
How to Delegate a Lattice Basis

David Cash Dennis Hofheinz Eike Kiltz

July 24, 2009

Abstract

We present a technique, which we call basis delegation, that allows one to use a short basis
of a given lattice to derive a new short basis of a related lattice in a secure way. And since
short bases for lattices essentially function like cryptographic trapdoors, basis delegation turns
out to be a very powerful primitive. As the main application of our technique, we show how to
construct hierarchical identity-based encryption (HIBE) that is secure, without random oracles,
under the assumption that certain standard lattice problems are hard in the worst case. This
construction and its variants constitute the first HIBE schemes from lattices, as well as the
first lattice-based constructions of stateless signatures and identity-based encryption without
random oracles.

1 Introduction

Lattice problems are arguably the most compelling candidate for hard problems for cryptography
that are not directly related to integer factoring or discrete logarithm problems. Lattice problems
provide some significant advantages not found in other types of cryptography. The most prominent
(and unique) advantage was first found in a result of Ajtai [Ajt04], which showed that certain lattice
problems are hard on average as long as they are hard in the worst case. Lattice problems are also
attractive in that, unlike the number-theory problems used in cryptography, no quantum algorithms
for lattice problems are known to outperform classical algorithms. Furthermore, schemes based on
lattice problems typically scale better asymptotically than number-theory based counterparts.

Recently it was shown by Gentry, Peikert and Vaikuntanathan [GPV08] that lattice problems
suffice for constructing a kind of trapdoor primitive called a preimage-samplable function. In the
same work, this primitive was shown to imply, in the random oracle model, digital signatures and,
using specific properties of their construction, identity-based encryption (IBE).

In the present paper we show how to realize a much richer type of trapdoor-like behavior from
lattices. We present a technique that we call basis delegation, which, at a high level, allows one to
use a short basis of a given lattice to derive a short basis of related lattice in secure way. And since
short bases for lattices essentially function like cryptographic trapdoors, basis delegation turns out
to be a very powerful primitive.

At the heart of our basis delegation technique is an idea that we call generalized preimage
sampling, which has further applications. This idea essentially shows that, given a trapdoor that
allows preimage-sampling in the sense of [GPV08], we can actually use a trapdoor to preimage
sample under many different, but related, public keys. Interestingly, this property is enabled by
the fact that we are sampling preimages, and not computing unique preimages, as is the case
with traditional primitives like trapdoor functions. Previously, the idea of preimage sampling was

1

necessary to protect the lattice and somewhat of a hindrance when using the primitive, but here
we find that it gives far more flexibility than traditional approaches.

We show how to apply our techniques to give several new constructions of lattice-based primi-
tives. In particular, we get the following results:

• Stateless digital-signatures and IBE schemes that are provably secure, under worst-case lattice
hardness assumptions, without random oracles. Specifically, we show how to apply generalized
preimage sampling to implement “all but one” style simulations with lattices without random
oracles.

• A reasonably efficient construction of hierarchical identity-based encryption (HIBE) that is
provably secure, in the random oracle model, under standard worst-case lattice assumptions.
The construction uses our basis-delegation technique to implement the key hierarchy.

• A HIBE scheme that is provably secure under the same assumptions, but without random
oracles. This construction requires further ideas which extend the combinatorial ideas behind
the admissible hash functions of [BB04b].

Our constructions rely on the same assumptions as recent work (although with different quantitative
parameters that depend on the specific properties of instantiations of our schemes). As is always the
case with identity based encryption, we get public-key encryption and chosen-ciphertext security
from each of our constructions with security and efficiency properties similar to the IBE schemes.

Despite its importance, constructions of secure and efficient IBE have been found only in the
last decade [BF03, Coc01, SOK00], and we still have relatively few techniques for constructing
them. Prior to the recent lattice-based constructions, all known constructions were based either on
pairings or quadratic residuosity. For hierarchical identity-based encryption [GS02, HL02], we have
even fewer constructions, and all known HIBE constructions are from problems related pairings,
and, in particular, none are known from lattices.

In addition to giving the first signature schemes1 and identity-based encryption schemes from
lattices without random oracles, these results also represent the first construction of hierarchical
identity-based encryption that does not use pairings (with or without random oracles). Our con-
structions are also anonymous and therefore have applications in searchable encryption [BDOP04,
ABC+05].

1.1 Overview of Our Techniques

Here we start with a high-level description of our techniques, beginning with generalized preimage
sampling. For now we deal with the techniques abstractly and dispense with some issues related
to lattices that complicate the explanation.

Generalized Preimage Sampling. Recall that the work of [GPV08] gave a construction of a
keyed function fpk, such that with the corresponding trapdoor sk, one could sample preimages
from for a given element in the range of the function. Preimage sampling (instead of deterministic

1Ajtai’s lattice-based one-way function [Ajt04] already implies stateful signatures without random oracles through
the generic, tree-based construction by Rompel [Rom90]. See also [LM08] for a more efficient construction. Our
proposed signature schemes follow the “hash-and-sign” principle and are therefore stateless. (This is a crucial property
in practical applications where it may be required that different systems sign for the same public-key.)

2

inversion, which may be possible even with a many-to-one function) was necessary because of the
security properties of the lattices involved.

In our generalized version of preimage sampling enables the following type of inversion. We deal
with the same function (up to parameter resetting) fpk, and start with the same trapdoor sk. Now
fix some y in the range of fpk. Instead of enabling sampling2 from the set f−1

pk (y) = {x : fpk(x) = y},
we show that one can actually sample from f−1

pk′ (y) for an entire family of public keys pk′. In
slightly more detail, we show that one can securely pre-image sample whenever pk appears as a
“substring” of pk′. Intuitively, we construct a preimage sample by selecting some portions of the
preimage element in the “forward” direction, and then we use the trapdoor the compute some
in the “backward” direction. We note that this idea crucially depends on preimage sampling,
as normally we would not be allowed to compute part of the preimage in the forward direction.
Using this technique, we are able to carry out security reductions that have the flavor of Noar-
Yung encryption, where the trapdoor elements known by the simulator are indistinguishable from
non-trapdoor elements.

Basis Delegation. Our basis delegation algorithm is built from the generalized preimage sampler,
but it requires one more fundamental observation about an abstract property of the GPV function
fpk.

We can understand the situation by an analogy with, say, the RSA trapdoor function with
public key N and trapdoor p, q where N = pq. There the domain and range of the function are
elements of ZN , and these elements never “mix” with the trapdoor p, q directly, and they seem
like different types of objects. But the GPV function seems fundamentally different: its trapdoor
elements are actually very much the same type of object as the elements of domain – in particular,
they are both “short” vectors in a particular lattice. The difference is only quantitative, in that
the trapdoor elements are simply shorter.

This observation allows us to “mix” the trapdoor and domain elements, arriving at a natural
and powerful type of primitive. Specifically, we will show that one can generate a new trapdoor
by simply sampling preimages several times. The new trapdoor will be quantitatively weaker than
the original, but still sufficient for cryptographic purposes.

