
Characterizing Padding Rules of MD Hash Functions
Preserving Collision Security

Mridul Nandi

National Institute of Standards and Technology
mridul.nandi@gmail.com

Abstract. This paper characterizes collision preserving padding rules and provides variants
of Merkle-Damg̊ard (MD) which are having less or no overhead costs due to length. We first
show that suffix-free property of padding rule is necessary as well as sufficient to preserve
the collision security of MD hash function for an arbitrary domain {0, 1}∗. Knowing this, we
propose a simple suffix-free padding rule padding only log |M | bits for a message M , which is
less than that of Damg̊ard’s and Sarkar’s padding rules. We also prove that the length-padding
is not absolutely necessary. We show that a simple variant of MD with 10d-padding (or any
injective padding) is collision resistant provided that the underlying compression function is
collision resistant after chopping the last-bit. Finally, we design another variant of MD hash
function preserving all three basic security notions of hash functions, namely collision and
(2nd) preimage. This is an improvement over a recently designed (SAC-08) three-property
preserving hash function in terms of both salt size and efficiency.

Keywords : MD hash function, padding rule, suffix-free, collision resistant.

1 Introduction

Hash function has become an essential object in many cryptographic protocols [4] particularly in
signature schemes [2, 6, 11]. It takes an input from a message spaceM (usually {0, 1}∗ or {0, 1}≤2s−1

for some s) and it outputs a t-bit string for a fixed t. The hash function plays role of preprocessor
in many applications so that one can work with t-bit H(M) instead of an arbitrary sized M , which
essentially helps us to keep design of a protocol simple and efficient. In most cases, securities of these
protocols rely on the collision resistance property (it is hard to find two different messages with same
hash value) of the hash function. The most popular design of a hash function is Merkle-Damg̊ard [5,
10] or MD hash function where a compression function f : {0, 1}b+t → {0, 1}t is designed first. Given
a message, some additional bits may be padded to it so that it can be partitioned into several blocks
of size b. The compression function is then sequentially applied to an initial value and to all blocks of
the padded message. It seems difficult to design a hash function from scratch, based on only simple
logical or/and arithmetical operations, which can provide absolute collision security (or provable
collision security like discrete log based hash function [7]). However, it is well known that the MD
hash functions with length strengthening padding which includes length of the message, preserves
collision security i.e. the hash function is collision resistant if so is the compression function. So
we are able to at least transfer the infeasibility assumption of a hash function to a smaller domain
compression function and hence only task remains to design a good compression function.

Padding rule is essential for MD hash function (proposed by both Damg̊ard [5] and Merkle [10]
independently in crypto-1989). However they used different padding rules. Merkle’s padding rule

can not handle arbitrary length messages. Sarkar [16] recently introduced a padding rule which can
handle arbitrary messages and the number of padding bits is O(log |M | log∗ |M |) for some slowly
growing function log∗ defined in [16]. This is asymptotically less that that of Damg̊ard’s padding
rule where O(|M |) bits are padded. Note, if the size of padded bits is more, it may cost more
invocations of the underlying compression function. So, in terms of efficiency of hash function, one
should try to keep size of pad as small as possible. Any arbitrary padding may not be good as the
hash function is desired to preserve collision security. Clearly, injectivity is a basic requirement of a
padding rule. A padding rule is said to preserve collision security for MD if the MD hash function
with this padding rule preserves collision security. So, it is worthwhile to characterize all padding
rules preserving collision security.
Our Contribution. In this paper, we first show that suffix-free property is both necessary and
sufficient to preserve collision security for MD hash function. Damg̊ard in [5] mentioned prefix-free
padding rules. Stinson [17], Bellare and Rogaway [3] mentioned suffix-free property while proving
collision preserving of particular padding rules. Even though sufficiency of suffix-free padding rule
seems intuitive, we do not know any paper proving it. Some observations on Merkle’s padding
rule can be found in [8]. On the other hand, the necessity of the suffix-free property is non-trivial.
We propose a simple efficient suffix-free padding rule, padding O(log(|M |)) bits, which can handle
arbitrary messages. We see a comparison of new padding rules with known padding rules in Table 1.

Let a t-bit compression function f is collision resistant in the first (t − 1)-bits (i.e. collision
resistant after chopping the last bit). We show that a simple variant of MD hash function (converting
0t chaining value (if any) into 0t−11) without any length-padding (any injective padding such as
10d-padding works) is collision resistant. We actually prove a stronger statement which says that
any collision of the new hash function reduces to either a collision of f or a collision of the first
(t − 1) bits of f with the collision value 0t−1. Thus, we are able to remove overhead costs due
to length.

We also provide an improved three property (collision, (2nd) preimage) preserving salted hash
function which is a variant of MD hash function and is more efficient than recently proposed hash
function [1] in terms of salt size.
Organization of the paper. We first give an overview of the security notions of a hash function
and padding rules of MD hash functions in section 2. In section 3, we characterize the collision
preserving padding rules for any fixed initial value. We also have provided simple examples of
padding rule in the same section. In the following section, we prove a simple variant can completely
avoid length-padding and still have collision security under a reasonable additional assumption. In
section 5, we study an improved variant of BCM (backward chaining mode) hash function which
preserves all basic three security notions of a hash function.

