
A New Lattice-Based Cryptosystem Mixed with a

Knapsack

Yanbin Pan and Yingpu Deng and Yupeng Jiang and Ziran Tu
Key Laboratory of Mathematics Mechanization

Academy of Mathematics and Systems Science,Chinese Academy of Sciences
Beijing 100190, China

{panyanbin,dengyp}@amss.ac.cn
jiangyupeng08@mails.gucas.ac.cn, naturetu@gmail.com

2009.6.30

Abstract

In this paper, we present a new lattice-based public-key cryptosystem mixed
with a knapsack, which has reasonable key size and quick encryption and de-
cryption. The module strategy in our cryptosystem can also be used to con-
struct a framework for some GGH-type cryptosystems to improve their security.

Keywords: Lattice, Public-key Cryptosystem, Knapsack

1 Introduction

Since the seminal work of Ajtai [1] connecting the average-case complexity of lattice
problems to their complexity in the worst case, cryptographic constructions based
on lattices have drawn considerable attention. Ajtai and Dwork [3] proposed the
first lattice-based public-key cryptosystem whose security is based on the worst-
case hardness assumptions. After their results, several lattice-based cryptosystems
[7, 10, 5, 17, 18, 2, 8, 16] have been proposed.

Lattice-based cryptosystems have many advantages: first, the computations in-
volved are very simple and usually require only modular addition; second, by now
they resist the cryptanalysis by quantum algorithms while there already exist the
efficient quantum algorithms[19] for factoring integers and computing discrete loga-
rithms.

However, most of the presented lattice-based cryptosystems which are efficient
have no security proofs based on the worst-case hardness while most of those which

1

have security proofs are not efficient. Recently, some efficient lattice-based cryp-
tosystems [8, 16] with security proofs have been presented.

In Crypto’97, Goldreich, Goldwasser and Halevi [7] proposed a public key cryp-
tosystem based on the closest vector problem, which is NP-hard. Although The
cryptosystem GGH has not a security proof, it has efficient encryption and decryp-
tion. Moreover, it has a natural signature scheme. However, Nguyen [14] showed
there is a major flaw in it, and it can’t provide sufficient security without being
impractical.

The NTRU cryptosystem proposed by Hoffstein, Pipher, Silverman[10] is the
most practical scheme known to date. It features reasonably short, easily created
keys, high speed, and low memory requirements. By the results of Coppersmith
and Shamir [6], the security of NTRU can be based on, but not equivalent to, the
hardness of some lattice problems. To date, the chosen-ciphertext attacks against
NTRU may be the most dangerous and most of the ciphertext-only attacks [6, 12, 9]
against NTRU relies on the special cyclical structure.

Although the Ajtai-Dwork cryptosystem was thought to be secure if a particular
lattice problem is difficult in the worst-case, Nguyen and Stern [13] gave a heuristic
attack to show that in order to be secure, the implementations of the Ajtai-Dwork
cryptosystem would require very large keys, making it impractical in a real-life en-
vironment. In 1998, Cai and Cusick [5] proposed another efficient lattice-based
public-key cryptosystem with much less data expansion by mixing the Ajtai-Dwork
cryptosystem with a knapsack. However, an efficient ciphertext-only attack pre-
sented by Pan and Deng [15] shows that it’s not secure.

In this paper, we also propose a new lattice-based public key cryptosystem mixed
with a knapsack.

Like GGH, the system use a matrix H ∈ Zm×m as a public key to encrypt a
message t ∈ {0, 1}m, but to recover the message using direct lattice reduction, we
need solve a CVP for a 2m-dimensional lattice instead of m-dimensional in GGH.
This may allow us to use small dimensional matrix as public key to provide sufficient
security. Moreover, all the entries of H is bounded by a small positive integer p, so
the public key size is usually smaller than in GGH.

The size of key is bigger than in NTRU which is most practical. However, there is
not an obvious lattice attack to obtain the private key in our cryptosystem while the
private key of NTRU can be obtained by finding the short vector of NTRU-lattice.
Moreover, the lattice we use looks more random, no special cyclical structure like
NTRU, this makes our scheme resist some similar attacks which are based on the
special cyclical structure against NTRU.