Now the payoff comes when we combine this idea with generalized preimage sampling. Recall
that generalized preimage sampling gives the ability to generate preimage samples for some pk′.
But according to the above idea, this actually allows us to generate a trapdoor for pk′! The new
trapdoor will again be weaker, but sufficient for our purposes. This is exactly the idea behind
basis delegation, as trapdoors for the GPV function are bases. A hierarchy structure also becomes
apparent when one observes that the new trapdoor is sufficient for further preimage sampling.

1.2 Applications of Our Techniques

In this section we discuss how our techniques can be applied to construct cryptographic primitives.
As with the previous discussion, we ignore the technicalities involved with lattices and focus on the
“cryptographic” ideas needed.

HIBE with a Random Oracle. Next we present is a HIBE scheme that is secure in the random
oracle model under appropriate assumptions. It is implemented using our basis delegation in the
following way. The master public/secret key pair is simply a public/secret key pair (pkε, skε) for

2By sampling, we mean sampling from a specific distribution defined by the function, but this detail is not
important at this point.

3

the GPV preimage samplable function, which was also the case in the GPV IBE scheme. Given
the master secret key, we extract a key (basis) for the identity id1 by taking pk1 = H(id1), and
then setting pk′ = pkε‖pk1. Since pkε is a substring of pk′, our basis delegation algorithm can
extract a new key for pk′. Now, with a secret key for pk′, a user can further delegate by using
basis delegation again: for another identity id2, it computes pk2 = H(id1‖id2), and then applies
basis delegation to get a secret key for the public key pkε‖pk1‖pk2. This works because pkε‖pk1

is a substring of the new public key. Finally, we complete the IBE by noting that encryption and
decryption algorithms can work as in the GPV IBE, up to resetting parameters.

In the security proof, the simulator is able to derive secret keys for every identity except the
challenge because it will always know a trapdoor for some substring of the identity, but not for the
same substring that a real user would know (which will be for a prefix). Therefore the simulator
can guess the challenge identity chain as the identities are given to the random oracle and answer
key extraction queries for all other identities.

Selective-ID security in the Standard Model. As another application of our basis delega-
tion technique we show how to instantiate the hash function H in the standard model. First we
explain a simple IBE scheme that is only selective-ID secure (i.e., in the security experiment the
adversary has to decide first on the challenge identity, and then receives the public key). We use a
Dolev-Dwork-Naor [DDN91] type idea where the master public-key contains 2k many independent
public-keys pki,b (1 ≤ i ≤ k, 0 ≤ b ≤ 1) and a user public-key for id is pk1,id1

‖ . . . ‖pkk,idk
, choosen

according to the binary representation of the identity. By our generalized preimage sampling tech-
nique, a user sceret-key can be computed if (and only if) one knows at least one of the k secret-keys
corresponding to pki,idi

. Since in the security proof the challenge identity is known in advance,
we can apply an “all-but-one” simulation strategy where the simulator knows all corresponding
secret-keys except the ones for the challenge identity. Our standard-model HIBE is an extension
of this idea that uses our basis delegation technique to implement the key hierarchy.

Full security in the Standard Model. The security proof for the latter scheme depends,
of course, heavily on the fact that the simulator knows the challenge identity in advance. In
the general HIBE security experiment, however, the adversary may choose the challenge identity
dynamically and adaptively. To achieve full HIBE security in the standard model, we employ a
probabilistic argument, using a variant of admissible hash functions (AHFs, [BB04b]). AHFs have
been introduced by Boneh and Boyen [BB04b] in a similar setting to achieve full IBE security.
As we will explain in Section 5.3, their original AHF definition and proof strategy do not take
into consideration the statistical dependence of certain crucial events. We circumvent this with a
different AHF definition and a different proof. In particular, we use artificial abort techniques (as
used by Waters in [Wat05]).

We remark that the resulting HIBE scheme is not very practical, as we incur an efficiency cost
similar to that of [BB04b]. It does however serve as a proof-of-concept for a lattice based HIBE
with a polynomial security reduction in the standard model.

Further Applications. A HIBE scheme is an extremely powerful primitive, so it directly gives
rise to a number of further cryptographic applications. Specifically, we can achieve CCA secure
encryption (both for PKE and HIBE schemes) by sacrificing one HIBE level and using techniques
from [BCHK06]. Since the transformation of [BCHK06] requires only selective-identity security,
this in particular yields a very efficient lattice-based CCA secure PKE scheme. Furthermore, our
fully CPA secure HIBE scheme implies a stateless lattice-based signature scheme without random

4

oracles.

1.3 Related Work

Since the work of Ajtai [Ajt04], lattice applications in cryptography have been studied intensely.
See the survey by Micciancio and Regev [MR09] for an overview.

In concurrent and independent work, Peikert [Pei09a] proposes the notion of a “bonsai tree”
on lattices which, at a technical level, is equivalent to our basis delegation technique. His work
also shows how to use bonsai trees to get digital signatures and HIBE without random oracles.
Furthermore, Peikert obtains fully secure (as opposed to selective-ID secure) HIBE through a
similar implementation of hash functions, although without resolving the complications implicit
in prior work that we deal with in Section 5. We remark that he obtains fully secure signatures
through chameleon hashes, which results in more efficient schemes than one gets through our fully
secure IBE (in addition to avoiding prior complications).

In another concurrent and independent work, Agrawal and Boyen [AB09] also show how to
obtain (non-hierarchical) IBE based on LWE without random oracles. Their construction is very
similar to a one-level version of our HIBE.

2 Preliminaries

2.1 Notation

We write [d] = {1, . . . , d}. A probabilistic polynomial-time (PPT) algorithm is a randomized
algorithm which runs in strict polynomial time. If A is a probabilistic algorithm, we write y ← A(x)
to denote that the random variable y is defined as the output of A when run on input x and with
fresh random coins. On the other hand, if S is a distribution, then s← S defines s as being sampled
from S. Vectors are denoted by bold lower-case letters (e.g., a = (ai)) and matrices by bold upper-
case letters (e.g., A = (ai,j)). For an n×m matrix A we write A = [a1, . . . ,am], where ai denotes
the ith column vector of A. We write ‖a‖ for the Euclidean norm of a, and ‖A‖ = maxi∈[m]‖ai‖,
where A = [a1, . . . ,am].

2.2 Cryptographic Notions

Hierarchical Identity-based Encryption. A (hierarchical) identity of length ℓ is a vector
id = (id1, . . . , idℓ), where idi is from some identity-space (usually {0, 1}∗.). We denote by id|i =
(id1, . . . , idi) the i-th prefix of id. An hierarchical identity-based encryption scheme HIBE for
hierarchies of depth d consists of the following algorithms.

• A setup algorithm HIBESetup that, given the security parameter k, outputs a master public
key mpk and a master secret key msk .

• A secret key extraction algorithm HIBEExt that, given msk and an identity id of length at
most d outputs a user secret key usk id for that identity.