2 Overview of MD Hash Function, Padding Rule

A hash function H :M→ {0, 1}t is called a collision resistant [15, 18] hash functions if it is “hard”
to find a collision pair (M,M ′) i.e., M 6= M ′ such that H(M) = H(M ′). We define collision-
advantage of an algorithm A as

Advcoll
H (A) := Pr[A→ (M,M ′) : H(M) = H(M ′),M 6= M ′]

where probability is calculated over the random coins of A. Informally, a hash function is called
collision resistant if, for any efficient algorithm A, the collision advantage of A for H is negligi-
ble. Unfortunately, we can not rule out the existence of an efficient collision finding algorithm A

outputting (M,M ′) which is eventually a collision pair of the hash function H. But nobody may
know or write down this algorithm based on our current knowledge. Therefore, we can say that a
hash function is collision resistant if no efficient collision finding algorithm is known for it. Rogaway
formalized this approach by introducing human ignorance model [14]. Keeping this in mind, we use
the following definition of preserving properties of hash securities.

Definition 1. A hash family H := {HIV}IV∈{0,1}t based on a compression function f is said to
preserve (ε, ε′)-collision security if given an efficient algorithm A with at least ε collision advantage
for H, we can construct (write down its code modulo the subroutine A) an efficient algorithm A′

with at least ε′ collision advantage for f .

Merkle-Damg̊ard Hash function. Markle-Damg̊ard or MD hash function has three basic
components namely, (1) an underlying compression function f : {0, 1}b+t → {0, 1}t for some b > 0,
(2) an initial value IV ∈ {0, 1}t and (3) an easily computable padding rule pad : M → ({0, 1}b)+
for some message space M. We define the classical iterated function f+

IV : ({0, 1}b)+ → {0, 1}t
as f+

IV(M1, · · · ,M`) = f(f(· · · f(IV,M1), · · ·),M`), M1, · · · , M` ∈ {0, 1}b. The MD hash function
MDfIV,pad is defined as the composition of the following maps:

M pad−→ ({0, 1}b)+
f+
IV−→ {0, 1}t (mapping as a function)

Thus, for all M ∈ M., MDfIV,pad(M) = f+
IV(pad(M)). An illustration is given in figure 1. Padding

rule is essential to make the message size compatible with the domain of f+
IV as well as to keep the

hash function collision preserving. In this paper, we will mainly study padding rules of MD and its
different variants.

Fig. 1. The classical sequential iteration of a compression function.

Padding Rules. The simplest possible (must be injective) padding rule is pad0(M) = M‖10d

where d is the smallest nonnegative integer such that |M |+ 1 + d is a multiple of b. However, pad0

may not be sufficient to show the collision resistance property of MD under the only assumption
that f is collision resistant. We show that there is a collision resistant compression function f with

a collision pair for MDfIV,pad0
, the MD hash based on f using pad0 padding rule. Moreover, the same

result is true for any other “simply defined” padding rule which is not suffix-free (see Theorem 1
in section 3.3).

Definition 2. Let X,Y ∈ {0, 1}∗. We call X a suffix of Y if there exists a binary string Z such
that Y = Z‖X. A padding rule pad is called suffix-free if, for any M 6= M ′, pad(M) is not a suffix
of pad(M ′).

Here, we list some known padding rules. In crypto-1989, Damg̊ard and Merkle independently pro-
posed the classical MD iteration, but with different padding rules. Besides Merkle’s and Damg̊ard’s
padding rule, Sarkar defined a generalized version of Merkle’s padding rule which has message space
{0, 1}∗ unlike Merkle’s padding rule where message space is {0, 1}2s−1 for some fixed s.

1. Merkle’s padding rule : The message space M = {0, 1}2s−1 for some fixed s (we usually
choose s = 64 or 128) and the padding rule is defined as

padmerk(M) = M ‖ 10d ‖ lens(M)

where d is the smallest nonnegative integer such that d + (|M | + 1 + s) is a multiple of b and
lens(M) represents the s bit binary representation of |M |. The classical MD hash function uses
Merkle’s padding rule. For example, SHA-2 hash function is nothing but MD hash function
with Merkle’s padding rule for s = 64. Note that Merkle’s padding rule can hash messages of
maximum possible size 2s − 1.

2. Damg̊ard’s padding rule : The message space for Damg̊ard’s padding rule is {0, 1}∗. He
used different padding rule paddamg which does not need to pad length of the message but it
pads every message block by a single bit 0 or 1 depending on whether it is first block or not
and finally, it pads one complete block representing the amount of 0-padding. More precisely,
let M‖0d = x1‖ · · · ‖xk where |xi| = b − 1 and d is the smallest nonnegative integer such that
|M |+ d is multiple of b− 1. Now,

paddamg(M) = 0 ‖ x1 ‖ 1 ‖ x2 ‖ · · · ‖ 1 ‖ xk ‖ lenb(d)

One disadvantage of using Damg̊ard’s padding is that for large messages it is not as efficient as
Merkle’s length padding as it needs more number of padded bits. However, unlike padmerk, it
can be applied to any arbitrary messages.

