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Abstract. Computational puzzles are mildly difficult computational problems that require resources (processor
cycles, memory, or both) to solve. Puzzles have found a variety of uses in security. In this paper we are concerned
with client puzzles: a type of puzzle used as a defense against Denial of Service (DoS) attacks. Before engaging in a
resource consuming protocol with a client, a server demands that the client solves a freshly generated client puzzle.
Despite their widespread use, the lack of formal models for security of client puzzles prevents a full analysis of
proposed puzzles and, more importantly, prevents rigorous proofs for the effectiveness of puzzles as a DoS defense.
The main contribution of this paper is a formal model for the security of client puzzles as a stepping stone towards
solving the above problems. We clarify the interface that client puzzles should offer and give two security notions
for puzzles. Both functionality and security are inspired by, and tailored to, the use of puzzles as a defense against
DoS attacks. The first notion – puzzle unforgeability – requires that an adversary is unable to produce valid looking
puzzles on its own. The second notion – puzzle-difficulty – requires that an adversary spends at least an appropriate
amount of resources solving puzzles. Our definitions fill an important gap: breaking either of the two properties
immediately leads to successful DoS attacks. We illustrate this point with an attack against a previously proposed
puzzle construction. We show that a subtle flaw renders the construction forgeable and we explain how to exploit
this flaw to mount a DoS attack on certain protocols that use this puzzle.
We also provide a generic construction of a client puzzle. Our construction uses a pseudorandom function family
to provide unforgeability and a one way function for the difficulty. We prove our generic construction meets our
definitions of unforgeability and difficulty for client puzzles. Finally, we discuss and analyze (in the random oracle
model) a practical instantiation of our construction based on hash functions.

1 Introduction

A Denial of Service (DoS) attack on a server aims to render it unable to provide some service by depleting its internal
resources. For example, the famous TCP-SYN flooding attack [9] prevents further connections to a server by starting
a large number of TCP sessions which are then left uncompleted. The effort of the attacker is rather small, whereas
the server quickly runs out of resources (which are allocated to the unfinished sessions).

One countermeasure against connection depletion DoS attacks uses client puzzles [14]. When contacted by some
unauthenticated, potentially malicious client to execute some protocol and before allocating any resources for the
execution, the server issues a client puzzle – a moderately hard computational problem. The server only engages in
the execution of the protocol (and thus allocates resources) when the client returns a valid solution to the puzzle. The
idea is that the server spends its resources only after the client has spent a significant amount of resources itself. To
avoid the burden of running the above mechanism when no attackers are present, the defense only kicks in whenever
the server resources drop below a certain threshold.

Client puzzles have received a lot of attention in the cryptographic community [2, 5, 10, 11, 14, 23, 26, 27] but most
of the prior work consists of proposing puzzle constructions and arguing that those constructions do indeed work.



Although sometimes technical, such security arguments are with respect to intuitive security notions for puzzles since
rigorous formal models for the security of such puzzles are missing. The absence of such models has (at least) two
undesirable consequences. On the one hand the investigation of puzzle constructions usually concentrates on some
security aspects and omits others which are of equal importance when puzzles are used as part of other protocols.
More importantly, the absence of formal models prevents a rigorous, reduction-based analysis of the effectiveness of
puzzles against DoS in the style of modern cryptography (where the existence of a successful DoS attacker implies the
existence of an attacker against client puzzles).

In this paper we aim to solve the first problem outlined above as a first key step towards solving the second one.
The main contribution of this paper is a formal framework for the design and analysis of client puzzles. In addition to
fixing their formal syntax, we design security notions inspired by, and therefore tailored for, the use of client puzzles
as a defense against DoS attacks. Specifically, we require that an adversary cannot produce valid puzzles on his own
(puzzle-unforgeability) and that puzzles are non-trivial – the client needs indeed to spend at least a specified amount
of resources to solve them – (puzzle difficulty). The use of client puzzles that do not fulfill at least one of our notions
immediately leads to a successful DoS attack. Our definitions use well-established intuition and techniques for defining
one-wayness and authentication properties. Apart from some design decisions regarding the measure for resources and
the precise oracles an adversary should have access to, there are no deep surprises here. However, we highlight that
the lack of rigorous definitions such as those we put forward in this paper is dangerous. Constructions that are secure
at an intuitive level, may be in fact insecure when used. Indeed, we explicitly demonstrate that a popular construction,
that does not meet our notion of unforgeability, does not protect and in fact facilitates DOS attacks in systems that use
it.

Furthermore, we give a generic construction of a client puzzle that is secure in the sense we define. Many ex-
isting client puzzle constructions can be obtained as an instantiation of our generic construction, with only minor
modifications if any. Our construction uses a pseudorandom function family to provide puzzle-unforgeability and
puzzle-difficulty is obtained from a one-way function given a large part of the preimage. Difficulty here does not mean
hardness of computation, but rather non-triviality. We prove our construction secure via an asymptotic reduction for
unforgeability and a concrete reduction for difficulty. Next, we discuss our results in more details.

Our Contribution

FORMAL SYNTAX OF A CLIENT PUZZLE. Our first contribution is a formal syntax for client puzzles. We define
a client puzzle as a tuple of algorithms for system setup, puzzle generation, solution finding, puzzle authenticity
checking, and solution checking. The definition is designed to capture the main functionality required from client
puzzles from the perspective of their use against DoS attacks.

SECURITY NOTIONS FOR CLIENT PUZZLES. The use of puzzles against DoS attacks also inspired the two (orthogo-
nal) security notions for client puzzles that we design.

To avoid storing puzzles handed out to clients (a resource consuming task), the server gives puzzles away and
expects the client to hand back both the puzzle and its solution. Obviously, the server needs to be sure the client
cannot produce puzzles on its own, as this would lead to trivial attacks. We remark that this aspect is often overlooked
in existing constructions since it is only apparent when puzzles are considered in the precise context for which they
are intended. We capture this requirement via the notion of puzzle-unforgeability. Formally, we define a security
game where the adversary is given certain querying capabilities (he can for example request to see puzzles and their
solutions, can verify the authenticity of puzzles, etc) and aims to output a new puzzle which the server deems as valid.

The second notion, puzzle-difficulty, reflects the idea that the client needs to spend a certain amount of resources
to solve a puzzle. In our definition we took adversary resources to mean “clock cycles”, as this design decision allows
us to abstract away undesirable details like the distributed nature of many DoS adversaries. We define a security game
where the adversary is given various querying capabilities sufficient for mimicking a DoS attack-like environment: he
can see puzzles and their solutions, obtain solutions for puzzles he chooses, etc. The challenge for the adversary is
to solve a given challenge puzzle spending less than a certain number of clock cycles, with probability better than a
certain threshold.

AN ATTACK ON THE JUELS AND BRAINARD PUZZLES. Most of the previous work on puzzles concentrates exclu-
sively on the difficulty aspect and overlooks, or only partially considers, the unforgeability property. One such work
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is the puzzle construction proposed by Juels and Brainard [14]. We demonstrate the usefulness of our definitions by
showing the Juels and Brainard construction is forgeable. We then explain how a system using this kind of puzzle can
be attacked by exploiting the weakness we have identified.

