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Abstract. At Asiacrypt’99, Vaudenay modified the structure in the
IDEA cipher to a new scheme, which they called as the Lai-Massey
scheme. It is proved that 3-round Lai-Massey scheme is sufficient for
pseudorandomness and 4-round Lai-Massey scheme is sufficient for strong
pseudorandomness. But the author didn’t point out whether three rounds
and four rounds are necessary for the pseudorandomness and strong pseu-
dorandomness of the Lai-Massey Scheme. In this paper we find a two-
round pseudorandomness distinguisher and a three-round strong pseu-
dorandomness distinguisher, thus prove that three rounds is necessary
for the pseudorandomness and four rounds is necessary for the strong
pseudorandomness.

1 Introduction

The notion of pseudorandom permutation was formally discussed by Luby and
Rackoff [6], which referred to the functions that cannot be distinguished from a
uniformly random permutation in polynomial time bound. Pseudorandom per-
mutations are often used to describe the idealized abstractions of block ciphers,
which play an important role in symmetric key cryptography. Well-designed
block ciphers, such as DES and AES, are often assumed to be a pseudoran-
dom permutation in the literature. Furthermore, one can explicitly modeling
the underlying blockcipher as a pseudorandom permutation to enable the for-
mal analysis of a blockcipher-based construction. The construction could be an
encryption scheme (e.g., DES, IDEA[4], FOX[3]), a message authentication code
(e.g., CBC-MAC) and so on.

The security of pseudorandom permutations can be classified as pseudoran-
domness and strong pseudorandomness. The pseudorandom permutations can be
interpreted as block ciphers that are secure against an adaptive chosen-plaintext
attack. That is to say, the adversary can only access the encryption oracle dur-
ing the attack. The strong pseudorandom permutations can be interpreted as
block ciphers that are secure against an adaptive chosen-ciphertext attack. A
strong pseudorandom permutation should be indistinguishable from a uniformly
random permutation, even if the distinguisher is given oracle accesses to both
the encryption and decryption oracles during the attack.
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Motivated by the Feistel network, Luby and Rackoff [6] provided a generic
construction for strong pseudorandom permutations. They proved that 3-round
Feistel network can be used to construct a pseudorandom permutation from
a pseudorandom function, and 4-round Feistel network can construct a strong
pseudorandom permutation from a pseudorandom function. Later many works
focus on alternative structures that also have the pseudorandomness and the
strong pseudorandomness properties[7, 9–13].

At Asiacrypt’99, Vaudenay [14] provided the other method to construct
(strong) pseudorandom permutations. Since this new method uses a structure
which is similar to the block cipher IDEA [4, 5], so it is called the Lai-Massey
scheme. Moreover, a new family of block ciphers, which is named the FOX (also
known as IDEA-NXT ) [3], was built on the Lai-Massey scheme. It is proved that
3-round Lai-Massey scheme is sufficient to construct a pseudorandom permuta-
tion from a pseudorandom function, and 4-round Lai-Massey scheme is sufficient
to construct a strong pseudorandom permutation from a pseudorandom func-
tion. But it is unknown that whether 3 rounds and 4 rounds are necessary for
the pseudorandomness and strong pseudorandomness property of the Lai-Massey
scheme .
Our Contribution. In this work, we first present two concrete attacks on the 2-
round pseudorandomness and 3-round strong pseudorandomness of Lai-Massey
scheme, respectively. Combined our new distinguishable attacks with Vaudenay’s
theorems , we formally prove that 3 rounds is not only sufficient, but also nec-
essary for the pseudorandomness of the Lai-Massey scheme, while 4 rounds is
not only sufficient, but also necessary for the strong pseudorandomness of the
Lai-Massey scheme.
Organization. The remainder of this paper is organized as follows. In Section 2
we describe the formal definitions of (strong) pseudorandom permutations and
two methods to construct them, including the Feistel structure and the Lai-
Massey scheme. We reanalyze the pseudorandomness of the Lai-Massey scheme
in Section 3, and the strong pseudorandomness in Section 4. Finally we draw a
conclusion in Section 5.