• A secret key delegation algorithm HIBEDel that, given an identity id of length at most d and
a user secret key usk id|ℓ−1 for its parent id|ℓ− 1, outputs a user secret key usk id for id.

5

• An encryption algorithm HIBEEnc that, given a message m, an identity id and the master
public key mpk ourputs a ciphertext C.

• A decryption algorithm HIBEDec that, given a user secret key usk id and a ciphertext c, returns
a message m.

We require the usual completeness properties and that a user secret key computed using the dele-
gation algorithm has the same distribution as one generated by the key extraction algorithm. Note
that for d = 1 we have an identity-based encryption (IBE) scheme and for d = 0 we have a standard
public-key encryption (PKE) scheme.

For security we use the notion of chosen-plaintext (IND-CPA) security [GS02] which is defined
by the following game. An adversary A is given randomly generated mpk and access to an oracle
computing HIBEExt. The adversary produces a challenge identity vector id∗ and two messages
m0,m1, is given an encryption of mb under identity vector id∗ for b ← {0, 1} chosen uniformly at
random, and tries to guess b without querying its oracle on any parent of identity vector id∗. We
define A’s advantage in the above game as Advhibe-cpa

HIBE,A (k). We say that HIBE is IND-CPA secure if

for all PPT A, Advhibe-cpa
HIBE,A (k)− 1/2 is negligible. For the notion of IND-CCA security we give the

adversary additionally a decryption oracle that decrypts all ciphertexts, except the challenge one.
For the notion of selective identity (sID-IND-CPA) security [BB04a] we require the adversary to
commit to the challenge identity vector id∗ before obtaining mpk .

We also consider the notion of anonymity which says that a ciphertext does not reveal the
identity of the recipient [BDOP04, ABC+05]. (A formal definition can be looked up in [BDOP04,
ABC+05].)

Collision-resistant hash functions. LetH = {Hk} be a collection of distributions of functions
H : Ck → Dk = {0, 1}λ. For an algorithm B, define

Advcrhf
H,B(k) := Pr

[
x′ 6= x ∧H(x′) = H(x) | H ←Hk ; (x, x′)← B(H)

]
.

We say that H is collision resistant if for all PPT B, the function Advcrhf
H,B(k) is negligible in k.

2.3 Lattices

For a set of linear independent vectors {b1, . . . ,bm} ⊂ R
m×m, the lattice generated by B is the set

Λ = L(B) = {Bc =

m∑

i=1

ci · bi : c ∈ Z
m}.

In this case B is referred to as a basis for L(B). (The notion of L(B) also makes sense if the vectors
in B are not linear independent.)

We will restrict our attention to a special class of q-ary lattices defined by Ajtai [Ajt99]. Lattices
in this family are more easily described by a matrix that functions like a parity check matrix from
coding theory. More precisely, for some integers q,m, n and a matrix A ∈ Z

n×m
q , we define the

following m-dimensional q-ary lattice

Λ⊥
q (A) = {e ∈ Z

m : Ae = 0 mod q},

i.e., the lattice that contains all vectors that are orthogonal modulo q to the rows of A.

6

We will need the following lemma, which shows that if we start with a set of vectors that span
a particular lattice, then we can compute a basis of that lattice that does not increase the length
of the spanning set’s Gram-Schmidt3vectors b̃i.

Lemma 2.1 ([MG02]). There is a deterministic PT algorithm that, given an arbitrary basis B of
an n-dimensional lattice Λ = L(B) and a full-rank set of lattice vectors S ⊂ Λ, outputs a basis T
of Λ such that ‖t̃i‖ ≤ ‖s̃i‖ for i ∈ [n].

2.4 Discrete Gaussian

The Gaussian function on R
m with parameter r > 0 is:

ρr(x) = exp
(
π · ‖x‖2/r2

)
.

For a countable set A we define ρs,c(A) in the obvious way as
∑

x∈A ρr(x). Fix a matrix A ∈ Z
n×m
q .

The discrete Gaussian distribution on lattice Λ⊥
q (A) is defined for x ∈ Λ⊥

q (A) by

DΛ⊥
q (A),r(x) =

ρs,c(x)

ρr,c(Λ⊥
q (A))

.

For a fixed vector y ∈ Z
n
q in the span of A it will also be useful to define the coset of Λ⊥

q (A) as

Λy
q (A) = {e ∈ Z

m : Ae = y mod q} = t + Λ⊥
q (A) mod q,

where t is an arbitrary solution (over Z) of the equation At = y mod q. The Gaussian on Λy
q (A),

which is the conditional distribution DZm,r conditioned on Ae = y mod q, is given by

DΛy
q (A),r(x) =

ρr(x)

ρr(t + Λ⊥
q)

.

We collect some central facts regarding the Gaussian on (cosets of) lattices that apply when
the Gaussian parameter r exceeds the “smoothing parameter” of the underlying lattice. The latter
one will not be further defined here, as we only implicitly use the fact that for almost all matrices
A ∈ Z

n×m
q the smoothing parameter is sufficiently small [GPV08, Lemma 5.3].

Lemma 2.2. Let n, q,m be integers and m ≥ 2n lg q. For for all but a 2q−n fraction of all
A ∈ Z

n×m
q and for r ≥ ω(

√
log m), the following hold:

1. [Reg05, Cor. 3.16] The probability that a set of m2 vectors chosen independently from DΛ⊥
q (A),r

contains no m linearly independent vectors is exponentially small.

2. [GPV08, Cor. 5.4] The distribution of y = Ae mod q is statistically close to uniform on Z
n
q

when e← DZm,r.

3. [MR07] Except with exponentially small probability we have that ‖e‖ ≤ r
√

m when e ←
DΛy

q (A),r.

4. [MR07] For any t ∈ Z
m, ρr(t + Λ⊥

q (A)) ∈ [1−ε
1+ε , 1] · ρr(Λ

⊥
q (A)), for some negligible function

ε.

3The Gram-Schmidt vectors of a basis {b1, . . . ,bn} are defined to be fb1 = b1, and then for i = 2, . . . , n ebi is the
component of bi orthogonal to span(b1, . . . ,bn).

7

2.5 Hard Average Case Problems on Lattices

To define the hard problems we will need another probability distribution. The normal (Gaus-
sian) distribution on R with mean 0 and variance σ2 is the distribution with density function

1
σ
√

2π
exp

(
−x2/2σ2

)
. For α ∈ R

+, let Ψα be the distribution, modulo 1, of a normal random vari-

able with mean 0 and standard deviation α/
√

2π. We define the discretized normal distribution
on Zq, denoted Ψ̄α to be the distribution of ⌊q ·X⌉ mod q, where X is a random variable with
distribution Ψα and ⌊x⌉ is the closest integer to x ∈ R.

Let q ≥ 2 be an integer and let χ be probability distribution on Zq. For s ∈ Z
n
q , define As,χ to

the be the distribution on Z
n
q × Zq induced by choosing a uniformly at random from Z

n
q , x ← χ,

and outputting (a,aT s + x).