GENERIC CONSTRUCTIONS. We provide a generic construction of a client puzzle inspired by the Juels and Brainard
sub-puzzle construction [14]. First, we evaluate a pseudorandom function (PRF), keyed by some secret value, on
inputs including a random nonce, hardness parameter and a system specific string. This stage ensures uniqueness of
the puzzle and the desired unforgeability; only the server that possesses the hidden key is able to perform this operation
and hence generate valid puzzles. The remaining information to complete the puzzle is then computed by evaluating
a one way function (OWF), for which finding preimages has a given difficulty, on the output of the PRF; the goal in
solving the puzzle is to find such a preimage given the inputs to the PRF and the target. The idea is that the client would
need to do an exhaustive search on the possible preimage space to find such a preimage. We certify the intuition by
rigorous proofs that the generic construction meets the security definitions that we put forth, for appropriately chosen
parameters. Importantly, many secure variants of previously proposed constructions can be obtained as instances of
our generic construction. For example, the puzzle constructions proposed by Juels and Brainard [14] puzzle and the
two-party variant of the Waters et al. puzzles [27] can be seen as variants of our generic construction. Finally, we
provide concrete security bounds for the first of these puzzles. We do so in the random oracle model which we use to
obtain secure and efficient instantiations of the two primitives used by our generic construction.

Related Work

MERKLE PUZZLES. The use of puzzles in cryptography was pioneered by Merkle [18] who used puzzles to establish
a secret key between parties over an insecure channel. Since then the optimality of Merkle puzzles has been analyzed
by Impagliazzo and Rudich [12] and Barak and Mahmoody–Ghidary [3]. The possibility of basing weak public key
cryptography on one-way functions, or some variant of them was recently explored by Biham, Goren and Ishai [4].
Specifically, a variant of Merkle’s protocol is suggested whose security is based on the one-wayness of the underlying
primitive.

CLIENT PUZZLES. Client puzzles were first introduced as a defense mechanism against DoS attacks by Juels and
Brainard [14]. The construction they proposed uses hash function inversion as the source of puzzle-difficulty. They
also attempt to obtain puzzle-unforgeability but partially fail in two respects. By neglecting the details of how puzzles
are to be used against a DoS attack, the construction suffers from a flaw (which we explain how to exploit later in
this paper) that can be used to mount a DoS attack. Secondly, despite intuitive claims that security is based on the
one-wayness of the hash function used in the construction, security requires much stronger assumptions, namely one-
wayness with partial information about the preimage. The authors also present a method to combine a key agreement or
authentication protocol with a client puzzle, and present a set of informal desirable properties of puzzles. Building on
this work, Aura et al. [2] use the same client puzzle protocol construction but present a new client puzzle mechanism,
also based on hash function inversion, and extend the set of desirable properties.

An alternative method for constructing client puzzles and client puzzle protocols was proposed by Waters et al.
[27]. This technique assumes the client puzzle protocol is a three party protocol and constructs a client puzzle based
on the discrete logarithm problem for which authenticity and correctness can be verified using a Diffie–Hellman based
technique. One of the main advantages of this approach is that puzzle generation can be outsourced from the server to
another external bastion, yet verification of solutions can be performed by the server itself.

More recently Tritilanunt et al.[26] proposed a client puzzle based on the subset sum problem. Schaller et al. [23]
have also used what they refer to as cryptographic puzzles for broadcast authentication in networks.

An interesting line of work analyzes ways to construct stronger puzzles out of weaker ones. The concept of chaining
together client puzzles to produce a new and more difficult client puzzle was introduced by Groza and Petrica [11].
Their construction enforces a sequential solving strategy, and thus yields a harder puzzle. A related work is that of
Canetti, Halevi, and Steiner [5] who are concerned with relating the difficulty of solving one single puzzle to that
of solving several independent puzzles. They consider the case of “weakly”verifiable puzzles (puzzles for which the
solution can only be checked by the party that produced the puzzles). That paper does not consider the use of puzzles
in the context of DoS attacks, and thus is not concerned with authenticity.
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DOS ATTACKS. A classification of remote DoS attacks, countermeasures and a brief consideration of Distributed
Denial of Service (DDoS) attacks were given by Karig and Lee [15]. Following this Specht and Lee [25] give a
classification of DDoS attacks, tools and countermeasures. In [25] the adversarial model of [15] is extended to include
Internet Relay Chat (IRC) based models. The authors of [25] also classify the types of software used for such attacks
and the most common known countermeasures. Other classifications of DDoS attacks and countermeasures were later
given by [7, 19].

A number of protocols have been designed to resist DDoS attacks. The most important examples are the JFK
protocol [1] and the HIP protocol [20]. The JFK protocol of Aiello et al. [1] trades the forward secrecy property,
known as adaptive forward secrecy, for denial of service resistance. The original protocol does not use client puzzles.
In [24] the cost based technique of Meadows [16, 17] is used to analyze the JFK protocol. Two denial of service attacks
are found and both can be prevented by introducing a client puzzle into the JFK protocol.

SPAM AND TIME-LOCK CRYPTO. Other proposals for the use of puzzles include the work of Dwork and Naor who
propose to use pricing function (a particular type of puzzles) to combat junk email [8]. The basic principle is the pricing
function costs a given amount of computation to compute and this computation can be verified cheaply without any
additional information. A service provider could then issue a “stamp duty” on bulk mailings. Finally, Rivest et al.
introduced the notion of timed-release crypto in [21] and instantiate this notion with a time-lock puzzle. The overall
goal of timed-release crypto is to encrypt a message such that nobody, even the sender, can decrypt it before a given
length of time has passed.

Paper Overview We start with a sample client puzzle from Section 2. Our formal definition of a client puzzle and a
client puzzle protocol is in Section 3. In Section 4 we give security notions for client puzzles in terms of unforgeability
and difficulty. We demonstrate that the Juels and Brainard client puzzles is insecure in Section 5. Finally, our generic
construction of a client puzzle is given in Section 6. We also include a sample instantiation based on hash functions
which we analyze in the random oracle model. The Appendix contains additional notation and deferred proofs.

2 An Example Client Puzzle

As an example of a client puzzle we give a brief description of the puzzle generation process for the Juels and Brainard
construction [14]. In our description we refer to the (authorized) puzzle generation entity (or user) as the generator
and the (authorized) puzzle solving entity (or user) as the solver. We use the term “puzzle” from here onwards for
individual puzzle instances. We write {0, 1}t for the set of binary strings of length t and {0, 1}∗ for the set of binary
strings of arbitrary finite length. If x = x0, x1, . . . , xi, . . . , xj , . . . , xn is a bit string then we let x〈i, j〉 denote the sub
string xi, . . . , xj .

For this construction the generator (generally some server) holds a long term secret value s chosen uniformly from
a space large enough to prevent exhaustive key search attacks. The server also chooses a hardness parameter: a pair
Q = (α, β) ∈ N2 which ensure puzzles have a certain amount of difficulty to solve. We let H : {0, 1}∗ 7→ {0, 1}m
be some hash function. To generate a new puzzle the generator performs the following steps to compute the required
sub-puzzle instances Pj for j ∈ {1, 2, . . . , β}:
• A bit string σj is computed as σj = H(s, str, j). The value str has the structure str = t‖M for t some server time

value1 and M some unique value2. We denote xj = σj〈1, α〉 and zj = σj〈α+ 1, m〉.
• A value yj is computed as yj = H(σj) and the sub-puzzle instance is Pj = (zj , yj).
The full puzzle instance is then the required parameters plus the tuple of sub-puzzle instances puz = (Q, str, P =
(P1, P2, . . . , Pβ)). The sub-puzzle instance generation process is summarized in Figure 1.