2 Preliminaries

In this section, at first the formal definition of the pseudorandom and strong
pseudorandom permutations are reviewed, then two methods of construct pseu-
dorandom and strong pseudorandom permutations from pseudorandom func-
tions, which are the Feistel network and Lai-Massey scheme are described.

2.1 Pseudorandom and Strong Pseudorandom Permutatoions

Definition 1. Let F : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be an efficient, keyed permuta-
tion. We say F is a pseudorandom permutation if for all probabilistic polynomial-
time distinguishers D, there exists a negligible function ε(n) such that:

|Pr[DFk(1n) = 1]− Pr[DP (1n) = 1]| ≤ ε(n)
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where k ← {0, 1}n is chosen uniformly at random and P is chosen uniformly at
random from the set of permutations mapping n-bit strings to n-bit strings.

In fact, a pseudorandom permutation is also a length-preserving pseudo-
random function, since a length-preserving random function f looks identical
to a random permutation unless a distinct pair of values x and y are found for
which f(x) = f(y), where in such a case the function cannot be a permutation.
However, the probability of finding such points x, y using a polynomial number
of queries is negligible due to the birthday bound.

If F is an efficient pseudorandom permutation then cryptographic schemes
based on F might require honest parties to compute the inverse F−1

k in addition
to the permutation Fk itself. This potentially introduces new security concerns
that are not covered by the fact that F is pseudorandom. In such a case, we may
need to impose the stronger requirement that Fk be indistinguishable from a
random permutation even if the distinguisher is given oracle access to the inverse
of the permutation. If F has this property, we call it a strong pseudorandom
permutation. Formally:

Definition 2. Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, keyed permu-
tation. We say F is a strong pseudorandom permutation if for all probabilistic
polynomial-time distinguishers D, there exists a negligible function ε(n) such
that:

|Pr[DFk,F−1
k (1n) = 1]− Pr[DP,P−1

(1n) = 1]| ≤ ε(n)

where k ← {0, 1}n is chosen uniformly at random and P is chosen uniformly at
random from the set of permutations mapping n-bit strings to n-bit strings.

2.2 The Feistel and the Lai-Massey Schemes

The Feistel network is the most popular structure which many modern symmetric
block ciphers are based on, such as DES, Blowfish, Twofish, RC5 etc. Luby and
Rackoff analyzed the Feistel network and proved that if the round function is
a pseudorandom function, then 3 rounds is sufficient to make the block cipher
a pseudorandom permutation, while 4 rounds is sufficient to make it a strong
pseudorandom permutation. A Feistel network operates in a series of rounds.
The input to the ith round is a string of length 2n which is divided into two
n-bit halves Li−1 and Ri−1. The output of the ith round will be the 2n-bit string
(Li, Ri) where

Li = Ri−1 and Ri = Li−1 ⊕ Fi(Ri−1)

for some efficiently-computable(but not necessarily invertible) round function
Fi mapping n-bit inputs to n-bit outputs. At last the left half and the right
half of the last round outputs are swaped. Here we denote LRr as r-round 2n-
bit Feistel network, where Fi, 1 ≤ i ≤ r are independent uniform distribution
random functions from {0, 1}n to {0, 1}n. The 3-round Feistel network LR3 is
described in Fig. 1. The following result is proved[2]:
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Fig. 1. The 3-round Feistel Structure LR3 and 3-round Lai-Massey Scheme LM3.

Theorem 1. If F1, F2, F3 are independent psuedorandom functions from {0, 1}n
to {0, 1}n, then LR3 is a pseudorandom permutation that maps 2n-bit strings to
2n-bit strings.

LR3 is not strongly pseudorandom, this will be explained later. Fortunately,
adding a fourth round does yield a strong pseudorandom permutation[2, 6].

Theorem 2. If F1, F2, F3, F4 are independent psuedorandom functions from {0, 1}n
to {0, 1}n, then LR4 is a strong pseudorandom permutation that maps 2n-bit
strings to 2n-bit strings.