We call a cryptosystem has GGH-type if it recovers the message t from such a
vector Bt + r, where B ∈ Zm×m, and t ∈ Zm, r ∈ Zm. The module strategy in
our cryptosystem can also be used to construct a framework for such GGH-type

2

cryptosystems in which the entries of B are small and the entries of t and r have
the same distribution. The module strategy can help the cryptosystems hide the
private key and improve the security against lattice attack if the module is small
enough.

The remainder of the paper is organized as follows. In Section 2, we give some
preliminaries needed. In Section 3, we describe our lattice-based public key cryp-
tosystem. Section 4 presents some details in the practical implementation and in
Section 5, we give the security analysis and some experimental evidence. Finally,
we give a short conclusion in Section 6.

2 Preliminaries

Knapsack Problem. Given positive integers N1, N2, · · · , Nn and s, the knapsack
or subset sum problem is to find variables a1, a2, · · · , an, with ai ∈ {0, 1}, such that

n∑
i=1

aiNi = s.

The problem is known to be NP-complete. However, if N1, N2, · · · , Nn construct

a superincreasing sequence, i.e. Ni >
i−1∑
j=1

Nj for i = 2, 3, . . . , n, we can find

a1, a2, · · · , an efficiently by the following greedy algorithm. If s ≥ Nn, then an = 1,
otherwise, an = 0. We then substitute s by s− anNn and find an−1 similarly. It is
easy to see that the process can be continued until all ai’s are found.

Lattice. An integer lattice L is a discrete additive subgroup of Zn and can be
also defined as below:

Let b1, b2 · · · , bd ∈ Zn be linearly independent vectors, the lattice L spanned by
them is

L(b1, b2, · · · , bd) = {
d∑

i=1

aibi|ai ∈ Z}.

B = (b1, b2 · · · , bd) is called the basis of L. A lattice is full rank if d = n. If L is full
rank, the determinant det(L) is equal to the absolute value of determinant of the
basis B. If A is a matrix with d linearly independent columns, we denote Ai the
i− th column of A and L(A) the lattice spanned by A1, A2, · · · , Ad.

Denote ‖v‖ the Euclidean l2-norm of a vector v and λ1(L) the length of the
shortest non-zero vector in the lattice L. The shortest vector problem (SVP) refers
the question to find such shortest non-zero vector while the closest vector problem
(CVP) is to find a lattice vector minimizing the distance to a given vector. The

3

celebrated LLL algorithm [11] runs in polynomial time and approximates the short-
est vector within a factor of 2n/2. Babai [4] also gave an polynomial-time algorithm
that approximates the closest vector by a factor of (3/

√
2)n, which is called Babai’s

Nearest Plane Algorithm.
By the Gaussian Heuristic, λ1(L) ≈

√
n

2πedet(L)
1
n for an n− dimensional ran-

dom lattice L. Similarly, most closest vector problems for L have a solution whose
size is approximately

√
n

2πedet(L)
1
n . If we want to find a short vector v in L, or a

vector v such that t−v is the vector in L close to the target vector t, then experiences
tell us the smaller ‖v‖√

n
2πe

det(L)
1
n

, the more easily we can find v in practice.

3 Description of Our Cryptosystem

Parameter: m
Key Generation:
Let n = 2m.

Step 1 Choose a superincreasing sequence N1, N2, · · · , Nn where N1 = 1.

Step 2 Randomly choose a permutation τ on n letters with τ−1(1) ≤ m.

Step 3 For i = m + 1,m + 2, · · · , n, write Nτ(i) as

Nτ(i) =
m∑

j=1

bi−m,jNτ(j)

where bi−m,j ∈ Z and we expect them to be as small as possible.
Define A ∈ Zm×n as belows:

A =

1 0 · · · 0 b1,1 b2,1 · · · bm,1

0 1 · · · 0 b1,2 b2,2 · · · bm,2
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 b1,m b2,m · · · bm,m

 .

So, (Nτ(1), Nτ(2), · · · , Nτ(m))A = (Nτ(1), · · · , Nτ(m), Nτ(m+1), · · · , Nτ(n)).

Step 4 Let p be the smallest prime greater than 2q + 1, where

q = max
i=1,··· ,m

max{
∑

j=1,··· ,n
Ai,j>0

|Ai,j |,
∑

j=1,··· ,n
Ai,j<0

|Ai,j |}.