A solution to a given sub-puzzle Pj is any string x′j such that H(x′j || zj) = yj . The solution to the full puzzle
instance is a tuple of solutions to the sub-puzzles. To verify a potential solution soln = (Q, str, soln1, · · · , solnβ) the
generator verifies each Pj and solnj by checking that H(solnj || zj) = yj for each j. The authenticity of a given
puzzle is checked by regenerating each Pj using s and comparing this to the puzzle submitted.

1 The details of the type of value this is are not described in [14] but here we will assume this is as a bit string.
2 In [14] this is specified as the first message flow of a protocol or some other unique data. Again, we will assume this is encoded

as a bit string since this is not specified.
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Generation Parameters: s, str, j

H(s,str,j)

��
xj || zj

H(σj)

��
solnj = xj

11cccccccccccccccccc
Pj = (zj , yj)

mm[[[[[[[[[[[[[[[[[[

qqccccccccccccccccc

yj

Fig. 1. The Juels and Brainard Sub-Puzzle Instance Generation.

To incorporate this client puzzle into a client puzzle protocol the server allocates buffer slots, by using a hash table
on the values of M , for each puzzle and correct solution submitted. This ensures that only one puzzle instance and
solution are accepted for a given value of M .

3 Client Puzzles

The role of a client puzzle in a protocol is to give one party some assurance that the other party has spent at least a
given amount of effort computing a solution to a given puzzle instance. In this section we give a formal definition of a
client puzzle in the most general sense.

FORMAL SYNTAX OF A CLIENT PUZZLE. A client puzzle is a tuple of algorithms: a setup algorithm for generating
long term public and private parameters, an algorithm for generating puzzle instances of a given difficulty, a solu-
tion finding algorithm, an algorithm for verifying authenticity of a puzzle instance and an algorithm for verifying
correctness of puzzle and solution pairs. We formally define a client puzzle as follows.

Definition 1 (Client Puzzle). A client puzzle CPuz = (Setup, GenPuz, FindSoln, VerAuth, VerSoln) is given by the
following algorithms:

• Setup is a p.p.t. setup algorithm. On input 1k, for security parameter k, it performs the following operations:

• Selects the long term secret key space sSpace, hardness space QSpace, string space strSpace, puzzle instance
space puzSpace and solution space solnSpace.

• Selects the long term puzzle generation key s $← sSpace.
• Assigns params←(sSpace, puzSpace, solnSpace,QSpace,Π) and outputs (params, s).

The tuple params is the public system parameters and as such is not explicitly given as an input to other algorithms.
The value s is kept private by the puzzle generator and Π ∈ params is any additional public information, such as
descriptions of algorithms, required for the client puzzle.

• GenPuz is a p.p.t. puzzle generation algorithm. On input s ∈ sSpace, Q ∈ QSpace and str ∈ strSpace it outputs a
puzzle instance puz ∈ puzSpace.

• FindSoln is a probabilistic solution finding algorithm. On inputs puz ∈ puzSpace and a run time τ ∈ N it outputs
a potential solution soln ∈ solnSpace after at most τ clock cycles of execution.

• VerAuth is a d.p.t. puzzle authenticity verification algorithm. On inputs s ∈ sSpace and puz ∈ puzSpace this
outputs true or false.

• VerSoln is a deterministic solution verification algorithm. On inputs puz ∈ puzSpace and a potential solution
soln ∈ solnSpace this outputs true or false.

For correctness we require that if (params, s)←Setup(1k) and puz←GenPuz(s,Q, str), for Q ∈ QSpace and str ∈
strSpace, then

• VerAuth(s, puz) = true and
• ∃ τ ∈ N such that soln←FindSoln(puz, τ) and VerSoln(puz, soln) = true.
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Remark 1. Typically client puzzles use a set of system parameters, most notably system time, as input to the puzzle
generation algorithm. This is so the server has a mechanism for expiring puzzles handed out to clients. In our model
we use str to capture this input and do not enforce any particular structure on it.

Remark 2. To prevent DoS attacks that exhaust the server memory it is desirable that the server stores as little state as
possible for uncompleted protocol runs (i.e. before a puzzle has been solved). We refer to this concern of client puzzles
as “state storage costs” [2]. We build this into our definition of a client puzzle by insisting that only a single value of s
is stored by a server; all the data necessary to solve a given puzzle and to re-generate, and hence verify authenticity of
a puzzle and solution pair, is included in the puzzle description puz.

Remark 3. Generally, for a puzzle to be “secure” when used within a client puzzle protocol, we want puzzles generated
to be unique and for puzzle and solution pairs to only be validly used once by a client. In actual usage, a server can filter
out resubmitted correctly solved puzzle and solution pairs by, for example, using a hash table mechanism. Uniqueness
of puzzles can be ensured by having GenPuz select a random nonce nS and use this in the puzzle generation.

Remark 4. Our definition assumes private verifiability for VerAuth. Generally the only party concerned with checking
who generated a given puzzle is the puzzle generator (client puzzles are used before any other transactions take place
and to protect the generator and no other party). Although in some cases it may be useful to have publicly verifiable
puzzles it would complicate the definition and we choose to keep our definition practical yet as simple as possible.

CLIENT PUZZLE PROTOCOLS. Intuitively, a client puzzle protocol is a protocol which uses a client puzzle in its
message flows to provide DoS resistance. We first allow a one time setup during which the generatorG runs Setup(1k)
for security parameter k to obtain params and s. We then define Π(CPuz), the client protocol between a solver S and
G, to be the message flows of Figure 2.

Solver (S) Generator (G)

1. Puzzle request str - puz←GenPuz(s, str, Q, t)

and response puz�

2. Solve puzzle. find solution soln (puz, soln)-

3. Verify solution VerAuth(s, puz) = false or

VerSoln(puz, soln, T ) = false

then abort otherwise accept

Fig. 2. The Client Puzzle Protocol Π(CPuz) constructed from CPuz

One way to use a client puzzle protocols as a counter measure against connection depletion DoS attacks is to stack
Π(CPuz) on top of the original protocol in some manner. We do not consider the specifics of how this can be achieved
here. In order that the use of client puzzles does not introduce malformed packet DoS attacks [16, 17] it is important
that each of the algorithms in a given client puzzle is as efficient as possible. Ideally it should take more time for an
adversary to spoof a given message flow in Figure 2 than it would to check correctness or authenticity of such spoofed
messages.
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4 Security Notions for Client Puzzles

We define two notions for client puzzles. The first measures the ability of an adversary to produce a correctly authen-
ticating puzzle with an unknown private key. We refer to this as the ability of an adversary to forge a client puzzle.
The second notion gives a measure of the likelihood of an adversary finding a solution to a given puzzle within a given
number of clock cycles of execution. We refer to this as the difficulty of a client puzzle. Intuitively, these are both what
one would expect to require from a client puzzle given its role in defenses against DoS attacks; being able to either
forge puzzles or solve them faster than expected allows an adversary to mount a DoS attack.

We first review the definition of a function family since we will use function families to express security of a given
client puzzle in terms of difficulty. A function family is a map F : I × D 7→ R. The set I is the set of all possible
indices, D the domain and R the range. Unless otherwise specified we assume I = N. The set R is finite and all sets
are nonempty. We write Fi : D 7→ R for Fi(d) = F (i, d) where i ∈ I and refer to Fi as an instance of F .