3. Sarkar’s padding rule : Sarkar defined a new padding rule which can be applied to any tree
based iteration which includes the classical sequential iteration. The padding rule is defined as

padsarkar(M) = 0 ‖ X0 ‖ 0d0 ‖ 1 ‖ X1 ‖ 0d1 ‖ · · · ‖ 1 ‖ Xk ‖ 0dk

where X0 = M , Xi = χ(Xi−1), 1 ≤ i ≤ k and χ(x) denotes the smallest binary representation
of |x|. Let k be the least positive integer such that |Xk| ≤ b. The di’s are smallest nonnegative
integer so that |Xi|+ di is a multiple of b− 1. Note that, it can handle arbitrary messages and
needs O(log(|M |) × log∗(|M |)) many padded bits where log∗ is much slower function compare
to log (see [16] for more details).

Table 1. A comparison table for different padding rules with an underlying compression function f :
{0, 1}b+t → {0, 1}t. pad0 represents the 10d padding rule defined in this section and padlength represents the
suffix padding rule defined in the section 3.2. Padding length is given in terms of order. The last column
represents when the hash function is collision secure.

padding rule message space padding length assumption on f

padmerk [10] {0, 1}≤2s−1 b collision-secure

paddamg [5] {0, 1}∗ |M | collision-secure

padsarkar [16] {0, 1}∗ log |M | log∗ |M | collision-secure

padlength {0, 1}∗ log |M | collision-secure

pad0 {0, 1}∗ b (t− 1)-bit collision-secure

It is straightforward to see that all these padding rules are suffix-free (we leave it for readers to
verify). We provide a simple example of suffix-free padding rule padlength which needs O(log(|M |))
many bits. Basically, we apply Damg̊ard’s padding rule to the length of the message instead of
applying it to the whole message. The precise definition of the padding rule can be found in sec-
tion 3.2 and it is parameterized by a parameter s. Note that for any choice of s, the message space
of this padding rule is {0, 1}∗. This padding is so far the most efficient padding rule (in terms of
the number of padding bits) and if the message size is less than 263 then this padding rule with
s = 64 is same as Merkle’s padding rule. Therefore in practice, we can apply MD hash function as
long as message size is less than 263. In table 1, we make a comparison for all these padding rules
with respect to message space M, length of the padded bits for a message M and how it preserves
the collision security.

3 Characterization of Collision Preserving Padding Rules

In this section, we characterize all padding rules applied to MD hash function preserving the collision
resistant property. We first show that suffix-free padding rule is sufficient to preserve collision
resistant and then we provide some simple examples of suffix-free padding rules which are better
than the known padding rules in terms of the padding size and the message space, in which padding
rule can be applied. Finally, we show that suffix-free property is also necessary to preserve collision
resistant property.

3.1 Sufficient condition of collision-preserving padding

For any f : {0, 1}b+t → {0, 1}t and h ∈ {0, 1}t we have defined the iterated function f+
h :

({0, 1}b)+ → {0, 1}t. We can extend the definition to the domain ({0, 1}b)∗ by defining f+
h (λ) = h

where λ is the empty bit string. It is easy to see that if X1 ∈ ({0, 1}b)k1 and X2 ∈ ({0, 1}b)k2 then

f+
h (X1‖X2) = f+

h′(X2) where h′ = f+
h (X1).

Now we provide basic intuitive lemma whose immediate corollary is that the suffix-free padding rule
preserves collision resistant for MD hash function. The lemma says that if we have free-start collision
for iterated hash f+ (i.e., f+

h (X) = f+
h′(X

′)) with same length then there must be an intermediate
collision during computations of f+

h (X) and f+
h′(X

′). A computation of f+
h (x1, · · · , xk) means that

the sequence of computations of hi = f(hi−1, xi), 1 ≤ i ≤ k, where h0 = h.

Lemma 1. (basic lemma)
Let f : {0, 1}b+t → {0, 1}t and (h, x1, · · · , xk) 6= (h′, x′1, · · · , x′k) where h, h′ ∈ {0, 1}t and x1,x′1,· · · ,
xk, x

′
k ∈ {0, 1}b. Then,

f+
h (x1, · · · , xk) = f+

h′(x
′
1, · · · , x′k)⇒ f(z, xi) = f(z′, x′i), (z, xi) 6= (z′, x′i) for some 1 ≤ i ≤ k

where z = f+
h (x1, · · · , xi−1) and z′ = f+

h′(x
′
1, · · · , x′i−1).

Proof. Define h0 = h, h′0 = h′, hi = f+
h (x1, · · · , xi) and h′i = f+

h′(x
′
1, · · · , x′i), 1 ≤ i ≤ k. Now we

restate the statement of the lemma as follows.

Given that hk = h′k and (h0, x1, · · · , xk) 6= (h′0, x
′
1, · · · , x′k) there must exist 0 ≤ i < k such that

(hi, xi+1) 6= (h′i, x
′
i+1) but hi+1 = h′i+1.