Learning with Errors (Decision Version). In LWEq,χ, the adversary must distinguish be-
tween the following oracles. The first oracle selects s uniformly at random from Z

n
q , which remains

fixed. To respond to a query, the oracle draws a sample from As,χ and returns it to the adversary.
The other oracle draws uniform samples over Z

n
q × Zq and returns them to the adversary.

Short Integer Solutions. An instance of the SISq,m,γ problem is a uniformly random matrix
A ∈ Z

n×m
q . The goal is to find a nonzero integer vector e ∈ Λ⊥

q (A) such that ‖e‖ ≤ γ.

We write Advlwe
q,χ,A(k) and Advsis

q,γ,A(k) to denote the success probability and distinguishing
advantage of an algorithm A for the LWE and SIS problems, respectively.

The LWE and SIS problems are especially interesting to us because there is great theoretical
evidence for their hardness. In particular, solving LWE and SIS, which are randomized problems,
is known to be as hard as solving certain lattice problems in the worst case. For instance, if we
set q ≥ γ · ω(

√
n log n), then solving SISq,m,γ is as hard as approximately solving, say, the shortest

vector problem within a factor Õ(γ · √n) [MR07, GPV08]. If we take q ≥ (1/α) ·ω(
√

n log n), then
solving LWEq,χ with χ = Ψ̄α is as hard as approximating the same problems within factor Õ(n/α)
on a quantum machine. Since we do not use these results explicitly, we only refer to [Reg05, Pei09b]
for specific calculations with regard to the hardness of LWE and SIS.

2.6 Public-key encryption from learning with errors

We recall the public-key encryption scheme from [GPV08], which is, in some sense, a dual of the
scheme of Regev [Reg05].

The scheme is parameterized by some r ≥ ω(
√

log m), which specifies the discrete Gaussian
distribution DZm,r from which the secret keys are chosen and α which specifies the amount of noise
in the ciphertexts. Let LWE-PKE := (Setup,Enc,Dec) be the following PKE scheme:

Setup(1k) uniformly picks A ∈ Z
n×m
q and an error vector e← DZm,r, sets y := Ae and outputs

pk := (A,y), sk := e.

Enc(pk, b ∈ {0, 1}) parses pk = (A,y), and uniformly picks s ∈ Z
n
q and error vectors x ← χm,

x← χ. Enc defines p := AT s + x and c := yT s + x + b⌊q/2⌋ ∈ Zq. The ciphertext is

C := (p, c) ∈ Z
m
q × Zq.

8

Dec(sk,C) parses sk = e and C = (p, c), and computes b′ = c− ep. If b′ is closer to 0 than ⌊q/2⌋
modulo q, output 0. Otherwise output 1.

As pointed out in [GPV08], efficiency of the basic scheme can be improved to encrypt messages
of length ℓ = poly(n) bits, with ciphertexts of Õ(m + ℓ) bits and public-keys of size Õ(ℓn) bits.
This can be done by including ℓ syndromes y1, . . . ,yℓ in the public-key and to encrypt to each of
them using the same s and p = AT s + x. Furthermore, it is also possible to encrypt O(log n) bits
per syndrome, which yields an expansions factor of O(1).

Theorem 2.3 ([GPV08]). Let q ≥ 5r(m + 1), α ≤ 1/(r
√

m + 1 · ω(
√

log n)), χ = Ψ̄α, and m ≥
2n lg q. Then the above public-key encryption scheme is CPA-secure and anonymous, assuming that
LWEq,χ is hard. Moreover, decryption succeeds with overwhelming probability.

3 Basis Delegation

In this section we describe and analyze our basis delegation construction, including its main com-
ponent, generalized preimage sampling. We first recall some existing cryptographic tools that will
be used below.

3.1 Trapdoors for Lattices and Preimage Sampling

Ajtai [Ajt99] showed how to sample a nearly uniform matrix A ∈ Z
n×m
q together with a relatively

short basis B of Λ⊥(A). We give the following improved version of Ajtai’s basis sampling algorithm
from [AP09].

Lemma 3.1 ([AP09]). Let n, q,m be positive integers with q ≥ 2 and m ≥ 5n lg q. There exist a
PPT algorithm TrapGen that outputs a pair (A ∈ Z

n×m
q ,S ∈ Z

m×m
q) such that A is statistically

close to uniform on Z
n×m
q and B is a basis of Λ⊥(A) such that ‖B‖ ≤ m · ω(

√
log m) with all but

nω(1) probability.

It was also shown in [GPV08] that if ISISq,m,2r
√

m is hard then A defines one-way function
fA : Sm,r → Z

n
q with fA(e) = Ae mod q, where Sm,r = {e ∈ Z

m : ‖e‖ ≤ r
√

m}. Note that by

Lemma 2.2 (2), fA is surjective for almost all A. Furthermore, a short basis for Λ⊥(A) can be
used as a trapdoor to sample from f−1

A (y), for any y ∈ Z
n
q . Klein’s algorithm [Kle00] can be used

to efficiently sample short vectors from f−1
A (y) (distributed according to DΛy

q (A),r), without giving
away any information about the short basis B [GPV08].

Lemma 3.2 ([GPV08]). Let n, q,m be positive integers with q ≥ 2 and m ≥ 2n lg q. There exist a
PPT algorithm SamplePre such that on input of A ∈ Z

n×km
q , a basis BS for Λ⊥

q (A), a vector y ∈ Z
n
q ,

and an integer r ≥ ‖B̃‖ · ω(
√

log m), the distribution of the output of e← SamplePre(A,B,y, r) is
within negligible statistical distance of DΛy

q (A),r.

Note that SamplePre in particular allows one to sample efficiently from the distribution DZm,r

for any r ≥ ω(
√

log m), by taking B to be the standard basis.

9

3.2 Our Basis Delegation Algorithm

We now describe our main technical result which is an abstract method that uses a good basis of
some lattice Λ′ to generate another good basis for a higher-dimensional lattice Λ that contains a
sublattice isomorphic to Λ′.

Let A ∈ Z
n×km
q and write A = [A1, . . . ,Ak], where each Ai ∈ Z

n×m
q . For S ⊆ [k], S =

{i1, . . . , ij}, we will write AS to denote [Ai1 , . . . ,Aij], i.e., the components of A selected according
to S, when A is viewed as a vector over Zn×m

q . We describe a procedure for generating a short

basis of Λ⊥
q (A) using a short basis of Λ⊥

q (AS), for some S ⊆ [k]. That is, given a trapdoor for fAS
,

we can generate a trapdoor for fA.