UNFORGEABILITY OF PUZZLES. We first define our notion of unforgeability of client puzzles. Intuitively, we require
an adversary that sees puzzles generated by the server (possibly together with their associated solutions), and that can
verify the authenticity of any puzzle it chooses, cannot produce a valid looking puzzle on his own.

To formalize unforgeability of a client puzzle we use the following game ExecUF
A,CPuz(k) between a challenger C

and an adversary A.

(1) The challenger C first runs Setup on input 1k to obtain (params, s). The tuple params is given to A and s is kept
secret by C.

(2) The adversaryA gets to make as many CreatePuz(Q, str) and CheckPuz(puz) queries as it likes which C answers
as follows.

• CreatePuz(Q, str) queries. A new puzzle is generated puz←GenPuz(s,Q, str) and output to A.
• CheckPuz(puz) queries. If VerAuth(s, puz) = true and puz was not output by C in response to a CreatePuz

query then C terminates the game setting the output to 1. Otherwise false is returned to A.

(3) If C does not terminate the game in response to a Check query then eventually A terminates and the output of the
game is set to 0.

We say the adversaryA wins if ExecUF
A,CPuz(k) = 1 and loses otherwise. We define the advantage of such an adversary

as

AdvUF
A,CPuz(k) = Pr

[
ExecUF

A,CPuz(k) = 1
]
.

Puzzle-unforgeability then means that no efficient adversary can win the above game with non-negligible probability.

Definition 2 (Puzzle-unforgeability). A client puzzle CPuz is UF secure if for any p.p.t. adversary A its advantage
AdvUF

A,CPuz(k) is a negligible function of k.

Remark 1. In the game ExecUF
A,CPuz(k) we allow A access to all algorithms defined in CPuz. In particular, we allow

unlimited access to the GenPuz algorithm for any given chosen inputs. This allowsA to generate as many puzzles as it
wishes (since A is p.p.t. it will anyway generate at most polynomially many) with any given chosen key and difficulty
values. Notice that the adversary can find solutions to any puzzle by running the FindSoln algorithm which is public.
These abilities are sufficient to mimic the environment in which a DoS attacker would sit.

DIFFICULTY OF SOLVING PUZZLES. We formalize the idea that a puzzle CPuz cannot be solved trivially via the game
ExecQ,DIFF

A,CPuz(k) between a challenger C and an adversary A. The game is defined for each hardness parameter Q ∈ N
as follows:

(1) The challenger C runs Setup on input 1k to obtain (params, s) and passes params to A.
(2) The adversary A is allowed to make any number of CreatePuzSoln(str) queries throughout the game. In re-

sponse to each such query C generates a new puzzle as puz←GenPuz(s,Q, str) and finds a solution soln such that
VerSoln(puz, soln) = true. The pair (puz, soln) is then output to A.
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(3) At any point during the execution A is allowed to make a single Test(str†) query. In response, the challenger
generates a challenge puzzle as puz†←GenPuz(s,Q, str†) which it returns to A.

Adversary A terminates its execution by outputting a potential solution soln†. We define the running time τ of A as
being the running time of all of the experiment ExecQ,DIFF

A,CPuz(k).
We say the adversary wins ExecQ,DIFF

A,CPuz(k) if VerSoln(puz†, soln†) = true. In this case we set the output of
ExecQ,DIFF

A,CPuz(k) to be 1 and otherwise to 0. We then define the success of an adversary A against CPuz as

SuccQ,DIFF
A,CPuz(k) = Pr

[
ExecQ,DIFF

A,CPuz(k) = 1
]
.

We define the difficulty of puzzle solving by requiring that for any puzzle hardness the success of any adversary that
runs in a bounded number of steps falls bellow a certain threshold (that is related to the hardness of the puzzle).

Definition 3 (Puzzle-difficulty). Let ε : N2 7→
(
N 7→ [0, 1]

)
be a family of monotonically increasing functions.

We use the notation εk,Q(·) for the function within this family corresponding to security parameter k and hardness
parameter Q. We say a client puzzle CPuz is ε(·)–DIFF if for all τ ∈ N, for all adversaries A in ExecDIFF,Q

A,CPuz(k), for
all security parameters k ∈ N, and for all Q ∈ N it holds that

SuccQ,DIFF
Aτ ,CPuz(k) ≤ εk,Q(τ)

where Aτ is the adversary A restricted to at most τ clock cycles of execution.

Remark 1. The security game above allows A to obtain many puzzle and solution pairs by making queries to model
actual usage in DoS settings; when a client puzzle is used as part of a client puzzle protocol an adversary may see
many such puzzles and solutions exchanged between a given generator and solver on a network. The adversary could
then learn something from these.

Remark 2. In the definition of the Test query, we do allow the string str† to be one previously submitted as a
CreatePuzSoln query and allow CreatePuzSoln queries on any string including str† after the Test query. It then
immediately follows that a difficult puzzle needs to be such that each puzzle generated is unique. Otherwise, a previ-
ously obtained solution through the CreatePuzSoln query may serve as a solution to the challenge query. Furthermore,
it also follows that solutions to some puzzles should not be related to the solutions of other puzzles, as otherwise a
generalization of the above attack would work.

Remark 3. The queries CreatePuz (used in the game for puzzle-unforgeability) and CreatePuzSoln used in the above
game are related, but different. The query CreatePuzSoln outputs a puzzle together with its solution. The second is
more subtle: in a CreatePuz query we allow A to specify the value of Q used but in CreatePuzSoln we do not (the
value of Q is fixed throughout the difficulty game).

Remark 4. Clearly any puzzle that is ε(·)–DIFF is also (ε(·) + µ)-DIFF where µ ∈ R>0 is such that ε(τ) + µ ≤ 1
(since SuccQ,DIFF

Aτ ,CPuz(k) ≤ εk,Q(τ) ≤ εk,Q(τ) + µ ). The most accurate measure of difficulty for a given puzzle CPuz

is then the function ε(τ) = infAτ
SuccQ,DIFF

Aτ ,CPuz(k).

Remark 5. Since we measure the running time of the adversary in clock cycles, the model abstracts away the possibility
that the adversary may be distributed and thus facilitates further analysis (for example of the effectiveness of client
puzzle defense against DoS attacks).

5 An Attack on the Juels and Brainard Puzzles

In this section we describe an attack on the Juels and Brainard [14] client puzzle mechanism as described in Section 2.
The attack works because puzzles are forgeable, which is due to a crucial weakness in puzzle generation; each set of
generation parameters defines a family of puzzles each with a different hardness value. Finally we construct a DDoS
attack on servers using certain client puzzle protocols based on this construction. This attack clearly demonstrates the
applicability of our definitions and how they can be used to find problems with a given client puzzle construction.
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PROVING FORGEABILITY. The reason the construction is forgeable is the authentication is not unique to a given
instance but covers a number of instances of varying difficulty. This occurs because the puzzle instance difficulty is
not included in the first preimage of the sub-puzzle construction. We exploit this weakness and construct an adversary
A with AdvUF

A,CPuz(k) = 1.
We have the following lemma regarding the forgeability of the Juels and Brainard construction.

Lemma 1. The client puzzle construction of Juels and Brainard [14] is not UF secure.