Thus, we have a collision f(hi, xi+1) = hi+1 = h′i+1 = f(h′i, x
′
i+1). To prove that there exists

above such i, we use the contradiction method. So assume that, for all i, it is not true. Therefore,
for all 1 ≤ i < k, hi+1 = h′i+1 implies that (hi, xi+1) = (h′i, x

′
i+1). Starting from hk = h′k we have

(hk−1, xk) = (h′k−1, x
′
k). Since h′k−1 = hk−1 we also have (hk−2, xk−1) = (h′k−2, x

′
k−1) and so on.

Thus we must have (h0, x1, · · · , xk) = (h′0, x
′
1, · · · , x′k) which is not true. Hence the claim is proved

by contradiction. ut

Recall that, Hf
IV,pad(M) = f+

IV(pad(M)) for a padding rule pad : M → ({0, 1}b)+. Here we fix an
initial value IV and hence we are only interested in a single hash function and we write H := MDfpad.
The computation of padding rule must be injective. Otherwise we will be able to find a collision
of the hash function easily for any choice of underlying compression function. More precisely, if we
have two messages M 6= M ′ such that pad(M) = pad(M ′) then clearly Hf

IV,pad(M) = Hf
IV,pad(M ′)

for any f . Since we usually choose a simply defined padding rule we can assume that we will be
able to find efficiently a collision pair (M,M ′) of the padding rule if it is not injective. Now we want
to classify all padding rules such that MD hash functions based on these padding rule preserves
collision security for any choice of initial value. Here we show that this class is nothing but the set
of all suffix-free padding rules.

Theorem 1. Sufficient Condition for collision-preserving padding
If pad is suffix-free padding rule then given any collision pair (M,M ′) for MDfpad we can construct
a collision pair of f efficiently. Thus, MDfpad is preserving (ε, ε)-collision security for any ε > 0.

Proof. Let pad(M) = X and pad(M ′) = X ′. Without loss of generality we assume that |X| ≤ |X ′|.
Let X ∈ ({0, 1}b)k and X ′ = (Z, Y) where Y ∈ ({0, 1}b)k. Define h′ = f+

h (Z). As (M,M ′) is a
collision pair, f+

h (X) = f+
h (X ′) and hence fh(X) = fh′(Y) where both X and Y are members of

({0, 1}b)k and X 6= Y (since pad is suffix-free and hence X is not a suffix of X ′). Thus, by using
the above basic lemma 1 we must have a collision for f in the computation of f+

h (X) and f+
h′(Y).

Since the computation of f+
h (X ′) includes the computation of f+

h′(Y), we are done. The collision
advantage for f is at least the collision advantage of MD hash function. Proving the efficiency of
the collision finding for f is simple as we need to compute at most (|M | + |M ′|)/b computations
of f where (M,M ′) is a collision pair generated from a collision finding algorithm for MD hash
function. ut

3.2 Simple Examples of suffix-free Padding Rules

We would like to note that known padding rules such as Damg̊ard’s padding rule, Merkle’s padding
rule, Sarkar’s padding rule are all suffix-free.

Proposition 1. The padding rules padmerk, paddamg, and padsarkar are suffix-free. Hence the Merkle-
Damg̊ard hash function based on these padding rules preserves the collision security.

It is straightforward to verify and so we leave it for readers to verify. Recall that Damg̊ard
and Sarkar’s padding rules have domain {0, 1}∗ whereas the Merkle’s padding rule has domain
{0, 1}2d−1 for some fixed d. Damg̊ard padding rule pads O(|M |) bits to the message M whereas
Sarkar’s padding rule needs O(log∗ |M | log |M |) many bits pad where log∗(|M |) is much slower
function compared to log(|M |). Now we propose a much simpler padding rule which is suffix-free
and which takes O(log(|M |)) many padded bits.

Let χs(|M |) denote the smallest multiple of s-bit binary representation of |M |. One can fix a
suitable integer s, such as 8,32,64 etc. In other words, we first have a binary represent of |M | and
then add a sequence of 0’s in the beginning of the length representation so that the size becomes
multiple of s. Now we write χs−1(|M |) = p1‖ · · · ‖p`−1‖p` where |pi| = s− 1 for 1 ≤ i ≤ `. Let d be
the smallest non-negative integer such that (d+ |M |+ `s) is a multiple of b. Now we define

padlength(M) = M ‖ 0d ‖ 0 ‖ p1 ‖ 1 ‖ p2 ‖ 1 ‖ · · · ‖ p`.

By definition of d, the size of padlength becomes multiple of b. It is easy to see that this padding
rule pads d+ `s many bits which is at most b+ dlog(|M |)e+ d log(|M |)

s−1 e. So the number of padding
bits for this padding rule is O(log |M |). Moreover, it can also be applied to arbitrary messages. Now
we prove that it is a suffix-free padding rule. By using theorem 1, the MD hash function with this
padding rule preserves collision security.

Lemma 2. The padding rule padlength is suffix-free.

Proof. Suppose padlength(M ′) = (X, padlength(M)) for some X,M and M ′. Let us denote

padlength(M) = M0d0p11p2 · · · 1p`, padlength(M) = M ′0d
′
0p′11p′2 · · · 1p′`′ .

