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Abstract

In this paper, we propose a combinatoric conjecture on binary string, on the premise that
our conjecture is correct we mainly obtain two classes of functions which are both algebraic
immunity optimal: the first class of functions are also bent, moreover, from this fact we
conclude that the algebraic immunity of bent functions can take all possible values except
one. The second class are balanced functions, which have optimal algebraic degree and the
best nonlinearity up to now.
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1 Introduction

Boolean functions play very important roles in stream ciphers, of which there are two usual models:
the combiner model and the filter model. They have been proved to be theoretically equivalent,
but the attacks do not work quite similarly on each model. What they have in common is that
both the combining function and the filtering function should be balanced, have high algebraic
degree, high nonlinearity and high correlation immunity etc., however these properties are only
necessities for cryptosystems in the last century.

In the year 2003, the so called standard algebraic attack [1, 3, 4] upon stream cipher proposed
by N.T Courtois, brings us a completely new criterion for the design of secure stream cipher
systems, known as the algebraic immunity criterion. As a cryptosystem, we naturally wish it be
able to resist all kinds of known attacks, unfortunately, to do this is usually not an easy task.
Although there have been several constructions that have the optimal algebraic immunity so far,
many of which are unable to be candidates for real applications, because their other properties
such as algebraic degrees, nonlinearities are not very good. As far as recently, [14] proposed an
infinite excellent class of balanced functions which are algebraic immunity optimal and also have
very high nonlinearity, it is very notable that their functions are nonlinearity optimal among all
known constructions at that time. So it is interesting to study the relationships between algebraic
immunity and other cryptographic criteria of boolean functions. The first such results about
algebraic immunity and nonlinearity of Boolean functions appeared in [5]. In [2, 7], the people
studied the lower bound of nonlinearity or of higher order nonlinearity of Boolean functions with
prescribed algebraic immunity. In [7], the tight lower bound of nonlinearity of Boolean functions
has been found, if the algebraic immunity of Boolean function is given.

We are interested in the tight upper bound of nonlinearity of boolean functions with given
algebraic immunity. It is well-known that when the number n of input variables is even, the
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nonlinearity of Bent functions reaches the maximum value i.e. 2n−1− 2
n
2−1, but no one knows the

case that the algebraic immunity is given. In [15] we have investigated some properties of functions
of algebraic immunity one, and obtained that these functions can not be bent.

In this paper, we propose a combinatoric conjecture on binary string, and based which we
construct two classes of Boolean functions: one class are bent, the other are balanced, both classes
have the optimal algebraic immunity on the premise that our conjecture is correct. Moreover, we
conclude that the algebraic immunity of bent functions can take all possible values except one, and
these balanced functions we construct have optimal algebraic degree and the best nonlinearity up
to now.

This paper is organized as follows. In section 2, we give some preliminaries of boolean functions,
in section 3 we propose our combinatoric conjecture, based on which we give our main results in
section 4, including two constructions of functions that are algebraically optimal. We conclude in
section 5.

2 Preliminaries

Let n be a positive integer. A boolean function on n variables is a mapping from Fn
2 into F2, which

is the finite field with two elements. We denote Bn the set of all n-variable boolean functions.
Any boolean function f in Bn has a unique representation as multivariate polynomials over F2,

which is called the algebraic normal form (ANF)

f(x1, x2, ..., xn) =
∑

I⊆{1,...,n}
aI

∏

i∈I

xi

where the aI ’s are in F2. The algebraic degree deg(f) of f equals the maximum degree of those
monomials with nonzero coefficients in its algebraic normal form. A boolean function f is called
affine, if deg(f) 6 1. We denote An the set of all affine functions in Bn. The support of f is
defined as Supp(f) = {x ∈ Fn

2 : f(x) = 1}, and the wt(f) is the number of vectors which lies
in Supp(f). For two functions f and g in Bn, the Hamming distance d(f, g) between f and g is
defined as wt(f + g). The nonlinearity nl(f) of a boolean function f is defined as the minimum
Hamming distance between f and all affine functions, i.e. nl(f) = Ming∈An

d(f, g).
It is well known that for any a ∈ Fn

2 , the value

Wf (a) =
∑

x∈Fn
2

(−1)f(x)+<x,a>

is called the Walsh spectrum of f at a, where < x, a > denotes the inner product between x and a
i.e.< x, a >= x1a1 + . . . + xnan. The nonlinearity of boolean function f can be expressed via its
Walsh spectra by the next formula

nl(f) = 2n−1 − 1
2
Maxa∈Fn

2
|Wf (a)|.