Proof. To prove this we construct an adversary A against the UF security of the construction that can win the security
game ExecUF

A,CPuz(k) with probability 1. We now describe the details of A.
At the start of the security game A is given a set of public parameters. The adversary then makes a query

CreatePuz(Q, str) for some random choices of Q and str where Q = (α, β) and receives a puzzle instance puz =
(Q, str, P = (P1, P2, . . . , Pβ)) in response. Next A removes the first bit of each Pi to obtain P †i and constructs
Q† = (α+ 1, β) and puz† = (Q†, str, P † = (P †1 , P

†
2 , . . . , P

†
β)). The adversary then makes a query CheckPuz(puz†).

Clearly A wins with probability 1 since puz and puz† are both generated from the same s and str hence puz† will
correctly verify yet was not output from a CreatePuz query. 2

Remark 1. One could also prove Lemma 1 by having the adversary construct the forgery as Q† = (α, β − 1) and then
puz† = (Q†, str, (P †1 , . . . , P

†
β−1)). One could also vary the number of bits moved between α and each Pi or change

the number of sub-puzzles deleted. The reason we choose to give the proof in the manner given is because this specific
method allows for the construction of a DDoS attack with the given assumptions we make about the protocol using
this particular client puzzle. We describe this attack next.

CONSTRUCTING A DDOS ATTACK. We now use the forgeability of the construction to mount a DDoS attack on client
puzzle protocols based on this client puzzles. The attack works when the difficulty parameter is increased in a certain
way and when the hash table, mentioned in [14] and used to prevent multiple puzzle instance and solution submissions,
is based on some unique data for each instance that is not in the preimage of any sub-puzzle. A hash table mechanism
that depends on some unique data contained in each sub-puzzle preimage, as is mentioned in [14], would thwart the
following DDoS attack on client puzzle protocols based on this client puzzle.

We first assume the client puzzle is used in the client puzzle protocol of [14] and the generator increases Q by
increasing α many times for each increase in β. We also assume any hash tables used are computed using either the
puzzle instance alone or the correct solutions alone.

To mount the DDoS attack the adversary commands each of its zombies (platforms the adversary controls) to start
a run of the protocol with the server under attack. The server will begin to issue puzzle instances and then, when
enough requests are received, will increase Q by incrementing α. Each zombie computes a solution to the first puzzle
it receives and to submits this to the server. Then, while this puzzle has not expired, each time α is incremented, a new
puzzle and solution pair is trivially computed by removing the first bit from each xi and concatenating this to the end
of each solni previously computed. The new puzzle and solution pair are submitted to the server and will correctly
verify and will then be allocated buffer space (due to our assumptions on the hash table mechanism). When a zombies’
puzzle expires it obtains a new one. As the value Q is increased then so will the puzzle expiry period and hence more
forged puzzles can be used per valid puzzle obtained eventually exhausting the memory resources of the server.

Also, even if we assume that the buffer allocation based on the hash table mechanism is as in [14] the attack
will still consume a huge amount of server computational resources. This is because the adversary can trivially spoof
new puzzle instances and solutions from previous ones. These will not be allocated buffer space due to the hash
table mechanism, but will consume computation via server verification computations. In the next section we give a an
example instantiation of a generic construction that is a repaired version of the sub-puzzle mechanism; an unforgeable
version of the sub-puzzle construction.

6 A Generic Client Puzzle Construction

In this section we provide a generic construction for a client puzzle which also repairs the flaw identified in the previous
section with respect to the Juels and Brainard puzzle. Our construction is based on a pseudorandom function (PRF)
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and a one way function (OWF). We prove our generic construction is secure according to the definitions we put forth
in this paper, and show one possible instantiation. Intuitively, the unforgeability of puzzles is ensured by the use of
the PRF and the difficulty of solving puzzles is ensured by the hardness of inverting the one-way function. We first
review some notational conventions and definitions regarding function families, pseudorandom functions, and concrete
notions for pseudorandom function families and one way function families.

If F is a function family then we use the notation f $← F for i $← I; f←Fi. We denote the set of all possible
functions mapping elements of D to R by Func(D,R). A random function from D to R is then a function selected
uniformly at random from Func(D,R).

PSEUDORANDOMNESS. We define the PRF (pseudorandom function) game ExecPRF,b
B,F (k) for an adversary B against

the function family F : K ×D 7→ R, where |K| = 2k, as follows.

(1) For b = 1 the adversary B has black box access to a truly random function R from the set Func(D,R) and for
b = 0 the adversary B has black box access to a function Fs chosen at random from F .

(2) The adversary B is allowed to ask as many queries as it wants to whichever function it has black box access to.
Eventually B terminates outputting a bit b∗.

We set the output of ExecPRF,b
B,F (k) to 1 if b∗ = b and set the output to 0 otherwise. We then define the advantage of an

adversary against F in terms of PRF as

AdvPRF
B,F (k) =

∣∣∣Pr
[
ExecPRF,0

B,F (k) = 1
]
− Pr

[
ExecPRF,1

B,F (k) = 1
]∣∣∣.

CONCRETE PSEUDORANDOM AND ONE WAY FUNCTION FAMILIES. Here we briefly review concrete notions of
security for pseudorandom function and one way function families. We depart from the typical “(ε, t)- hardness” style
of definitions, as they are not sufficient for our purposes. Instead we view ε, the probability of a break, as a function of
the running time τ of the adversary. So, a primitive is ε(·)- secure if for all adversaries running in time τ the probability
of breaking the primitive is at most ε(τ).

Definition 4 (νk(·)–PRFF). Let F : K × D 7→ R be a function family and ν : N 7→
(
N 7→ [0, 1]

)
be a family of

monotonically increasing functions. We say F is a νk(·)–PRFF if for all k ∈ K and for all adversaries A it holds that
AdvPRF

Aτ ,F (k) ≤ νk(τ).

Note that, in the definition of an νk(·)–PRFF, the security parameter k specifies the size of the keyspace for
the game ExecPRF,b

Aτ ,F
(k) and the actual key, and hence function from the family used, is chosen at random from this

keyspace.

Definition 5 (εi(·)–OWF). For an adversary A we define its advantage against a function ψ : X 7→ Y , where X is
fixed and finite, in terms of OWF as

AdvOWF
A,ψ = Pr[x $← X ; y←ψ(x); (x̃←A(y) ∧ ψ(x̃) = y)].

Let εi : N 7→ [0, 1] be a monotonically increasing function. Then, the function ψ is an εi(·)–OWF if for all adversaries
A it holds that AdvOWF

Aτ ,ψ ≤ εi(τ).

We then extend this definition to a family of functions as follows:

Definition 6 (ε(·)–OWFF). Let ϕ : N 7→
(
X 7→ Y

)
and ε : N 7→

(
N 7→ [0, 1]

)
be function families. We say ϕ is an

ε(·)–OWFF if for all i ∈ N the function ϕi : X 7→ Y is an εi(·)–OWF.

THE GENERIC CONSTRUCTION. Our generic construction is based on the method of Juels and Brainard [14]. Most
client puzzle constructions based on one way functions, such as the discrete log based scheme of [27], and the RSA
based scheme of [10], can be described in this manner with some minor modifications. So, our generic construction
pins down sufficient assumptions on the building blocks that imply security of the resulting puzzle. We let k ∈ N then
let F : K ×D 7→ X where |X | ≥ |K| = 2k be a function family indexed by elements of K. The domain D of Fs is
3-tuples of the form N×{0, 1}∗×{0, 1}k ∈ {0, 1}∗. We write Fs((·, ·, ·)) when we want to specify the exact encoding
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of an element of D explicitly as an input to Fs. We further let ϕ : N 7→
(
X 7→ Y

)
be a family of functions indexed

by Q. We assume there is a polynomial time algorithm to compute ϕQ for each value of Q and input. The various
algorithms in the scheme are then as follows:

Setup(1k). The various spaces are chosen; sSpace←K, QSpace←N, strSpace←{0, 1}∗, solnSpace←X and puzSpace←QSpace×
strSpace× {0, 1}k × Y . The parameter Π is assigned to be the polynomial time algorithm to compute ϕQ for all
Q ∈ QSpace and x ∈ X . Finally, the value s is chosen as s $← sSpace and the tuple params constructed then
output.