The Lai-Massey scheme show in Fig.1 is a modification of the block cipher
IDEA. Let (G, +) be a group. Given r functions F1, . . . , Fr and an orthomorphism1

permutation σ on G. r-round Lai-Massey scheme LMr which is a permutation
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on G2 is defined as follows. The input to the ith round is (Li−1, Ri−1) where
Li−1, Ri−1 ∈ G. The output of the ith round is (Li, Ri), such that

Li = σ(Li−1 + Fi(Li−1 −Ri−1))
Ri = Ri−1 + Fi(Li−1 −Ri−1)

where the σ permutation is omitted in the last round. The 3-round Lai-Massey
scheme is described in Fig.1.

In [14] the following theorem was stated:

Theorem 3. Let F1, F2, F3 be three independent pseudorandom functions from
{0, 1}2n to {0, 1}2n, Let σ be an orthomorphism on {0, 1}2n. For any distin-
guisher D limited to q encryption or decryption oracle queries between the three-
round Lai-Massey permutation LM3 built from F1, F2, F3 and a random permu-
tation P with a uniform distribution, the advantage of D is

|Pr[DLM3 = 1]− Pr[DP = 1]| ≤ q(q − 1)(2−2n + 2−4n).

3 Pseudorandomness of The Lai-Massey Scheme

In[14], the pseudorandomness of Lai-Massey permutation is independent of ar-
bitrary group G and the orthomorphism σ, so it is enough to find a distinguisher
for a special group and orthomorphism.

It is easy to exploit that 2-round Lai-Massey scheme can not be pseudo-
random from the following case which is defined in block cipher FOX [3]. As-
sume that group (G, +) is ({0, 1}2n,⊕). Let the orthomorphism σ be σ(x, y) =
(y, x ⊕ y) where x, y ∈ ({0, 1}2n,⊕). Let ⊕ denote the bitwise exclusive or op-
eration(xor). A distinguisher can distinguish LM2 from a uniformly random
permutation P with an overwhelming probability, which is described as follows.

Distinguisher D can access to the oracle O where O is LM2 or P .

1. D selects a message m1 where |m1| = 4n and m1 =
(A1, A2, A3, A4)(this is shown in Fig.2), then he makes the query
m1 to O, and receives c1 = (C1, C2, C3, C4).

2. D queries m2 where |m2| = 4n and m2 = (A1 ⊕ δ1, A2 ⊕ δ2, A3 ⊕
δ1, A4 ⊕ δ2) to O, and receives c2 = (C ′

1, C
′
2, C

′
3, C

′
4).

3. If C ′
1 ⊕ C ′

3 = C1 ⊕ C3 ⊕ δ1 ⊕ δ2 and C ′
2 ⊕ C ′

4 = C2 ⊕ C4 ⊕ δ1,
outputs 1, otherwise outputs 0.

If D outputs 1, then O is LM2, otherwise is P . The advantage of D is

Adv(D) = |Pr[DLM2 = 1]− Pr[DP = 1]| = 1− 1
22n

.
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Fig. 2. Two-round FOX-style Lai-Massey Scheme. σ(x, y) = (y, x ⊕ y), ⊕ means the
bitwise exclusive or operation(xor).

Thus we get the following corollary.
Corollary 1 The r-round Lai-Massey scheme LMr is pseudorandom if and only
if r ≥ 3.

4 Strong Pseudorandomness of The Lai-Massey Scheme

If a permutation P has the strong pseudorandomness property, then it is indis-
tinguishable from a random permutation even if the distinguisher is given oracle
access to the inverses of the permutation. This security notation is reasonable
since there exist chose plaintext and chosen ciphertext attackers in practice. Of
course, any strong pseudorandom permutation is also a pseudorandom permu-
tation. Vaudenay proved that four rounds Lai-Massey scheme is sufficient for
strong pseudorandomness. In [14], the following theorem has been stated.

Theorem 4. Let F1, F2, F3, F4 be four independent pseudorandom functions from
{0, 1}2n to {0, 1}2n, Let σ be an orthomorphism on {0, 1}2n. For any distin-
guisher D limited to q encryption or decryption oracle queries between the four-
round Lai-Massey permutation LM4 built from F1, F2, F3, F4 and a random per-
mutation P with a uniform distribution, the advantage of D is

|Pr[DLM4,LM−1
4 = 1]− Pr[DP,P−1

= 1]| ≤ q(q − 1)(2−2n + 2−4n).