Since padlength(M ′) = (X, padlength(M)) we must have `′ = ` and p′i = pi, 1 ≤ i ≤ ` by com-
paring the positions of 1 and 0 bits. So, |M | = |M ′| and hence d = d′. Thus, |padlength(M ′)| =
|padlength(M)|. So, X = λ and padlength(M ′) = padlength(M) and hence M = M ′. This proves that
padlength is suffix-free. ut

Remark 1. Note that for any messages of size up to 263 the padding rule padlength with s = 64 is
same as padmerk. So we can use Merkle’s padding rule and for any message longer than 263 one
can extend the definition by using padlength with s = 64. One may argue that the Merkle’s padding
rule is sufficient enough for all practical messages and the new padding rule only have of theoretical
interest. However, in some applications (such as smart card) short messages appear more frequently
(message sizes are usually less than 215). In those application, we can choose small value of s (such
as 8 or 16). With this padding rule, we save at least 16 bit padding and as a result the hash function
may be faster (since we can save sometimes one compression function invocation which is significant
for short messages) than usual Merkle’s padding rule. So, there are some applications where this

padding rules are practically useful. Note that with s = 16, we can pad any message of arbitrary
length. If we know beforehand that the message size can be large in some application, then s = 32
would be a reasonable choice.

Remark 2. A variant of padlength

Instead of padding length of the message, one can pad the binary representation of the number of
message blocks. The padding rule capturing this notion is defined as follows:

pad′length(M) = M ‖ 10d ‖ 0 ‖ p1 ‖ 1 ‖ p2 ‖ 1 ‖ · · · ‖ p`

where χs−1(d |M |b e) = p1‖ · · · ‖p`−1‖p` and d is the smallest non-negative integer such that (d +
1 + |M | + `s) is multiple of b. This variant actually pads the number of blocks of the message M
instead of length of the message. In terms of order, both padding rule needs O(log |M |) many bits.
However, in most cases of message sizes, the later needs less number of padding bits.

3.3 A Necessary Condition for Collision-preserving Padding Rule

We have shown that any suffix-free property is good for collision-preserving. Now we show that it
is also a necessary condition. To show this let us fix a padding rule pad which is not suffix-free.
Therefore, we also fix M 6= M ′ such that pad(M) is a suffix of pad(M ′). We can do so since we
assume that padding rule is simply defined function and hence it must be easy to find such a pair.
Now we first construct a compression function f given a collision secure compression function f ′

(if there is no such then the question is moot) such that (M,M ′) is a collision pair of Hf
pad. Then

we prove that finding collision of f given M and M ′ and the oracle f is as hard as finding collision
of f ′. This proves that suffix-free padding rule is necessary to have a collision-preserving MD hash
function for any compression function and for any initial value.

Theorem 2. Suffix-free is necessary condition
Let pad be a fixed padding rule which is not suffix-free. Now, given a collision resistant compression
function f ′ there is a collision resistant compression function f such that the Merkle-Damg̊ard hash
function based on f with the padding rule pad is not collision resistant (by providing a collision pair
of it).

Proof. Let us assume that there is a (t − 1)-bit collision resistant compression function f ′ :
{0, 1}b+t → {0, 1}t−1, otherwise the question is moot. Without loss of generality, let the last bit
of IV is 1. We have fixed a pair (M,M ′) such that pad(M) is a suffix of pad(M ′). Let pad(M ′) =
(X,m)‖pad(M), m ∈ {0, 1}b and X ∈ ({0, 1}b)∗. For simplicity we first assume that X = λ. Define

f(x) =
{
f ′(x) ‖ 0 if x 6= IV‖m
IV if x = IV‖m

Thus, f(IV,m) = IV, a fixed point for f . Now it is easy to see that Hf
pad(M) = Hf

pad(M ′). Now we
have to show that f is collision resistant. Suppose there exists a collision finding algorithm A which
finds collision for f . Let x 6= x′ such that f(x) = f(x′) where A returns the collision pair (x, x′).
Now, it is easy to check that (x, x′) is a collision pair of f ′ too. Since we do not know any collision
algorithm for f ′, f must be collision resistant.

Now consider the case where X ∈ ({0, 1}b)+. We first define f̃(x) = f ′(x)‖0 and compute
IV′ = f̃+

IV(X). Note that the last bit of IV′ is 0 and hence it is different from IV. Since f ′ is a
collision resistant compression function, IV′ should be different from all other intermediate values
in the computation of f̃+

IV(X). Otherwise, we will be able to find collision of f ′ easily. We define

f(x) =
{
f ′(x) ‖ 0 if x 6= IV′‖m
IV if x = IV′‖m

So, f(x) and f̃(x) are same whenever x 6= IV′‖m. Since IV′ is different from all other inter-
mediate values in the computation of f̃+

IV(X), we must have f+
IV(X) = f̃+

IV(X) = IV. Now we
can show that (M,M ′) is a collision pair of Hf

pad. Note that, Hf
pad(M ′) = f+

IV(X,m, pad(M)) =
f+
IV′(m, pad(M)) = f+

IV(pad(M)) = Hf
pad(M). Hence Hf

pad(M) = Hf
pad(M ′). Now we show that the

compression function f is also collision resistant. Suppose not, x 6= x′ and f(x) = f(x′) then clearly
f ′(x) = f ′(x′) if x, x′ 6= IV′‖m. Moreover x or x′ can not be IV′‖m otherwise the last bits of f(x)
and f(x′) will be different. Hence f is collision resistant as long as f ′ is collision resistant. The col-
lision pair (M,M ′) also does not help to find a collision since M and M ′ are efficiently computable
and we can use M and M ′ for any collision finding algorithm for f ′. ut