Theorem 3.3. Let n, q,m, k be positive integers with q ≥ 2 and m ≥ 2n lg q. There exists a PPT
algorithm SampleBasis, that on input of A ∈ Z

n×km, a set S ⊆ [k], a basis BS for Λ⊥
q (AS), and

an integer L ≥ ‖B̃S‖ ·
√

km · ω(
√

log km) outputs B← SampleBasis(A,BS , S, L) such that, for an
overwhelming fraction of A ∈ Z

n×km
q , B is a basis of Λ⊥

q (A) with ‖B̃‖ ≤ L (with overwhelming
probability). Furthermore, up to a statistical distance the distribution of the basis B only depends
on A and L (and does not depend on BS and S).

For the proof of Theorem 3.3 we need the following result that generalizes Lemma 3.2 in that
it allows pre-image sampling of the function fA given a short basis for Λ⊥

q (AS).

Theorem 3.4. Let n, q,m, k be as in Theorem 3.3. There exists a PPT algorithm GenSamplePre,
that on input of A ∈ Z

n×km
q , a set S ⊆ [k], a basis BS for Λ⊥

q (AS), a vector y ∈ Z
n
q , and an integer

r ≥ ‖B̃S‖ · ω(
√

log km) outputs e ← GenSamplePre(A,BS , S,y, r) which, for an overwhelming
fraction of A ∈ Z

n×km
q , is within negligible statistical distance of the distribution DΛy

q (A),r.

Proof. Assume without loss of generality that S = [s] for some s ∈ [k]. Let Sc = [k] \ S. The
sampling algorithm GenSamplePre(A,BS , S,y, r) proceeds as follows:

1. Sample eSc ∈ Z
(k−s)·m from the distribution D

Z(k−s)m,r, and let z = y −ASceSc. Parse eSc

as [es+1, . . . , ek]. This defines ei for i ∈ Sc.

2. Run eS ← SamplePre(AS ,BS , z) from Lemma 3.2 to sample a vector eS ∈ Z
sm from the

distribution DΛy
q (A),r. Parse eS as [e1, . . . , es] ∈ (Zm)s. This defines ei for each i ∈ S

3. Output e ∈ Z
km, as e = [e1, . . . , ek].

First note that by construction the vectors e output by this algorithm are contained in Λy
q (A) so

it remains to analyze their distribution.
For the analysis we can assume that the distribution of the vectors eS and eSc sampled in the

first two steps is perfect.4 For any fixed vector defined by e = (eS , eSc) ∈ Λy
q (A), let p(e) denote

the probability that GenSamplePre(A,BS , S,y, r) outputs that vector. We have

p(e) = Pr[eSc] · Pr[eS | eSc] =
ρr(eSc)

ρr(Z(k−s)m)
· ρr(eS)

ρr({eS : ASeS = y −ASceSc mod q}) (3.1)

4The distribution of e can be seen as a function of the two sampled distributions. Hence, the statistical imperfec-
tions of the sampling algorithms affect the distribution of e only negligibly.

10

For a fixed eSc , let t(eSc) be an arbitrary solution (over Z) to the equation ASt(eSc) = y −
ASceSc mod q. Then we have

{eS : ASeS = y −ASceSc mod q} = t(eSc) + Λ⊥
q (AS)

and by Lemma 2.2 (4), we have

ρr(t(eSc) + Λ⊥
q (AS)) ∈ [

1− ε

1 + ε
, 1] · ρr(Λ

⊥
q (AS)) ,

for some negligible function ε. Combining this with (3.1) we obtain

p(e) ∈ ρr(eSc)

ρr(Z(k−s)m)
· ρr(eS)

[1−ε
1+ε , 1] · ρr(Λ⊥

q (AS))
. (3.2)

Next, we claim that

ρr(Λ
y
q (A)) ∈ [

1− ε′

1 + ε′
, 1] · ρr(Z

(k−s)m)ρr(Λ
⊥
q (AS)) (3.3)

for some negligible function ε′. Combining (3.2) with (3.3) we obtain

p(e) ∈ [
1− ε′

1 + ε′
,
1 + ε

1− ε
] · ρr(eS)ρr(eS)

ρr(Λ
y
q (A))

(3.4)

which is within negligible statistical distance of DΛy
q (A),r.

It remains to prove (3.3).

ρr(Λ
y
q (A)) =

∑

e∈Λy
q (A)

ρr(e) =
∑

(eS,eSc)∈Zsm×Z
(k−s)m:

ASeS=y−ASceSc mod q

ρr(eS)ρr(eSc)

=
∑

eSc∈Z(k−s)m

ρr(eSc)
∑

eS∈Zsm:
ASeS=y−ASceSc mod q

ρr(eS)

=
∑

eSc∈Z(k−s)m

ρr(eSc)ρr(t(eSc) + Λ⊥
q (AS))

∈
∑

eSc∈Z(k−s)m

ρr(eSc) ·
[
1− ε′(eSc)

1 + ε′(eSc)
, 1

]
ρr(Λ

⊥
q (AS)) (3.5)

⊆
[
1− ε′

1 + ε′
, 1

]
· ρr(Z

(k−s)m)ρr(Λ
⊥
q (AS))

where (3.5) used again Lemma 2.2 (4) to obtain negligible functions ε′(eSc), for each eSc .

We can now complete the proof of Theorem 3.3.

Proof. The algorithm SampleBasis(A,BS , S, L) works as follows. It draws O((km)2) samples by
running GenSamplePre(A,BS , S,y = 0, r := L/

√
km) that many times. By Lemma 2.2 (1), we

have, with overwhelming probability, that the samples contain km linearly-independent vectors.
By Lemma 2.2 (3), they have length at most r ·

√
km = L. The algorithm then applies the

deterministic procedure from Lemma 2.1 to process the samples into a basis for Λ⊥
q (A) without

increasing the length of their Gram-Schmidt vectors.

11

4 HIBE in the random oracle model

As outlined in the introduction, we now use our basis delegation technique from Section 3 in a
straightforward way to a HIBE system in the random oracle model. The master public key is the
same as the one from LWE-PKE (from Section 2.6), namely a matrix A and a syndrome y, and the
master secret key is a short basis Bε for lattice Λ⊥

q (A). For a hierarchical identity id = (id1, . . . , idℓ),

the user secret key consists of a short basis Bid for Λ⊥
q (Aid), where Aid = [A,A1, . . . ,Aℓ] and

Ai = H(id1, . . . , idi). Delegation of the user secret keys can be done using our basis delegation
technique from Theorem 3.3 and the length of the basis grows by a factor of roughly

√
ℓm upon each

delegation. Encryption for id is done using LWE-PKE with the public key (Aid,y) and decryption
is done using a short vector eid ∈ Λy

q (Aid) (which can be computed from the short basis Bid for
Λ⊥

q (Aid)).
For our actual HIBE scheme we will also make the syndrome y dependent on the identity id.

This way we save one delegation level and the resulting scheme is more efficient.

4.1 The HIBE Scheme RO-HIBE

Below let H : {0, 1}∗ → Z
n×m
q and G : {0, 1}∗ → Z

n
q be hash functions. Let ℓ ∈ [d], where d is the

maximal depth of the HIBE, which we take to be a constant. The scheme is parameterized by d
and functions L(ℓ), r(ℓ), and α(ℓ) (1 ≤ ℓ ≤ d), which we fix as follows.