And it holds the following inequality

nl(f) 6 2n−1 − 2
n
2−1.

When n is even, the above upper bound can be attained, and such boolean functions are called bent
[10]. Bent functions have several equivalent definitions. For instance, it is equivalent to |Wf (a)| =
2n/2, for every a ∈ Fn

2 . It is also equivalent to that Supp(f) is a (2n, 2n−1 ± 2
n
2−1, 2n−2 ± 2

n
2−1)-

difference set in the additive group of Fn
2 .

Definition 2.1. [8] The algebraic immunity AIn(f) of an n-variable boolean function f is defined
to be the lowest degree of nonzero functions g such that fg = 0 or (f + 1)g = 0.
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3 Our combinatoric conjecture

Conjecture: Assume k ∈ Z, k > 1, for every x ∈ Z, we expand x as a binary string of length k,
and denote the number of one’s in the string by w(x), for any t ∈ Z, 0 < t < 2k − 1, let

St = {(a, b)|a, b ∈ Z2k−1, a + b = t mod 2k − 1, w(a) + w(b) 6 k − 1}

then |St| 6 2k−1.

Remark 3.1. We believe that the above conjecture is correct, although we are unable to prove it
mathematically up to now. However, we successfully design a tranfer-matrix algorithm, through
which we validate our conjecture when k 6 29.

4 Bent function with optimal algebraic immunity

Based on our conjecture, we construct a subclass of the so-called Partial Spread function, first we
recall Dillon’s construction:
Dillon’s construction:[11] Let n = 2k, F2n ≈ F2k × F2k , g : F2k −→ F2 is balanced, f(x, y) :
F2k × F2k → F2 is defined by

f(x, y) = g(
x

y
)

if y = 0, we define x
y to be 0 or 1, then f is bent

In fact, this is the so-called PS− function, the idea of the construction is that: the space F2n ,
viewed as a 2-dimensional F2k−vectorspace, is a set of 2k + 1 lines through the origin, Dillon
choose randomly 2k−1 lines, except the origin, to form the support of his function, the idea of ours
is choosing these lines following some rules:
Construction 1. Let n = 2k, α is a primitive element of F2k , g : F2k → F2, g is defined as

supp(g) = {αs, αs+1, · · ·, αs+2k−1−1}

in whicn 0 6 s < 2k − 1, f : F2k × F2k → F2, define

f(x, y) =
{

g(x
y ), ifx · y 6= 0

0, otherwise

Before proving our result we introduce the famous BCH bound and the definition of BCH code
in coding theory[13].

Theorem 4.1. (The BCH bound) Let Φ be a cyclic code of length n and with generator polynomial
g(x) such that for some b > 0, δ > 1

g(αb) = g(αb+1) = · · · = g(αb+δ−2) = 0

i.e. the code has a string of δ − 1 consecutive powers of α as zeros, α is a primitive n−th root,
then the minimal distance of Φ is at least δ.

This induces the definition of the BCH codes:

Definition 4.2. A cyclic code of length n over Fq is a BCH code of designed distance δ if for some
integer b > 0,

g(x) = lcm{m(b)(x),m(b+1)(x), · · ·,m(b+δ−2)(x)}
i.e. g(x) is the lowest degree monic polynomial over Fq having αb, αb+1, · · ·, αb+δ−2 as zeros.
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The following is our main result:

Proposition 4.3. Assume the conjecture is correct, then the f(x, y) comes from construction 1 is
bent, and AIn(f) = k = n

2 .

Proof. Since f(x, y) is included in the class of PS−, it is obvious that f is bent. Our task is to
prove that f(x, y) has the optimal algebraic immunity, in other words, both f and f + 1 have no
annihilators with algebraic degrees less than k.

Let h : F2k × F2k → F2, deg(h) < k and satisfies f · h = 0, we need to prove h = 0. h can be
write as a polynomial of 2 variables on F2k

h(x, y) =
2k−1∑

i=0

2k−1∑

j=0

hi,jx
iyj , in which hi,j ∈ F2k

Because deg(h) < k, so we have hi,j = 0 if w(i) + w(j) > k. From f · h = 0, then h(x, y) = 0

for all (x, y) ∈ supp(f), supp(f) = {(y, γy) : y ∈ F∗2k , γ ∈ {αs, αs+1, · · ·, αs+2k−1−1}}, we denote

{αs, αs+1, · · ·, αs+2k−1−1} by ∆, then h(y, γy) = 0 for ∀y ∈ F∗2k , γ ∈ ∆.

