinguisher is thaa the birthday bound, and this advantage is less than
Chang and Nandi's improved security bound and so that tipie tf differentiable attack fails. The result can be
extended to other 19 collision resistant PGV schemes. Fproae of 20 collision resistant PGV schemes, the
following simulator can be built such that the advantage rof distinguisher is in Chang and Nandi's improved
bound.

Simulator:

1. For thei-th query(+, k;, p;) on S wherek;,p; € {h;—1,m;, hi—1 ® m;}, h;—1 andm,; can be deduced from
(ki, pi):

(@) If 3h;_1 —5 h; € R;_1, then this is a repetition query, deducesrom (hi—1, hi,m;), S returnse;.

(b) Else if 31V LN hi-1 € Rf_; andg(M) = M’ | m;, S runs F(M) and obtains the responge,
randomly choose a-bit string i/, updatesR; = R;_; U {h;_1 —= (h; || k’)}, then deduces; from
{hi—1,m;, (h; || B'),v} and returns:;

(c) ElseS randomly selects a hash valbge {0,1}" and update®R,;, = R;—1U{h;—1 RLN h;}, then deduces
¢; from {h;_1,m;, h;,v} and returng:;.

2. For thei-th query(—, k;, ¢;) on S wherek; € {h;,_1,m;, hi—1 ® m;}:

(@) If 3hi_1 —5 h; € R;_1 wherek;, ¢; can be deduced froith;—1, m;, h;) , then this is a repetition query,
S deducey; from (h;_1, m;, h;), then returns the;.

(b) ElseS randomly selects a messalye ; € {0,1}", deducesn;, h; from {h;_1, k;, ¢;} and update®R; =
Ri_1 U {hi—1 =% h;}, then returnsy;_;.

For anyone of the 20 collision PGV schemes, we can calcutegeativantage of any distinguisher using the
method explained ir .[8]. So combined our analysis of PGV swgeand Chang and Nandi’'s improved bound. We
get the following theorem:

Theorem 9 The chop-MI¥ construction based on anyone of 20 collision resistanigiolh PGV schemes i¢p, ts, q, o, €)
indifferentiable from a random oracle, in the ideal cipheodel for anytp, withts = [ - O(¢?) ande = O(24 +

25
s + g—j), whereyq is the total number of queries arndis the total number of message blocks queried.

The above theorem shows that the distinguisher needs aRfg@8s + 1) query complexity to have an indiffer-
entiability attack whem = 2s. In [8], the result implies the chop-MD hash function is abhoptimally secure with
respect to second preimage and multicollision attack. Nweit doesn’'t improve the security bound for resisting
collisions to chop-MD, but does improve the bound for irgliéntiability in the ideal cipher model.

6 Conclusion

The indifferentiability of 20 collision resistant PGV hagimctions for pf-MD, NMAC/HMAC and chop-MD con-
struction are revisited. It is shown that the indifferehiligy is really a method to verify the security of a consttioa.
There are some schemes can be differentiable from randarte avith pf-MD, but are indifferentiable from random
oracle with NMAC/HMAC and chop-MD construction. Our resudtxploit that the four Merkle-Damgard variants are
not the same in the sense of the indifferentiability. Andlgter two constructions are better than pf-MD. Since the pf-
MD construction has lower input domain and the chop-MD cartsion has lower output range, the NMAC/HMAC
would be a better choice for practice use. We also suggetsptigashould take care of the proof of the indifferentia-
bility of a construction, since some flaws have been foundéwipus works.
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A Previous Simulators of pf-MD and NMAC

Coronet al’'s and Changet al’s simulators of pf-MD and NMAC based on Davies-Meyer stuwe are described as
follows:

Coron et al.’s Simulation of pf-MD.

The simulatorS accepts either forward ideal cipher queriés, k;,p;), or inverse ideal cipher querie§;-, k;, ¢;),
such thatk; € {0,1}™ andp;,¢; € {0,1}". In either case, the simulatdf responses with a-bit string that is
interpreted agty, (p;) in the case of a forward query, k;, p;) and asEk‘il(cZ-) in the case of an inverse query.
The simulator keeps the relatiotR4, ..., R;—1). To answer the distinguishép’s forward and inverse queries, the
simulatorS responses as follows.

1. For thei-th query(+, k;, p;) on S wherek; = m; andp; = h;_1:

(@) If 3hi_1 —% h; € R;_1, then this is a repetition query which the response is ajréadwn. S returns
¢ =hi ®hi_1.