3.4 Is padlength optimum?

We have already shown that MD hash with a padding rule pad must be suffix-free to preserve the
collision security property. We also have provided an example of suffix-free padding rule padlength

which requires O(log |M |) bits. A natural question is to ask whether it is the optimum in terms of
the padding bits. Let pad be any suffix-free padding rule and Ni denotes the number of all messages
which has i bits after applying the padding rule pad. In other words, Ni = |pad−1({0, 1}i)|. By
using the property that pad is suffix-free one can find the following relation:

k∑
j=1

Nj2k−j ≤ 2k.

If pad requires asymptotically d(n) bits for n-bit messages then
∑n+d(n)
j=1 Nj ≥ 2n. Using these two

relations one may be able to show that d(n) ≥ log(n). However, we have no strong evident to claim
that. We postulate this as a conjecture.
Conjecture: For any suffix-free padding rule pad : {0, 1}∗ → ({0, 1}b)+, |pad(M)| ≥ |M |+ log |M |
for sufficiently large |M |.

4 Length padding is redundant for a variant of MD

Fig. 2. A variant of MD without length padding.

In this section, we prove that the length padding is unnecessary if we use a small variant of
Merkle-Damg̊ard hash function and the underlying compression function is little more secure than
collision resistant. We define the variant of the Merkle-Damg̊ard hash function as follows.

Algorithm 1 A Variant of Merkle-Damg̊ard Hash Function
Require: f : {0, 1}t × {0, 1}b → {0, 1}t, M ∈ {0, 1}∗.
1: d is the remainder when we divide t− |M | − 1 by t.
2: partition M10d = M1‖ · · · ‖M`, M1, · · · , M` ∈ {0, 1}b
3: h0 = 0t

4: for i = 1 to ` do
5: hi = f(hi−1, Mi)
6: if hi = 0t then
7: hi = 0t−11
8: end if
9: end for

10: return h`.

We simply apply MD hash function with pad0 padding and with a checking in internal chaining
value. If we ever come up with 0t as a chaining value then we simply change the chaining value
into 0t−11. So we can think that it is MD hash function based on a compression function f ′ defined
below.

f ′(x) =
{
f(x) if f(x) 6= 0t

0t−11 if f(x) = 0t

Note that 0 = 0t is also the initial value of the Merkle-Damg̊ard hash function. Suppose
MDf

′

0 (M) = MDf
′

0 (M) with M 6= M ′. Then by using simple backward induction on the padded
messages, we can prove that either there is a collision of f ′ or there is a message x ∈ {0, 1}b+t such
that f ′(x) = 0. By definition of f ′, there does not exist any such x. If (x, x′) is a collision pair of f ′

then either it is also a collision for f or f(x) = 0t and f(x′) = 0t−11. So either we have a collision of
f or we have collision on the first (t−1) bits of f with the collision value 0t−1. Clearly, satisfying the
second condition seems much harder than finding collision for any reasonable practical construction
of a compression function. Thus, we have proved the following theorem.

Theorem 3. Suppose it is hard to find collision of f or it is hard to find X0 and X1 such that
f(X0) = 0t and f(X1) = 0t−11 then the hash function based on f defined in Algorithm 5 is collision
resistant.

Corollary 1. Suppose it is hard to find collision on the first (t− 1)-bits of a compression function
f then the hash function based on f defined in Algorithm 5 is collision resistant.

Remark 3. In the last section, we have proved that the suffix-free padding is necessary to preserve
collision security for MD hash function. To do so, we provide a counter example of the underlying
compression function (easy to get the initial value 0t even though it is collision secure). On the
contrary, in this section, we have shown that any injective padding rule, not necessarily suffix-free,
is sufficient to have collision security. Actually, we make sure that the counterexample illustrated
in the section 3.3, does not appear by imposing the if condition (step-6 of the Algorithm 5). This

is the main reason, we do not contradict. Moreover, the variant actually do not preserve collision
security according to the definition 1. But, it says that if we have little more security of the under-
lying compression function than collision security, then the hash function is collision secure. The
additional security assumption seems to hold for any known practical secure hash function.

5 Three-property preserving Hash Function

Fig. 3. A variant of BCM preserving 2nd preimage.