1 An orthomorphism σ on a group (G, +) is a permutation x→ σ(x) on G such that
x→ σ(x)− x is also a permutation.
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This theorem shows that a 4-round random Lai-Massey scheme with an
orthomorphism is sufficient as a strong pseudorandom permutation when it is
used less than 2n times. Is 3 rounds also enough to implement the strong pseu-
dorandomness property? In the next part we will show the answer is no. We
find a distinguisher that can distinguish the 3-round random Lai-Massey per-
mutation from a random permutation with an overwhelming probability. Our
analysis is similar to the analysis of Feistel schemes. In Luby and Rackoff’s well
known paper[6], they proved that 3-round and 4-round Feistel permutation is
sufficient to implement pseudorandomness and strong pseudorandomness. Later
many people realize that 3-round Feistel is not strong pseudorandomness, this
question is even left as an exercise in [2]. In [9], Moriai and Vaudenay find a 3-
round distinguisher which needs 2 encryption queries and 2 decryption queries.
In fact, there exist a distinguisher only needs 2 encryption queries and 1 de-
cryption queries. In the following, we first describe how to distinguish 3-round
Feistel Schemes with 3 oracle queries. Based on this method, we find a 3-round
Lai-Massey distinguisher, which prove that 4-round is sufficient and necessary
for the strong pseudorandomness of Lai-Massey scheme.

4.1 Three-Round Distinguishers of the Feistel Scheme

In Luby and Rackoff’s origin work, 3-round Feistel permutation was sufficient
for pseudorandomness, and they presented the 2-round pseudorandomness dis-
tinguisher. But they didn’t give the 3-round strong pseudorandomness distin-
guisher. Later Patarin gave a distinguisher for the strong pseudorandomness
with 3 rounds[11] which involved four oracle queries. Patarin’s distinguisher is
described as follows:
Patarin’s distinguisher with four oracle queries.

Distinguisher D can access to oracles (O,O−1) where (O,O−1) is
(LR3, LR−1

3 ) or (P, P−1).

1. D selects a message m1 where |m1| = 2n and m1 = (a, b), then
he makes the query m1 to O, and receives c1 = (x, y).

2. D queries m2 where |m2| = 2n and m2 = (a ⊕ δ, b) to O, and
receives c2 = (x′, y′).

3. D queries (x⊕ δ, y) to O−1 and receives m′
1 = (a′1, b

′
1).

4. D queries (x′ ⊕ δ, y′) to O−1 and receives m′
2 = (a′2, b

′
2).

5. If b′1 = b′2 outputs 1, otherwise outputs 0.

If D outputs 1, then (O,O−1) is (LR3, LR−1
3 ), otherwise is (P, P−1). The

advantage of D is

Adv(D) = |Pr[DLR3,LR−1
3 = 1]− Pr[DP,P−1

= 1]| = 1− 1
2n

.
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In fact, there exist a distinguisher can distinguish the 3-round strong pseu-
dorandomness with an overwhelming probability with 3 oracle queries. The dis-
tinguisher is described as follows:
Distinguisher with three oracle queries.

Distinguisher D can access to oracles (O,O−1) where (O,O−1) is
(LR3, LR−1

3 ) or (P, P−1).

1. D selects a message m1 where |m1| = 2n and m1 = (a, b), then
he makes the query m1 to O, and receives c1 = (x, y).

2. D queries m2 where |m2| = 2n and m2 = (a ⊕ δ, b) to O, and
receives c2 = (x′, y′).

3. D queries (x′ ⊕ δ, y′) to O−1 and receives m′
1 = (a′1, b

′
1).