(b) Elseif31v M hi—1 € Rf_, andg(M) = M' || m;, S runsF(M) and obtains the responag updates
Ri=R;1U {hifl LN hi}, then returng; = h; ® h;_1;

(c) ElseS randomly selects a hash valuge {0,1}" and update®R; = R;—1 U {h;_1 LN h;}, then returns
¢ =hi ®hi_1.

2. For thei-th query(—, k;, ¢;) on S wherek; = m;:

@) 1f3h;_1 =% (hj_1 @ ¢;) € Ri_q for j < i, then this is a repetition querg returnsh;_;.
seS randomly selects a messalge , € {0,1}" and update®R; = R;_1 U{h!_, — ¢;®h._,}, then
(b) ElseS randomly sel e, " and update®; = R h_, R i}, th

returnsh;_,.
Changet al.’s Simulation of pf-MD

Generally speaking, Chargg al.s simulator is the same as Corehal.s except for the inverse query. To answer the
distinguisherD’s forward and inverse queries, the simulatbresponses as follows.

1. For thei-th query(+, k;,p;) on S wherek; = m; andp; = h;_1: S behaves the same as Corenal’s
simulator.
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2. For thei-th query(—, k;, ¢;) on S wherek; = m;:

@) 1f3h;_1 % (hj—1 @ ¢;) € Ri_q for j < i, this is a repetition quenys returnsh;_;.

(b) Else for each'V/ M, hi—1 € Ri—1andg(M) = M' || m;, unF(M) = h;. If h; & h;—1 = ¢;, return
h;_1 and update®; = R;,_1 U {hi,1 LN hz}

(c) ElseS randomly selects a messalge ; € {0,1}™ and update®R; = R; 1 U {h, | ~% ¢; @ h_,}, then
returnsh;_,.

Coron et al.’s Simulation of NMAC.

The NMAC construction NMAG!-F2 essentially applies the Davies-Meyer construction usiegtock cipher&1 to

the inputm, || ... || m; to get the final outpuk,. It then applies another independent the Davies-Meyertagrion
using E2 to this outputh;. For simplicity the output length of £'1 is the same as the key lengthB2. And one use

1V, for the Davies-Meyer construction appliedfd, and use V5 for the Davies-Meyer construction with2.

The simulator gets forward/inverse queries for either ef btock ciphersk'l and E2. Thus the queries that

simulatorS responds to are as follows:

1,4+, ki, p;): Aforwards E'1 query ,wherdk;,p;) € {0,1}" x {0,1}". The expected responseAs ;. (p;).

i(
1, —, ki, ci): AinversesE1 query ,wher€k;, ¢;) € {0,1}" x {0,1}". The expected responseﬁﬂ,;l(cl-).
(

)
2,4+, ki, p;): A forwards E2 query ,wherék;,p;) € {0,1}" x {0,1}". The expected responseB&y, (p;).

1. ( :
2. ( :
3. ( :
4. ( ;

2, —, ki, c;): AinversesE2 query ,whergk;, ¢;) € {0,1}" x {0,1}". The expected responseﬁsz,;l(cl-).

The simulatorS also maintains the relatiof®,...,R;—1) and(Qy, ..., Q;_1) where(Rq,...,R;_1) records the

triples that obtained from queries @1 and(Q;, ..., Q;_1) records the triples that obtained from queriesish To

answer the distinguished’s forward and inverse queries diil or E2, the simulatorS should simulateF1, E2 as

S1,52 and responses as follows.

e Queryon S1:

1. For thei-th query(1, +, k;, p;) on S1 wherek; = m; andp; = h;_1:

(@) If 3Ih;_1 =5 h; € Ri_1, then this is a repetition querg. returnse; = h; @& h;_1.
(b) ElseS randomly selects a hash valig € {0,1}™ and updateR; = R;—1 U {h;—1 LN hi}, then
returnsc; = h; ® h;—1.

2. For thei-th query(1, —, k;, ¢;) on S1 wherek; = m;:
@) If3h;_1 5 (hj—1 @ ¢;) € Ri—1 wherej < i, S returnsh;_;.
(b) ElseS randomly selects a messalge ; € {0,1}" and update®R; = R, 1 U {h, | 5 c; ® b},
then returng:;_,.

e Query on 52:

1. For thej-th query(2, +, k;,p;) on S2 wherek; = m; andp; = h;j_i:
(@) 1f3h; 1 —% hj € Q; 1, then this is a repetition quengi2 returnsc; = hj & h;_ ;.
(b) ElseifdI'V; M m; € R andp; = IVa, S runsF(M' || m;) and obtains the responsg, updates
Q;=Q;1U{IV; 2, h;}, thenreturng; = IV, @ h;.