Now we consider salted hash function which outputs the hash value with a salt K ∈ {0, 1}s
which is chosen randomly and keep it public (unlike message authentication code, hash function
should be publicly computable). We denote the salted hash function as HK(·) where K is the salt.
We define three basic securities of a hash function for a salted hash function. These are collision,
preimage and second-preimage and its corresponding advantages of adversaries is defined as

Advcoll
H (A1) = Pr[A1(K)→ (M,M ′) : HK(M) = HK(M ′),M 6= M ′]

Adv2PI
H (A3) = Pr[A3(K,M)→M ′ : HK(M) = HK(M ′),M 6= M ′]

AdvPI
H (A2) = Pr[A(K, z)→M : HK(M) = z]

where probabilities are computed over the internal randomness of the adversaries, uniform distribu-
tion of K, z and M chosen from {0, 1}s, {0, 1}t, and {0, 1}` for some `, respectively. Now we define
a variant of BCM [1] (backward chaining mode) which is simpler and needs less salt size. Recall
that BCM uses the padding rule padmerk and its salt size is b+ 2t. In this paper, we use salt of size
2t only. Here we would like to make a note that in the previous version [12] we have proposed a
design with t-bit salt which unfortunately does not preserve the 2nd preimage for all messages. So
the proposed claim (Theorem 4 in [12]) is actually wrong. However, we have corrected the design
at the cost of extra t-bit salt. We denote the hash function as BCMf

pad0
since it uses the simplest

injective padding rule pad0. One may use some other padding rules.
A hash family H := {HK}K∈{0,1}s based on a compression function f is said to almost preserve

(ε, ε′)-collision security if given an efficient algorithm A with at least ε collision advantage for HK ,
we can construct (write down its code modulo the subroutine A) an efficient algorithm A′ with at
least ε′ collision advantage for f ′ i.e. either we have collision of f or we have two preimages of 0t and
0t−11 both. We say that H preserve (ε, ε′)-second preimage security if given an efficient algorithm
A with at least ε second preimage advantage for HK , we can construct (write down its code modulo
the subroutine A) an efficient algorithm A′ with at least ε′ second preimage advantage for f .

Algorithm 2 A Variant of Merkle-Damg̊ard Hash Function BCMf
pad0

Require: f : {0, 1}t × {0, 1}b → {0, 1}t and M ∈ {0, 1}∗.
1: d is the remainder when we divide t− |M | − 1 by t.
2: partition M10d = M1‖ · · · ‖M`, M1, · · · , M` ∈ {0, 1}b
3: h0 = 0t

4: for i = 1 to ` do
5: if i = `− 1 then
6: h` = f(h`−1 ⊕K1, M`−1)
7: else if i = ` then
8: h` = f(h`−1 ⊕K2, M` + M`)
9: else

10: hi = f(hi−1 ⊕Mi+1[t], Mi) \\ X[t] represents the first t-bits of X.
11: end if
12: if hi = 0t then
13: hi = 0t−11
14: end if
15: end for
16: return h`.

For MD construction or BCM constructions, the preimage-preserving property is easy to show
and we skip the details. Note that in our definition of preimage we choose the target message
randomly and then we want to find a message whose hash value matches the target. Inverting
BCMpad0

or Merkle-Damg̊ard reduces to inverting the compression function by looking at the last
invocation of the compression function.

Theorem 4. BCMpad0
almost preserves (ε, ε)-collision security. Moreover, if Pr[f(X) ∈ {0t, 0t−11} :

X
∗← {0, 1}b+t] ≤ ν (ideally it should be close to 1

2t−1) then BCMpad0
preserves (ε, (ε−ν)

`+1)-second
preimage security for any messages with at least ` complete blocks.

Proof. We first note that for any M 6= M ′, BCMpad0
(M) = BCMpad0

(M ′) then there must be a col-
lision in f ′. This is due to the same reason we have for the modified Merkle-Damg̊ard construction.
Note that f ′ does not output 0t and 0t is the initial value. Thus, it almost preserves (ε, ε)-collision
security. To prove the second preimage-preserving property, let A be a second preimage attacker of
BCMpad0

for any randomly chosen message of size s ≥ b. For the time being let us assume s = `b.
Now we write a second preimage attacker A′ for f . Given a random X := (h,m) ∈ {0, 1}b+t, A′
works as follows: Let hj = f+(M1, . . . ,Mj), ∀j.
1: Choose uniformly i from {1, 2, . . . , ` + 1}, M = (M1, . . . ,M`) from {0, 1}s and (K1,K2) from
{0, 1}2t.

2: if hj = 0t or 0t−11 for some j then
3: Abort
4: end if
5: if i ≤ `− 1 then
6: write Mi+1 = f ′+IV (M1, . . . ,Mi−1)⊕ h, Mi = m
7: else if i = ` then
8: write K1 = f ′+IV (M1, . . . ,Mi−1)⊕ h, Mi = m
9: else

10: write K2 = f ′+IV (M1, . . . ,Mi−1)⊕ h, M` = m⊕ 0t−11
11: end if
12: run A(M1 . . . ,M`,K1,K2) and obtain a message M ′.
13: if BCMpad0

(M) 6= BCMpad0
(M ′) then

14: Abort
15: else
16: If f(h,m) = f(h′,m′) for some (h′,m′) 6= (h,m) obtained from the computation BCMpad0

(M ′)
17: return (h′,m′).
18: end if

In line 16 we are always to able to find a collision pair of f since during the computation of
BCMpad0

(M) no chaining value is 0t or 0t−11 and hence we should have a collision of f (as mentioned
for collision-preserving property). The collision pair eventually contain (h,m) has probability 1

`+1
as i is chosen randomly. It is also easy to see that the inputs for A is uniformly distributed. ut