4. If b′1 = b⊕ y ⊕ y′ outputs 1, otherwise outputs 0.

Following the Feistel encryption procedure, we have

x = a⊕ f1 ⊕ f3, where f1 = F1(b) and f3 = F3(b⊕ F2(a⊕ F1(b)))
y = b⊕ f2, where f2 = F2(a⊕ F1(b))

and

x′ = a⊕ δ ⊕ f1 ⊕ f ′3, where f ′3 = F3(b⊕ F2(a⊕ δ ⊕ F1(b)))
y′ = b⊕ f ′2, where f2 = F2(a⊕ δ ⊕ F1(b))

So f2 ⊕ f ′2 = y ⊕ y′, and the right part of the inverse permutation of (x′ ⊕ δ, y′)
is

b′ = y′ ⊕ F2(x′ ⊕ δ ⊕ f ′3)
= y′ ⊕ F2(a⊕ f1)
= b⊕ f ′2 ⊕ f2

= b⊕ y ⊕ y′.

So the above distinguisher succeeds and the advantage of the distinguisher is:

Adv(D) = |Pr[DLR3,LR−1
3 = 1]− Pr[DP,P−1

= 1]| = 1− 1
2n

.

It is worthwhile to give some thought to this distinguish method. The first
step is to make an encryption query m1 and receive the ciphertext c1, and then
is to make an encryption query m2 and receive the ciphertext c2 such that
the input of F1 remains the same as the first query. Next the ciphertext c2 is
modified to c3 and then is sent to the decryption oracle to receive the plaintext
m3, while the input of F3 remains the same as the second encryption query and
the input of F2 remains the same as the first encryption query. At last if there are
some relationships between m3 and m1, c1,m2, c2, c3, then the 3-round Feistel
permutation can be distinguished from a uniform random permutation.
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4.2 Distinguishability of Three-Round Lai-Massey Scheme

To prove that four-round Lai-Massey scheme is necessary for strong pseudo-
randomness, it must be pointed out that there exists a 3-round strong pseudo-
randomness distinguisher. In[14], the strong pseudorandomness of Lai-Massey
permutation is independent of arbitrary group G and the orthomorphism σ, so
it is enough to find a distinguisher for a special group and orthomorphism. Here
the group G is ({0, 1}2n,⊕) and orthomorphism σ is σ(x, y) = (y, x⊕ y) where
x, y ∈ ({0, 1}2n,⊕) and ⊕ denotes the operation bitwise exclusive or(xor), just
defined as the block cipher FOX[3].

The distinguisher of 3-round Feistel network provides the motivation for
distinguishing the 3-round Lai-Massey permutation by the similar method. But
the distinguisher in this case is more complex.

Theorem 5. Let F1, F2, F3 be three independent pseudorandom functions from
{0, 1}2n to {0, 1}2n, Let σ be an orthomorphism on {0, 1}2n such that σ(x, y) =
(y, x⊕y) where x, y ∈ {0, 1}n and ⊕ denotes the bit operation exclusive or. Then
the three-round Lai-Massey permutation LM3 built from F1, F2, F3 and σ is not
strong pseudorandomness.

Proof. It is required to find a distinguisher D such that can access to oracles
(O,O−1) where (O,O−1) is (LM3, LM−1

3 ) or (P, P−1) and distinguish the two
scenarios. The following distinguisher can distinguish three-round Lai-Massey
permutation from a uniform random permutation.

1. D selects a message m1 where |m1| = 4n and m1 = (A1, A2, A3, A4), then
he makes the query m1 to O, and receives c1 = (D1, D2, D3, D4).

2. D queries m2 where |m2| = 4n and m2 = (A1⊕ δ1, A2⊕ δ2, A3⊕ δ1, A4⊕ δ2)
to O, and receives c2 = (D′

1, D
′
2, D

′
3, D

′
4).

3. D queries (D′
1 ⊕ δ2, D

′
2 ⊕ δ1 ⊕ δ2, D

′
3 ⊕ δ2, D

′
4 ⊕ δ1 ⊕ δ2) to O−1 and receives

m3 = (a1, a2, a3, a4).
4. If a1 ⊕ a3 = A1 ⊕ A3 ⊕ D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D′

1 ⊕ D′
2 ⊕ D′

3 ⊕ D′
4 and

a2⊕ a4 = A2⊕A4⊕D1⊕D3⊕D′
1⊕D′

3, then outputs 1, otherwise outputs
0.

