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Einleitung

Introduction

In his landmark paper, Shannon stated that breaking a good cipher should
’require at least as much work as solving a system of simultaneous equations
in a large number of unknowns of a complex type’.

In the years since, most published cryptanalytic successes in symmet-
ric cryptography were obtained by statistical or combinatorial weaknesses
in the ciphers that were analyzed. Equation-system solving was not at the
forefront, partially because most ciphers were built without a ’clean’ alge-
braic structure in which to work, partially because efficient algorithms for
the algebraic solving of equation systems were not available.

Interest in algebraic methods for attacks on cryptosystems was revived
from two directions in the late 90’s and early 00’s: On the one side, cryp-
tographers had attempted to build asymmetric systems from the hardness
of the MQ-problem (the problem of solving multivariate quadratic equation
systems over an arbitrary field). Patarin [Patarin95] showed how to break a
signature scheme originally proposed by Matsumoto and Imai [MatImai88]
as early as 1988 by making use of the special structure of the equations
in question. Several attempts at using general-purpose equation solving
algorithms were made, resulting in the break of HFE [FauJou03] using a
new Gröbner-Base algorithm introduced the year before [Faugere02]. This
showed that more efficient algorithms for equation system solving could have
a direct application in cryptanalysis.

The other direction from which interest in algebraic attacks was reignited
was the emergence of Rijndael as the new advanced encryption standard
(AES): Rijndael was designed to resist the standard statistical attacks and
was modeled to use only the ’normal’ field operations of F28 , yielding a
very clean algebraic structure. Soon, several researchers proposed methods
that allowed modeling Rijndael as one large system of multivariate polyno-
mial equations over F28 or F2, and began looking into methods for solving
such systems [Courtois02]. Some algorithms based on relinearization were
proposed, and a lot of speculation about their actual efficiency ensued, un-
til it was finally determined that the relinearization algorithms proposed
were in fact inefficient variants of the Buchberger algorithm for computing

5



6

a Gröbner basis.
Actual practical successes of algebraic cryptanalysis are few and far be-

tween: Outside of the successes against multivariate cryptosystems and some
degree of success against stream ciphers (where obtaining huge quantities
of equations was possible, allowing linear algebra to play a role), one could
argue that at the time of this writing, no algebraic method has succeeded
in breaking a ’real’ block cipher. This is not for a lack of trying: Several
research groups are approaching the topic from different angles, yet tangible
results have not really materialized.

Due to the lack of tangible results, it was proposed that algorithms that
solve algebraic equations in arbitrary finite fields might be too general a
setting, and the current direction of research appears to be work on methods
specialized to certain base fields (such as F2, or F28).

As of mid-2007, the main approaches to algebraic cryptanalysis appear
to be the following:

1. Work on more efficient algorithms for calculating Gröbner Bases in
an eliminiation order [Brick06], potentially under specialization to F2

[BrickDrey07].

2. Specializing the problem to F2 and attempting to model the prob-
lem as ’message passing on a graph’, with some further improvements
[RadSem06, RadSem07]

3. Specializing the problem to F2 and attempting to convert the problem
to an instance of the well-known 3SAT problem. This instance can
then potentially be solved by using heuristic SAT solving algorithms
[Bard07, BaCouJef07, McDChaPie07, CouBar07] . The proof for NP-
hardness of MQ is based on a reduction to 3SAT - it therefore makes
sense to attempt to utilize known algorithms for solving 3SAT to solve
MQ.

In the cryptographic setting, one is usually not interested in solutions
that lie outside of the base field of the multivariate polynomial ring. This
means that the proper environment in which to analyze the problem (and
the different approaches) is the ring of Boolean functions

Bn := F2[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉

This thesis will put the focus on the special structural properties of this
ring (for example the fact that it happens to be a principal ideal ring). Some
surprising results occur:

1. Even though Bn is not Euclidian, there is a very simple algorithm
that performs very much like the Euclidian algorithm: Given a set of
generators g1, . . . , gn of an ideal I ⊂ Bn, it returns a single generator
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g with 〈g〉 = I in just n + 1 additions and n multiplications in Bn.
Geometrically, this algorithm yields an intersection of a set of varieties.

Interestingly, this algorithm can be generalized to arbitrary finite fields,
yielding a proof for the following intuitively clear statement:

Let K := Fq[x1, . . . , xn] be a multivariate polynomial ring
over a finite field and f1, . . . , fn ∈ K a set of polynomi-
als. If one is not interested in solutions that lie in the alge-
braic closure of Fq, one can perform calculations in K/〈xq1−
x1, . . . , x

q
n− xn, 〉. This ring is a principal ideal ring isomor-

phic to the ring of subsets of Kn, and the operations in this
ring corresponding to the usual set operations ∪,∩ can be
computed easily by polynomial arithmetic.

For cryptographic purposes, this algorithm will calculate the solution
to an arbitrary system of equations (provided that the solution is
unique and lies entirely in the base field) in n polynomial multipli-
cations and n + 1 polynomial additions. We will see that while this
looks great at first glance, it still fails to solve any relevant equation
system in reasonable time.

2. The ’message passing on a graph’-approach presented in [RadSem06,
RadSem07] is put into an algebraic-geometric context: It can be viewed
as an iterative algorithm that projects input varieties to lower-dimensional
subspaces on which they are intersected. This eliminates points in the
lower-dimensional subspaces that do not occur in all projections of
varieties. The resulting variety is ’lifted’ to the original spaces again,
where it is used to eliminate points that are not common to all vari-
eties. As a corolary of this it becomes evident that linear functions are
“worst-case” for this algorithm, which leads to the (unproven) conjec-
ture the algorithm performs best on very non-linear equation systems.

3. The pseudo-Euclidian algorithm leads to a number of interesting corol-
laries:

(a) Iterated multivariate polynomial multiplication over F2 is NP-
hard

(b) The combinatorial question “How many monomials does the prod-
uct of given polynomials f1, . . . , fn have ?” is of cryptographic
relevance: Even an approximate answer to this question will pri-
vide information about the Hamming-weight of the solution of
the system of equations.

4. A generalized definition of “approximation” for Boolean functions in
the context of algebraic cryptanalysis is given. This definition of ”ap-
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proximation” is furthermore found to generalize Courtois’ trick of low-
ering the degree of a system of equations by multiplying with carefully-
chosen polynomials. The concept of algebraic immunity can be rein-
terpreted as nonexistence of approximations of low degree.

5. An algorithm that attempts to “approximate” a Boolean polynomial
by one of lower monomial count is constructed and evaluated. The
results can be only described as complete failure, and the algorithm
needs to be re-designed if it is to be of any use.

Generally, emphasis has been put on making use of the structure of Bn
and on attempts to understand the geometry behind the algorithms.



Chapter 1

Definitions and Notation

In the following, some essential facts about the ring of Boolean functions
will be defined and proved. A bit of time will be spent building “geometric”
ways of looking at polynomial arithmetic. Due to special properties of F2

(and hence Bn), many ’classical’ constructions take on a slightly different
twist.

Some results in the following do not appear in the literature in the same
way, and a bit of notation that is used throughout the thesis will be intro-
duced. A bit of care is advisable when reading this chapter - it is probably
the most “strenous” part of this thesis.

1.1 Essentials

Definition 1.1.1 (Ring of Boolean Functions). The ring of Boolean func-
tions is the principal object studied throughout this thesis:

Bn := F2[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉

Definition 1.1.2 (Variety). The variety of a function f ∈ Bn is the subset
of Fn2 on which f vanishes:

V (〈f〉) := {v ∈ Fn2 |f(v) = 0}

One can interpret this as a mapping V : Bn → P(Fn2 ), e.g. from the Boolean
functions to the powerset of Fn2 . Often, the 〈〉 symbols will be omitted if no
ambiguities are introduced.

Through this mapping, polynomial arithmetic in Bn can be interpreted
as operations on elements in P(Fn2 ), e.g. as set-operations. This yields
geometric interpretations to the algebraic operations.

Lemma 1.1.3. Given f, g ∈ Bn, the product h := fg has as variety the
union of the two individual varieties.

V (h) = V (fg) = V (f) ∪ V (g)

9
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This is analogous to what happens over any base field: Multiplying poly-
nomials is the same as taking the union of the solution sets. The next results
are more “special”: F2 starts showing properties not shared by most other
base fields.

Lemma 1.1.4. Given f ∈ Bn, the f + 1 ∈ Bn has as variety exactly the
set-theoretic complement of f .

V (f + 1) = V (f)

Now that multiplication and addition of 1 have given a geometric in-
terpretation, the logical next thing to study is polynomial addition. In our
case, it admits a particularly simple geometric interpretation:

Lemma 1.1.5. Given f, g ∈ Bn, the sum h := f + g ∈ Bn has as variety
the complement of the symmetric difference of the varieties of f and g.

This is the same as the union of the intersection of V (f) and V (g) with
the complement of the union of V (f) and V (g).

The sum of two polynomials has as variety the complement of the sym-
metric difference of the two varieties.

h = f + g ⇒ V (h) = V (f)
⊕

V (g) = (V (f) ∩ V (g)) ∪ (V (f) ∪ V (g))

Proof. 1. Let x ∈ V (f) ∩ V (g)⇒ f(x) = 0 ∧ g(x) = 0⇒ x ∈ V (h).

2. Let x ∈ V (f) ∪ V (g)⇒ f(x) = 1 ∧ g(x) = 1⇒ x ∈ V (h).

3. Let x ∈ V (h)⇒ (f(x) = 0 ∧ g(x) = 0)︸ ︷︷ ︸
⇒x∈V (f)∩V (g)

∨ (f(x) = 1 ∧ g(x) = 1)︸ ︷︷ ︸
⇒x∈V (f)∪V (g)

Given a single point in Fn2 , it is not difficult to construct a polynomial
in Bn that vanishes on exactly this point.

Lemma 1.1.6. For each y ∈ Fn2 we can construct fy so that V (fy) = {y}.

Proof. Let (y1, . . . , yn) = y ∈ Fn2 . Consider the polynomial

fy := (
n∏
i=0

(xi + yi + 1))︸ ︷︷ ︸
:=p

+1 ∈ Bn

This polynomial evaluates to zero iff p evaluates to 1, which is equivalent to
∀i xi = yi. Hence V (fy) = {y}.
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Corollary 1.1.7. For each F ⊆ Fn2 there exists f ∈ Bn so that F = V (f).
Formulated differently: For any subset F of Fn2 there is at least one single
polynomial f with F as variety.

Proof. Let F := {y1, . . . , yi} ⊆ Fn2 . and f :=
∏i
j=0 fyj . Then V (f) = F .

We can regard this construction as a mapping

V −1 : P(Fn2 )→ Bn

Corollary 1.1.8. The mapping V is a ring homomorphism between (Bn,+, ˙)
and (P(Fn2 ),

⊕
,∪).

Proof. From 1.1.5 it follows that V (f1 + f2) = V (f1)
⊕
V (f2).

From 1.1.3 it follows that V (f1f2) = V (f1) ∪ V (f2).
Since V (1) = ∅ and X∪∅ = X∀X ∈ P(Fn2 ), the neutral element maps to

the neutral element and all requirements for a homomorphism are satisfied.

Corollary 1.1.9. The mapping V and V −1 form a bijection between P(Fn2 )
and Bn.

Proof.

V is injective. Proof indirect: Assume that ∃f, g ∈ Bn, f 6= g, V (f) = V (g).
Then f + g 6= 0, but V (f)

⊕
V (g) = ∅ = Fn2 in contradiction to 1.1.5.

Surjectivity follows from 1.1.7.

So if we can construct a polynomial for each individual point, and if
multiplication between polynomials is the same as the union of the solution
sets, we see what the irreducible elements in Bn are: Any set s ∈ P(Fn2 )
can be decomposed into individual points, and every polynomial f in Bn
is therefore a product of single-point-solution-polynomials as described in
1.1.6.

Corollary 1.1.10. From 1.1.7, 1.1.3 and 1.1.6 it follows that the polyno-
mials in 1.1.6 are exactly the irreducible elements of Bn
Corollary 1.1.11. (Bn,+, ˙) is isomorphic to (P(Fn2 ),

⊕
,∪).

We can now use this bijection to replace some polynomial multiplications
with additions:

Corollary 1.1.12. For f, g ∈ Bn with V (f) ∩ V (g) = ∅, we can calculate
the product h := fg by two additions: fg = f + g + 1

Proof.

V (f) ∪ V (g) = V (f)
⊕

V (g) = V (f)
⊕

V (g) = V (f + g) = V (f + g + 1)
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What shape do the irreducible elements in our ring have ? What is
the relation between the values of the solution to a single-point-solution-
polynomial f and the monomials in f ? The following yields a first answer,
relating the Hamming-weight of the solution to the number of monomials in
f .

Corollary 1.1.13. For y ∈ Fn2 , fy contains 2j monomials where j = |{yi ∈
y, yi = 0}|.

Proof. Inductively:
Let |y| = n ⇒ y = (1, . . . , 1). Then fy = (

∏n
i=1 xi) + 1 and the number

of monomials is 1.
Now let |y| = n− 1, without loss of generality yn = 0. Then

fy = (
n−1∏
i=1

xi)(xn + 1) + 1 =
n∏
i=1

xi +
n−1∏
i=1

xi + 1

and the number of monomials is 2.
Now let |y| = n− 2, without loss of generality yn = 0, yn−1 = 0. Then

fy = (
n−2∏
i=1

xi)(xn+1 + 1)(xn + 1) + 1 = (
n−1∏
i=1

xi)(xn + 1) + (
n−2∏
i=1

xi)(xn + 1) + 1

and the number of monomials is 4. Each time an yi = 0, the products are
split in two.