4

Step 5 Randomly choose a permutation σ on n letters, such that the matrix S =
[Aσ(1), Aσ(2), · · · , Aσ(m)] is invertible in Zm×m

p .

Step 6 Let H = S−1[Aσ(m+1), Aσ(m+2), · · · , Aσ(n)] mod p.

Public Key H, p.

Private Key N1, N2, · · · , Nn, S, τ, σ.

Encryption: For any message t ∈ {0, 1}m, first,we uniformly choose a vector r
from {0, 1}m, then compute the ciphertext:

c = Ht + r mod p

Decryption: Let v =
(

r
t

)
, and v′ =

 vσ−1(1)
...

vσ−1(n)

, then we first compute:

c′ = Sc mod p
= S[I|H]v mod p
= B−1CC−1BAv′ mod p
= Av′ mod p

Choosing the entries of c′ in the interval from −p
2 to p

2 , for the choice of p, we get
c′ = Av′, then we compute

(Nτ(1), Nτ(2), · · · , Nτ(m))Av′ =
n∑

i=1

vσ−1(i)Nτ(i) =
n∑

i=1

vσ−1τ−1(i)Ni.

We can easily get vσ−1τ−1(i) by greedy algorithm, and by τ and σ, we can get the
message t and r.

Remark 1 we give an example to show how to use the module strategy to construct
a framework for some GGH-type cryptosystems which recover the message t from
such a vector Bt + r, where B ∈ Zm×m has small entries, and t ∈ Zm, r ∈ Zm

have the same distribution for their entries. For example, suppose the entries of t
and r are uniformly randomly selected in [a, b] in the GGH-type cryptosystems. We
first Let A = [I|B], then let p be the smallest prime greater than 2q + 1, where q =

max
i=1,··· ,m

max{| max
xj∈[a,b]

m∑
j=1

xjAi,j |, | min
xj∈[a,b]

m∑
j=1

xjAi,j |}. Then, we use the same method

in Step 5 and Step 6 to generate the private key σ, S, and the public key H. We
use the similar method to encrypt a message t, and to decrypt the message c, we
first use the similar method to get Bt + r by the choice of p, then we can recover t
from Bt + r. The security analysis in Section 5 shows that if p is small enough, the
cryptosystem maybe secure against the lattice attack to obtain the message.

5

4 Implementations of Our Cryptosystem

4.1 About the Choice of Ni and τ

To generate a superincreasing sequence, we can first give a bound d ∈ Z+, then
we select N1 = 1 and generate Ni (2 ≤ i ≤ n) inductively as follows: after having

N1, N2, · · · , Nk, we uniformly randomly choose e ∈ (0, d) and let Nk+1 =
k∑

j=0
Nj +e.

We don’t uniformly randomly choose a permutation τ on n letters directly, but
use the following way:

1. For 1 ≤ i ≤ m, we uniformly randomly choose a permutation ρ on {1, 2, · · · ,m},
and let τ(i) = 2ρ(i)− 1.

2. For m + 1 ≤ i ≤ n, we independently uniformly randomly choose another
permutation ρ on {1, 2, · · · ,m}, and let τ(i) = 2ρ(i−m).

The reason to set N1 = 1 and τ−1(1) ≤ m is mainly to ensure that Nτ(i)(m+1 ≤ i ≤
n) can be represented as the integer linear combination of Nτ(1), Nτ(2), · · · , Nτ(m).
Notice that even we don’t let N1 = 1, the probability that Nτ(i)(m+1 ≤ i ≤ n) can
be represented as the integer linear combination of Nτ(1), Nτ(2), · · · , Nτ(m) must be
very large.

4.2 How to Realize Step 3

First, we give an algorithm to represent an integer y as an integer linear combination
of T1, T2, · · · , Tk ∈ Z with small coefficients by using the lattice reduction algorithm.

Algorithm LS(y, T1, T2, · · · , Tk)
Input: y, T1, T2, · · · , Tk.

Output: b1, b2, · · · , bk ∈ Z which are small and y =
k∑

i=1
biTi

1. Choose a solution b′1, b
′
2, · · · , b′k ∈ Z, such that y =

k∑
i=1

b′iTi.