GenPuz(s,Q, str). A nonce is selected nS
$← {0, 1}k. Next x is computed as x←Fs(Q, str, nS). The value y ∈ Y is

computed as y←ϕQ(x) and the puzzle assigned to be puz = (Q, str, nS , y) and output.

FindSoln(puz, τ). While this algorithm is within the allowed number of clock cycles of execution it randomly samples
elements from the set of possible solutions without replacement and for each potential preimage x′ ∈ X computes
y′←ϕQ(x′). If y′ = y this outputs x′ then halts and otherwise continues with random sampling. If this algorithm
reaches the last clock cycle of execution then it outputs a random element of the remaining unsampled preimage
space. The set of possible solutions is generally a subset of X that is defined by the value y of size dependent upon
Q in some manner; the details of how the size varies depends upon the function family ϕ.

VerAuth(s, puz′). For a puzzle puz′ = (Q′, str′, n′S , y
′) this computes x′ as x′←Fs(Q′, str′, n′S) then y←ϕQ(x′). If

y′ = y this outputs true and otherwise outputs false.

VerSoln(puz′, soln′). Given a potential solution soln′ = x′ this checks if ϕQ(x′) = y and if so outputs true and
otherwise outputs false.

We use the notation CPuz = PROWF(F ;ϕ) for the generic construction in this manner. The construction is
summarized in Figure 3.

Q, str, nS soln puz

GenPuz, VerAuth

GenPuz, VerSoln, VerAuth

FindSoln

x = Fs(Q,str,nS) //

y = ϕQ(x)

,,

x′ = ϕ−1
Q

(y)

eddcba
ll

]\[[Z

Fig. 3. Solid arrows are actions performed by a generator and dashed ones by a solver. The lists of algorithms above/below arrows
imply the actions are performed as part of these algorithms. The details of how each action is used in the given algorithm are given
in the full description.

Remark 1. In the definition of an ε(·)–OWF we specify the domain X is fixed and finite but do not specify the exact
size or shape of this; in our generic construction this is set to be the output space of some PRF.

Remark 2. The exact specification of the FindSoln algorithm is not important for our theorems and proofs nor is it
unique. Indeed, other techniques such as exhaustive search may even be faster than the algorithm given. The important
point is such an algorithm exists and can be described.

Remark 3. The domain D of F is given as 3 tuples of the form N × {0, 1}∗ × {0, 1}k which is the same as {0, 1}∗.
However, we will always construct elements of D from a given tuple rather than taking a bit string and encoding it as
an element of D. Hence we do not refer to this as a uniquely recoverable encoding on D.

Remark 4. In reality the variable nS need not be sampled at random; it just has to be a nonce and could be instantiated
with, for example, a counter. We specify uniform sampling from the domain of nS since it makes our proofs simpler
and easier to follow.
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Remark 5. Our generic construction is similar to the Juels and Brainard scheme [14] but avoids the forgeability prob-
lems by including the hardness parameter Q in the input to F .

Remark 6. Finally, we remark that the generic construction where the PRF function is replaced by a MAC is not
necessarily secure. Indeed, one-wayness of the generic construction is guaranteed as long as the one-way function is
applied to randomly chosen bit-string. While this property is ensured through the use of a pseudo-random function, it
is does not always hold for a MAC. For example, using an artificial MAC in which most (say the first 3/4) of the output
bits are constant, and a one-way function which discards only and precisely those bits, leads to an yield an insecure
construction.

The following theorems capture the security of this generic construction. Their proofs can be found in Appendix B.1
and Appendix B.2 respectively.

Theorem 1. Let F be a PRF family and ϕ a family of functions as described above such that for each value of
Q and for all y ∈ Y we have |ϕ−1

Q (y)|/|X | ≤ 1/2k, where k is the security parameter. Then the client puzzle
CPuz = PROWF(F ;ϕ) is UF secure.

The condition that |ϕ−1
Q (y)|/|X | ≤ 1/2k for all values ofQ and for all y ∈ Y in Theorem 1 prevents the following

attack. An adversary may try to forge a puzzle instance by choosing a value for y then selecting a triple (Q, str, nS).
If the value y has a large number of preimages then the adversary may win without attacking the pseudorandomness
of F at all.

Theorem 2. Let F be a ν(·)–PRFF family for the function family ν(·), ϕ an ε(·)–OWFF for the function family ε(·)
and CPuz = PROWF(F ;ϕ). Then PROWF(F ;ϕ) is γ(·)–DIFF where γk,Q(τ) = 2 ·νk(τ+τ0)+

(
1 + τ/(2k − τ)

)
·

εQ(τ + τ1) and τo, τ1 ∈ N are some constants.

An adversary may try to solve puzzles by either computing the value Fs(Q, str, nS) for an unknown value of s
or by computing a preimage of ϕQ for the value y provided. The function νk in Theorem 2 captures that computing
Fs for an unknown value of s should not be easy; the function F needs to be a good PRF. Intuitively, k should be
chosen to be large enough that it is easier to compute a preimage of y under ϕQ than computing the corresponding
value Fs(Q, str, nS).

Impact on Practical Implementations of Puzzles

The use of cryptographic puzzle schemes where puzzle creation is expensive, immediately leads to DoS attacks. From
this perspective the use of a provably secure PRF would most likely be avoided by practical implementations. We now
present an efficient implementation of our generic construction based on cryptographic hash functions. The scheme
follows by instantiating the two components of our generic construction. We obtain essentially a modified Juels and
Brainard scheme that incorporates the defence against the attack that we present in Section 5.

Given a hash function H : {0, 1}∗ 7→ {0, 1}m a standard construction for a PRF family F is as follows. Key
generation selects a random string s $← {0, 1}k where k is the security parameter. Function application is defined
by Fs(x) = H(s||x) for any x ∈ {0, 1}∗ Furthermore, given a hash function G : {0, 1}∗ → {0, 1}n we define
the function family ϕ of functions ϕQ : {0, 1}m → {0, 1}m−Q × {0, 1}n by ϕQ(x) = (x〈Q + 1, m〉, G(x)).
In Appendix C we prove that in the random oracle model, F is a νk(·)–PRFF function, for some some function family
ν with νk(τ) ≤ m

2k and that ϕ is ε(·)–OWFF for some function family ε with ε(τ) ≤ τ/2m + τ/(2m−Q). Concrete
bounds for the security of our construction follow by instantiating the bounds in Theorems 1 and 2.
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A Notation

A function ε(t) is said to be negligible in the parameter t if ∀ c ≥ Z>0 ∃ tc ∈ R>0 such that ∀ t > tc, ε(t) < t−c.
If S is any set then we denote the action of sampling an element from S uniformly at random and assigning the

result to the variable x as x $← S.
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We let d.p.t. denote deterministic polynomial time and p.p.t. probabilistic polynomial time. If F is some function
we use the notation x ← F (y1, . . . , yn) for the process of obtaining x by running F on inputs y1, y2, . . . , yn. If A
is some algorithm we use the notation x ← AO1(·),O2(·)(y1, . . . , yn) for the process of obtaining x by running A on
inputs y1, y2, . . . , yn with access to oracles O1(·) and O2(·). If x is some variable then we also use this for running A
or F with the given inputs and then assigning the output to x.

