
Untraceable RFID protocols are not trivially

composable:

Attacks on the revision of EC-RAC

Ton van Deursen⋆ and Saša Radomirović

University of Luxembourg

Abstract. It is well-known that protocols that satisfy a security prop-
erty when executed in isolation do not necessarily satisfy the same se-
curity property when they are executed in an environment containing
other protocols.
We demonstrate this fact on a family of recently proposed RFID proto-
cols by Lee, Batina, and Verbauwhede. We invalidate the authentication
and untraceability claims made for several of the family’s protocols.
We also present man-in-the-middle attacks on untraceability in all of the
protocols in the family. Similar attacks can be carried out on some other
protocols in the literature, as well.
We briefly indicate how to repair the protocols.

1 Introduction

It is well-known [1–5] that protocols satisfying a security property when executed
in isolation do not necessarily satisfy the same security property when they are
executed in an environment containing other protocols.

In particular, it has been shown that composition of two secrecy-preserving
protocols may introduce attacks [6]. Similar results have been obtained for the
composition of authentication protocols [7]. It is easy to see that the same holds
true for untraceability. Consider for instance the two protocols shown in Figure 1.

Each of the protocols can be shown to be untraceable in isolation. But if an
RFID tag implements both protocols, it becomes traceable. An attacker selects
protocol A to obtain nt, h(nt, ID) from any tag he is interested in tracing. To
test whether a random tag is a tag the attacker is interested in, the attacker
selects protocol B and sends the challenge nt to the tag. The tag answers with
nt′, h(nt′, h(nt, ID ′)). The attacker can then obviously test whether ID = ID ′.

While the protocols in Figure 1 can be considered as specially crafted pro-
tocols, we show that the protocols of Lee, Batina, and Verbauwhede [8] suffer
from the same type of problem. These protocols are a revision of EC-RAC [9]
which has been shown to be flawed with respect to authentication and untrace-
ability [10–12].

⋆ Ton van Deursen was supported by a grant from the Fonds National de la Recherche
(Luxembourg).



ID

R

ID

T

Query

nonce nt

nt, h(nt, ID)

(a) Protocol A

ID

R

ID

T

nonce nr
nr

nonce nt

nt, h(nt, h(nr, ID))

(b) Protocol B

Fig. 1: Protocols untraceable in isolation, but not in common environment.

2 The proposed family of protocols

The protocols proposed by Lee, Batina, and Verbauwhede are constructed from
four components. Proof sketches for the authentication property of the indi-
vidual components have been given, then the components have been composed
leading to the six protocols shown in Figures 2 and 3. We note that no proof of
untraceability has been given.

The protocols are based on a fixed, system-wide elliptic curve over a finite
field. The points P and Y = yP on the elliptic curve are publicly known, the
scalar y and the points x1P and x2P are only known to the server, and the
scalars x1, x2 are unique to each tag and only known to the tag. For scalability
reasons, the server additionally knows x1 in protocols 2, 3, 5, and 6. The elliptic
curve is assumed to have been chosen such that the computational Diffie-Hellman
problem is hard, that is, given only the points xP , yP , and P on the elliptic
curve, it is hard to compute xyP .

All the protocols follow the same commitment-challenge-response structure.
More precisely, in all protocols the tag sends a random point on the elliptic curve
which serves as a commitment. The server challenges the tag with a random
integer upon which the tag answers with a point depending on the commitment
and the challenge. The idea of such schemes is that anybody able to produce the
correct response can also compute a particular secret, thus successful completion
of the protocol constitutes a proof of knowledge for the secret. A moment’s
thought shows that for the present protocols, the secrets in question are the
points x1Y and x2Y .

Protocols 4 through 6 additionally include a challenge-response loop where
the tag challenges the server and the server proves knowledge of its secret key y.