2. Let L be the lattice {(x1, x2, · · · , xk)T ∈ Zk|
k∑

i=1
xiTi = 0}, and use Babai’s

Nearest Plane Algorithm to find (x′1, x
′
2, · · · , x′k)

T ∈ L close to b′1, b
′
2, · · · , b′k.

3. Let bi := b′i − x′i for 1 ≤ i ≤ k.
4. Output b1, b2, · · · , bk.

We don’t use the algorithm LS to find bi−m,j(1 ≤ j ≤ m), because it costs too much
time when m is large. To make the algorithm more efficient, a greedy strategy is
involved.

6

Let Ti = Nτ(i), i = 1, 2, · · · ,m, we first sort T1, T2, · · · , Tm in ascending order,
we can assume Tϕ(1) < Tϕ(2) < · · · < Tϕ(m), where ϕ is a permutation on m letters.
Notice that if we choose τ like in Subsection 4.1, we can easily get the order and ϕ,
because Tϕ(i) = N2i−1.

Then we use the algorithm below to find bi−m,j(1 ≤ j ≤ m) for any Nτ(i)(m+1 ≤
i ≤ n) with additive parameters δ and k.

Input: δ, k, Tϕ(1), Tϕ(2), · · · , Tϕ(m), ϕ and Nτ(i) where i > m

Output: bi−m,1, · · · , bi−m,m ∈ Z which are small and Nτ(i) =
m∑

j=1
bi−m,jTj

for j from 1 to m do
uniformly choose an integer a ∈ [−δ, δ]
Nτ(i) := Nτ(i) − aTϕ(j)

bi−m,ϕ(j) := a

end for
for j = m to k + 1 do

compute Nτ(i) = qTϕ(j) + r, where q, r ∈ Z and |r| ≤ Tϕ(j)

2
Nτ(i) := r

bi−m,ϕ(j) := bi−m,ϕ(j) + q

end for
Compute (x1, x2, · · · , xk)T := LS(Nτ(i), Tϕ(1), Tϕ(2), · · · , Tϕ(k)), and let

bi−m,ϕ(i) := bi−m,ϕ(i) + xi for 1 ≤ i ≤ k.
Output bi−m,1, · · · , bi−m,m

Experiments show that the choice of δ and k affects the size of p, the probability
that S is invertible and the running time of the algorithm. So we expect δ and k
are as small as possible.

4.3 Some Experimental Results

We implemented the cryptosystem on an AMD Athlon(tm) 64 Processor 2800+
1.81 GHz PC using Shoup’s NTL library version 5.4.1[20]. In all our experiments,
we let the bound d in Subsection 4.1 be 40, δ = 2, and we used the function
LatticeSolve in NTL directly instead of implementing the Algorithm LS. For m =
100, 200, 300, 400, 500, we let k = 10, 20, 30 respectively. For each m and k, 10
instances were tested. The results are stated as below.
How Large p can Be? Since p decides the size of the key directly, it is necessary
to study how large it can be. For each m and k, we give the minimum, maximum
and the average of p’s in our 10 instances.

7

m 100 200 300
k 10 20 30 10 20 30 10 20 30

min 173 173 173 337 347 359 557 521 509
max 251 227 223 421 433 431 683 631 577

average 211.2 196.6 203.4 381.6 384.8 388.4 591.0 582.0 553.0

m 400 500
k 10 20 30 10 20 30

min 673 701 701 863 853 821
max 877 821 863 1091 1103 1061

average 777.0 743.8 759.4 952.0 946.0 923.8

It is reasonable to assume that p ≈ 2m. Of course, p is not necessary to be a prime,
but to be a prime is to increase the probability that S is invertible.
The Probability that S is Invertible. In our experiments, we uniformly chose a
permutation σ on n letters, and S was always invertible. Hence, it is also reasonable
to believe that S is invertible with very high probability when we uniformly choose
a permutation σ on n letters.
The Key Size and Speed. Since p ≈ 2m, the public key size is m2 log 2m,
and the private key size is O(m2 log 2m). To encrypt an m bits message, we need
O(m2) modular addition, and the ciphertext is at most m log 2m bits, so the message
expansion is log 2m. To decrypt a ciphertext, we also need O(m2) operations.