B Proofs of Theorems

B.1 Proof of Theorem 1

Proof. Consider some adversaryA against the UF security of PROWF(F ;ϕ). We define games G0 and G1 by G0 =
ExecUF

A,CPuz(k) and G1 = ExecUF
A,CPuz′(k) where the schemes involved are defined by CPuz = PROWF(F ;ϕ),CPuz′ =

PROWF(R;ϕ) and R is some function selected at random from the set of functions Func(D,X ). In other words, in
game G0 the adversary tries to break our construction whereas in game G1 the adversary works against an idealized
version of our construction, where the pseudorandom function F had been replaced with a truly random function.
We now argue that if the adversary A sees a difference between the two games, then he breaks the security of the
pseudorandom function. We do this by constructing an adversary B such that:∣∣∣Pr

[
A wins G0

]
− Pr

[
A wins G1

]∣∣∣ = 2 ·AdvPRF
B,F (k).

Since Pr
[
A wins G0

]
= AdvUF

A,CPuz(k), the theorem follows by bounding Pr
[
A wins G1

]
.

We now describe the details of the adversary B. For b = 0, at the start of the game ExecPRF,b
B,F (k), the adversary

B is given black box access to a function Fs† from the family F with an unknown value of key s†. For b = 1 the
adversary B is given black box access to a function R chosen randomly from the set of functions Func(D,X ). The
input strings toR will have the same syntax as those to the members of Fs† . The adversary B then acts as a challenger
to the adversary A. It does this as follows:

(1) The adversary B first runs Setup on input 1k to obtain a pair (params, s) and starts the adversary A on input
params. Throughout the simulation B does not use the value of s but instead answers queries made by A using its
black box access to either Fs† orR depending on the value of b.

(2) The adversaryAwill then start to ask CreatePuz(Q, str) and CheckPuz(puz) queries which B answers as follows:

• CreatePuz(Q, str) queries. For this the adversary B selects a random nonce nS
$← {0, 1}k then computes x by

querying whichever function it has black box access to on input (Q, str, nS). Next B computes y as the output
of ϕQ(x) and replies to A with the puzzle puz = (Q, str, nS , y). The adversary B also keeps a list of all puzzles
output to A.

• CheckPuz(puz) queries. For a given puz = (Q, str, nS , y) if puz was output by B in response to a CreatePuz
query then B outputs true. Otherwise B queries whichever function it has black box access to on inputs
(Q, str, nS) and receives a response x. Next B computes y as the output of ϕQ(x). If y = y then B outputs
1 in its game against C and terminates and otherwise responds with false.

(3) If B has not terminated in response to a CheckPuz query then eventually A will terminate. The adversary B then
selects a bit at random, outputs this in its game against C and terminates.

If b = 0 then the above game between B and A will be exactly the game G0 and if b = 1 we get the game G1.
Hence we have

Pr
[
ExecPRF,b

B,F (k) = 1
]

= Pr
[
A wins Gb

]
+

1
2

(
1− Pr

[
A wins Gb

])
.

As a result we get

2 ·AdvPRF
B,F (k) =

∣∣∣Pr
[
A wins G0

]
− Pr

[
A wins G1

]∣∣∣.
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We now bound Pr[A wins G1]. If A wins G1 we let puz† = (Q†, str†, n†S , y
†) be the puzzle on which A wins

the game, let x† = R(Q†, str†, n†S) and let view(A) be the transcript of A; everything that adversary A sees during
the game. Since A wins it must be the case that puz† was not output in response to a CreatePuz query. Since ϕQ†

is deterministic (Q†, str†, n†S) cannot have been output by R during a CreatePuz query; otherwise puz† would have
been output in response to this query. Furthermore, since R is a random function, y† must have been chosen by A
independently of x† given view(A). Since x† is independent from view(A), the probability that the adversary wins in
the game is:

Pr
[
A wins G1

]
= Pr

[
ϕQ†(x†) = y†

]
where the second probability is over the choice of x† in X . In other words, we have that:

Pr
[
A wins G1

]
=

∣∣∣ϕ−1
Q†(y†)

∣∣∣
|X |

We therefore have:

AdvUF
A,CPuz(k) = Pr

[
A wins G0

]
= Pr

[
A wins G0

]
+ Pr

[
A wins G1

]
− Pr

[
A wins G1

]
≤

∣∣Pr
[
A wins G0

]
− Pr

[
A wins G1

]∣∣ + Pr
[
A wins G1

]
= 2 ·AdvPRF

B,F (k) +
|ϕ−1
Q†(y†)|
|X |

≤ 2 ·AdvPRF
B,F (k) +

1
2k
.

2

B.2 Proof of Theorem 2

Proof. We prove this theorem using a technique similar to the proof of Theorem 1. Again we define two games G0

and G1 but this time have G0 = ExecDIFF
A,CPuz(k) and G1 = ExecDIFF

A,CPuz′(k) where CPuz = PROWF(F ;ϕ),CPuz′ =
PROWF(R;ϕ) andR is some random function selected from the set of functions Func(D,X ). We again argue that if
an adversary Aτ sees a difference between the two games then he breaks the concrete security of the pseudorandom
function family. We do this by constructing an adversary B such that∣∣∣Pr

[
Aτ wins G0

]
− Pr

[
Aτ wins G1

]∣∣∣ = 2 ·AdvPRF
Bτ+τ0 ,F (k).

The main difference with this proof and that of Theorem 1 is for the game G1 we construct an adversary C against
ϕQ such that AdvCτ+τ1 ,ϕQ

= (1 + q/(2k − q)) · Pr
[
Aτ wins G1

]
where q is the number of CreatePuzSoln queries

made by A on a certain string. Then, since Pr
[
Aτ wins G0

]
= SuccQ,DIFF

Aτ ,CPuz(k), AdvPRF
Bτ+τ0 ,F (k) ≤ νk(τ + τ0) and

AdvCτ+τ1 ,ϕQ
≤ εQ(τ + τ1) the theorem follows.

We now describe the details of the adversary B. For b = 0, at the start of the game ExecPRF,b
B,F (k), the adversary

B is given black box access to a function Fs† from the family F with an unknown value of key s†. For b = 1 the
adversary B is given black box access to a function R chosen randomly from the set of functions Func(D,X ). The
input strings toR will have the same syntax as those to the members of Fs† . The adversary B then acts as a challenger
to the adversary A. It does this as follows:

(1) The adversary B first runs Setup on input 1k to obtain a pair (params, s) and starts the adversary A on input
params. Throughout the simulation B does not use the value of s but instead answers queries made by A using its
black box access to either Fs† orR depending on the value of b.
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(2) The adversary A will then start to ask CreatePuzSoln(str) queries. To answer each B selects a random nonce
nS

$← {0, 1}k then computes x by querying whichever function it has black box access to on input (Q, str, nS).
Next B computes y←ϕQ(x) then assigns puz←(Q, str, nS , y) and soln←x and passes (puz, soln) to A.