3 Attacks on the protocols

The main flaw in protocols 4 through 6 is that the challenge-response loop which
is supposed to prove the server’s authenticity can be abused as an oracle in order
to impersonate a tag to a server. This flaw is not surprising, since the same



S T

rt1 ∈R Zrs1 ∈R Z

T1 := rt1P

rs1

T2 := (rt1 + rs1x1)Y

find x1P = (y−1T2 − T1)r
−1
s1

(a) Protocol 1

S T

rt1 ∈R Zrs1 ∈R Z

T1 := rt1P

rs1

T2:=(rt1+rs1x1)Y
T3:=(rt1x1+rs1x2)Y

find x1P = (y−1T2 − T1)r
−1
s1

x2P = (y−1T3 − x1T1)r
−1
s1

(b) Protocol 2

S T

rs1 ∈R Z rt1, rt2 ∈R Z

T1:=rt1P
T2:=rt2P

rs1

T3:=(rt1+rs1x1)Y
T4:=(rt2x1+rs1x2)Y

find x1P = (y−1T3 − T1)r
−1
s1

x2P = (y−1T4 − x1T2)r
−1
s1

(c) Protocol 3

Fig. 2: Protocols 1 through 3

secret key y is being used for two different purposes. Both the tag-to-server
authentication and the server-to-tag authentication depend on it. Thus the two
components are not independent of each other (in the sense of [3]) and hence the
security of the two components in isolation does not imply their security when
they are composed.

To use the first two messages of protocols 4, 5, and 6 as an oracle, the
adversary submits any non-zero point on the system’s elliptic curve and receives
the multiple of the point by the server’s secret key y. In the following we will
refer to this oracle as the function P → O(P ) = yP .

3.1 Untraceability attacks on protocols 4, 5, and 6

Consider the messages rt2P , rs1, (rt2 + rs1x1)Y an attacker learns from proto-
cols 4, 5, and 6 by eavesdropping on a communication between a server and a
tag. In order to trace the tag, the attacker needs to be able to decide whether



a tag presented to him is the same as the one he eavesdropped on earlier. By
eavesdropping on another communication of a tag and server (or by querying a
tag himself) the attacker learns r′t2P , r′s1, (r′t2 + r′s1x

′

1)Y . He then computes

rs1 r′t2P − r′s1 rt2P = (rs1r
′

t2 − r′s1rt2)P

and
rs1(r

′

t2 + r′s1x
′

1)Y − r′s1(rt2 + rs1x1)Y (1)

For rs1, r
′

s1 6= 0, the term in (1) is equal to (rs1r
′

t2 − r′s1rt2)Y if and only if
x1 = x′

1, that is, if the tag being queried by the attacker is the same tag as the
one that was observed earlier. The attacker uses the oracle to decide whether this
is the case or not: On submitting (rs1r

′

t2 − r′s1rt2)P to the oracle, the attacker
receives (rs1r

′

t2 − r′s1rt2)Y . This equals the term in (1) if and only if the tag has
been observed before.

Thus none of the protocols 4, 5, and 6 are untraceable. In particular, pro-
tocols 4 and 6 do not satisfy the claimed forward and backward untraceability
properties either.

3.2 Authentication attacks on protocols 4, 5, and 6

In order to break tag-to-server authentication in these protocols, an adversary
needs to know the term x1Y , and the term x2Y (in protocols 5 and 6). The ad-
versary learns these two terms from the tag’s public keys x1P , x2P by computing
O(xiP1) = xiY , (i = 1, 2). According to the attacker model specified for these
protocols, an attacker is initially only allowed to know Y , P , and the order of the
system’s elliptic curve, but not the tags’ public keys. Under this restriction, only
a rogue server in the system is able to impersonate tags. Protocol 4, however,
is even vulnerable if the adversary does not know the tag’s public keys. In this
case the adversary can learn x1Y by eavesdropping on one protocol execution
between a tag and a server and performing the following computation.

By eavesdropping on one communication between a tag and a server, an
attacker obtains rt2P , the challenge rs1, and (rt2 + rs1x1)Y . He then computes
r−1
s1 rt2P and r−1

s1 (rt2 + rs1x1)Y = (r−1
s1 rt2 +x1)Y . Using the oracle, the attacker

obtains O(r−1
s1 rt2P ) = r−1

s1 rt2Y and computes the difference (r−1
s1 rt2 + x1)Y −

r−1
s1 rt2Y = x1Y . After learning x1Y and x2Y by using the oracles as described

above, an attacker can impersonate a tag as follows.
Protocol 4. The attacker chooses a random integer rt1, submits rt1P to the

server, and is challenged by rs1. To answer this challenge, the attacker computes
rs1x1Y , and rt2Y and sends back the sum of these two points.