h(y, γy) =
2k−1∑

i=0

2k−1∑

j=0

hi,j(γy)iyj =
2k−1∑

i=0

2k−1∑

j=0

hi,jγ
iyi+j

We write h(y, γy) in another simplified form

h(y, γy) = h00 +
2k−1∑
t=1

ht(γ)yt

in which

ht(γ) =
t∑

i=0

hi,t−iγ
i +

2k−1∑

i=t

hi,2k−1+t−iγ
i

For any 0 6 i 6 2k − 1, it satisfies w(i) + w(2k − 1 − i) = k, then h2k−1(γ) = 0 and h2k−1,t =
h2k−1(γ) = 0 for all t, so

ht(γ) =
t∑

i=0

hi,t−iγ
i +

2k−2∑

i=t

hi,2k−1+t−iγ
i

We get

h(γy, y) = h00 +
2k−2∑
t=1

ht(γ)yt

For some fixed γ ∈ ∆, since h(γy, y) = 0 ∀y ∈ F∗2k , it follows that

ht(γ) = 0, 1 6 t 6 2k − 2,∀γ ∈ ∆

From the definition of the BCH codes, we know that (h0,t, h1,t−1, · · ·, ht,0, ht+1,2k−2, · · ·, h2k−2,t+1)
is a codeword in some 2k−ray BCH code of length 2k − 1, having the elements in ∆ as zeros and
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with designed distance 2k−1 + 1, if this codeword is nonzero, then its Hamming weight should be
greater than 2k−1 + 1, but from our conjecture, the weight of this codeword should be less than or
equal to 2k−1, this contradicts, then this codeword must be 0, that is

h0,t = h1,t−1 = · · · = ht,0 = ht+1,2k−2 = · · · = h2k−2,t+1 = 0

then hi,j = 0 ∀0 6 i, j 6 2k − 1, this proves h = 0, by other words, f has no annihilators with
algebraic degrees less than k.

We need to prove a similar result on f + 1.
Again we let h : F2k × F2k → F2, deg(h) < k and it satifies (f + 1) · h = 0, we will prove h = 0.

First we have

supp(f + 1) = {(x, 0)|x ∈ F2k} ∪ {(γy, y)|y ∈ F∗2k , γ ∈ F2k \∆}
Since h(x, 0) = 0 for ∀x ∈ F2k , then hi,0 = 0 for ∀0 6 i 6 2k − 1, similarly, for all 1 6 t 6 2k − 2,
ht(γ) = 0 when γ ∈ F2k \ ∆. We can see that (h0,t, h1,t−1, · · ·, ht,0, ht+1,2k−2, · · ·, h2k−2,t+1) is
a codeword in some 2k−ray BCH code of length 2k − 1, having the elements in F2k \∆ as zeros
and with designed distance 2k−1(without loss of generality we suppose s = 0, then F2k \ ∆ =

{α2k−1
, α2k−1+1, · · ·, α2k−2}). If this codeword is nonzero then its weight should be greater than

> 2k−1(BCH bound), from our conjecture and hi,0 = 0, the weight should be less than 2k−1. This
proves h = 0

Now we can conclude that AIn(f) = k = n
2 , that is, there exists bent functions with optimal

algebraic immunity.

All the elements of PS− have algebraic degree n
2 exactly[16], this is an interesting property,

combine with our construction 1, we are able to get some significant corollaries:

Corollary 4.4. Let n = 2k, k > 2, then the algebraic immunity of bent can take 2, 3, · · ·, k,
except 1.

Proof. Let 2 6 t 6 k, we will construct bent function f ∈ Bn such that AIn(f) = t. At first
we can get g(x1, x2, · · ·, x2t) ∈ B2t which is bent and AI2t(g) = deg(g) = t, then we construct
g′ ∈ B2t+2

g′(x1, x2, · · ·, x2t, x2t+1, x2t+2) = g(x1, x2, · · ·, x2t) + x2t+1x2t+2

It’s not difficult to know that g′ is bent in B2t+2 and deg(g′) = t, because for any (α, a2t+1, a2t+2),
in which α ∈ F2t

2 , we have
Wg′(α, a2t+1, a2t+2) = ±2Wg(α)

From the bentness of g, it is easy to know that g′ is bent. Next we should prove

AI2t+2(g′) = t

First it is obvious that
AI2t+2(g′) 6 min{deg(g′), AI2t(g) + 1} = t

Let h ∈ B2t+2, deg(h) < t s.t. g′ · h = 0, h can be write as

h = h0 + h1x2t+1 + h2x2t+2 + h3x2t+1x2t+2

Through direct computations we can see that g′ has no non-zero annihilators with algebraic degree
< t, by a similar proof for g′ + 1, then we have

t 6 AI2t+2(g′)