(c) ElseS randomly selects a hash valtig € {0,1}" and update®; = Q; 1 U {h;_; —% h;}, then
returnsc; = h; @ hj;_1.
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2. For thej-th query(2, —, k;, ¢;) on S2 wherek; = m;:
@) I 3hy_y —5 (hp_1 @ ¢;) € Q;_1 wherek < j, S returnshy,_; .
(b) ElseS randomly selects a messa’g;e_1 € {0,1}" and update®; = Q; 1U{h}_, NER c; @R},

then returnsy;_,.

B Proofs

B.1 Proof of Theorem 4

The distinguisheD accesses to oraclé®;, O2) where(O1,09) is (H, E) or (F, S). If itis easy to find a collision
(M, M'") such thatd (M) = H(M') when makes queries t&, D can queryM and M’ to O; and receive the
responses. If the responses are different, theis interacting with(F, S), otherwise it is interacting withiH, E).
Then we have

Adv(D) = |Pr[D®F = 1) — Pr[D7 =1]| =1-27".

Since the advantage is non-negligible, so the constru@idifferentiable from a random oracle. O

B.2 Proof of Theorem 5

If a PGV scheme satisfig®;, m;) = h;_1, then we know the ke¥; to the block ciphel must be a linear combi-
nation of{m;,v} and¢; is a linear combination ofh;, m;, v}, herev is a constant, then we can build the following
distinguisherD such that any simulator fails.

DistinguisherD can access to oraclé®;, O;) where(O;, 02) is
(H,E) or (F,S).

1. D selects a messadéd, M’ such thay(M) = (m; || mg) and
g(M') = (mq || m,) wherems # m/, and|my| = |mq| =
|mf| = n, then makes the quedy/ to O, and received, and
the queryM’ to O, and received),.

2. D computes (ka,c2) from (mo,he) and (k},c,) from
(mb, hY), then makes an inverse quey, k2, c2) to Oy and
receivesp, and computesh; from (mo, ko, ho,p2) , then
makes an inverse quety-, k), ¢,) to O and receiveg, and
computesh from (mb, k}, by, phy).

3. If hy = R/ output 1, otherwise output 0.

Since the simulator doesn’t know whether the two inverseigsdead to a same internal value, the simulator
can output the right response only with probability”,

Adv(D) = |Pr[D®EET — 1) — pr[DFS5 = 1) =1-27"

This is not negligible. So the construction is differentéafsom a random oracle. a

B.3 Proof of Theorem 6

In this case, the following distinguisher is built.
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DistinguisherD can access to oraclé®;, O;) where(Oy, 09) is
(H,E) or (F,S).

1. D selects a messagdée such thaiy(M) = m where|m| = n,
then makes the querd/ to O; and receives.

2. D computesk, ¢) from (h,m,IV,v), then makes an inverse
query(—, k,c) to Oy and receivep, then computesn’ from
(IV,k,c,p).

3. If m = m/ output 1, otherwise output O.

Since the simulator never knows the right messagé gives the right response only with probabily”,
Adv(D) = |Pr[D"FE = 1) — pr[DF55 7 = 1) =1-27"

So the construction is differentiable from a random oracle. O

B.4 Proof of Theorem 7

The Davies-Meyer construction(case 5 ) has been shown todiféerentiable from random oracle with pf-MD. For

the other 11 cases, we can make similar analysis. Thus, waefare a general simulator for these 12 PGV functions.
The simulator is defined as follows:

Simulator:

1. For thei-th query(+, k;, p;) on S wherek;,p; € {h;—1,m;, h;—1 ® m;}, we can deducé;_; andm,; from
(ki, pi):

(@) If 3h;_4 2 b € Ri_q, then thisis a repetition querg. deduces:; from {h;_1,m;, h;} and returng:;.

(b) Elseif31Vv M, hi—1 € Rf_, andg(M) = M' || m;, S runsF(M) and obtains the responag updates
Ri = Ri_1 U{hi_1 =% h;}, then deduces; from {h;_1,m;, h;,v} and returns;

(c) ElseS randomly selects a hash valuge {0,1}" and update®; = R;,—1 U{h;_1 RLN hi}, then deduce
¢; from {h;_1,m;, h;,v} and returng:;.