L ≥ m · ω(
√

log n) L(ℓ) ≥ L ·mℓ/2 · ω(lgℓ/2 m)

r(ℓ) ≥ L(ℓ− 1) · ω(lg1/2 m) α(ℓ) ≤ 1/(r(ℓ) ·
√

ℓm + 1 · ω(lg1/2 n))

Intuitively, for an identity id = (id1, . . . , idℓ) of level ℓ, these parameters serve the following pur-
poses. L(ℓ) is the size of the user’s secret basis, r(ℓ) is the Gaussian parameter for generating the
user’s key, and α(ℓ) is the Gaussian parameter that the encryptor uses when adding noise to the
ciphertext.

We now describe RO-HIBE = (HIBESetup,HIBEExt,HIBEDel,HIBEEnc,HIBEDec).

HIBESetup. This algorithm runs the trapdoor algorithm TrapGen from Lemma 3.1 to generate
A ∈ Z

n×m
q with corresponding trapdoor Bε ∈ Z

m×m (where ‖Bε‖ ≤ L) and returns

mpk = A, msk = (mpk ,Bε),

To simplify the presentation of the scheme, let us first fix some notation for the algorithms
below. For an arbitrary identity id = (id1, . . . , idℓ) we define the associated parity check matrix
Aid and syndrome yid as

Aid = [A,A1, · · · ,Aℓ] ∈ Z
n×(ℓ+1)m
q , yid = G(id) ∈ Z

n
q , (4.1)

where Ai = H(id|i) ∈ Z
n×m
q . The user secret keys for an identity id of length ℓ will consist of a basis

part Bid ∈ Z
(ℓ+1)m×(ℓ+1)m for Λ⊥

q (Aid) and a syndrome part eid ∈ Z
ℓm
q satisfying Aid|ℓ−1eid = yid,

where
‖B̃id‖ ≤ L(ℓ), ‖eid‖ ≤ r(ℓ) . (4.2)

Note that by construction Bε is a short basis for Aǫ = A satisfying (4.2).

12

HIBEExt(msk , id). This algorithm computes a user secret key usk id = (Bid, eid) for an iden-
tity id = (id1, . . . , idℓ). Here, Bid ← SampleBasis(Aid,Bε, S = {1}, L(ℓ)) is a basis for
Λ⊥

q (Aid) and eid ← GenSamplePre(Aid|ℓ−1,Bε, S = {1},yid, r(ℓ)) is distributed according to
DΛyid (Aid|ℓ−1),r(ℓ). Note that by Theorems 3.3 and 3.4, usk id = (Bid, eid) satisfies (4.2).

HIBEDel(mpk , usk id|ℓ−1, id). The delegation algorithm derives a user secret key usk id = (Bid, eid)
for an identity id = (id1, . . . , idℓ) (1 ≤ ℓ ≤ d) given a user secret key (Bid|ℓ−1, eid|ℓ−1) for id|ℓ−
1. The short vector eid|ℓ−1 will not be needed for delegation. Inductively, we have ‖B̃id|ℓ−1‖ ≤
L(ℓ − 1). Note that Aid = [A,A1, · · · ,Aℓ] = [Aid|ℓ−1,Aℓ] ∈ Z

n×(ℓ+1)m
q . To compute the

basis part Bid of usk id, run Bid ← SampleBasis(Aid,Bid|ℓ−1, S = {1, . . . , ℓ}, L(ℓ)). Note that
since ℓ is constant,

L(ℓ) = L(ℓ− 1) ·
√

m · ω(
√

log m) ≥ ‖B̃id|ℓ−1‖ ·
√

(ℓ + 1)m · ω(
√

log (ℓ + 1)m).

Therefore, by Theorem 3.3, we have ‖B̃id‖ ≤ L(ℓ). The syndrome part eid of the user secret
key is computed as eid ← SamplePre(Aid|ℓ−1,Bid|ℓ−1, S = {1, . . . , ℓ},yid, r(ℓ)). Note that by
Theorems 3.3 and 3.4 the user secret key usk id = (Bid, eid) satisfies (4.2) and furthermore it
has a distribution that is statistically close to the one computed by HIBEExt.

HIBEEnc(mpk , id, b). Say id = (id1, . . . , idℓ) is an ℓ-level identity. The ciphertext is computed
by running Enc(pk = (Aid|ℓ−1,yid), b) with Gaussian parameter α = α(ℓ). This yields a
ciphertext

C = (p, c) ∈ Z
ℓm
q × Zq.

HIBEDec(usk id, (p, c)). Decryption uses only eid; it runs Dec(sk = eid, C = (p, c)). That is, it
computes b′ = c− eT

idp ∈ Zq, and outputs 0 if b′ is closer to 0 than q, and 1 otherwise.

Correctness follows from our choice of parameters combined with Lemma 2.3. A multi-bit
HIBE follows in the same way from the multi-bit PKE scheme by letting hash function G map into
multiple uniform syndromes in Z

n
q , one for each bit of the message.

4.2 Security

Theorem 4.1. Let d be the maximal depth of the HIBE, q ≥ 5r(d)(m + 1) and m ≥ 2n lg q. If
G and H are modeled as random oracles, then RO-HIBE is CPA secure, assuming that LWEq,χ is
hard, where χ = Ψ̄α(d).

Proof. Let d be the maximal depth of the HIBE system. Let A be an adversary attacking the CPA
security of RO-HIBE. We assume, without loss of generality, that

• A has distinguishing advantage Advhibe-cpa
RO-HIBE,A(k) in the CPA experiment,

• A always makes exactly QG different G-queries for some polynomial QG,

• for each i ∈ [d], A always makes exactly QH different H-queries of length i (i.e., of the form
(id1, . . . , idi)) for some polynomial QH ,

• whenever A makes an H-query (id1, . . . , idi), it has queried H(id1, . . . , idj) for all j < i
beforehand,

13

• whenever A submits a user secret key query or a challenge identity, it has made all relevant
G, resp. H-queries beforehand.

We now construct an adversary B that has advantage Advlwe
q,χ,B(k) in attacking the LWE problem,

where

Advlwe
q,χ,B(k) ≥

Advhibe-cpa
RO-HIBE,A(k)

d ·QG ·Qd−1
H

− negl . (4.3)

Adversary B first uniformly picks ℓ∗ ∈ [d]. (ℓ∗ is a guess for the length of the challenge identity.)
Next, B obtains (ℓ∗+1)(m+1) samples from the LWE oracle which get parsed as (A∗

i ,p
∗
i) ∈ Z

m
q ×Zq

(0 ≤ i ≤ ℓ∗ − 1) and (y∗, c∗) ∈ Z
m
q × Zq. It sets the master public key to be mpk = A = A∗

0, the

master secret key (a short basis for Λ⊥
q (A)) is unknown to B. Next, adversary B chooses a random

vector j∗ = (j∗1 , . . . , j∗ℓ∗−1) ∈ {1, . . . , QH}ℓ
∗−1 and a random index j ∈ {1, . . . , QG}, both uniformly

distributed.
Adversary B initializes two lists G and H and executes adversary A on input mpk .