Our above constructions have given us union, complement, and complement-
of-symmetric-difference as elementary operations. It is immediately clear
how to recover symmteric difference from this – but what about other op-
erations ? The ability to intersect sets would be very valuable. The next
result shows how.

Lemma 1.1.14. Intersection
Given f, g ∈ Bn, we can easily calculate h so that V (h) = V (f) ∩ V (g).

V (f) ∩ V (g) = V (f + g + fg)

Proof.

V (f) ∩ V (g) = V (f) ∪ V (g)⇒ V (f) ∩ V (g)
= V (〈(V (f) + 1)(V (g) + 1) + 1〉)
= V (〈f1 + f2 + f1f2〉)

Corollary 1.1.15. Bn is a principal ideal ring.



1.2. REPRESENTATION OF BOOLEAN FUNCTIONS 13

Proof. Let I := 〈f1, . . . , fi〉. Then we can construct

h := (
i∏

j=1

(fj + 1)) + 1

for which V (h) = V (I) and 〈h〉 = I.

Corollary 1.1.16. The last corollary yields us a sort-of-Euclidian algorithm
that allows us to calculate the generator g of an Ideal I ⊂ Bn from a set of
generators g1, . . . , gn in n+ 1 ring additions and n ring multiplications.

This algorithm which will be called pseudo-Euclidian algorithm is inves-
tigated in further detail in Chapter 6. The (initially surprising) generaliza-
tion of this algorithm to arbitrary finite fields is given in Chapter 7.

1.2 Representation of Boolean Functions

We trail the exposition found in [Carle07]. For more compact representation,
we use multi-exponents: The monomial

∏n
i=1 x

ui
i is written as xu.

1.2.1 Algebraic Normal Form (ANF)

The classical representation of elements of Bn is the algebraic normal form.

f(x) =
∑
i∈Fn

2

aix
i

Let cov(x) := {y ∈ Fn2 , yi ≥ xi∀i} and supp(x) := {i ∈ N, xi = 1}. The
Boolean function f takes value

f(x) =
∑

i∈cov(x)

ai =
∑

supp(i)⊆supp(x)

ai

This is due to the fact that a monomial xu evaluates to 1 if and only if
xi ≥ ui holds for all i.

Since all coefficients are elements of F2, we can associate a different
Boolean function with f : Given a vector x ∈ F2, this function retrieves ax
from f . This Boolean function is called the binary Möbius transform and
denoted f◦.

Definition 1.2.1 (Binary Möbius Transform). Let f ∈ Bn and f(x) =∑
i∈Fn

2
aix

i. Then the Boolean function f◦ with

f◦(u) := au for u ∈ Fn2

is called the binary Möbius transform of f .
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Lemma 1.2.2. Let f =
∑

u∈Fn
2
aux

u. Then

au =
∑

supp(x)⊆supp(u)

f(x)

.

Proof. We refer to [Carle07] for the proof.

Interestingly, applying the Möbius transform twice yields the identity
mapping:

Lemma 1.2.3. Möbius-Image-Lemma
Let f :=

∑
i∈Fn

2
aix

i and f◦ :=
∑

i∈Fn
2
bjx

i with f◦(u) = au for u ∈ Fn2 .
Then f(u) = bu holds for u ∈ Fn2 .

Proof. The proof will be conducted below in the context of the square
lemma.

Möbius-Transform on the ANF

One can derive the Möbius transform of f in an alternate way (not taken
in [Carle07]) which is potentially more enlightening and yields a canonical
algorithm for calculating it:

We already know the mappings V and V −1. We now add a third map-
ping: log. This mapping takes an element f of Bn and maps it to a subset
of Fn2 by taking the ’vectors of exponents’ from each monomial in f (which
are elements of Fn2 ).

Definition 1.2.4 (log). log : Bn → P(Fn2 ). This maps a polynomial to
the set of vectors of exponents of it’s monomials, in the following manner:
f ∈ Bn can be written as∑

ei∈E
xei1

1 . . . xein
n for E ⊂ Fn2

The mapping log now maps a polynomial to the set of ’vectors of exponents’,
so log(f) = E.

Through this mapping, we can associate two elements of P(Fn2 ) with
each f ∈ Bn: The variety V (f) and also log(f).

Now, we can use the mappings log and V −1 to construct a permutation
M on Bn in the following manner:

M : Bn → Bn, M := V −1 ◦ log

Bn
log−−−−→ P(Fn2 ) V −1

−−−−→ Bn
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This means we take a polynomial, collect the F2-vectors formed by its
exponents, and interpolate a polynomial that vanishes exactly there.

Likewise, we have an inverse permutation M−1 on Bn given by

M−1 : Bn → Bn, M−1 := log−1 ◦V

Bn
log−1

←−−−− P(Fn2 ) V←−−−− Bn
This means we take a polynomial, calculate the set of solutions, and use

these solution vectors as exponent-vectors for a new polynomial.

Proposition 1.2.5. Square Lemma: M ◦M ◦M ◦M = id. The following
diagram holds:

Bn
log−−−−→ P(Fn2 ) V −1

−−−−→ Bn

V −1

x log

y
P(Fn2 ) P(Fn2 )

log

x V −1

y
Bn

V −1

←−−−− P(Fn2 )
log←−−−− Bn

Proof. We need a bit of machinery first:

Proposition 1.2.6. Basic Monomial Lemma: Let f be monomial. Then

log ◦V −1 ◦ log(f) = V (f)
⊕ 0

. . .
0

 = V (f + 1)
⊕ 0

. . .
0


Proof. Consider Bn with n = 1. The truthfulness of the above lemma can
be verified manually:

1. Let f = x. log ◦V −1 ◦ log(x) = {(1), (0)}. Likewise, V (x) = {(0)} ⇒
V (x) = {(1)} ⇒ V (x)⊕ (0) = {(1), (0)}

2. Let f = 1. log ◦V −1 ◦ log(1) = {(1)}. Likewise, V (1) = ∅ ⇒ V (x) =
{(0), (1)} ⇒ V (x)⊕ (0) = {(1)}

This can be extended to higher n.

Corollary 1.2.7. For f monomial, it holds that

V −1 ◦ log(f) = log−1(V (f + 1)) + log−1(0) = log−1(V (f + 1)) + 1

Proposition 1.2.8. The above diagram holds for all monomial f .
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Proof.

M ◦M ◦M ◦M(f) = M ◦M ◦M ◦ V −1 ◦ log(f)
= M ◦M ◦M(log−1(V (f + 1)) + 1))
= M ◦M ◦ V −1 ◦ log(log−1(V (f + 1)) + 1)
= M ◦M ◦ V −1(V (f + 1)⊕ log(1))
= M ◦M ◦ V −1(V (f + 1)⊕ 0)
= M ◦M(f + 1 + V −1(0))

From this it follows that

= (f + 1 + V −1(0)) + 1 + V −1 = f

and we are done.

Corollary 1.2.9. The above diagram holds for all polynomials f with un-
even number of monomials.

Proof. Let f = f1+· · ·+fk. The basic lemma for monomials extends cleanly:

log ◦V −1 ◦ log(f1 + · · ·+ fk) = log ◦V −1 ◦ log(f1)⊕ · · · ⊕ log ◦V −1 ◦ log(fk)

Therefore

log ◦V −1 ◦ log(f1 + · · ·+ fk) = V (f1 + 1)⊕ · · · ⊕ V (fk + 1)⊕

 0
. . .
0



Since the

 0
. . .
0

 occurs an uneven number of times, it remains in the final

result and does not cancel.

The basic monomial lemma holds for polynomials f ∈ Bn as well: In
case of an uneven number of monomials in f , the basic monomial lemma
extends immediately, and with it everything else.

In case of an even number of monomials in f , the basic monomial lemma
loses the extra xor, making everything even simpler:

Corollary 1.2.10. If f = f1 + · · ·+ fk contains an even number of mono-
mials, it holds that:

log ◦V −1 ◦ log(f1 + · · ·+ fk) = V (f1 + 1)⊕ · · · ⊕ V (fk + 1)

Proof. This follows from the basic monomial lemma. The

 0
. . .
0

 cancel

since they occur an even number of times.
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Corollary 1.2.11. If f contains an even number of monomials, it follows
that

V −1 ◦ log(f) = log−1(V (f + 1))

This finally brings us to the last bit of the proof:

Corollary 1.2.12. The above diagram holds for all f with even number of
monomials:

Proof.

M ◦M ◦M ◦M(f) = M ◦M ◦M ◦ V −1 ◦ log(f)
= M ◦M ◦M(log−1(V (f + 1))))
= M ◦M ◦ V −1 ◦ log(log−1(V (f + 1)))
= M ◦M ◦ V −1(V (f + 1))
= M ◦M(f + 1)

Since M ◦M(f) = f + 1, it is clear that M ◦M ◦M ◦M = f .

We’re finally done, the square lemma is proved.

1.2.2 Hadamard-Transform

We circle back to the exposition in [Carle07]. An important tool for study-
ing Boolean functions for cryptography is the Walsh-Hadamard transform,
which is equally commonly known as the discrete Fourier transform. For
analysing the resistance of a Boolean function f to linear and differential
attacks, it is important to know the weights of f ⊕ l (where l is an affine
function) or f(x)⊕f(x+a) (where a ∈ Fn2 ). The discrete Fourier transform
provides us with ways of measuring these weights.

The discrete Fourier transform maps any Boolean function f to another
function f̂ by

f̂(u) =
∑
x∈Fn

2

f(x)(−1)x·u

Remark 1.2.13. Please keep in mind that x · u denots the vector product /
inner product.



18 CHAPTER 1. DEFINITIONS AND NOTATION

1.2.3 Walsh-Transform

The Walsh-Transform is defined quite similarly to the Hadamard-transform:

f̂χ(u) =
∑
x∈F2

(−1)f(x)⊕x·u

Remark 1.2.14. Please keep in mind that x · u denots the vector product /
inner product.

These two transforms are of fundamental importance in cryptography -
every SBox that is designed nowadays is designed so that these transform
satisfy certain properties that rule out differential and linear attacks on the
block cipher in question. For more details about the properties of these
transforms, please refer to [Carle07].

1.3 The ring of Boolean functions as a lattice

Since the mappings V and V −1 and result 1.1.9 provide us with a bijection
between Bn and Fn2 , Bn receives the structure of a lattice through pulling
the usual partial order ⊂ on Fn2 back to Bn. The ∧ operator is given through
1.1.14, the ∨ operator is given through multiplication in Bn.

Similarly, the mapping log−1 combined with ⊂ puts a different lattice
structure on Bn.

This lattice structure will be used in section 6.3 to give an interpretation
of an algorithm introduced in chapter 6.

1.4 The MQ problem

The exposition here follows [Daum01] closely.

Definition 1.4.1 (The MQ Problem). Let K be any finite field and R :=
K[x1, . . . , xn] the polynomial ring in n variables over this field. Let f1, . . . , fm ∈
R be quadratic polynomials, e.g. of the form

fi =
∑

1≤i≤j≤n
qijxixj +

n∑
i=1

lixi with qij , li ∈ K

The problem MQ is the problem of finding at least one x ∈ Kn with
∀i fi(x) = 0.

Theorem 1.4.2 (MQ with K = F2 is NP-hard). Proof. Let (X,C) be an
instance of 3SAT where X = {x1, . . . , xn} the set of variables and C the set
of clauses.
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Each clause is a disjunction of 3 literals, hence of the form x̃i ∨ x̃j ∨ x̃k
with x̃l ∈ X ∪X. Such a clause is satisfied iff

x̃i + x̃j + x̃k + x̃ix̃j + x̃ix̃k + x̃j x̃k + x̃ix̃j x̃k = 1

It follows that each 3SAT instance can be transformed into a system of
equations of degree less or equal 3. The degree of said system can be lowered
to quadratic by introducing extra variables z̃ij := x̃ix̃j .

Theorem 1.4.3 (MQ with arbitary K is NP-hard). Proof. See above.



Chapter 2

Generating Equations

Before one can even attempt an algebraic attack, one has to first generate
a system of equations that needs solving. Unfortunately, there are many
different ways of generating equation systems from a given cipher. It appears
that no ’universally accepted’ method for generating the equations exists,
and it appears to be much more common to publish analysis results than to
publish the actual equation systems under consideration.

Furthermore, several choices during the process of generating equations
influence later attempts at solving, and different researchers have taken dif-
ferent paths. This text discusses how [Armknecht] described the creation of
equation systems for LFSR-based stream ciphers and a “naive” attempt at
generating equations for the block cipher PRESENT.

2.1 Generating Equations for LFSR-based stream
ciphers

The following section follows Frederik Armknecht’s [Armknecht] dissertation
very closely.

Definition 2.1.1 (LFSR). A linear feedback shift register (LFSR) consists
of

1. An internal state of n bits

2. A feedback matrix L of the shape

L :=


0 . . . . . . 0 λ0

1 0 . . . 0 λ1

0 1 . . . 0 λ2

. . . . . . . . . 0 . . .
0 . . . 0 1 λn−1


20
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3. An index i to indicate which bit of the internal state to output. This
gives rise to the vector v := (δ0,i, . . . , δn,i) (where δ is the Kronecker
symbol).

The k-th keystream bit sk is generated as sk = S0L
kv where S0 is the

initial internal state.

Definition 2.1.2 ((ι,m)-Combiners). A (ι,m)-combiner consists of

1. s LSFR with lengths n1, . . . , ns and feedback matrices L1, . . . , Ls.
These feedback matrices form the matrix L as follows:

L :=

 L1 . . . 0
. . . . . . . . .
0 . . . Ls


In the following n :=

∑
i ni

2. The internal state S ∈ Fm2 × Fn1
2 × · · · × Fns

2 . These are the internal
states of the individual LFSRs along with some memory to save bits of
past states. The notation Sm will be used to refer just to the memory
bits. Sm,t will denote the state of the memory bits at clock cycle t.