Repeating this progress again and again until we finally obtain a f ∈ Bn which is bent and
AIn(f) = t.
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Boolean functions are required to have high algebraic degrees, which is an important design
criterion as well. As another corollary of construction 1, we discuss the relations between algebraic
immunity and algebraic degrees:

Consider the following inequality: suppose f ∈ Bn, then

AIn(f) 6 min{dn
2
e, deg(f)} (4.1)

The (4.1)is obviously right because of the results in [3]:

Theorem 4.5. Let f ∈ Bn, then there exists g ∈ Bn, deg(g) 6 dn
2 e, satisfies deg(f · g) 6 dn

2 e.
For the correctness of the other half, f + 1 is a annihilator of f . [12] investigate the so-called

majority function

f(x1, x2, · · ·, xn) =
{

0, ifwt(x) 6 bn
2 c

1, otherwise

It is discovered in [12]that:

Theorem 4.6. Let n ∈ Z+, f ∈ Bn, f is the majority function defined as above, then AIn(f) =
dn

2 e and deg(f) = 2blog2nc.

Consider 4.6, if we choose n = 2k − 1, then

deg(f) = 2blog2nc = 2k−1 =
n + 1

2
= dn

2
e = AIn(f)

In other words, for infinitely many n of this form, (4.1) are sharp.

Corollary 4.7. Let n ∈ Z+, if n = 2m, then for any 1 6 k 6 m, there exists f ∈ Bn satisfies
AIn(f) = deg(f) = k; if n = 2m + 1, then for any 1 6 k 6 m, there exists f ∈ Bn satisfies
AIn(f) = deg(f) = k.

Proof. It should be noted that our corollary does not cover that when n = 2m+1 and k = m+1.
First we prove a simple result: assume h(x1, x2, · · ·, xn) ∈ Bn, if we let

h′(x1, x2, · · ·, xn, xn+1) = h(x1, x2, · · ·, xn) ∈ Bn+1

then
AIn(h) = AIn+1(h′)

Because if there is a g(x1, x2, · · ·, xn) ∈ Bn satisfies

g(x1, x2, · · ·, xn) · h(x1, x2, · · ·, xn) = 0

Obviously
g(x1, x2, · · ·, xn) · h′(x1, x2, · · ·, xn) = 0

then AIn(h′) 6 AIn+1(h).
For another direction, let g(x1, x2, · · ·, xn, xn+1) ∈ Bn+1 satisfy

g(x1, x2, · · ·, xn, xn+1)h′(x1, x2, · · ·, xn, xn+1) = 0

and deg(g) = AIn+1(h′), since g can be write as

g(x1, x2, · · ·, xn, xn+1) = g1(x1, x2, · · ·, xn) + xn+1g2(x1, x2, · · ·, xn)
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From gh = gh′ = 0, then

h(x1, x2, · · ·, xn)g1(x1, x2, · · ·, xn) = 0
h(x1, x2, · · ·, xn)g2(x1, x2, · · ·, xn) = 0

If g2(x1, x2, · · ·, xn) = 0, then AIn(h) 6 deg(g1) = AIn+1(h′); if g2(x1, x2, · · ·, xn) 6= 0, then
AIn(h) 6 AIn+1(h′)− 1 < AIn+1(h′). We can deduce that

AIn(h′) = AIn+1(h)

Back to our proofs: if n = 2m, the corollary is obviously correct when k = 1. When 2 6 k 6 m,
first we could construct a bent function in B2k, whose algebraic immunity and algebraic degree
are both k, viewed as a function in Bn, its algebraic immunity is k also; if n = 2m + 1, for all
∀1 6 k 6 m, the procedures are completely the same.

From this corollary we may conjecture that (4.1)is very possibly sharp when n is odd.
It is well known that bent functions are not balanced, so they are improper to be used in

crypto-systems directly, using the idea in construction 1, we construct another class of functions
which are balanced:
construction 2: Let n = 2k, k > 1, α is primitive in F2k , g : F2k → F2, let

supp(g) = {αs, αs+1, · · ·, αs+2k−1−1}

in which 0 6 s < 2k − 1, f : F2k × F2k → F2, define

f(x, y) =





g(x
y ), ifx · y 6= 0

1, ifx = 0, y ∈ ∆
0, other.

in which ∆ = {αi : i = 2k−1 − 1, 2k−1, · · ·, 2k − 2}.
Proposition 4.8. If our conjecture is true, functions come from construction 2 are balanced and
have optimal algebraic immunity.