Queries to H(·). On A’s ji-th distinct query (idji,1, . . . , idji,i) to H(·) of length i, do the fol-
lowing: if i ≤ ℓ∗ and ji = j∗i , then return A∗

i (as obtained during setup from the LWE

oracle). Otherwise, if i > ℓ∗ or ji 6= j∗i , run the trapdoor algorithm TrapGen to generate
Ai,ji

∈ Z
n×m
q with corresponding trapdoor Ti,ji

∈ Z
m×m. Return Ai,ji

and store the tuple
((idji,1, . . . , idji,i),Ai,ji

,Ti,ji
) in list H. Note that by Lemma 3.1, Ai,ji

is statistically close
to uniform over Z

n×m
q .

Queries to G(·). On A’s j-th distinct query idj to G(·), do the following: if j = j∗ then return
y∗ (obtained during setup from the LWE oracle). Otherwise for j 6= j∗, pick an error vector
ej ← DZℓm,r(ℓ) (where ℓ is the length of idj) and set yj := Aidj |ℓ−1ej ∈ Z

n
q . (Recall that we

assumed that A has already made all relevant queries to H that define Aidj |ℓ−1.) Return yj

and store (idj ,yj , ej) in list G. Note that according to Lemma 2.2 (2), yj is statistically close
to uniform on Z

n
q .

Queries to HIBEExt. When A asks for a user secret key for id = (id1, . . . , idℓ), we again assume
that A has already made all relevant queries to G and H that define yid and Aid. If, for
one i ∈ {1, . . . , ℓ}, Aidi

= H(id|i) is contained in list H, then B can compute a properly
distributed basis Bid for Aid by running Bid ← SampleBasis(Aid,Bi,idi

, S = {i}, L(ℓ)) from
Theorem 3.3. If yid is contained in list G, then B can retrieve a properly distributed vector
eid from G with yid = Aid|ℓ−1eid. If the generation of usk id = (Bid, eid) was successful, then
B returns usk id. In all other cases, B aborts (and returns a random bit).

Challenge. When A submits a challenge identity id∗ = (id∗1, . . . , id
∗
ℓ′) (that is not a parent of all

its user secret-key queries), assume again that A has already made all relevant queries to
G and H that define yid∗ and Aid∗|ℓ∗−1. If ℓ′ 6= ℓ∗, then B aborts and returns a random
bit. Otherwise, if ℓ∗ = ℓ′ consider matrix Aid∗|ℓ∗−1 and syndrome yid∗ that is used for the
encryption procedure. If one of the sub-matrices H(id∗|i) (1 ≤ i ≤ ℓ∗ − 1) of Aid∗|ℓ∗−1 is
contained in list H or yid∗ is contained in list G, then B aborts and returns a random bit.
Otherwise we have Aid∗|ℓ∗−1 = [A∗

0, . . . , A
∗
ℓ−1] and y∗

id = y∗ and B generates a challenge
C∗ = (p∗, c∗) for bit b as p∗ = (p∗

0, . . . ,p
∗
ℓ−1) and c∗ = d + b⌊q/2⌉.

When A terminates with some output, B also terminates with the same output.

14

It remains to analyze the reduction. It is easy to see that the probability of an abort is
1 − 1

dQGQℓ∗−1
H

, and only depends on ℓ∗. Implementing a straightforward additional artificial abort

step, this probability of an abort can be raised to 1 − 1
dQGQd−1

H

, independently of A’s view. We

already showed that if B does not abort during the HIBEExt queries, then the distribution of its
answers is statistically close to the one from the real HIBE CPA experiment. Furthermore, if B does
not abort during the challenge query, then the distribution of the challenge ciphertext is distributed
as in the real, resp. ideal HIBE CPA experiment, depending on whether the LWE sample is real,
resp. random. Therefore, conditioned on B not aborting, A’s view is statistically close to the one
provided by the real HIBE CPA security experiment. This proves (4.3).

We note that with a different simulation technique from [Cor02] it is furthermore possible to

improve the reduction from (4.3) to Advlwe
q,χ,B(k) = Θ(Advhibe-cpa

RO-HIBE,A(k)/(dQd
E)), where QE is an

upper bound on the number of extraction queries.

5 The HIBE Scheme in the Standard Model

Overall strategy. Recall that in RO-HIBE, an identity id = (id1, . . . , idℓ) gives rise to a “user

public key” (Aid,yid). Here, Aid ∈ Z
n×(ℓ+1)m
q and yid ∈ Z

n
q are derived using H and G, respec-

tively. The user public key (Aid,yid) can then be used to encrypt as in [GPV08]’s public-key
encryption scheme LWE-PKE.

The advantage of this approach is that we can use LWE-PKE (and its security proof) almost
as a black box. However, a technical difficulty turns up in the security proof. Namely, we have to
construct a LWE-PKE challenge associated to user public key (Aid∗ ,yid∗), while at the same time
being able to simulate user secret keys for all other queried identities. This is particularly difficult
since we do not know the challenge identity id∗ in advance, while setting up a master public key
for our simulation.

To prove RO-HIBE secure in the random oracle model, we guessed id∗ (by guessing in which
H-query it appears), and embedded the LWE-PKE challenge into the values H(id∗|i) and G(id∗)
on the fly. All other H-queries were answered with matrices with known trapdoor. This allowed for
a straightforward simulation (provided the guess for id∗ is correct), but requires a programmable
random oracle.

Trapdoor and challenge matrices. In the standard model, we hence have to work harder. We
present our argument first for the selective-identity case, and then show how to generalize it. Recall
that in the selective-identity security experiment, the adversary has to decide first on the challenge
identity, and then receives the public key. In the simulation, we can hence set up the public key
depending on the challenge identity.

Concretely, we will distinguish two types of matrices A. If we know (or can efficiently derive) a
short basis in the sense of Lemma 3.1 for A, we call A trapdoor. If, on the other hand, A is comprised
solely of columns output by the LWE oracle LWE, we call A challenge. In our security proof, all
occuring matrices will either be trapdoor or challenge. Obviously, a matrix A = [A1, . . . ,Aℓ] is
challenge iff all Ai are challenge. Furthermore, by Theorem 3.3, A is trapdoor iff at least one Ai

is trapdoor.

15

As with RO-HIBE, each HIBE identity id = (id1, . . . , idℓ) will give rise to a “user public key”
matrix

Aid = [A,A1,id1 , . . . ,Aℓ,idℓ
].

Again, the corresponding user secret key will contain a short basis for Aid. The master secret key
will be a short basis for A, so thanks to Theorem 3.3, the master secret key allows to compute user
secret keys for arbitrary identities. However, during simulation, A will be challenge, so that a user
secret key can be constructed iff at least one of the Ai,idi

is trapdoor. We will set up the Ai,idi

such that

• for all id that appear in IBEExt queries, Aid is trapdoor, and

• for the challenge identity id∗, Aid∗ is challenge.