3. A projection matrix P of size n × ι. This is used to select ι different
bits from the internal states of the LFSRs.

4. A memory update function ψ : Fm2 ×Fι2 → Fm2 . This is used to update
the state of the internal memory based on the previous state and the
selected ι different bits.

5. An output function χ : Fm2 × Fι2 → F2. This is used to combine the ι
different bits selected using the projection matrix in order to have the
result output as a keystream bit.

If m ≥ 1, we call this a combiner with memory, else a simple combiner

The keystream is generated as follows: The initial state is initialized by
an element (Sm,0,K) of Fm2 × Fn2 - the first component is used to initialize
the memory bits Sm, the second is used to initialize the internal state of the
LSFR. At each clock t, the following happens now:

zt ← χ(Sm,t,KLtP ) The output bit is calculated
Sm,t+1 ← ψ(Sm,t,KLtP ) The memory bits are updated
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2.1.1 Generating equations for simple combiners

Equations for simple combiners can be generated more or less trivially: One
simply collects the output bits of the combiner, with a resulting equation
system of the form

zt = χ(KLtP )

This equation system can be made arbitrarily overdefined by collecting
more equations.

2.1.2 Generating equations for combiners with memory

Setting up equations for combiners with memory is a little more convoluted.
One cannot just collect equations of the form

zt = χ(Sm,t,KLtP )

since the contents of Sm,t are not known, and thus no clear solution could be
calculated. But the Sm,t are not independent: One could generate equations
that describe Sm,t+1 in terms of Sm,t and KLtP .

In [Armknecht], a different path is chosen: Since the goal in that case is
using a relinearization procedure for solving the resulting system, the high
degree of the output equations that occurs if the memory states are “naively”
modeled needs to be avoided. Instead, equations over several clocks of the
combiner are generated by use of a device called r-functions:

Definition 2.1.3 (r-function). Given a (ι,m)-combiner and a fixed r, a
function F is an r-function for the combiner if

F (X1, . . . , Xr, y1, . . . , yr) = 0

holds whenever X1, . . . , Xr and y1, . . . , yr are successive inputs respective
outputs of the output function χ.

Given an r-function, equations can then be generated over series of
keystream bits: If z1, . . . , zn are the keystream bits (and n is some mul-
tiple of r), the equation system would be of the form

F (X1, . . . , Xr, z1, . . . , zr) = 0
. . . = . . .

F (Xn−r, . . . , Xn, zn−r, . . . , zn) = 0

The use of r-functions has a geometric interpretation (and might have
some unclear consequences on the equation system solving) which is dis-
cussed in 6.4.2.
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2.1.3 Z-functions

It turns out that there are a few complications to using r-functions right
away. In order to deal with these complications, [Armknecht] introduces
another device called Z-functions:

Definition 2.1.4 (Z-function). Let Z ∈ Fr2, Kt ∈ Fι2 the inputs of χ at
clock t, and zt the output bits. A function F : Fι+r2 → F2 is a Z-function if

∀t Z = (zt, . . . , zt+r)⇒ F (Kt, . . . ,Kt+r−1) = 0

A Z-function can be thought of as a concretization of r-functions: One
single r-function can give rise to many different Z-functions. One can think
of Z-functions as a device to make “better” choices for the equations to be
generated based on the observed outputs from the combiner. Similarly to
r-functions, Z-functions can be put into a more geometric framework. This
is done in 6.4.2.

2.2 Generating Equations for block ciphers

The situation for generating equations for block ciphers is a little bit trickier
and requires some work to be invested. Before we start actually generating
any equations, we begin with an algebraic description of a block cipher.

2.2.1 Algebraic description of an SPN

Let M := Fm2 be the message space, K := Fc2 the key space. A mapping
C : M×K → M is called a block cipher. Most modern constructions can
be described as follows:

Let K : Fc2 → (Fm2 )r be the key-schedule and R : (Fm2 )2 → F2 the
round function. The key schedule is used to expand a single key into many
round keys, and the round function is then used to iteratively combine the
individual round keys with the message:

M×K id×K−−−−→ (Fm2 )r+1 R×idr−1

−−−−−→ (Fm2 )r R×idr−2

−−−−−→ . . .
R−−−−→ Fm2 =M

This diagram is best read like this: The initial mapping id×K expands
the key and leaves the message unchanged. The subsequent R × idr−1-
mapping combines the first round key with the message bits, leaving the
other round keys unchanged. The next mapping R × idr−2 adds the next
round key to the result of the previous mapping, and so forth.

Normally, R consists of the composition of three individual mappings:
A key addition + : (Fm2 )2 → Fm2 , a substitution S : Fm2 → Fm2 and a
permutation P : Fm2 → Fm2 .
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In total, the following diagram emerges:

(Fm2 )r S×idr−1

−−−−−→ (Fm2 )r . . .
S−−−−→ Fm2

+×idr−1

x yP×idr−1 P

y
M×C id×K−−−−→ (Fm2 )r+1 R×idr−1

−−−−−→ (Fm2 )r R×idr−2

−−−−−→ . . .
R−−−−→ Fm2 =M

+×idr−2

y
(Fm2 )r−1 S×idr−2

−−−−−→ . . .

2.2.2 Naive attempts at generating equations

Theoretically, it is possible to express the entire cipher as a set of n Boolean
polynomials in the variables m1, . . . ,mn (the message bits) and k1, . . . , kc
(the key bits). The letters m and k denote these bits as Boolean vectors of
length n (e.g. the blocksize of the cipher) and respective c (the key length
of the cipher). This would yield a system of the form:

f1(m1, . . . ,mm, k1, . . . , kc) = C(m, k)1
. . . = . . .

fm(m1, . . . ,mm, k1, . . . , kc) = C(m, k)n

For each known plaintext / ciphertext pair, one could then “insert” the
known bits into above polynomials, and thus generate polynomials in noth-
ing but the key variables. Given, for example, 100 known-plaintext/ciphertext
pairs, one would obtain 100n polynomials in the key bits. Solving this sys-
tem of polynomials would yield the key.

Unfortunately, in practice things do not work this way:
A good cipher should in essence generate almost-perfectly-random poly-

nomials in the key and plaintext bits. We have seen in previous chapters
that each polynomial can be thought of as a subset of the solution space.
From this it follows that each fi is an almost-perfectly-random element of
P(Fn+c

2 ).
This leads to the following problem: Half of all such elements have more

than 2n+c−1 monomials. Given that a monomial in n + c variables will
(naively stored) take at least n + c bits of storage, we see that the compu-
tational effort required to even write down the equations far outstrips the
computational effort for brute forcing a few keys.

It will become evident shortly that these “theoretical” considerations do
come into full effect when we try to generate equations for a block cipher.
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2.2.3 Generating equations for PRESENT

At CHES2007, a particularly lightweight substitution-permutation network
was proposed: PRESENT. The design goal for this block cipher was the to
minimize the gate count required to implement it.

Due to it’s particularly simple design, it makes for an appealing target
for generating equations: The hope is that the extremely restricted design
will simplify analysis. One could argue that PRESENT is the ”simplest”
strong block cipher we know at the moment.

Description

PRESENT is a simple SPN with 64-bit block size and an 80-bit key, iterated
over 32 rounds.

The key schedule

The 32 round keys of width 64 are generated as follows: A key register
K = k0, . . . , k79 is initialized with the 80 key bits. The first round’s key is
initialized with bits 16 to 79. After each round, the key register is rotated
left by 61 bits, and the high bits, 76 to 79, are passed through the SBox
of the cipher (see below). Bits 19 to 15 are then XOR’ed with the round
counter. This is explicitly described below:

Data: Input key K = k0, . . . , k79

Result: Set of round keys K0, . . . ,K31 of 64 bit width
foreach Round r ∈ {0, . . . 31} do

Kr ← k79 . . . k0;
K ← K << 61;
K ← S(k79, k78, k77, k76), . . . k0;
K ← k79, . . . , k19 + r4, k18 + r3, . . . k15 + r0, . . . , k0;

end
Algorithm 1: The PRESENT key schedule

Key addition

Key addition is a regular 64-bit exclusive-or of the current cipher state with
the round key.

The 4-bit SBox

PRESENT uses a single 4-bit SBox for all computations:

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2



26 CHAPTER 2. GENERATING EQUATIONS

This 4-bit SBox can be represented by the following equations:

y0 = x0 + x2 + x1x2 + x3

y1 = x1 + x0x1x2 + x3 + x1x3 + x0x1x3 + x2x3 + x0x2x3

y2 = x0x1 + x2 + x3 + x0x3 + x1x3 + x0x1x3 + x0x2x3 + 1
y3 = x0 + x1 + x1x2 + x0x1x2 + x3 + x0x1x3 + x0x2x3 + 1

According to [Present], the SBox has been chosen to provide strong re-
silience towards differential and linear cryptanalysis, while also being cheap
to implement in hardware.

Due to the low dimensionality, one can draw diagrams for the solution
sets of these equations. This can help in building “geometric intuition”
about the equations.

The diagrams are to be read as follows: F3
2 can be visualized using a

standard cube consisting of the points (x, y, z) ∈ F3
2 – every point of F3

2

thus corresponds to the “corner” of this cube embedded in R3. We can thus
visualize subsets of F4

2 as two cubes whose corners have been connected. For
easier explanation, this is a picture of F4

2 (e.g. the coordinates of the corners
have been drawn into the diagram):

0000 1000

0100

0010

1100

0110

1010

1110

0001 1001

0101

0011

1101

0111

1011

1111

zx

y

zx

y

w

In order to visualize the Boolean functions corresponding to the four
equations describing the PRESENT SBox, the points on which these func-
tions vanish have been colored in green in these diagrams. The diagrams in
figure 2.2.3 are interesting from another perspective: They help in under-
standing under which conditions the Raddum-Semaev algorithm succeeds
or fails in solving equations (see chapter 4).

The permutation layer

The permutation layer in PRESENT can be described by the following
lookup table:
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zx

y

zx

y

w

zx

y

zx

y

w

zx

y
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y

w

zx

y

zx

y

w

Figure 2.1: The varieties for the equations of the PRESENT SBox.

0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51
4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55
8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59
12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Generating equations

A symbolic implementation of PRESENT was built in C++.
Boolean polynomials are represented as std::set’s of Boolean monomials,

which are in turn arrays of 32-bit integers. Memory consumption was min-
imized by the use of template parameters to determine the required size of
Boolean monomials at compile time.

The code allows for different ways of generating equations: Running the
command

./BooleanBench PRESENTFULL 3 80 0

will generate equations that describe 3 rounds of 80-bit PRESENT with
a “weakening” parameter of 0. In this mode, the plaintext bits will be kept
variable, too, so the generated equations will be equations in the variables
x0, . . . , x79 (for the key bits) and x80, . . . , x144 (for the plaintext bits).
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Unfortunately, any attempt to calculate these equations for more than 3
rounds ran out of available memory on the test machine (4 GB). The sizes
for 2 and 3 rounds can be read from figure 2.2.3 and figure 2.2.3.

As a next step, code was implemented that applies PRESENT with
variable key bits to a given fixed plaintext. The command

./BooleanBench PRESENT FFFFFFFFFFFFFFFF 3 80 0

will calculate equations for 3 rounds of present with 80 bit key over the
plaintext 64-bit value 0xFFFFFFFFFFFFFFFF.

While this significantly lowered the sizes of the polynomials after 3
rounds (from a maximum of about 150000 to about 3000), calculating equa-
tions for 4 full rounds remained infeasible without more memory – the ma-
chine ran out of available RAM about 1

3 into the substitution layer of the
fourth round.

From this data, we can observe the following:

• It appears that the complexity of the polynomial representation of
about 1

4 of the bits differs drastically after 3 rounds. This is probably
due to the diffusion not being complete after 3 rounds yet.

• Each round seems to increase the complexity of the polynomial repre-
sentation of the worst-case output bits by approximately factor 1000

• With the current implementation, generating equations for more than
3 rounds of PRESENT appears infeasible.

The situation is quite unsatisfactory: Three rounds really do not amount
to much. In order to gain a better understanding, we weaken the cipher in
several steps in order to generate more manageable equation systems.

2.2.4 Weakening to 40 bits

As a first step, we weaken the cipher by fixing all uneven key bits to equal
zero. The resulting cipher allows us the computation of equations for 4
full rounds if we fix an arbitrary plaintext. While this is more than the 3
rounds we can calculate without weakening, we nonetheless exhaust available
memory in round 5. Please see figure 2.2.4 for the sizes of the generated
polynomials.

Weakening to 26 bits

Since 40 bits still prove to be too much to generate explicit equations, we
weaken the cipher to 26 bits. This weakening was done in a very similar
way to the weakening to 40 bits: Instead of fixing every uneven bit to zero,
we set all key bits whose indices are not divisible by three to zero.

While generating equations was feasible, the time requirements exceeded
those available to the author.
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Weakening to 20 bits

Weakening the cipher to 20 bits allowed the calculation of intermediate-free
equation systems for more than 5 rounds. At the time of the submission of
this thesis, the calculation of equation systems for round 6 was still running.
The weakening was done by setting all key bits whose indices are not divisible
by four to zero.

The development of the equation sizes can be viewed in the figures fol-
lowing 2.2.4.

Weakening to 16 bits

The cipher was also weakened to 16 bits. All key bits whose indices are
not divisible by 5 are fixed to equal zero. Weakening the cipher to 16 bits
allowed the calculation of intermediate-free equation systems up to round
5. At the time of the submission of this thesis, the calculation of equation
systems for round 6 was still running. The sizes of the equations for 4 and
5 rounds can be viewed in the figures following 2.2.4.