For the first encryption oracle query (A1, A2, A3, A4), we can calculate the
output of three-round Lai-Massey permutation by the encryption procedure as
follows:

The input of the first round function is (A1, A2, A3, A4), if we define F1(A1⊕
A3, A2 ⊕ A4) = f1 ‖ f2, where ‖ means the concatenation, then the output of
the first round function is

B1 = A2 ⊕ f2

B2 = A1 ⊕A2 ⊕ f1 ⊕ f2

B3 = A3 ⊕ f1

B4 = A4 ⊕ f2
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Let F2(B1⊕B3, B2⊕B4) = F2(A2⊕A3⊕f1⊕f2, A1⊕A2⊕A4⊕f1) = g1 ‖ g2,
then the output of the second round function is

C1 = A1 ⊕A2 ⊕ f1 ⊕ f2 ⊕ g2

C2 = A1 ⊕ f1 ⊕ g1 ⊕ g2

C3 = A3 ⊕ f1 ⊕ g1

C4 = A4 ⊕ f2 ⊕ g2

Let F3(C1 ⊕ C3, C2 ⊕ C4) = F3(A1 ⊕ A2 ⊕ A3 ⊕ f2 ⊕ g1 ⊕ g2, A1 ⊕ A4 ⊕
f1 ⊕ f2 ⊕ g1) = h1 ‖ h2, the output of the third round function without the σ
transform is

D1 = A1 ⊕A2 ⊕ f1 ⊕ f2 ⊕ g2 ⊕ h1 (1)
D2 = A1 ⊕ f1 ⊕ g1 ⊕ g2 ⊕ h2 (2)
D3 = A3 ⊕ f1 ⊕ g1 ⊕ h1 (3)
D4 = A4 ⊕ f2 ⊕ g2 ⊕ h2 (4)

If xoring the equation (1) and (3), and the equation (2) and (4), one can
obtain the following equation:

f2 ⊕ g1 ⊕ g2 = D1 ⊕D3 ⊕A1 ⊕A2 ⊕A3 (5)
f1 ⊕ f2 ⊕ g1 = D2 ⊕D4 ⊕A1 ⊕A4 (6)

By using a similar method, the ciphertext of the second encryption oracle
query (A1 ⊕ δ1, A2 ⊕ δ2, A3 ⊕ δ1, A4 ⊕ δ2) is

D′
1 = A1 ⊕A2 ⊕ f1 ⊕ f2 ⊕ g′2 ⊕ h′1 ⊕ δ1 ⊕ δ2

D′
2 = A1 ⊕ f1 ⊕ g′1 ⊕ g′2 ⊕ h′2 ⊕ δ1

D′
3 = A3 ⊕ f1 ⊕ g′1 ⊕ h′1 ⊕ δ1

D′
4 = A4 ⊕ f2 ⊕ g′2 ⊕ h′2 ⊕ δ2

where F2(A2⊕A3⊕ f1⊕ f2⊕ δ1⊕ δ2, A1⊕A4⊕ f1⊕ δ1) = g′1 ‖ g′2 and F3(A1⊕
A2 ⊕A3 ⊕ f2 ⊕ g′1 ⊕ g′2 ⊕ δ2, A1 ⊕A4 ⊕ f1 ⊕ f2 ⊕ g′1 ⊕ δ1 ⊕ δ2) = h′1 ‖ h′2.