5 Security Analysis

Message Security. The direct lattice attack against our cryptosystem to recover
the message is to solve the CVP for the lattice spanned by

B =
(

αI 0
H pI

)

with the target vector
(

0
c

)
, because there exists a vector u ∈ Zm, such that

(
αI 0
H pI

) (
t

u

)
−

(
0
c

)
=

(
αt

−r

)
,

where t is the corresponding message and r is the random vector selected in encryp-

tion and ‖
(

αt

−r

)
‖ is small.

8

By the Gaussian Heuristic, the size of the solution of the closest vector problems
is approximately

√
n

2πedet(L(B))
1
n =

√
αpm
πe . For any message t and random vector

r, to minimize

c(t, r) =

√
α2‖t‖2 + ‖r‖2√

αpm
πe

=

√
(α2‖t‖2 + ‖r‖2)πe

αpm
,

we get α = ‖r‖/‖t‖ and

c(t, r) =

√
2πe‖t‖‖r‖

pm
.

c(t, r) gives a measure of the vulnerability of an individual message to a lattice
attack. An encrypted message is most vulnerable is c(t, r) is small, and becomes
less so as c(t, r) gets closer to 1.

Notice that ‖t‖‖r‖ ≈ m
2 , c(t, r) is approximately

√
πe
p . The tables below give

the values of cmsg =
√

πe
p in our experiments when we use the average of p’s.

m 100 200 300
k 10 20 30 10 20 30 10 20 30

cmsg 0.201 0.208 0.205 0.150 0.149 0.148 0.120 0.121 0.124

m 400 500
k 10 20 30 10 20 30

cmsg 0.105 0.107 0.106 0.095 0.095 0.096

Key Security. There is not an obvious attack to obtain the whole private key in
our cryptosystem.

However, using the direct lattice attack to obtain A, we need find m short vectors

for the lattice
(

I 0
HT pI

)
, since every column of A′ = [Aσ(1), Aσ(2), · · · , Aσ(n)]T

is in the lattice. We denote l the average of ‖A′
i‖’s for 1 ≤ i ≤ m. By the Gaussian

Heuristic, the size of the solution of the shortest vector problems is approximately√
n

2πedet(L(B))
1
n =

√
pm
πe . So we get the value of ckey = l√

pm
πe

. The smaller ckey is,

the more easily A′
i’s may be found. As it gets closer to 1, to find A′

i’s may be more
difficult. The tables below give the values of l’s and ckey’s in our experiments when
we use the average of p’s.

9

m 100 200 300
k 10 20 30 10 20 30 10 20 30
l 17.76 17.73 17.84 24.83 24.95 24.97 30.46 30.52 30.55

ckey 0.357 0.370 0.366 0.263 0.263 0.262 0.211 0.213 0.219

m 400 500
k 10 20 30 10 20 30
l 35.17 35.21 35.22 39.32 39.34 39.36

ckey 0.184 0.189 0.187 0.167 0.167 0.169

Remark 2 Comparing with GGH, to recover the message using direct lattice reduc-
tion, we need solve a CVP for a 2m-dimensional lattice instead of m-dimensional in
GGH. This may allow us to use small dimensional matrix as public key to provide
sufficient security.

Comparing with NTRU, there is not an obvious attack to obtain the private key
in our cryptosystem while the private key of NTRU can be obtained by finding the
short vector of NTRU-lattice. Moreover, it seems that we use a more random lattice
with no special cyclical structure like NTRU, this makes our scheme resist some
similar attacks against NTRU which are based on the cyclical structure.

6 Conclusion

We have presented a new lattice-based public-key cryptosystem mixed with a knap-
sack, and we have shown it has reasonable key size and quick encryption and decryp-
tion. The constant c shows that it may resist the ordinary lattice attack. Moreover,
we can use the same module strategy to construct a framework for some GGH-type
cryptosystems to improve their security.

References

[1] M. Ajtai, ”Gennerating hard instances of lattice problems,” in Proc. of
28th STOC, New York, USA: ACM, 1996, pp. 99–108.

[2] M. Ajtai, ”Representing hard lattices with O(n log n) bits,” in Proc. of
37th STOC, D.S. Johnson, U. Feige, Eds. New York, USA: ACM, 2005,
pp. 94–103.