2.2.5 The question of intermediate variables

As visible in the above, generating Boolean equations in nothing but the
key (not even to speak of key and plaintext variables) can easily prove in-
feasible – the sizes of the polynomials quickly approach the expected size of
2c−1 monomials, making any operations on them as expensive as exhaustive
search. In practice, intermediate variables are introduced at strategic points
in the cipher as to reduce the size of the equations that are generated. This
is usually done by creating new intermediate variables after each round and
assigning the result of the round to these intermediate variables.

This clearly carries a disadvantage: It implies that the number of vari-
ables that need to be managed grows, and with it the size of the polynomials
that need to be represented during all computations. It is unclear what the
introduction of intermediate variables means for the generated equation sys-
tem. While it certainly helps in writing the equation down, it also increases
the dimensionality of the problem significantly. Furthermore, it increases
the storage requirements for storing individual monomials – and as we have
seen, the number of monomials in our intermediate results can grow quite
drastically, therefore even small increases in monomial size can have signifi-
cant impact on overall memory consumption.

2.2.6 The geometry of introducing variables

It is quite unclear what the introduction of new variables does to our equa-
tion systems, and specifically to the “geometry” of our solution sets. It
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would be worthwhile to investigate these questions more thoroughly, specifi-
cally the relation between the geometry of introducing new variables and the
effects of the Raddum-Semaev algorithm (which might to be the “inverse”
of this).

2.3 Summary

It appears that the process of generating equations for a cipher might actu-
ally be the key component in algebraic attacks: Naively generated equation
systems exhaust available memory just writing them down - not to mention
solving them. Without sophisticated methods to pre-process the equation
systems coming from ciphers (such as Z-functions and low- degree annihi-
lators), performing any algebraic attack appears pretty much hopeless. In
6.4.1, the different methods will be unified and a common theme will emerge:
Algebraic attacks need a form of approximation in order to be fruitful.
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Figure 2.2: Equation sizes for all 64 output bits of full PRESENT with
plaintext and key bits kept variable. # of monomials after 2 rounds. 1
square = 1 monomial

Figure 2.3: Equation sizes for all 64 output bits of full PRESENT with
plaintext and key bits kept variable. # of monomials after 3 rounds. 1
square = 10000 monomials. One can see that diffusion is still weak: Several
bits have very low monomial counts.
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Figure 2.4: Equations sizes for all 64 bits of PRESENT output after 4
rounds. The cipher was weakened by setting half of all keybits to zero. 1
square = 10000 monomials. It appears that weakening the cipher in this
manner severely impacts diffusion.

Figure 2.5: # of monomials after 4 rounds of 20-bit PRESENT. 1 square =
100 monomials
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Figure 2.6: # of monomials after 5 rounds of 20-bit PRESENT. 1 square =
10000 monomials

Figure 2.7: # of monomials after 4 rounds of 16-bit PRESENT. 1 square =
10 monomials

Figure 2.8: # of monomials after 5 rounds of 16-bit PRESENT. 1 square =
1000 monomials



Chapter 3

Gröbner basis and the
Buchberger Algorithm

3.1 Introduction

The “workhorse” of large parts of computational commutative algebra nowa-
days is certainly the concept of a Gröbner basis. Aside from being a very
general tool (which works over an arbitrary multivariate polynomial ring
over arbitrary fields), a Gröbner basis allows much more than “just” the
solving of multivariate polynomial equation systems. While this thesis will
not go into too much depth, a brief overview of the topic will be given.

Working with multivariate polynomial systems is generally more difficult
than working with univariate equations: In the univariate case, the univari-
ate polynomial ring happens to be Euclidian, resulting in the availability of
the Euclidian algorithm. This algorithm allows us, amongst other things, to

• Given a set of generators g1, . . . , gr of an ideal I ⊂ K[X], calculate
f ∈ K[X] so that 〈f〉 = 〈g1, . . . , gr〉 = I.

• Calculate a normal form for each f ⊂ K[X]/I by simply dividing by
f .

This clearly doesn’t work in the multivariate case, as multivariate polyno-
mial rings are not principal ideal domains and as such not Euclidian. In
order to be able to solve question such as submodule membership or ideal
membership as well as for ’normalized’ calculations in K[X]/I, one needs a
method that allows one to calculate a normal form of elements in K[X]/I.

While this section will trail [KreuRobb] closely, some simplifications in
exposition will be made: The entire construction of Gröbner basis can be
built for arbitrary modules over multivariate polynomial rings, yielding more
powerful theory at the cost of more complex notation. The more general
construction is not needed in most applications of Gröbner Bases in cryp-
tography, and therefore this exposition restricts the ’arbitrary module’ to
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’ideal’. This is also the path chosen in [AdamsLou]. Proofs are almost
completely omitted, the interested reader is referred to [AdamsLou] and
[KreuRobb].

3.1.1 Term Orders

Definition 3.1.1 (T). Let T be the set of monomials of F[x1, . . . , xn], e.g.
the set of monomials in a multivatiate polynomial ring over F. This set has
a natural monoid structure through multiplication of monomials.

Definition 3.1.2 (Term Order). A term order is a total relation on Tn that
satisfies for t1, t2, t3 ∈ Tn:

1. t1 ≥ t1

2. t1 ≥ t2, t2 ≥ t3 ⇒ t1 ≥ t3 (Transitivity)

3. t1 ≥ t2, t2 ≥ t1 ⇒ t1 = t2 (Antisymmetry)

4. t1 ≥ t2 ⇒ t1t3 ≥ t2t3

5. t1 ≥ 1

3.1.2 Macaulay’s Basis Theorem

It was discussed earlier that one would like to calculate a set of ideal gener-
ators so that a normal form of elements in F[x1, . . . , xn] can be constructed
easily. In order to do so, the following theorem is of fundamental importance:

Theorem 3.1.3 (Macaulay’s Basis Theorem). Let F be a field and P =
F[x1, . . . , xn] a polynomial ring over F. Let M ⊆ P r be a P -submodule and
let σ be a module term ordering on Tn〈e1, . . . , er〉. Then the residue classes
of the elements of Tn〈e1, . . . , er〉\LTσ{M} form a basis of the F-vector space
P r/M .

The Macaulay Basis Theorem tells us that the F vector space P r/M
has as basis all those elements of Tn〈e1, . . . , er〉 that cannot occur as leading
terms of any elements of M . If we translate this theorem into an ideal-centric
notation, it reads as follows:

Theorem 3.1.4 (Macaulay’s Basis Theorem, simplified). Let F be a field
and P = F[x1, . . . , xn] a polynomial ring over F. Let M ⊆ P be a an ideal in
P and σ be a term ordering on Tn. Then the residue classes of the elements
of Tn\LTσ{M} form a basis of the F-vector space P/M .

Unfortunately, these theorems are a bit nonconstructive – the basis of
P/M is in general infinite, and we know of no “nice” ways of calculating
LTσ{M} yet.
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3.1.3 Multivariate Division

Similarly to the Euclidian division algorithm, a multivariate division algo-
rithm can be defined as follows:

Data: m ∈ K[X], (g1, . . . , gr) ∈ K[X]r generators of the ideal
Result: q1, . . . , qr, r so that m = (

∑
qigi) + r

v ← m;
q1 = · · · = qr = r = 0;
while v 6= 0 do

Find first index i with LM(gi) divides LM(v);
if such an index exists then

qi ← qi + LM(v)
LM(gi)

;

v ← v − LM(v)
LM(gi)

gi;
else

r ← r + LM(v);
v ← v − LM(v);

end
end

The trouble with this division algorithm is that the result r depends
on the order in which the elements g1, . . . , gr are arranged, and not every
element of I := 〈g1, . . . , gr〉 reduces to zero using this algorithm.

Why is this so ? One of the fundamental properties of univariate poly-
nomial rings is the fact that deg(fg) ≥ max{deg(f), deg(g)} and specifically
LT (f)|LT (fg), LT (g)|LT (fg). This does not hold in multivariate polyno-
mial rings - it is easily possible that the leading terms cancel, thus yielding
a situation where LTσ(f) 6 |LTσ(fg), LTσ(g) 6 |LTσ(g). In such a situation,
even though fg is clearly divisible by both f and g, the described algorithm
would not reduce fg any further.

By implication, if both f and g were generators of an ideal, fg would be
an element of the ideal. But since the multivariate division algorithm would
not reduce to zero, in it’s current form it would not be usable to calculate
normal forms for elements of P/M .

This leads us to the first of a number of descriptions for Gröbner basis:

Definition 3.1.5 (Gröbner Basis, Definition 1). A set g1, . . . , gr ∈ I ⊆ P
forms a Gröbner basis for an ideal I with respect to a term ordering σ if for
each element f ∈ I there exists an index i so that LTσ(gi)|LT (f).

Definition 3.1.6 (Gröbner Basis, Definition 2). A set g1, . . . , gr ∈ I ⊆ P
forms a Gröbner basis for an ideal I with respect to a term ordering σ if
each element f ∈ I reduces to zero when divided by g1, . . . , gr using the
multivariate polynomial division algorithm.
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3.1.4 S-Polynomials

It is evident that pairs of polynomials that can be combined in a way so that
the leading term gets cancelled are the “culprit” that causes the difficulties
with the multivariate division. Such pairs of polynomials (that can be com-
bined in a way that the leading terms cancel, and the remainder does not
reduce to zero) can be characterized.

Definition 3.1.7. The S-Polynomial of f and g is defined as

spoly(f, g) = LC(g)
lcm(LT (g), LT (f))

LT (f)
f − LC(f)

lcm(LT (g), LT (f))
LT (g)

g

In essence, spoly is a construct where the leading terms of f and g
are changed in such a way (without “leaving” the ideal from which f and
g originate) so that the leading terms of the results cancel through the
subtraction.

It is useful to note the following properties of spoly:

1. If f, g are in an ideal I, then so is spoly(f, g)

2. If spoly(f, g) does not reduce to zero, it will have a different LTσ from
f and g

These properties lead directly to the classical Buchberger algorithm:

3.2 The classical Buchberger Algorithm

Let G := {g1, . . . , gr} be generators for the ideal M . Let LTσ(G) be the set
of leading terms of these polynomials. The classical Buchberger algorithm is
based on the following principle: Since P is Noetherian, LTσ(M) is finitely
generated. Each time an spoly(gi, gj) is calculated that does not reduce to
zero using the multivariate division algorithm and G, the result is a new
polynomial gr+1 that is an element of M and also has a leading term that is
different from those in LTσ(G). By adding this polynomial to G, we move
LTσ(G) “closer” to a full generator of LTσ(M). By iterating this process,
we eventually end up with a G so that LTσ(G) is a generator for LTσ(M).
Once this has been achieved, G is a Gröbner basis. The algorithm can be
read in a (slightly) more formal notation in figure 3.2.

3.2.1 Interpretation: An almost purely syntactic algorithm

To understand the genericity of the Buchberger Algorithm, it is important to
realize that it is, at it’s core, a purely syntactic algorithm: Actual properties
of the the base field are not used, only purely symbolic properties of the
polynomial ring in which the calculations are performed.
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Data: Set of polynomials g1 . . . gr
Result: Set of symbols g′1, . . . , g

′
k

G⇒ {g1, . . . , gr};
foreach unordered pair of polynomials gi ∈ G, gj ∈ G, gi 6= gj do

calculate spoly(gi, gj);
reduce spoly(gi, gj) via multivariate division and G to g′ij ;
if g′ij 6= 0 then

G = G ∪ g′ij ;
end

end
return G ;

Algorithm 2: The classical Buchberger algorithm. Please not that adding
elements to G will imply more pairs to iterate over.

A possible way to understand the workings of this algorithm is, again,
lattice-theoretic:

Fix an arbitrary base field. Consider the set of all multivariate polyno-
mials ordered by some σ, with normalized leading term (e.g. the coefficient
of the LT is 1). The divisibility relations between the leading terms provide
this set with a partial order and a lattice structure. Call this lattice L.

The given generators of the ideal, g1, . . . , gr , correspond to points on
L. Each time a new element g′ is added to G, it is an element of the ideal
I := 〈g1, . . . gr〉 that is “minimal” with respect to the rest of G on L. This
means there is no gi ∈ G\{g′} with gi ≤ g′.

Step by step, the Buchberger algorithm thus transforms G. Once the
algorithm terminates (and the result is interreduced, see [AdamsLou] or
[KreuRobb]), G is the set of “minimal” elements on L that belong to I. In
short: The Buchberger calculates the “minimal” elements of I on L.

Because L “inherits” Noetherianess from P , the result is finite and the
algorithm eventually terminates. How many steps are involved in tranform-
ing G is quite unclear though.

The fact that the Buchberger algorithm is almost purely syntactic is
its greatest strength: It can be implemented using little knowledge of the
underlying field and will work without much adaption. It can also be gen-
eralized to other situations, e.g. having a principal ideal domain or even a
general commutative ring as base structure. There has even been work on
extending the algorithm to noncommutative scenarios.

At the same time, this generality raises the nagging suspicion that dif-
ferent algorithms, specialized to one particular field, or to the systems of
equations of interest in cryptography, might exist and perform better.
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3.3 Maximum sizes of polynomials in the compu-
tation

The running times of Gröbner-basis calculations are notoriously difficult
to estimate. While the worst-case running times can in theory be doubly
exponential (and in most cryptographic situations singly exponential), it has
occured many times in practice that equation systems ended up being much
easier to solve.