Proof. It is obvious that these functions are balanced, because bent functions have 2n−1 − 2k−1

elements in their supports, taking into the 2k−1 points on the y−axis, then the balancedness can be
seen. To imitate the proof in 4.3 we can get these functions are also algebraic immunity optimal.

K.Feng gives a very nice construction of boolean functions in [14], which are algebraic immunity
optimal:

Theorem 4.9. Let n be any integer such that n > 2 and β a primitive element of the finite field
F2n . Let f be the boolean function on F2n whose support is {0, 1, β, · · ·, β2n−1−2}. Then f has
optimal algebraic immunity.

[14] has the following inequality when considering the nonlinearity of functions

Proposition 4.10. Let ω ∈ F∗2n is a primitive element and λ ∈ F∗2n , denote

Sλ =
2n−2∑

i=2n−1−1

(−1)tr(λωi)

then
|Sλ| 6 2

n
2 n · ln2 + 1
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From this inequality we can easily estimate a lower bound about the nonlinearity of our func-
tions in construction 2:

Corollary 4.11. Let f ∈ Bn be defined as in construction 2, then the nonlinearity of f satisfies

nl(f) > 2n−1 − 2
n
2−1 − 2

k
2 k · ln2− 1

Proof. The proof is a direct computation of the walsh spectrum of f . Let 0 6= (a, b) ∈ F2k × F2k ,
then

Wf (a, b) = Wh(a, b)− 2
∑

x,y∈B

(−1)tr(ax+by)

in which h comes from construction 1 and B = {(0, αi) : i = 2k−1 − 1, 2k−1, · · ·, 2k − 2}, α is
primitive in F2k .

∑

x,y∈B

(−1)tr(ax+by) =
2k−2∑

i=2k−1−1

(−1)tr(bαi) = Sb

|Wf (a, b)| 6 |Wh(a, b)|+ 2|Sb|
From the fact that h is bent and the estimation of |Sb|, the corollary is obvious.

When n is even, we give the following table, comparing the nonlinearity of functions of [14]
with ours:

n 2n−1 − 2
n
2−1 nl(f)in construction 2 bound in 4.11 nl(f)in [14]

2 1 0 0 0
4 6 4 3 4
6 28 26 21 24*
8 120 116 107 112*
10 496 490 476 478*
12 2016 2008 1982 1970
14 8128 8118 8073 8036
16 32640 32624 32551 32530
18 130812 130792 130674

From this table we can see that the nonlinearity of our functions are very near to the bound
of bent functions, it is even better than functions in [14], which are thought to have the optimal
nonlinearity in all known functions that are algebraic immunity optimal at that time. We note
that in the last column these numbers followed by asterisks come from [14], the others come from
our own computations under the choose of default primitive element.

Remark 4.12. We discover that the nonlinearity is related to chose which primitive element
in F2k , this suggests that when choosing different primitive elements the functions we get are not
affine equivalent.

Considering the algebraic degrees of functions in construction 2, we find it is also satisfying:

Proposition 4.13. Let f ∈ Bn be defined as in construction 2, then deg(f) = n− 1.

Proof. f can be write as a 2−variable polynomial on F2k

f(x, y) = h(x, y) +
∑

(a,b)∈B

(1 + (x + a)2
k−1)(1 + (y + b)2

k−1)
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in which B = {(αi, 0) : i = 2k−1 − 1, 2k−1, · · ·, 2k − 2}, supp(h) =
⋃2k−1+s−1

i=s {(αi, αiw) : w ∈ F∗2k}.
We know that the degree of h is k, so we only need to consider the second summand.

∑

(a,b)∈B

(1 + (x + a)2
k−1)(1 + (y + b)2

k−1)

=
2k−2∑

i=2k−1−1

(x + αi)2
k−1 +

2k−2∑

i=2k−1−1

2k−2∑

j=0

αijx2k−1−jy2k−1

Compute the coefficients of the monomials x2k−1−jy2k−1,

2k−2∑

i=2k−1−1

αij =
1 + αj·(2k−1−1)

1 + αj
(4.2)

We can see that (4.2) is nonzero when j = 1, then deg(f) = n− 1.

5 Conclusion

Before Courtois’s attack, people believe that it is enough for a stream cipher to choose boolean
functions about 12 variables, then in order to resist algebraic attacks, [4] suggested that choosing
functions about 32 variables. We have validated our conjecture until k 6 29, in other words, we
have constructed a class of functions when the number of variables is even and 6 58, which are
optimal in terms of balancedness, degree, nonlinearity and algebraic immunity, and they are good
for real applications.
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