Thus we have

f2 ⊕ g′1 ⊕ g′2 = D′
1 ⊕D′

3 ⊕A1 ⊕A2 ⊕A3 ⊕ δ2 (7)
f1 ⊕ f2 ⊕ g′1 = D′

2 ⊕D′
4 ⊕A1 ⊕A4 ⊕ δ1 ⊕ δ2 (8)

The decryption of (d1, d2, d3, d4) = (D′
1⊕δ2, D

′
2⊕δ1⊕δ2, D

′
3⊕δ2, D

′
4⊕δ1⊕δ2)

is (a1, a2, a3, a4), following the decryption procedure, the output of the third
round function without the σ transform is (d1, d2, d3, d4), since F3(d1 ⊕ d3, d2 ⊕
d4) = h′1 ‖ h′2, the input of the third round function is:

c1 = A1 ⊕A2 ⊕ f1 ⊕ f2 ⊕ g′2 ⊕ δ1

c2 = A1 ⊕ f1 ⊕ g′1 ⊕ g′2 ⊕ δ1 ⊕ δ2

c3 = A3 ⊕ f1 ⊕ g′1 ⊕ δ2

c4 = A4 ⊕ f2 ⊕ g′2 ⊕ δ1
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Then the input to the function F2 is (c1 ⊕ c2 ⊕ c3, c1 ⊕ c4) = (A2 ⊕ A3 ⊕
f1 ⊕ f2, A1 ⊕ A2 ⊕ A4 ⊕ f1) and so F2(c1 ⊕ c2 ⊕ c3, c1 ⊕ c4) = g1 ‖ g2. And the
input of the second round function is

b1 = A2 ⊕ f2 ⊕ g1 ⊕ g′1 ⊕ δ1 ⊕ δ2

b2 = A1 ⊕A2 ⊕ f1 ⊕ f2 ⊕ g2 ⊕ g′2 ⊕ δ1

b3 = A3 ⊕ f1 ⊕ g1 ⊕ g′1 ⊕ δ1 ⊕ δ2

b4 = A4 ⊕ f2 ⊕ g2 ⊕ g′2 ⊕ δ1

Since the input of the first round function is (a1, a2, a3, a4), we can deduce
the following equation:

a1 ⊕ a3 = b1 ⊕ b2 ⊕ b3 = A1 ⊕A3 ⊕ g2 ⊕ g′2 ⊕ δ1

a2 ⊕ a4 = b1 ⊕ b4 = A2 ⊕A4 ⊕ g1 ⊕ g′1 ⊕ g2 ⊕ g′2 ⊕ δ2

According to equation (5), (6), (7) and (8),

g2 ⊕ g′2 = D1 ⊕D2 ⊕D3 ⊕D4 ⊕D′
1 ⊕D′

2 ⊕D′
3 ⊕D′

4 ⊕ δ1

g1 ⊕ g2 ⊕ g′1 ⊕ g′2 = D1 ⊕D3 ⊕D′
1 ⊕D′

3 ⊕ δ2

Finally, we obtain

a1 ⊕ a3 = A1 ⊕A3 ⊕D1 ⊕D2 ⊕D3 ⊕D4 ⊕D′
1 ⊕D′

2 ⊕D′
3 ⊕D′

4

a2 ⊕ a4 = A2 ⊕A4 ⊕D1 ⊕D3 ⊕D′
1 ⊕D′

3

Thus the distinguisher succeeds with an overwhelming probability. The ad-
vantage of the distinguisher is as follows.

|Pr[DLM3,LM−1
3 = 1]− Pr[DP,P−1

= 1]| = 1− 2−2n.

So the theorem follows. ut
In order to implement the strong pseudorandomness property, it is required

to iterated the Lai-Massey round function at least 4 rounds. Combined with
previous results, the following corollary follows.
Corollary 2 The r-round Lai-Massey scheme LMr is pseudorandom and strongly
pseudorandom if and only if r ≥ 3 and r ≥ 4 respectively.

5 Conclusion

We have proven that three rounds and four rounds are not only sufficient, but
also necessary to implement the pseudorandomness and strong pseudorandom-
ness of the Lai-Massey scheme. The results are proven under the classical in-
distinguishability model. Under this model, distinguisher has only access to the
input/output of the construction; in particular it does not have access to the
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input/output of the internal primitives. Since the indifferentiability model was
introduced recently and be used in exploiting if there exist hidden flaws in hash
constructions [1, 8]. An interesting future work is to find out that the exact
rounds for the Lai-Massey scheme can be secure in the indifferentiability model,
where the distinguisher can make oracle queries to all the internal primitives.
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