A small fact is easily overlooked when complexity estimates for Gröbner
basis calculations are made:

If a canonical (or naive) representation of the polynomials is chosen (e.g.
each monomial a string of bits, each polynomial a collection of such bit
strings), the cost of representing intermediate results can become substan-
tial. Polynomials stored in this manner can grow to be quite significant in
size: a degree k-polynomial in n variables can have up to

k∑
i=1

(
n

i

)
monomials. This means, for example, that in a 128-variable system in which
intermediate results of degree up to 5 can occur, an intermediate result can
contain up to 275584032 monomials. With each monomial costing (at least)
128 bit to represent (e.g. 4 32-bit words, 16 bytes), representing one such
polynomial in memory can cost up to 4409344512 bytes of storage (e.g.
roughly 4 GB). The situation grows worse quickly: If we reach degree 6, the
worst-case storage requirements are in the order of 90 GB per polynomial.
Even if the number of steps, measured in polynomial additions, is limited,
one still has to keep in mind the cost of storage, and the fact that even
linear operations (such as polynomial addition) will now cost a few billion
cycles each.

This implies that this canonical representation of polynomials is far from
ideal - it is unclear ,though, which representation would be superior in most
cases. [BrickDrey07] uses a specialized data structure called zero-suppressed
binary decision diagrams (ZBDD) which offer much-improved efficiency for
many polynomials, but results are known that most Boolean functions will
have an exponential-size ZBDD-representation, too.



Chapter 4

The
Raddum-Semaev-Algorithm

Most results in this chapter are the outcome of a cooperative meeting with
Martin Albrecht and Ralf-Phillip Weinmann [Lesezirkel].

The Raddum-Semaev-Algorithm was introduced in [RadSem06] and was
able to solve some systems significantly faster than existing Gröbner-Basis
algorithms. The paper is written from a computer-science perspective, which
models the problem of simultaneously solving a multivariate polynomial
equation system as a problem of ’passing messages on a graph’.

The exposition which focuses on the graph obfuscates the algebraic-
geometric meaning of the algorithm: It is much more intuitive to rep-
resent the algorithm as a combination of projection of varieties to lower-
dimensional spaces, intersecting such varieties, and then lifting the results
to higher dimensions again.

In the following, the algorithm will first be explained along the same
lines as the original paper did. After that, a more algebraic/geometric in-
terpretation will be developed.

4.1 The original description

Let f1, . . . , fr ∈ Bn be the set of equations that are supposed to be solved.

Definition 4.1.1 (Variable Map). Let vars : Rn → P({x1, . . . , xn}) be a
mapping that maps a polynomial to the set of variables that occur in this
polynomial.

Definition 4.1.2 (RS-Assumption). Assume that |vars(fi)| <= k for some
small k. This k needs to be small enough so that performing 2k evaluations
of fi is feasible, and storing r2k bit strings is feasible.

40
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Data: Set of symbols S1 . . . Sk
Result: Set of symbols S′1 . . . S

′
k

while last iteration deleted a configuration do
foreach pair of symbols Si, Sj do

calculate Xij ;
calculate Lij ∩ Lji;
Delete configurations from Si, Sj that do not cover any
element of Lij ∩ Lji;

end
end

Algorithm 3: The agreeing algorithm

Definition 4.1.3 (Configuration). All solutions to fi can be represented as
elements of F|vars(fi)|

2 , as only the values of variables occuring in fi need to
be stored. Such a vector is called a configuration.

Definition 4.1.4 (Symbol). A symbol (X,L) consists of an ordered set of
variables X and a list L of configurations for X.

Definition 4.1.5 (Covering). Let X1 ⊆ X. A configuration for X is said
to cover a configuration for X1 if the two are equal for all variables in X1.

The core of the RS-Algorithm is the procedure called ’agreeing’. Con-
sider Si, Sj and Xij = Xi ∩Xj .

Let Lij be the set of configurations for Xij that is covered by some
configuration in Lj .

Let Lji be the set of configurations for Xij that is covered by some
configuration in Li.

Two symbols agree if Lij = Lji

Remark 4.1.6 (Example:). Consider

S1 = ({x1, x2}, {10, 11})
S2 = ({x1, x3, x4}, {011, 000, 101, 110})

Then Xij = {x1}, Lij = {1}, Lji = {0, 1}. The two symbols do not agree.
We delete all configurations in S2 that do not cover any element in Lij∩Lji =

{1}. The result is S′2 =
(
{x1, x3, x4},

101
110

)
.

The authors interpret this algorithm as ’message passing on a graph’ –
the individual equations form nodes on the graph, and the agreeing algo-
rithm passes information about the solutions on one node to it’s neighboring
nodes.

They note that the system of equations will often be in ’agreeing state’
without showing a unique solution. They propose two ways of remedying
the situation: Splitting and Gluing.
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Splitting is performed as follows: If the agreeing algorithm fails to pro-
duce a solution, an arbitrary symbol S is chosen. It is split into two halves
S′, S′′ by splitting the list of configurations into halves. The algorithm is
re-run, once with S′ and once with S′′.

This step is the same as guessing that the solution lies in a particular
half of the symbol under consideration, and running the algorithm on both
possible guessed values.

Another step that can be taken to restart the agreeing step is gluing.
Two symbols Si, Sj are chosen. Xi ∪ Xj =: X ′ is calculated. Then

the symbols Li, Lj are ’joined’ (through adding new configurations where
needed).

Example:

S1 = ({x1, x2}, {01, 10})
S2 = ({x1, x3, x4}, {100, 010, 011})

Then X ′ = {x1, x2, x3, x4}, L′ = {0110, 0111, 1000}. This can have negative
effects on the size of a symbol though: In the worst case, the size of the
result is the product of the individual sizes:

|L′| = |L1||L2|

4.2 A geometric view

The RS-Algorithm can be much more easily understood as geometric oper-
ations on the varieties. This helps in understanding under which conditions
the algorithm will suceed in producing a solution. It will also be the basis on
which the algorithm can be reinterpreted in terms of commutative algebra
in the next section.

• The splitting step is simply a ’random cut’ of the variety into two
varieties of equal cardinality

• The gluing step is simply a ’union’ of two varieties

• The agreeing step is a combination of ’projection’, ’intersection’, and
’lifting’. This is best illustrated with an example: Consider the two
varieties below. The variety on the left is defined over over F2[x, y, z],
the one on the right is defined over F2[x, y, v].

zx

y

vx

y
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The varieties are projected to their common ’subspace’, e.g. their
projection into F2[x, y] is calculated:

y y

The projections are intersected. This intersection is then lifted back
to the two spaces from which the original varieties were projected:

y

zx

y

vx

y

The original varieties are intersected with this lifting. This eliminates
points in each varieties that cannot be present in the other variety. In
our example, the first variety remains unchanged, whereas the second
has the points highlighted in red removed:

zx

y

vx

y

4.3 An algebraic-geometric view

Through the previous geometric interpretation, the RS-algorithm can be
translated into the language of commutative algebra / algebraic geometry,
making the comparison to other algorithms easier and allowing the algorithm
to operate on polynomials instead of solution sets.

Definition 4.3.1 (Subspace Map). Let vars : Bn → P({x1, . . . , xn}) be a
mapping that maps a polynomial to the set of variables that occur in this
polynomial.

Let fi,j be the j-th monomial in fi. Then vars(fi) = vars(lcmj(fi,j)).

Definition 4.3.2 (Projection Map). ForM ⊆ {x1, . . . , xn}, let πM : P(Fn2 )→
P(F#M

2 ) be the projection of the variety of a polynomial onto the smaller
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subspace F#M
2 corresponding to the subring RM := F2[mi]/〈m2

i + mi〉 ⊆
Bn,mi ∈M .

Remark 4.3.3. A simple example is πvars(f)(V (〈f〉)) which maps the variety

of f into F#vars(f)
2 - in essence, f is treated as a polynomial in the Ring of

Boolean functions that only contains the same variables as f . All in all,
the projection map is just a technical construction – it doesn’t carry any
“deeper” significance.

4.4 Raddum-Semaev Algorithm

The RS-Assumption is now reformulated using the above constructions:

Definition 4.4.1 (RS-Assumption). Assume that #vars(fi) < k for some
small k. This k needs to be small enough so that performing 2k evaluations
of fi is feasible.

The entire algorithm can now be formulated in algebraic terms:

1. For each fi, the set vi := πvars(V (〈fi〉) is calulated. These are subsets

of F|vars(fi)|
2 which correspond to what is called “configurations” in the

original formulation.

2. For each pair fi, fj , the set Sij := vars(fi) ∩ vars(fj) is calculated.

3. For each pair vi, vj , the set vij := πSij (vi) ∩ πSij (vj) is calculated -

exactly those points that agree on the smaller subspace F#Sij

2 . These
points are then lifted back and intersected with vi, vj :

vi ← vi ∩ π−1
Sij

(vij), vj ← vj ∩ π−1
Sij

(vij)

This step is called the agreeing step in the original paper.

4. Once the agreeing has been run, the next step is called splitting. This
divides an arbitrary variety vi in two halves of equal cardinality and
then re-runs the algorithm on the two systems thus created. This
essentially guesses ’which half’ of a variety a particular point is in.

5. New varieties are introduced in the step that the original paper called
gluing : Given a pair vi, vj , Uij = vars(fi) ∪ vars(fj) is calculated, and
vi and vj are lifted to F#Uij

2 . Their intersection is calculated and forms
a new variety vn. The agreeing step is run again.
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4.4.1 Algebraization

Given 1.1.14 (intersecting varieties), 1.1.3 (unioning varieties), 1.1.7, the
entire algorithm can be transformed to operate on polynomials in Bn instead
of sets of points. This eliminates the need to precompute solutions for all
polynomials and holding them in memory at all times (at the cost of having
to compute with potentially quite large polynomials).

The only thing that we are still missing in order to perform all operations
from the agreeing step directly on polynomials is the “projection to a smaller
subspace”. But this can be easily achieved as follows:

Definition 4.4.2 (Projection). Let vars(f) = {x1, . . . xn}. Then

πvars(f)\{x1}(f) = f(0, x2, . . . , xn)f(1, x2, . . . xn)

We can hence recursively project larger polynomials to their restrictions
on subspaces.

Gluing

The polynomial gluing step is even easier than the step performed on the
list of solutions: Since gluing corresponds to unioning varieties over the
larger space that is the union of the two spaces over which the varieties
were defined, this step can be simply implemented by multiplying the two
polynomials.

Splitting

The only step of the algorithm that cannot be trivially modeled to operate
on polynomials is the splitting step, which randomly picks half the points
on a variety and then continues to run the algorithm.

Since we cannot (without exhaustive search over one intermediate poly-
nomial) determine the full variety of such polynomial, we have multiple
options to replace the splitting step.

1. Pick the polynomial f with a low number of variables and determine
it’s variety by exhaustive search. Pick S ⊂ V (〈f〉) with cardinality
roughly half that of V (〈f〉). Then interpolate a new polynomial from
this set of points by the following formula:

f ′ :=
∑
s∈S

(
∏

x∈vars(f)

(x+ sx + 1) + 1)

This ensures that the new polynomial has exactly half the number of
solutions that the previous polynomial had, but the cost of determining
all points is non-negligible.
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2. Assume that the points of the variety of a given f are more or less
randomly distributed. Then intersecting f with another polynomial g
where #V (〈g〉) = 2#vars(f)−1 should, on average, yield a new polyno-
mial with half the number of solutions. This other polynomial g might
be a random linear polynomial, or a random quadratic polynomial, or
whichever polynomial that makes further calculations easy.

4.4.2 Summary

This chapter has put a geometric interpretation onto the RS-algorithm and
provided a bridge with which this algorithm can be reformulated as oper-
ations on polynomials instead of operations on solution sets. While it is
unclear whether this allows for any performance improvements, it should
facilitate comparisons to other algorithms of algebraic nature.

Furthermore, the geometric interpretation of the agreeing step shows
that it is particularly ill-suited for linear equations (the projection leads to
an all-zero polynomial) – but fares quite well on many nonlinear ones.



Chapter 5

Published Algebraic attacks

One can argue, with some merit, that algebraic attacks have so far failed to
deliver on their promise. Actual practical successes in breaking anything are
few and far between, and it has been argued that for each algebraic attack
on a block cipher, a more efficient statistical attack has been found.

On the other hand, a possible explanation for the disenchantment with
algebraic attacks is the disappointment after having built unrealistic expec-
tations: Extremely optimistic claims about the efficiency of algebraic attacks
were publicly made in the past, and high hopes generated (“cryptanalysis
using only one plain/ciphertext pair”, “solving very overdefined systems is
generally polynomial in nature” etc.). With such hype, it was nearly impos-
sible for algebraic methods to live up to expectations.

In essence, successes of algebraic cryptanalysis have been limited to
LFSR-based stream ciphers and asymmetric multivariate schemes (such as
HFE).

In the following, a few of the published algebraic attacks will be dis-
cussed, and what the author perceives to be the “crucial” point that helped
make the attack successful.

The algebraic attacks that were published so far are, overall, quite sim-
ilar in nature: An equation system for the cipher in question is generated,
some preprocessing is performed on the generated equations, and an attempt
to solve the equation system is made. The attempt to solve the equation
systems is usually done via either a Gröbner-basis calculation (using more
efficient algorithms such as F4 or F5) or via relinearization.

Interestingly, it appears that “naively” generated equation systems are
almost always beyond the abilities of common equation system solvers, be
they Gröbner-basis calculations or relinarizations. The crucial step seems
to be the “preprocessing” of equations.

47
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5.0.3 Lowering the degree by multiplication

The first idea put forward in [CourMeier] and [Armknecht] is lowering the
degree of the equations that are collected by multiplying them with well-
chosen other polynomials.

In [CourMeier], several separate scenarios are discussed:

S3a There exists a function g of low degree such that fg = h with h 6= 0
and of low degree

S3b There exists a function g of low degree with fg = 0

S3c There exists a function g of high degree such that fg = h where h 6= 0
and of low degree.