Protocol 5. The attacker chooses random integers rt1, rt2, submits T1, T2 to
the server, and is challenged by rs1. To answer this challenge, the attacker com-
putes T3 from the sum of rs1x1Y , and rt2Y . To compute T4, the attacker mul-
tiplies x1Y by rt2 and x2Y by rs1 and computes the sum of these two points.

Protocol 6. The attacker chooses random integers rt1, rt2, rt3, submits T1, T2, T3

to the server, and is challenged by rs1. To answer this challenge, the attacker
computes T4 from the sum of rs1x1Y , and rt2Y . To compute T5, the attacker
multiplies x1Y by rt3 and x2Y by rs1 and computes the sum of these two points.



S T

rs1 ∈R Z rt1, rt2 ∈R Z

T1:=rt1P
T2:=rt2P

T1 on EC, T1 6= O

rs1
S1:=yT1

rt1Y = S1

T3 := (rt2 + rs1x1)Y

find x1P = (y−1T3 − T2)r
−1
s1

(a) Protocol 4

S T

rs1 ∈R Z rt1, rt2 ∈R Z
T1:=rt1P
T2:=rt2P

T1 on EC, T1 6= O

rs1
S1:=yT1

rt1Y = S1

T3:=(rt2+rs1x1)Y
T4:=(rt2x1+rs1x2)Y

find x1P = (y−1T3 − T1)r
−1
s1

x2P = (y−1T4 − x1T2)r
−1
s1

(b) Protocol 5

S T

rs1 ∈R Z rt1, rt2, rt3 ∈R Z

Ti := rtiP , (i = 1, 2, 3)

T1 on EC, T1 6= O

rs1
S1:=yT1

rt1Y = S1

T4:=(rt2+rs1x1)Y
T5:=(rt3x1+rs1x2)Y

find x1P = (y−1T4 − T2)r
−1
s1

x2P = (y−1T5 − x1T3)r
−1
s1

(c) Protocol 6

Fig. 3: Protocols 4 through 6



3.3 Untraceability attacks on all protocols

We demonstrate a man-in-the-middle attack on the ID-transfer component that
allows a wide-strong adversary of (in the sense of Vaudenay [13]) to trace a tag
in all of the six protocols.

S E T

r′t1 ∈R Zr′s1 ∈R Z

T ′

1 := r′t1P
T ′

1 := r′t1P + rt1P

r′s1
r′s1 − rs1

T ′

2 := (r′t1 + (r′s1 − rs1)x
′

1)Y
T ′

2 := ((r′t1 + rt1) + r′s1x
′

1)Y

find x′

1P = (y−1T ′

2 − T ′

1)r
′
−1

s1

Fig. 4: Man-in-the-middle attack on Protocol 1

By eavesdropping on protocol 1, the adversary obtains the messages rt1P ,
rs1, and (rt1 +rs1x1)Y . He then mounts a man-in-the-middle attack on a second
communication to test whether the same tag is present as shown in Figure 4.
The adversary adds the previously observed rt1P to the commitment r′t1P and
subtracts rs1 from the new commitment r′s1. The new and old responses are
added and sent to the server:

T ′

2 = (rt1 + rs1x1)Y + (r′t1 + (r′s1 − rs1)x
′

1)Y
= ((rt1 + r′t1) + rs1x1 + (r′s1 − rs1)x

′

1)Y

This response is accepted by the server if and only if x1 = x′

1, i.e. if the tag
is the same as the one that was previously observed. Therefore, a wide-strong
adversary can trace tags. The same attack is possible on protocols 2 through 6
since they are extensions of protocol 1.

Note that a wide-strong adversary can also trace tags in the protocol proposed
by Bringer et al. [11] using the same method. This protocol has, however, only
been claimed and proven secure against narrow-strong adversaries.

4 Repairing the flaws

The protocol compositions can be improved by assuring that one component in
the composition cannot be used as an oracle for another. For protocol 4, this can
be achieved without compromising efficiency of the scheme. We equip the server



with a second secret y2, generated randomly and independently of y, and store
the point y2P in every tag. In the second message, the server sends y2T1 instead
of yT1, to prove server authenticity to the tag. A similar approach improves
protocols 5 and 6.