[3] M. Ajtai, C. Dwork, ”A public-key cryptosystem with worst-case/average-
case equivalence,” in Proc. of 29th STOC, New York, USA: ACM, 1997,
pp. 284–293.

10

[4] L. Babai, ”On Lovasz lattice reduction and the nearest lattice point prob-
lem”, Combinatorica 6, 1C13 (1986)

[5] J.-Y. Cai, T.W. Cusick, ”A lattice-based public-key cryptosystem,” in
Proc. of SAC’98 (Lecture Notes in Computer Science), S. Tavares, H.
Meijer, Eds. Berlin, Germany: Springer-Verlag, 1999, vol. 1556, pp. 219–
233.

[6] D. Coppersmith, A. Shamir, ”Lattice attacks on NTRU”, in Proc of Eu-
roCrypt’97 (Lecture Notes in Computer Science), W. Fumy, Ed. Berlin,
Germany: Springer, 1997, Vol. 1233 pp. 52C-61.

[7] O. Goldreich, S. Goldwasser, S. Halevi, ”Public-key cryptosystems from
lattice reduction problems,” in Crypto’97 (Lecture Notes in Computer Sci-
ence), B.S. Kaliski Jr., Ed. Berlin, Germany: Springer-Verlag, 1997, vol.
1294, pp. 112–131.

[8] C. Gentry, C. Peikert, and V. Vaikuntanathan, ”Trapdoors for hard lattices
and new cryptographic constructions”, In Proc. of 40th STOC, New York,
USA: ACM, 2008, pp 197–206.

[9] N. Howgrave-Graham, J.H. Silverman, W. Whyte, ”A Meet-
In-The-Meddle Attack on an NTRU Private Key”, available at
http://www.ntru.com/cryptolab/tech notes.htm#004

[10] J. Hoffstein, J. Pipher, J.H. Silverman, ”NTRU: A Ring-Based Public Key
Cryptosystem,” in Proc. of Algorithmic Number Theory (Lecture Notes in
Computer Science), J.P. Buhler, Ed. Berlin, Germany: Springer-Verlag,
1998, vol. 1423, pp. 267–288.

[11] A. K. Lenstra, H. W. Lenstra, and L. Lovász: Factoring polynomials with
rational coeffcients. Math. Ann., 261:515-534, 1982

[12] A. May, J.H. Silverman, ”Dimension Reduction Methods for Convolution
Modular Lattices”, In Proc of Cryptography and Lattices (Lecture Notes
in Computer Science), J.H. Silverman, Ed. Berlin, Germany: Springer-
Verlag, 2001, vol. 2146, pp. 110–125.

[13] P. Nguyen, J. Stern, ”Cryptanalysis of the Ajtai-Dwork cryptosystem,” in
Crypto’98 (Lecture Notes in Computer Science), H. Krawczyk, Ed. Berlin,
Germany: Springer-Verlag, 1998, vol. 1462, pp. 223–242.

11

[14] P. Nguyen, ”Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosys-
tem from Crypto’97”, in Proc. of Crypto’99 (Lecture Notes in Computer
Science), Berlin/Heidelberg, Germany: Springer-Verlag, 1999, vol. 1666,
pp. 288–2304.

[15] Y. Pan, Y. Deng: ”Cryptanalysis of the Cai-Cusick Lattice-based Public-
key Cryptosystem,” Cryptology ePrint Archive, Report 2008/204, available
at http://eprint.iacr.org/2008/204

[16] C. Peikert, ”Public-Key Cryptosystems from the Worst-Case Shortest Vec-
tor Problem”, In Proc. of 41th STOC, New York, USA: ACM, 2009, pp
333–342 .

[17] O. Regev, ”New lattice-based cryptographic constructions,” Journal of the
ACM, 51(2004), 899–942.

[18] O. Regev, ”On lattices, learning with errors, random linear codes, and
cryptography,” in Proc. of 37th STOC, D.S. Johnson, U. Feige, Eds. New
York, USA: ACM, 2005, pp. 84–93.

[19] P. Shor, ”Algorithms for Quantum Computation: Discrete Logarithms
and Factoring,” In Proc. of 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, NM, IEEE Computer Science Press, 1994,
pp. 124-134.

[20] V. Shoup, NTL: A library for doing number theory. Available at
http://www.shoup.net/ntl/

12