6 Conclusion

We study padding rules in different aspects which is very essential for designing hash function.
Appending 1 followed by a suitable size sequence of 0 and binary representation of length is a very
standard way to have padding for hash function. But, this padding rule can only be applied for
messages of size at most some specified large value. Both for theoretical and practical point of views,
we can look for padding rules which can handle arbitrary messages. Padding rules by Damg̊ard and
Sarkar are some known examples for this. Here we have shown that suffix-free padding rule is
sufficient to preserve collision resistant and as a result we construct a simple padding rule which is
more efficient than padding rules both by Damg̊ard and Sarkar. We have also proved that suffix is a
necessary condition preserving collision security. Thus, it would be interesting to see that whether
padding rule is optimum or not. So we propose the following open problem.

Open Problem : Try to find suffix-free padding rule which needs less than logarithm number
of bits. On the other hand, we can try to prove that asymptotically any suffix-free padding rule
needs at least logarithm number of bits.

We believe that the second option is more feasible. We also have shown that the simplest
padding such as padding 10d only can be sufficient for collision preserving property if we restrict
collision resistant assumption of the underlying compression function for the first (t−1) bits. Thus,
the simplest Merkle-Damg̊ard hash function becomes collision resistant which does not have any
overhead costs due to length of the message. We also study a simple variant of MD hash function
which preserves collision resistance, second preimage as well as preimage resistance. Thus we believe
that padding length is not needed if we choose initial value properly.

References

1. E. Andreeva and B. Preneel A Three-Property-Preserving Hash Function. To appear in Selected Areas
in Cryptography, 2008.

2. M. Bellare and P. Rogaway. Collision-Resistant Hashing: Towards Making UOWHFs Practical. Advances
in Cryptology - Crypto’97, Lecture Notes in Computer Science, vol 1294, Springer-Verlag, 1997, pp. 470-
484.

3. M. Bellare and P. Rogaway. Introduction to Modern Cryptography. Available at http://www-
cse.ucsd.edu/ mihir/cse207/classnotes.html

4. R. Cramer and V. Shoup. Using Hash Functions as a Hedge against Chosen Ciphertext Attack. Advances
in Cryptology - Eurocrypt’00, Lecture Notes in Computer Science, vol 2442, Springer-Verlag, pp. 275-288,
2000.

5. I. B. Damg̊ard. A Design Principle for Hash Functions. Advances in Cryptology - Crypto’89, Lecture
Notes in Computer Sciences, vol 435, Springer-Verlag, pp. 416-427, 1989.

6. I. B. Damg̊ard. Collision Free Hash Functions and Public Key Signature Schemes. Advances in Cryptol-
ogy - Eurocrypt’87, Lecture Notes in Computer Sciences, Vol. 304, Springer-Verlag, pp. 203-216, 1987.

7. J. K. Gibson. Discrete logarithm hash function that is collision free and one-way. IEE Proceedings-E
138, pp. 407-410, 1991.

8. Don. B Johnson. Improving Hash Function Padding. NIST hash workshop 2005. Available at
http://csrc.nist.gov/groups/ST/hash/documents/Johnson Padding.pdf

9. J. Kelsey and B. Schneier. Second Preimages on n-bit Hash Functions for Much Less than 2n Work.
Advances in Cryptology - Eurocrypt 2004, Lecture Notes in Computer Scince, Springer-Verlag, vol 3494,
pp 474-490. .

10. R. Merkle. One Way Hash Functions and DES. Advances in Cryptology - Crypto’89, Lecture Notes in
Computer Sciences, Vol. 435, Springer-Verlag, pp. 428-446, 1989.

11. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications, Pro-
ceedings of the Twenty First Annual ACM Symposium on Theory of Computing, ACM Press, pp 33-43,
1989.

12. M. Nandi Characterizing Padding Rules of MD Hash Functions Preserving Collision Security, Proceed-
ing of Information Security and Privacy, Lecture Notes in Computer Science, Springer Volume 5594/2009,
pp 171-184, 2009.

13. NIST/NSA. FIPS 180-2 Secure Hash Standard. August, 2002. Online available at
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.

14. P. Rogaway, Formalizing Human Ignorance: Collision-Resistant Hashing without the Keys. Progress in
Cryptology - VIETCRYPT 2006, Vol 4341/2006, pp 211-228, 2007

15. P. Rogaway, T. Shrimpton. Cryptographic Hash Function Basics: Definitions, Implications and sepa-
rations for Pre-image resistance, Second Pre-image Resistance and Collision Resistance, Fast Software
Encryption’04, Lecture Notes in Computer Scince, Springer-Verlag, vol 3017. 2004.

16. P. Sarkar. Domain Extender for Collision Resistant Hash Functions: Improving Upon Merkle-Damgard
Iteration. Discrete Applied Mathematics Volume 157, Issue 5, 6 March 2009, pp 1086-1097.

17. D. R. Stinson. Cryptography : Theory and Practice, Second Edition, CRC Press, Inc.
18. D. R. Stinson. Some observations on the theory of cryptographic hash functions. Designs, Codes and

Cryptography, Vol 38, 2006, pp 259-277.