(3) Eventually A will make a single Test(str∗) query. The adversary B then generates a challenge puzzle in the same
manner as when answering CreatePuzSoln queries. We denote the challenge puzzle as puz∗ = (Q, str∗, n∗S , y

∗).
(4) The adversary A will then continue to ask CreatePuzSoln(str) queries which B answers as before.
(5) After τ clock cyclesA terminates outputting a potential solution soln∗ = x∗. IfAwins, i.e. if VerSoln(puz∗, soln∗) =

true, then B outputs 1 and terminates and otherwise outputs a random bit and terminates.

By the way we construct B, if b = 0 then the above game between that B simulates for A will be exactly the game
G0 and if b = 1 the game B simulates for A will be exactly the game G1. Hence we have

Pr
[
ExecPRF,b

B,F (k) = 1
]

= Pr
[
A wins Gb

]
+

1
2

(
1− Pr

[
A wins Gb

])
.

As a result we get

2 ·AdvPRF
B,F (k) =

∣∣∣Pr
[
A wins G0

]
− Pr

[
A wins G1

]∣∣∣.
The constant τ0 is the time B takes on top of the time for the game; the simulation will take some additional clock

cycles since B needs to make its own queries in addition to the time taken by A for the game. We refer to this as the
“overhead” time. Since we define the running time of A to be the running time of all the experiment ExecQ,DIFF

A,CPuz(k)
we have that the running time of B will be τ + τo.

We now construct the adversary C against ϕQ. At the start of its game C is given an element y† ∈ Y . Throughout
the game C will simulate a random functionR from Func(D,X ) by selecting a random element from X for each new
value of D queried and maintaining a list of queries to answer consistently for previously queried values of D. The
adversary C then acts as a challenger to A in a game G1 as follows:

(1) The adversary C first runs Setup on input 1k to obtain a pair (params, s) and starts the adversary A on input
params.

(2) The adversary A will then start to ask CreatePuzSoln(str) queries. To answer each C selects a random nonce
nS

$← {0, 1}k then computes x←R(Q, str, nS). Next C computes y←ϕQ(x) then assigns puz←(Q, str, nS , y)
and soln←x and passes (puz, soln) to A. We assume the adversary C keeps a recordQ of all such queries made by
A.

(3) Eventually A will make a single Test(str†) query. The adversary C then generates a challenge puzzle by selecting
a random nonce n†S

$← {0, 1}k then assigns the challenge puzzle to be puz† = (Q, str†, n†S , y
†). If there exists a

query on the list Q so that the puzzle output is puz′ = (Q, str†, n†S , ∗) then C terminates and otherwise outputs
puz† to A.

(4) The adversary A will then continue to ask CreatePuzSoln(str) queries. Algorithm C computes a puzzle and
solution pair (puz, soln) as before. In the case where str = str† then if there is an entry on Q so that the puzzle
output is puz′ = (Q, str†, n†S , ∗) then C aborts and otherwise outputs (puz, soln) to A.

(5) After τ clock cycles A terminates outputting a potential solution soln† = x†. The adversary C then outputs x† in
its game against ϕQ and terminates.

In the above simulation provided by C, the function R that C simulates is a random one. As a result the only way
A could find a correct solution without C aborting, i.e. without C computing R(Q, str†, n†S) at some point, would be
for A to invert the function ϕQ.

To construct the advantage statements for this game we let E denote the event that C aborts. Since the choice of
each nonce nS is random and independent of the behavior of A the event thatA wins G1 is independent of whether C
aborts or not. As a result we have

AdvOWF
Cτ+τ1 ,ϕQ

= Pr
[
Aτ wins G1

]
· Pr

[
¬E

]
.
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The adversary C will abort only if a query CreatePuzSoln(str†) is answered using n†S at some point during the
game. This will occur with probability q/2k where q is the number of CreatePuzSoln(str†) queries made by A hence
Pr

[
¬E

]
= 1− q/2k and we can write

Pr
[
Aτ wins G1

]
=

(
1 +

q

2k − q

)
·AdvOWF

Cτ+τ1 ,ϕQ
(k).

The constant τ1 captures the difference, in clock cycles of execution, between an actual G1 game and the simula-
tion C provides in the same way as τ0 is used.

As a result we get

SuccQ,DIFF
Aτ ,CPuz(k) = Pr

[
Aτ wins G0

]
= Pr

[
Aτ wins G0

]
+ Pr

[
Aτ wins G1

]
− Pr

[
Aτ wins G1

]
≤

∣∣Pr
[
Aτ wins G0

]
− Pr

[
Aτ wins G1

]∣∣ + Pr
[
Aτ wins G1

]
= 2 ·AdvPRF

Bτ+τ0 ,F (k) + Pr
[
Aτ wins G1

]
= 2 ·AdvPRF

Bτ+τ0 ,F (k) +
(

1 +
q

2k − q

)
·AdvOWF

Cτ+τ1 ,ϕQ

≤ 2 · νk(τ + τ0) +
(

1 +
q

2k − q

)
· εQ(τ + τ1).

Finally, since the running time ofA is always at most τ we can bound the number of queries q by τ giving the desired
result. 2

C A More Detailed Analysis of our Random Oracle Based Instantiation

In this section we derive the concrete security bounds for the PRF family and the one-way function family imple-
mented with random oracles.

Consider the game ExecPRF,0
A,F where H is used to instantiate F . In this case the adversary will be able to query F

in a black box way, meaning it can make a query on some δ and receive H(s∗ || δ) for some unknown value s∗. The
adversary will also have access to the random oracle H which it can query on any input it likes. We define the event E
to be the event that the adversary makes a query to H (without using black box access to Fs∗ ) of the form H(s∗ || δ).
If event E occurs then A could make a query on δ using its black box access to F and would get the same value back
as for the event E. We then have

Pr
[
ExecPRF,0

Aτ ,F
(k) = 1

]
= Pr

[
ExecPRF,0

A,F (k) = 1 | E
]
· Pr[E] + Pr

[
ExecPRF,0

A,F (k) = 1 | ¬E
]
· Pr[¬E].

If the event E does not occur then the simulation provided to A is exactly the same as ExecPRF,1
A,F (k) since the

random function R and the black box queries to Fs∗ are answered in exactly the same way (since H is a random
oracle). Hence Pr

[
ExecPRF,0

A,F (k) = 1 | ¬E
]

= Pr
[
ExecPRF,1

A,F (k) = 1
]
. We then bound the terms Pr[¬E] ≤ 1 and

Pr
[
ExecPRF,0

A,F (k) = 1 | E
]
≤ 1. Finally Pr[E] = qH/2k where qH is the number of random oracle queries made by

A and qH ≤ τ gives

Pr
[
ExecPRF,0

Aτ ,F
(k) = 1

]
≤ Pr

[
ExecPRF,1

Aτ ,F
(k) = 1

]
+

τ

2k

giving the desired result that

νk(τ) ≤
τ

2k
.
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To show εQ(τ) = τ/2m+τ/(2m−Q) we consider an adversary who is given some value y andQ bits of a preimage
x. The adversary has access to the random oracle G used to instantiate ϕQ. There are two ways such an adversary can
compute a value x̃ such that G(x̃) = y; he could query G on x or he could query G on some other value x′ that is
also a preimage of y. Querying G on x happens with probability at most τ/2m−Q, where τ is the maximum number
that can be made to G, since the adversary would have to find the remaining value of the preimage from a space of
size 2m−Q. Querying G on some other preimage x′ happens with probability at most τ/2m. Combining these gives
the desired result that

εQ(τ) ≤ τ

2m
+

τ

2m−Q
.
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