2. For thei-th query(—, k;, ¢;) on S wherek; € {h;—1,m;, hj—1 ® m;}:

(a) For eachM’ such thatlV/ M, hi—1 € R;_,(M’ can be the empty string, in that cadg,; = IV),
deducem; from {h;_1, k;}. If 3M such thaiy(M) = M’ || m;, runsF (M) and obtains the responsé
At the same time, we can dedukgfrom {h;_1,m;, ¢;} for each PGV scheme.

(b) If h; = hl, S returns the corresponding plaintext which belongg/g 1, m;, hi—1 & m;} and updates
Ri=Ri—1 U {hi—l e, hz}

(c) ElseS randomly selects a messabe 1 € {0, 1}", deducem;, h; from {h;_1, k;, ¢;} and update®R; =
Ri_1 U {hi_1 = h;}, then returnsh;_;.

By using Theorem 4 and Theorem 5 [d [7], or Theorem 4.1 [1@, can computés = [ - O(¢?) and
e =2"".12.0(q?), wherel is the maximum length of a query made by the distinguisher O
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B.5 Proof of Lemma 1

The NMACFEF2 applies this compression function using the block cipfigrto the inputmy || ... || m; to get the
final outputh;, then applies another independent compression functioig # to this outputh;. We can build the
following simulator:

Simulator:

e QueryonS1:

1. For thei-th query(1, +, k;, p;) on S1 wherek; = m; andp; = h;_1:

(@) If 3h;_1 =5 h; € Ri_1, then this is a repetition querg. returnsh;.
(b) ElseS randomly selects a hash valig € {0,1}™ and updateRR; = R;_1 U {h;_1 LN hi}, then
returnsh;.

2. For thei-th query(1, —, k;, ¢;) on S1 wherek; = m;:

@) 1f3h;_1 % (¢;) € Ri_1 Wherej < i, S returnsh; ;.

(b) ElseS randomly selects a messabe , € {0,1}" and updateR; = R;_; U {h}_; =% ¢}, then
returnsh;_,.

e Queryon 52:

1. For thej-th query(2, +, k;,p;) on S2 wherek; = m; andp; = h;j_i:

(@) If3h;_y =, h; € Q;_1, then this is a repetition querg2 returnsc; = h;.
(b) Else if31'V; M, m; € R} andp; = IV, S runs F(M) and obtains the responge, updates
Q;=Q; 1 U{IV; REN h;}, then returng; = h;.

(c) ElseS randomly selects a hash valie € {0,1}" and update®; = Q; ; U {h;_; —% h;}, then
returnsc; = h;.

2. For thej-th query(2, —, k;, ¢;) on S2 wherek; = m;:

@) If 3hy_1 —5 (¢;) € Q;_1 wherek < 7, this is a repetition queny returnshy, ;.

(b) Else If31v; 5 (k;) € R thenS runs F(M) and getsh. If h = ¢;, S updatesQ;

{1V, 1, h}, then returnd V;.

(c) ElseS randomly selects a messalj;;e_1 € {0,1}" and update®; = Q;_1 U {h
returnsh/’;

j—1-

/
7—1

=Q; 11U

M, c;}, then

It is easy to show the distinguisher which was succeedingenpf-MD will fail in the NMAC construction.tg =
1-0(q?) ande = 27" - [2 - O(¢?) are calculated according the proof of Lemma A.€1n [10] , vetiés the maximum
length of a query made by the distinguisher

C Tables
| Case| PGV | Case] PGV | Case] PGV
1 Ehi—l (mz) D m; 4 Ehifl (wz) D m; 19 Emi (wz) D
2 Ehz’fl (wz) D w; 15 Emi (hz‘_l) Do 20 Emi (wl) D m;
3 Ehi—l (mz) D w; 17 Emi (hz‘_l) dm;

Table C.1Eight differentiable PGV schemes with pf-MB,;, = h;—1 & m, , v is a constant.
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| Case| PGV | Case] PGV | Case] PGV
5 Emi(hi—l) @ h; 9 Ewi (m,) D m; 13 Ewi (ml) D
6 Ep, (w;) & w; 10 Ey,(hi—1) ® hi—1 14 E,,(m;) & w;
7 En(hi—1) ® w; 11 Ey,(mi) & hi—y 16 Ey,(hi—1) ®v
8 Ep(w;) @ hi—q 12 Ey,;(hi—1) ® m; 18 Ey,(hi—1) ® w;

Table C.2 Twelve Indifferentiable PGV schemes with pf-M; = h;,—1 & m; , v is a constant.
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