The paper [MeiPaCar] goes on to show that in reality only two scenarios,
namely S3a and S3b need to be considered. This thesis will give an alternate
interpretation of the above scenarios in 6.4.2 .

Summary

The crucial idea here is that the degree of polynomials f1, . . . , fr can some-
times be lowered by multiplying them with another polynomial. Multiplying
our fi with other polynomials does not risk “losing” solution points: If fi is
in the ideal generated by 〈f1, . . . , fr〉, then so is fig. Geometrically, we’re
only “adding” points.

5.0.4 Lowering the degree by finding linear combinations

Another idea was put forwards in [CourFast]: If the collection of equa-
tions and the subsequent multiplication with well-chosen polynomials still
does not yield sufficiently low degree, linear combinations of these equations
might be found that do.

In the context of stream ciphers, [Armknecht] describes the conditions
under which such an attack works as follows:

• The equation system has been set up by use of an r-Function, e.g. is
of the form:

F (X1, . . . , Xr, z1, . . . , zr) = 0
. . . . . .

F (Xn−r, . . . , Xn, zn−r, . . . , zn) = 0

• The r-Function F can be rewritten so that

F (X1, . . . , Xr, z1, . . . , zr)︸ ︷︷ ︸
deg(F )=d

= G(X1, . . . , Xr)︸ ︷︷ ︸
degG=d

+H(X1, . . . , Xr, z1, . . . , zr)︸ ︷︷ ︸
deg(H)<d
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According to [Armknecht], the ciphers E0, Toyocrypt and LILI-128 all
satisfy this condition.

In such a situation, the equation system will look like

G(X1, . . . , Xr) +H(X1, . . . , Xr, z1, . . . , zr) = 0
G(X2, . . . , Xr+1) +H(X2, . . . , Xr+1, z2, . . . , zr+1) = 0

. . . = . . .

G(Xn−r, . . . , Xn) +H(Xn−r, . . . , Xn, zn−r, . . . , zn) = 0

For shorter notation, rewrite G(X1+i, . . . , Xr+i) as Gi.
Since G is bounded to be of degree ≤ d, there are “only” µ(n, d) =∑d
i=0

(
n
d

)
different monomials that can occur. As a consequence, any se-

quence of Gi of length ≥ µ(n, d) has to be linearly dependent, e.g. there
exist coefficients λ1, . . . , λµ(n,d) so that

∑µ(n,d)
i=1 λiGi = 0.

This alone would already yield equation systems of lower degree: The
sum

µ(n,d)∑
i=1

λiF (X1+i, . . . , Xr+i)

would have lower degree than the original equations.
But the situation is even better: It can even be shown that Gi is a

linear recurring sequence. The following is taken almost verbatim from
[Armknecht]:

Lemma 5.0.3. The sequence Gi forms a linear recurring sequence. This
means that there is some integer T so that

T∑
i=0

λiGt+i = 0 ∀t ≥ 0

The minimal polynomial of the linear recurring sequence can be calcu-
lated by a modified version of the Berlekamp-Massey algorithm.

Summary

The important idea here is that given a system f1, . . . , fr of equations, ele-
ments can be added freely without “losing” any solution points: Arbitrary
linear combinations of ideal generators stay in the same ideal. As such, any
linear combination that transforms f1, . . . , fr into something that is more
nicely behaved with respect to the eventual equation system solver is quite
useful.
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5.0.5 Faugere-Ars attack on nonlinear filters

In [FaugArs03], the authors describe how they attacked nonlinear filter gen-
erators using Gröbner bases. No special preprocessing was mentioned – the
authors simply generated equation systems from nonlinear filters and cal-
culated Gröbner bases using F5. According to the paper, they were able to
recover the full state of the underlying LFSR given Ld output bits (where
L is the number of unknown bits in the LFSR and d the degree of the
combining polynomial).

5.0.6 Experimental attack on Toyocrypt

An experimental attack that combines the techniques described in [CourMeier]
and Gröbner basis algorithms has been carried out in [KaImWa]. The au-
thors combined the technique of lowering the degree of the equation system
with their own implementation of the F4 Gröbner base algorithm. This was
done in 3 steps:

1. Equations were generated and their degree was lowered using 5.0.3

2. Using Berlekamp-Massey, relations between the equations to further
lower the degree were calculated

3. The resulting equation system was fed into a parallelized version of F4

The second step took 10+ hours, but the result was an equation system
which, according to the authors, could be solved in 20 seconds.

5.1 The notion of algebraic immunity

As a reaction to [CourMeier], criteria for judging the resilience of Boolean
functions against algebraic attacks were proposed. The principal definition
in use nowadays appears to be the following:

Definition 5.1.1 (Algebraic Immunity). The algebraic immunity of f ∈ Bn
is the minimal degree d of a function g ∈ Bn so that fg = 0 or (f + 1)g = 0.
Formally:

AI(f) := min{deg(g)|g ∈ Bn, fg = 0 ∨ (f + 1)g = 0}

The use of the name algebraic immunity is under debate though: [Armknecht]
prefers to call it annihilator immunity, as algebraic immunity seems to im-
ply resistance against a wide variety of algebraic attacks. This is not the
case: The only thing that algebraic immunity implies resistance against are
the degree-lowering tricks discussed in 5.0.3, and through that a certain re-
sistance against Gröbner-basis calculations (as these usually take longer for
higher-degree equation systems).



Chapter 6

The Pseudo-Euclidian
Algorithm

This chapter discusses the actual ’meat’ of the present thesis: A new equa-
tion system solving algorithm specialized to F2 and some of its properties.

The result of Lemma 1.1.14 establishes that Bn is a principal ideal ring
and also provides a constructive method to calculate the single generator of
an ideal from a set of generators in 1.1.16, mimicking the behavior of the
Euclidian algorithm in Euclidian rings.

Given a set of generators g1, . . . , gn with V (〈g1, . . . , gn〉) = {y}, y ∈ Fn2 ,
we know the exact form of the generator g through the result of 1.1.6. The
restricted form of g allows us to ’read off’ the single-point solution y in
question.

The result is an algorithm that will, given a system of multivariate poly-
nomial equations over F2 which have exactly one common solution, produce
the solution to a given set of n equations in n + 1 additions in Bn and n
multiplications in Bn.

This sounds exciting, but at the same time we know that the mentioned
problem is NP-hard - we therefore know that we have exponential complexity
hiding somewhere in the above (it turns out it’s hiding within multiplications
in Bn).

6.0.1 A naive first algorithm

Let G be a set of polynomials g1, . . . gk ∈ Bn and 〈g1, . . . , gk〉 the ideal
generated by these polynomials in Bn. Furthermore, assume that the variety
of the ideal consists of exactly one point, e.g. |V (〈g1, . . . , gn〉)| = 1.

One can make use of the results 1.1.7 and 1.1.14 in order to compute the
single point on the variety.

Remark 6.0.2. One can use 1.1.16 to calculate g ∈ Bn with G := V (〈g〉) =
V (〈g1, . . . , gn〉).

51
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Remark 6.0.3. The variety G consists of only one point. It is thus in the
intersection of the variety V (〈x1〉) with some other set H ⊂ Fn2 or in the
intersection of the variety V (〈x1 + 1〉) with some other set H ⊂ Fn2 . G can
always be ’decomposed’ in one of the two following ways:

1. ∃H ⊂ Fn2 so that G = V (〈x1〉) ∩H

2. ∃H ⊂ Fn2 so that G = V (〈x1 + 1〉) ∩H
Lemma 6.0.4. Let g be so that G = V (〈g〉). For any i exists h ∈ Bn so
that

g = xi + h+ hxi or g = xi + 1 + hxi

Proof. Let G ⊂ V (〈xi〉) ⇔ G = {y} with yi = 0. Then there exists a
H ⊂ Fn2 so that G = H ∩ V (〈xi〉), and from 1.1.14 it follows that if h ∈ Bn
with V (〈h〉) = H, then

g = xi + h+ hxi

Let G ⊂ V (〈xi + 1〉) ⇔ G = {y} with yi = 1. Then there exists a H ⊂ Fn2
so that G = H ∩ V (〈xi + 1〉), and from 1.1.14 it follows that if h ∈ Bn with
V (〈h〉) = H, then

g = (x1 + 1) + h+ h(x1 + 1) = x1 + 1 + h+ hx1 + h = x1 + 1 + hx1

Lemma 6.0.5. Given g, one can easily test for the individual components
of y:

1. Test whether (xi + 1) | (g + xi) ⇒ yi = 0

2. Test whether xi | (g + 1 + xi) ⇒ yi = 1

Proof. Let g = xi + h+ hxi ⇔ g + xi = h(xi + 1). But g = xi + h+ hxi is
equivalent to yi = 0.

Let g = xi+1+hxi ⇔ g+xi+1 = hxi. But g = xi+1+hxi is equivalent
to yi = 1.

So in summary, one calculates a generator g then tries to decompose it
in intersections of univariate linear polynomials in order to determine the
values of the individual components of the solution.

We can see from the above algorithm that once we have calculated g we
can pretty much determine it’s (single-point) solution in linear time.

The difficulty (and computational complexity) is hidden in the calcula-
tion of g. If we follow 1.1.16, we need n polynomial multiplications and n+1
polynomial addition.

With each polynomial multiplication, the number of monomials can grow
to the product of the numbers of monomials of the factors, e.g. if |f | and
|g| denote the number of monomials in f resp. g, then |fg| ≤ |f ||g| in the
worst case.
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6.1 Some empirical data

6.1.1 Hard instances of MQ

In order to put the algorithm to the test, a mail was sent to JC Faugere
asking for a good way to generate equation systems that are difficult to solve
using Gröbner base algorithms. His reply was:

From the Groebner Basis computation point of view the most
difficult case is to consider a system of random quadratic equa-
tions:
Let g1(x11, . . . , xn), . . . , gn(x1, . . . , xn) where gi is random and

deg(gi) = 2

Then select randomly (a1, . . . , an) ∈ Fn2 . Then try to solve the
algebraic system S = {f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)} where
fi(x1, . . . , xn) = gi(x1, . . . , xn)− gi(a1, . . . , an).
S has in general one solution.

From experimentation, it is presumed that in the above the number of
equations should outnumber the number of variables - at least empirically,
single-solution systems were only generated about 50% of the time if n was
both the number of unknowns and equations.

This is not surprising: Empirically, each random quadratic polynomial
in n variables has as variety a more or less random subset of Fn2 with ap-
proximately 2n−1 points. A system of k such equations has as solution set
the intersection of k such sets. This means that for each point, the odds of
this point “being a solution” are roughly 1

2k . At the same time, we have 2n

points.

The experiment

The following experiment was conducted:

1. 20000 overdefined systems with 15 unknowns and 28 equations de-
scribing the system were generated. These systems were constructed
so that they have randomly chosen single-point varieties. 1.1.13 tells
us that the size of the final polynomial in the last step of the algorithm
will be 2l where l is the number of zero-bits in the solution.

2. The algorithm was run on each of these systems. After each step of
intersection, the number of monomials in the intermediate polynomial
was recorded

3. Once all equations had been processed, the result (e.g. the solution)
was read off and verified to be correct
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4. The process was repeated with 20000 similar equation systems that, in-
stead of a random single-point solution, the fixed solution of (1, . . . , 1).
This was done because the number of monomials in the final equation
depends on the number of 0-entries in the solution vector - as such,
setting all solutions to a fixed known value should eliminate fluctu-
ations in intermediate results that are due to the nature of the final
result.

The following observations were made:

1. For almost all equation systems, the maximum number of monomials
in the intermediate polynomial did not exceed 2n−1 = 214. In the test
set of 20000 random-solution equations, 500 exceeded the 214 bound-
ary, accounting for 2.5% of the total number of systems that were
generated.

2. No equation system stayed below 13273 monomials in the intermediate
polynomial during all steps of the algorithm. This means that while
only 2.5% exceeded the size of 2n−1 = 214 monomials, all equation
systems exceeded the size of 2n−2 = 213 monomials.

3. 98.65% of all equation systems had their maximum intermediate poly-
nomial size before the seventh intersection. 95.255% of all equation
systems had their maximum intermediate polynomial size before the
sixth intersection. 46.72% of the equation systems had their maximum
intermediate polynomial size at exactly the fourth intersection.

Figure 6.1: The number of monomials at each step in the algorithm for
2000 randomly generated systems. The blue line denotes the 214 monomial-
boundary. Each curve is drawn transparently to help identify ’density’.
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Observations and Conclusion

As expected, we encounter exponential growth in running time and mem-
ory complexity. The size of the intermediate polynomials explodes - and
through this, the cost of performing polynomial multiplication. It is inter-
esting to see that the algorithm looks cheap on paper only because no proper
boundaries on the sizes of the intermediate results are given – this appears
to imply that in any complexity analysis for equation system solvers, the
size of the intermediate results is no less important than the total number
of calculations involved.

6.1.2 Equation systems generated from cryptographic prob-
lems

In previous chapters, it became evident that constructing full equation sys-
tems for PRESENT is infeasible without introducing spurious quantities of
intermediate variables. As result of this, only severely weakened variants of
the cipher could be investigated here. Outside of the difficulty of generating
equation systems, solving was an entirely different issue - many equation
systems that could be generated could not be solved without running out of
memory.

Solving more than 2 rounds failed with the full cipher, and even weak-
ening the cipher to 40 bits did not allow more than 2 rounds to be solved
without exceeding 4 GB of memory consumption. Only the extreme mea-
sure of weakening the cipher to 20 respective 16 bit allowed for the algorithm
to run in reasonable time.

From our experience with truly hard MQ-instances, we should expect
the intermediate polynomials to grow to a size between 215 and 219 mono-
mials. We can see in the following diagram that this was achieved for 20-bit
PRESENT in round 5, but not for 16-bit PRESENT.