To defend against the man-in-the-middle attacks, a stronger form of authen-
tication seems to be unavoidable. In its current form, protocol 1 provides recent
aliveness [14]: the server is guaranteed that the tag has recently produced a mes-
sage. However, agreement [14] is clearly not satisfied as shown by the attack in
Figure 4. At the end of the run, the server believes the following messages were
exchanged

(r′t1 + rt1)P r′s1 ((r′t1 + rt1) + r′s1x
′

1)Y,

while for the tag the transcript reads

r′t1P r′s1 − rs1 (r′t1 + (r′s1 − rs1)x
′

1)Y.

As shown above, the adversary abuses this discrepancy and the reader’s reaction
to it to trace tags. To foil the attack, we need to make sure that reader and tag
agree on the contents of all messages.

The simplest solution is to use message authentication codes based on a
shared secret. The last message would then include a hash of the previous mes-
sages (including the payload of the current message) and a secret known only to
server and tag. A suitable candidate would be h(rt1P, rs1, (rt1 + rs1x1)Y, xyP ).
Since (rt1 + rs1x1)Y is uniquely determined by the other three components of
the hash it does not have to be included, reducing the message authentication
code to h(rt1P, rs1, xyP ).

Although this solution prevents these particular man-in-the-middle attacks,
it is more resource intensive since it additionally requires a cryptographic hash
function to be implemented (and computed) on the tag. We conjecture that
protocol 5 can also be made resistant to man-in-the-middle attacks by modifying
the computation of T4 in the third message. Replacing T4 by (rt2x1 − rs1x2)Y
prevents the presented man-in-the-middle attack and obvious derivatives thereof.
It is unclear, however, whether this introduces new vulnerabilities.

References

1. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS. (2001) 136–145

2. Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000)
http://eprint.iacr.org/.

3. Andova, S., Cremers, C., Gjøsteen, K., Mauw, S., Mjølsnes, S., Radomirović, S.:
A framework for compositional verification of security protocols. Information and
Computation 206 (February-April 2008) 425–459

4. Heintze, N., Tygar, J.D.: A model for secure protocols and their compositions.
IEEE Trans. Software Eng. 22(1) (1996) 16–30

5. Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the chosen protocol
attack. In: Security Protocols Workshop. (1997) 91–104



6. Cremers, C.: Feasibility of multi-protocol attacks. In: Proc. of The First In-
ternational Conference on Availability, Reliability and Security (ARES), Vienna,
Austria, IEEE Computer Society (April 2006) 287–294

7. Tzeng, W.G., Hu, C.M.: Inter-protocol interleaving attacks on some authentication
and key distribution protocols. Inf. Process. Lett. 69(6) (1999) 297–302

8. Lee, Y., Batina, L., Verbauwhede, I.: Untraceable RFID authentication protocols:
Revision of EC-RAC. In: IEEE International Conference on RFID – RFID 2009,
Orlando, Florida, USA (April 2009)

9. Lee, Y.K., Batina, L., Verbauwhede, I.: EC-RAC (ECDLP based randomized
access control): Provably secure RFID authentication protocol. In: Proceedings of
the 2008 IEEE International Conference on RFID. (2008) 97–104

10. van Deursen, T., Radomirović, S.: Attacks on RFID protocols (ver-
sion 1.0). Cryptology ePrint Archive, Report 2008/310 (July 2008)
http://eprint.iacr.org/2008/310.

11. Bringer, J., Chabanne, H., Icart, T.: Cryptanalysis of EC-RAC, a RFID identifi-
cation protocol. In: CANS. (2008) 149–161

12. van Deursen, T., Radomirović, S.: Algebraic attacks on RFID protocols. In: In-
formation Security Theory and Practices. Smart Devices, Pervasive Systems, and
Ubiquitous Networks (to appear). Lecture Notes in Computer Science, Brussels,
Belgium, Springer (2009)

13. Vaudenay, S.: On privacy models for RFID. In: Advances in Cryptology - ASI-
ACRYPT 2007. Volume 4833 of Lecture Notes in Computer Science., Kuching,
Malaysia, Springer-Verlag (December 2007) 68–87

14. Lowe, G.: A hierarchy of authentication specifications. In: CSFW. (1997) 31–44