One oddity arises in the equations generated from 5 rounds of 20-bit
PRESENT: The complexity peak is much earlier than for 4 rounds, and
drops off quite sharply: After taking 12 equations into account, the com-
plexity of the intermediate results is consistently lower than the intermediate
results for 4 rounds. A good explanation for this is, unfortunately, not avail-
able.

6.2 Getting other information about the variety

6.2.1 Determining equality between variables

The algorithm 6.0.5 tries to determine properties of the variety of a mul-
tivariate polynomial f ∈ Bn by attempting to split the polynomial in two
polynomials - one of which has an easily-understood variety. In 6.0.5 the
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Figure 6.2: Sizes of the intermediate polynomials while solving 4 (red) re-
spective 5 (orange) rounds of PRESENT weakened to 16 bits. The size
peaks at 11925 monomials for 4 rounds and 25805 monomials for 5 rounds.
A peak around 32768 would be expected for random systems. This seems
to imply that after 5 rounds, the hardness of truly random systems is not
achieved yet. 1 square = 1000 monomials

Figure 6.3: Sizes of the intermediate polynomials while solving 4 (red) re-
spective 5 (orange) rounds of PRESENT weakened to 20 bits. The size peaks
at 209735 monomials for 4 rounds and 512513 monomials for 5 rounds. For
5 rounds, this is quite close to the 524288 monomials that would be expected
of a truly random system. 1 square = 10000 monomials
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’simple’ polynomials (xi+1, xi) had ’half-spaces’ as varieties, but this is not
a necessity. It is possible to ask comparatively complicated questions such
as ’is the first variable always equal to the second variable in each point in
the solution ?’ by applying the same principle.

In order to determine wether a given polynomial g has above-mentioned
property, we attempt to decompose g as follows:

g = (x1 + x2) + h+ h(x1 + x2) = x1 + x2 + h+ hx1 + hx2

⇔ g + x1 + x2 = h(1 + x1 + x2)

This leads us to a simple test for said property that can be evaluated
via a simple multivariate polynomial division.

6.2.2 Monomial count and hamming weight

A trivial corollary of 1.1.13 is that even if we end up not being capable
of calculating f explicitly, other things can give us information about the
solution of the equation system:

If we can calculate the number of monomials in f , or even approximate
the number of monomials in f with reasonable error boundaries, we can
deduce boundaries on the hamming weight of the solution vector.

6.2.3 Attempting solutions without calculating the product

An interesting factoid was pointed out by L. Gerritzen:

Lemma 6.2.1. Let f ∈ Bn with exactly one solution (y1, . . . , yn) ∈ Fn2 .
Then yi = 0⇔

∏n
j=0,j 6=i xj is a monomial in f .

Proof. Follows from the proof of 1.1.13 with a small amount of effort.

This implies that it if we were capable of testing for presence of a partic-
ular monomial in

∏n
i=1(fi + 1)) + 1, we are able to determine the hamming

weight of the solution.

6.3 Viewing the algorithm as traversal of a lattice

Warning: The word “lattice” is overloaded. The meaning that is used here
is the order-theoretic one !

The pseudo-Euclidian algorithm presented above can be interpreted as
the traversal of a particular lattice. There are several ways to interpret the
lattice.
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Set-theoretic interpretation

The algorithm can be interpreted as a traversal of the lattice formed by
P(Fn2 ) with the operations ∪,∩. Given the system of equations f1, . . . , fn one
looks at V (f1), . . . , V (fn) ∈ P(Fn2 ) and then iteratively calculates

⋂n
i=1 V (fi).

Coordinate-Ring interpretation

An alternative view of the algorithm is as the iterated construction of co-
ordinate rings over Bn along with projection mappings. The algorithm can
be interpreted as constructing a series BF i = BF i−1/〈fi−1〉,BF1 := Bn and
mappings φi : BF i−1 → BF i:

Bn →︸︷︷︸
φ1

BF1 → . . . →︸︷︷︸
φn−1

BFn−1

as well as f := φ1 ◦ · · · ◦ φn−1(fn).
By calculating fij = (fi + 1)(fj + 1) + 1 = fi + fj + fifj , one effectively

projects fi into Bn/〈fj〉 (or, equivalently, fj into Bn/〈fi〉).

Commonalities

Wether the algorithm is viewed as a traversal of the powerset-lattice of Fn2
or as the traversal of the lattice of coordinate rings is irrelevant since both
lattices are isomorphic in this case. The important points are:

1. Initially, one starts with a set of lattice elements f1, . . . , fn

2. One can incrementally calculate fi ∧ fj for pairs of points

3. The goal is to calculate
∧n
i=1 fi

4. Some elements of the lattice are very expensive to represent, others
are cheap to represent.

5. The order in which the calculation happens corresponds to a traversal
of the lattice.

A small example

In order to clarify the above, consider a small example. Let

f1 := y + xy, f2 := x+ y + xy + 1, f3 := x+ y + 1

We identify polynomials in B2 with their subsets in P(F2
2) and draw the

resulting lattice (the varieties of f1, f2, f3 have been highlighted):
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∅

{(00)}

{(01)}

{(10)}

{(11)}

{ (00)
(01)

}

{ (00)
(10)

}

{ (01)
(10)

}

{ (00)
(11)

}

{ (01)
(11)

}

{ (10)
(11)

}

{
(00)
(01)
(10)

}

{
(00)
(01)
(11)

}

{
(00)
(11)
(10)

}

{
(10)
(11)
(01)

}

F2
2

Instead of set notation, one can also label the lattice elements with their
corresponding polynomials. The polynomials f1, f2, f3 are highlighted:

1

x+ y + xy

x+ xy + 1

y + xy + 1

xy + 1

y

x

x+ y + 1

x+ y

x+ 1

y + 1

xy

y + xy

x+ xy

x+ y + xy + 1

0

There are 3 different ways of calculating
∧3
i=1 fi: (f1 ∧ f2) ∧ f3, (f2 ∧
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f3)∧ f1, (f1 ∧ f3)∧ f2. Each such variant corresponds to a path through the
lattice. As an example, the first variant corresponds to the path drawn in
the following diagram:

1

x+ y + xy

x+ xy + 1

y + xy + 1

xy + 1

y

x

x+ y + 1

x+ y

x+ 1

y + 1

xy

y + xy

x+ xy

x+ y + xy + 1

0

From this it becomes clear that the algorithm is a traversal of this lattice,
and that the “showstopper” for our attempts at solving equation systems is
the fact that we hit “expensive” points in the lattice during our traversal.
Warning: The following are a set of unproven conjectures and intuitions.
None of this is based on proof. This appears to have a number of interesting
implications:

• If more equations are available, more “beginning points” for the traver-
sal exist, thus yielding more “degrees of freedom”. This appears to cor-
respond to the results in many papers about algebraic cryptanalysis
that prefer overdetermined equation systems to non-overdetermined
ones.

• Most equation solving algorithms, including the classical Buchberger,
can be viewed as some form of mapping of lattice elements to lattice
elements. As such, most equation system solvers need to confront the
problem of representation sizes of intermediate results in the same way.

6.4 The notion of approximation

After one has understood the discussed algorithm as traversal of a lattice,
it becomes evident that paths through the lattice that do not involve any
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’expensive’ points are desirable. This leads directly to the question of ap-
proximation:

Given an ’expensive’ polynomial, can we approximate it through a ’cheap’
polynomial ?

Before tackling this question in any depth, it is first necessary to clarify
the notion of ’cheap’, ’expensive’, and ’approximation’:

Definition 6.4.1 (Cost function). A mapping φ : Bn → R that, in some
form, encodes the ’cost’ of representing (or working with) a particular Boolean
function, is called a cost function

Examples of cost functions:

• φV : Bn → N ⊂ R, φV (f) 7→ |V (f)|. As one can represent a Boolean
function by its variety, this function measures the cost of representing
the function by explicitly storing all points of the variety.

• φM : Bn → N ⊂ R, φM (f) 7→ |{m Monomial of f}|. One can represent
a Boolean function by the set of monomials. This function measures
the cost of doing so by counting the number of monomials in f .

• φV OBDD : Bn → N ⊂ R

φV OBDD(f) 7→ |{v, v Node in the OBDD-representation of V (f)}|

The variety might be more compactly represented as OBDD, therefore
it makes sense to know the cost of representing a function in this
manner.

• φOBDD : Bn → N ⊂ R

φOBDD(f) 7→ |{v, v Node in the OBDD-representation of f}|

. Likewise, the set of monomials might be more compactly represented
as OBDD, so the size of the OBDD-representation of the set of mono-
mials is a cost function, too.

6.4.1 Approximation of polynomials

Now that cost functions are in place, a clear definition of approximation
is needed. Intuitively, an approximation g of f is a function that differs
on a small number of points from f . One can think of overapproximations
(e.g. g vanishes on more points than f) and underapproximations (e.g. g
vanishes on fewer points than f), which form subclasses within the set of
approximations. The quality of an approximation is measured as the number
of points on which the two functions differ, e.g. their hamming distance.
Given f and g, we can easily calculate a polynomial that vanishes exactly
on the points where f and g differ: f + g + 1.
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Definition 6.4.2 (φ-Approximation of quality k). Let φ be a cost function.
A polynomial g ∈ Bn is called a φ-approximation of quality k if |V (f + g +
1)| = k and φ(g) < φ(f). This means that g is cheaper to represent than f ,
but differs from f at only k points.

Definition 6.4.3 (φ-Overapproximation of quality k). A polynomial g ∈ Bn
is called a φ-overapproximation of f ∈ Bn with quality k if |V (f + g+ 1)| =
k, V (f) ⊆ V (g) and φ(g) < φ(f). This means that g is cheaper to represent
than f and vanishes at k points at which f doesn’t vanish. This is the same
as stating that g’s variety is the same as f ’s variety with k points added.

Definition 6.4.4 (φ-Underapproximation of quality k). A polynomial g ∈
Bn is called a φ-underapproximation of f ∈ Bn with quality k if |V (f + g +
1)| = k, V (g) ⊆ V (f) and φ(g) < φ(f). This means that g is cheaper to
represent than f and does not vanishes at k at which f vanishes. This is
equivalent to stating that g’s variety is f ’s variety with k points removed.

A number of small corollaries follow immediately:

Corollary 6.4.5. The set of all overapproximations {g1, . . . , gk} ⊂ Bn of
f ∈ Bn is isomorphic to the ideal generated by f .

This follows from the fact that multiplying two polynomials results in
the union of their varieties, and the fact that for all g the statement fg ∈ 〈f〉
holds.

Corollary 6.4.6. There is a bijection between the set of all underapproxi-
mations {g1, . . . , gn} ⊂ Bn of f ∈ Bn and the elements of the ideal of f + 1.

This follows because each underapproximation g yields an overapproxi-
mation g + 1 of f + 1.

6.4.2 Re-visiting Courtois-Armknecht attacks on stream ci-
phers

One of the few successes of algebraic cryptanalysis were the Courtois-Armknecht
attacks on stream ciphers. The principal trick that was responsible for low-
ering the degree of the equation systems far enough to make them soluble
was, for given f1, . . . , fn finding polynomials g so that f1g, . . . , fng had much
lower degree.

With the above constructions, one sees now that the “degree-lowering”
trick employed in [Armknecht], [CourMeier] (and described here in 5.0.3) is
nothing different than finding overapproximations fg of low degree. This
raises an interesting question that has not been treated in the literature:

Since lowering the degree of equations f1, . . . , fn consists of multiplying
a polynomial with each of them, one effectively adds points to each variety.
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If the same polynomial is used for all equations, one even adds the same
points to each variety.

This has implications for the solution set: The uniqueness of the solution
might be lost. At the very least adding points to our solution sets might
mean that more equations are needed before the solution becomes unique.

There is another, less clear-cut risk, too, although it seems to not have
happened in practice: If one adds the same additional solutions to each
equation, solving will of course become much easier - at least the points
that we added to all equations will be a solution for the entire system,
albeit not the one we were looking for. One should keep in mind that the
so-called “pre-processing”-steps might have an influence on the solution set
(e.g. enlarge the solution set).

Corollary 6.4.7. The r-Functions described in [Armknecht] are a form of
approximation:

Recall the definition of an r-function: Given a (ι,m)-combiner and a
fixed r, a function F is an r-function for the combiner if

F (X1, . . . , Xr, y1, . . . , yr) = 0

holds whenever X1, . . . , Xr and y1, . . . , yr are successive inputs respective
outputs of the output function χ.

This r-function is an overapproximation for the full equation system gen-
erated by the combiner: All valid “solutions” X to the equation system

zt = χ(Sm,t,KLtP )

with appropriate equations to model Sm,t as result of Sm,t−1 and KLt−1P
also satisfy F (X) = 0. Therefore an r-function is an overapproximation of
the equation system generated by multiple clocks of the combiner.

In response to the published algebraic attacks, the notion of algebraic
immunity was introduced (see 5.1.1.

Corollary 6.4.8. Algebraic immunity is is a criterion about nonexistence
of overapproximations of low degree. It states that no overapproximations
in regard to φ = deg exist.

Generalisation of degree-lowering techniques

After looking at 5.0.4 and 5.0.3, it is difficult not to make a generalization:
Multipliying fi with a polynomial g is a valid operation on our equation

system: Geometrically, we’re just adding solutions, algebraically, we remain
in the same ideal. Creating linear combinations of fi is a valid operation
on our equation system: Geometrically, V (fi) ∩ V (fj) ⊆ V (fi + fj), e.g.
the intersection of two varieties is a subset of the variety of the sum, and
algebraically the sum is part of the same ideal.



64 CHAPTER 6. THE PSEUDO-EUCLIDIAN ALGORITHM

It is therefore clear that any operation on the equation system that
remains in the ideal in question is legitimate. This leads to a generalized
notion of degree-lowering-tricks:

Definition 6.4.9 (Degree-Lowering-Polynomial). Let

〈f1, . . . , fr〉 ⊆ F[x1, . . . , xn] =: R

be an ideal. An element h ∈ R[y1, . . . , yr] is a degree-lowering polynomial if

deg(h(f1, . . . , fr)) ≤ min{deg fi|i = 1, . . . , r}

In essence, it is a polynomial with coefficients in F[x1, . . . , xn] so that
when all fi are substituted for yi, the resulting polynomial has lower degree
than any fi.

One sees easily that 5.0.3 means that the degree-lowering polynomial has
only one monomial, e.g. is of the form h := gy1 (where g is the polynomial
that our equation is multiplied with). One also sees easily that 5.0.4 uses
degree-lowering polynomials that are linear, e.g. of the form h :=

∑
i∈I yi.

A first idea to calculate such h would be to use Gröbner bases: If one
proceeds similarly to 5.0.4 and splits the fi into high-degree components Gi
and low-degree components Hi, one could attempt to calculate the syzygy
module of the Gi. This would yield polynomials in R that evaluate to
zero if the Gi are inserted. Unfortunately, things are not quite so easy: In
the case of a linear h, calculating h(G1 + H1, . . . , Gr + Hr) does not yield
any interaction between the high-degree and low-degree components: If the
high-degree parts cancel, only low-degree parts are left. In case of general
polynomials for h, this is no longer the case: Several low-degree components
might be combined to yield high-degree results, and complicated interactions
occur. It is, as of now, wholly unclear how a good h might be constructed.

While not being very constructive, this definition allows us to define a
generalized algebraic resistance (with respect to deg):

Definition 6.4.10 (Generalized algebraic resistance (with φ = deg)). A
system of equations

f1, . . . , fr

is has generalized algebraic resistance (with φ = deg) of d where

d = min{deg(h(f1, . . . , fr)), h ∈ R[y1, . . . , yr]}

From an algebraic perspective, this definition is equivalent to

d = min{deg(f), f ∈ 〈f1, . . . fr〉}

Looking at the situation from this angle, we see an amusing corolary:
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Corollary 6.4.11. Any system F := 〈f1, . . . , fr〉 ⊆ Bn with unique solution
in Bn satisfies d = 1.

Proof. We know that any polynomial that has a superset of V (F ) as variety
is an element of F . Therefore, either the polynomial x1 or the polynomial
x1 + 1 is an element of F , and d = 1.

This means that as long the system of equations has unique solution,
there will be an h so that the degree of the system can be lowered, even
to 1. In order to have a more meaningful measure of resistance, one would
need to take more things into account, at least the following:

1. The cost of calculating h(F1, . . . , Fr)

2. The “loss of accuracy” when calculating h

6.4.3 Constructing approximations

Since the problems we ran into during the solving of our equation systems us-
ing the pseudo-Euclidian algorithm had little to do with degree, and much
more to do with exponential growth in the number of monomials in our
intermediate results, a natural question arises: Can we construct an over-
approximation g for a given large polynomial f in a systematic fashion ?

A first stab

Without loss of generality, let f contain the monomial ’1’. Let l be the
number of monomials in f . The goal is now to construct g ∈ Bn with
gf = g ⇔ f(g + 1) = 0 so that the number of monomials m of g are less
than or equal l.

We fix m < l. Let fi denote the i-th monomial of f with some ordering,
and let gi denote the i-th monomial of g with some ordering.

The standard way of multiplying f with g works by filling in the elements
of the following matrix and removing all matrix elements that occur an even
number of times:

f1 . . . fl−1 1
g1 f1g1 fl−1g1 g1
. . .
gm f1gm fl−1gm gm

In order to satisfy the condition that fg = g, it has to be assured that
all matrix elements except the right-most column occur an even number of
times.

The algorithm now works as follows: The above matrix is considered
without the rightmost column. It’s elements are called a1, . . . , al−1,m. An
arbitrary decomposition into disjoint subsets of cardinality 2 is chosen (there
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are k!
k
2
!2

k
2

possible such decompositions for sets of cardinality k when 2 divides

k). Each such “pair” needs to “cancel”, e.g. both elements of the pair have
to be equal. Thus each subset of cardinality 2 of matrix elements of the
form {ai, aj} gives rise to an equation of the form ai = aj . This is the same
as

fαgβ = fγgδ

for some α, β, γ, δ. This implies log(fαgβ) = log(fγgδ). Since multiplica-
tion of monomials is the same as bit-wise “or” of the exponents, and since
xORy = x+ y + xy, the following system of equations arises:

log(fα)1 + log(gβ)1 + log(fα)1 log(gβ)1 = log(fγ)1 + log(gδ)1 + log(fγ)1 log(gδ)1
. . . = . . .

log(fα)n + log(gβ)n + log(fα)n log(gβ)n = log(fγ)n + log(gδ)n + log(fγ)n log(gδ)n

This would normally look like a rather large linear equation system (with
nm unknowns), but because the log(fi) are all known, only the following
four types of equations can arise:

log(fα)i = 0 = log(fγ)i ⇒ log(gβ)i = log(gδ)i (6.1)
log(fα)i = 0, log(fγ)i = 1, ⇒ log(gβ)i = 1 (6.2)
log(fα)i = 1, log(fγ)i = 0, ⇒ log(gδ)i = 1 (6.3)

log(fα)i = 1 = log(fγ)i ⇒ 0 = 0 (6.4)

This means that each equation can either imply equality between two
particular exponents in the monomials gβ and gδ, or that one of the two
monomials needs to have a particular exponent set to 1. Interestingly, this
also implies that the equation system will always have a solution: Since there
is no way that a value of 0 can be implied, there is no way a contradiction
could arise. This is not surprising: the polynomial g = 0 will always be an
overapproximation to f (but of little value).

The above thoughts lead to the following algorithm that constructs a
“random” overapproximation of f :

Data: f ∈ Bn,m ∈ N
Result: g ∈ Bn with fg = g and φM (g) = m
init;
g ← 0;
while g == 0 do

choose random partition;
generate system of equations;
solve for g;

end
Return g;

Algorithm 4: Approximation of polynomials
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It is important to keep in mind that no guarantuees regarding the quality
of the approximation are made: This algorithm constructs some approxi-
mation, but quite possibly a very bad one.

Now consider the case that f does not contain the monomial ’1’. We can
use a variant of the above algorithm: Consider the notion that we wish to
construct a polynomial g + 1 that is an approximation of f . This leads to
f(g + 1) = g + 1⇒ fg + f = g + 1⇒ fg + g = f + 1⇒ g(f + 1) = (f + 1).
We therefore wish to construct g so that g(f + 1) = (f + 1). We know that
f does not contain the monomial ’1’, hence we know that f + 1 does. We
decide that g should contain the monomial ’1’.

f1 . . . fl−1 1
g1 f1g1 fl−1g1 g1
. . .
gm f1gm fl−1gm gm
1 f1 . . . fl−1 1

This time, we choose a decomposition into subsets of cardinality 2 ig-
noring the last row instead of the last column. The algorithm proceeds
analogously from here.

6.4.4 Constructing approximations: Complete failure

The described approximation algorithm was implemented in C++. A small
test polynomial f consisting of 121 monomials in 8 variables was given to
it, and the task of approximating this f with a polynomial of no more than
50 monomials. Unfortunately, the algorithm consistently produces g = 0,
which, while being a valid overapproximation of f , is also completely useless.

On the reasons for failure

The algorithm picks a random partition of the matrix in pairs. While each
partition of the matrix corresponds to one overapproximation, there are
vastly more partitions than valid overapproximations. Most of these par-
titions will correspond to the trivial overapproximation, 0. Since we are
blindly choosing amongst the possible partitions, the probability of us “ac-
cidentally” hitting a good overapproximation is vanishingly low.

6.5 Conclusion (for now)

This chapter ends in a bit of a disappointment: While a new, interesting,
and surprisingly simple algorithm for finding the solution to an equation
system consisting of elements of Bn has been found, it’s performance on
actual hard problems does not convince. There are a number of directions
in which further research seems promising:
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1. Understanding the “expensive” and “cheap” points on our lattice bet-
ter:

(a) How many “cheap” points are there ?

(b) How many randomly chosen elements does a set of lattice ele-
ments need to have to have significant probability that a “cheap”
path through the lattice exists ?

(c) How many more “cheap” points do we get if we take OBDD-
representations of the lattice elements (which, for many elements,
are much cheaper) ?

2. Tackling “cheap” approximations of “expensive” functions:

(a) Can we approximate some lattice elements with reasonable error
boundaries ?

(b) How dense are these lattice elements in the overall lattice ?

3. Is there some way of calculating
∏
fi without calculating the products

of smaller subsets ?

4. Is there any way of calculating any monomial except
∏
j xj in

∏
fi

without calculating the full product ?

5. Can we estimate (with reasonable error boundaries) the number of
monomials in

∏
fi ?

In summary: We do not understand the properties of this algorithm
very well. We know what it does geometrically, but it is unclear which
equation systems will be easy to solve, which equation systems will be hard
to solve, and whether many cases exists where this algorithm is superior to
already-known algorithms.



Chapter 7

Pseudo-Euclid over finite
fields

7.1 Generalization to arbitrary finite fields

If one thinks geometrically about the algorithm (and the specific ring Bn),
one can conclude the following points:

• If one isn’t interested in solutions in the algebraic closure and hence
considers Bn instead of F2[x1, . . . , xn], one obtains an object that is
isomorphic to the ring of sets of Fn2

• This object is a principal ideal domain, and the individual points corre-
spond to the ’prime’ elements in this domain – each object is composed
as finite product of polynomials that have exactly one point as their
solution.

There is little in these observations that would suggest difficulties over other
finite fields than F2. Clearly, the ring of sets over Fnq will always have the
property that each element is composed of the finite union of individual
points - so most parts of our construction should work regardless.

What do we need in order to ’port’ the results from F2 to Fq ? In
essence, something that allows us to intersect varieties. First, we define the
analogous version of Bn for arbitrary base fields:

Definition 7.1.1 (Ring of qoolean functions). Given a finite field Fq, q =
pn, p prime, the ring of qoolean functions in n variables is defined as

Fq[x1, . . . , xn]/〈xq1 − x, . . . , x
q
n − x〉

and written as Fn.

Varieties etc. are defined analogously to the definitions made in the
beginning of this thesis. The only thing that is really required for the
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pseudo-Euclidian algorithm to work is a device for intersecting varieties.
The following formalizes this:

Definition 7.1.2 (Intersection Polynomial). Let Fq, q = pn, p prime, be
an arbitrary finite field. A polynomial θ ∈ Fq[x, y] is called intersection
polynomial if the following holds:

θ(x, y) = 0⇔ x = 0 ∧ y = 0

An intersection polynomial is a device that is used for intersecting va-
rieties: Let f, g ∈ Fn and θ ∈ Fq[x, y] is an intersection polynomial. Since
Fq ⊂ Fn, one can consider θ as an element of Fn[x, y], and evaluate h =
θ(f, g) ∈ Fn.

The property that θ vanishes if and only if both parameters vanish leads
to

V (θ(f, g)) = V (f) ∩ V (g)

and we have our ’intersection’. If one has such a polynomial f as well as
two elements from Fn,

Lemma 7.1.3. The polynomial θ ∈ Fq[x, y],

θ = xq−1 + yq−1 − xq−1yq−1

is an intersection polynomial for arbitrary finite fields.1

Proof. The proof simply applies Fermat’s little theorem: ∀a ∈ F∗q aq−1 = 1.
Clearly, θ vanishes if x = y = 0. If x 6= y = 0, the polynomial evaluates
to 1, and thus does not vanish. If y 6= x = 0, likewise. If x 6= 0, y 6= 0 the
polynomial evaluates to 1 + 1− 1, which does not vanish.

1I have to thank Prof. H. Flenner for his insight that allowed me to generalize this to
arbitrary base fields by inverting the sign on the last term



Summary and Outlook

This thesis has, unfortunately, openend many more questions than it has
answered. In 6.5, a number of interesting questions was listed in relation to
the pseudo-Euclidian algorithm. Further questions show up in relation to the
generalized pseudo-Euclidian algorithm over other finite fields: Experiments
that see how it performs on various equation systems would be interesting
indeed.

The section 6.4.2 shows that the general question on how to system-
atically construct (over)approximations of Boolean functions with desired
properties would be of use not only for the pseudo-Euclidian algorithm,
but also as preprocessing step to other equation solvers. It is hence a bit
disappointing that the approximation algorithm proposed in 6.4.3 fails so
thoroughly. A thorough and practical theory for the approximation of (sets
of) Boolean functions would be fantastic to have.

On the defensive side, much better criteria than algebraic immunity are
needed. Unfortunately, they require better understanding of the solution
algorithms and their expected running times – which will, very likely, depend
on the exact shape of the equations in question, and on any preprocessing
that might be done prior to this.

It really appears that algebraic methods are not fully understood in their
implications for cryptography, and in their efficiency. The only conclusive
thing we can say is that “naive” attempts at algebraic cryptanalysis (e.g.
“write equations, solve”) fail, as even writing the equations easily outstrips
the computation needed for a brute-force search.

In comparison to the statistical attacks such as differential or linear
cryptanalysis, we understand much less about the conditions under which
algebraic attacks work. The results on some stream-ciphers are encouraging,
but it appears that much more work is required before these methods can
be made fruitful on any realistic block cipher, and it is doubtful wether
algebraic methods will ever outperform statistical/combinatorial methods
on that front.

This does not imply that algebraic methods are not going to be useful
in cryptanalysis – but the “simple” hope that we can just write & solve
equation systems will, in all likelyhood, not come true.
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