The implementation of the hash function. We will accomplish this by setting up a mapping
from identities to matrices as follows:

Ai,idi
:= [Ci,1,t1 , . . . ,Ci,λ,tλ]

with (t1, . . . , tλ) := Hi(idi) ∈ {0, 1}λ for suitable hash functions Hi, and matrices Ci,u,b (1 ≤ u ≤ λ,
0 ≤ b ≤ 1) contained in the master public key. Now if the challenge identity id∗ is known at
the time of setup, we can choose the Ci,u,b as challenge if and only if the u-th bit of Hi(id

∗
i) is

b. This way, only Aid∗ consists solely of challenge matrices, and hence is challenge. Every user
public key matrix Aid for id 6= id∗ contains at least one trapdoor matrix, and hence is trapdoor.
(Note the similarity to the public key setup from [DDN91].) The setup is completely oblivious to
an adversary. This enables a successful simulation.

From selective-identity to full security. The previously sketched setup depends of course
heavily on the challenge identity id∗ in advance. In the general IBE security experiment, however,
the adversary may choose id∗ dynamically and adaptively. To overcome this obstacle, we will
employ a probabilistic argument, along the lines of [BB04b]. Concretely, we will set up the public
key such that each Aid is challenge with a certain probability. A sophisticated construction of the
hash functions Hi will ensure that, to a certain degree, these probabilities (resp. the corresponding
events) are independent. That is, even an adversary that adaptively asks for user secret keys will not
manage to produce an identity id for which Aid is guaranteed to be challenge or trapdoor. Setting
the probabilities in the right way (depending on the adversary’s complexity), we can achieve that
with non-negligible probability, all Aid associated with user secret key queries are trapdoor, while
Aid∗ is challenge. In this case, a successful simulation will be possible.

Of course, we will have to take care that the event of a successful simulation is (at least ap-
proximately) independent of the adversary’s view. To achieve independence, we will employ an
“artificial abort” strategy similar to the one from [Wat05].

One scheme, two results. We stress that we can get very different results about one single
scheme. We can prove our scheme selective-identity secure, given that the hash function is collision-
resistant (and, of course, assuming that the learning with error problem is hard). To prove the same
scheme fully secure, we need an additional assumption about the hash function. (This additional
assumption will enable the probabilistic argument sketched above.)

16

5.1 The scheme SM-HIBE

Let d ∈ N denote the maximal depth of the HIBE. Let H = (Hk)k be a family of hash functions
H : {0, 1}k → {0, 1}λ. The security properties of the hash function and the parameter λ = λ(k)
will be selected depending if the scheme is fully secure or only selective-identity secure. Again the
scheme is parametrized by L and some functions L(ℓ), r(ℓ), and α(ℓ) (1 ≤ ℓ ≤ d), which we fix as
follows.

L ≥ m · ω(
√

log n) Lλ(ℓ) = L · (mλ)ℓ/2 · ω(lgℓ/2 m)

rλ(ℓ) = Lλ(ℓ) αλ(ℓ) ≤ 1/(rλ(ℓ) ·
√

(λℓ + 1)m + 1 · ω(lg1/2 n))

IBESetup. Using the trapdoor algorithm TrapGen, generate A ∈ Z
n×m
q and a corresponding short

basis B ∈ Z
m×m with ‖B̃‖ ≤ Lλ. Furthermore, sample uniformly and independently matrices

Ci,u,b ∈ Z
n×m
q (for 1 ≤ i ≤ d, 1 ≤ u ≤ λ and 0 ≤ b ≤ 1) and a vector y ∈ Z

n
q . Finally, choose

H1, . . . ,Hd ←Hk. Return

mpk = (A,y, (Ci,u,b) 1≤i≤d
1≤u≤λ
0≤b≤1

, (Hi)
d
i=1) msk = (mpk ,B).

For an identity id = (id1, . . . , idℓ) we define

Aid := [A,A1,id1, . . . ,Aℓ,idℓ
] ∈ Z

n×(λℓ+1)m
q (5.1)

where
Ai,idi

:= [Ci,1,t1, . . . ,Ci,λ,tλ] ∈ Z
n×λm
q (5.2)

for (t1, . . . , tλ) := Hi(idi) ∈ {0, 1}λ. The user secret keys for an identity id will consist of a basis
part Bid for Λ⊥

q (Aid) and a syndrome part eid satisfying Aideid = y, where

‖‖B‖id‖ ≤ Lλ(ℓ), ‖eid‖ ≤ rλ(ℓ) . (5.3)

Note that by construction Bε is a short basis for Aǫ = A satisfying (5.3).

HIBEExt(msk , id). This algorithm computes a user secret key for id = (id1, . . . , idℓ) which consists
of (Bid, eid) where Bid ← SampleBasis(Aid,Bε, S = {1}, Lλ(ℓ)) is a basis for Λ⊥

q (Aid) and
eid ← GenSamplePre(Aid,Bε, S = {1},yid, rλ(ℓ)) is distributed according to D

Z(λℓ+1)m,rλ(ℓ)

conditioned on Aideid = yid. Note that by Theorems 3.3 and 3.4, usk id = (Bid, eid) satisfies
(5.3).

HIBEDel(mpk , usk id|ℓ−1, id). The delegation algorithm derives a user secret key for an identity
id = (id1, . . . , idℓ) (1 ≤ ℓ ≤ d) given a user secret key for id|ℓ − 1 which contains a basis
Bid|ℓ−1 for Λ⊥

q (Aid|ℓ−1) with ‖B̃id|ℓ−1‖ ≤ L(ℓ − 1). (The short vector eid|ℓ−1 is not needed

for delegation.) Note that Aid = [A,A1,id1, · · · ,Aℓ,idℓ
] = [A1,id|ℓ−1,Aℓ,idℓ

] ∈ Z
n×(λℓ+1)m
q .

To compute the basis part run Bid ← SampleBasis(Aid,Bid|ℓ−1, S = {1, . . . , λℓ}, L(ℓ)). Note
that since ℓ is constant,

L(ℓ) = L(ℓ− 1) ·
√

λm · ω(
√

log λm) ≥ ‖B̃id|ℓ−1‖ ·
√

(λℓ + 1)m · ω(
√

log (λℓ + 1)m)

17

and therefore by Theorem 3.3 we have ‖B̃id‖ ≤ Lλ(ℓ). The syndrome part of the user secret
key is computed as eid ← SamplePre(Aid,Bid|ℓ−1, S = {1, . . . , λℓ},y, rλ(ℓ)). Note that by
Theorems 3.3 and 3.4 the user secret key usk id = (Bid, eid) satisfies (5.3) and furthermore it
has a distribution that is statistically close to the one computed by HIBEExt.

HIBEEnc(mpk , id, b). Let id be at level ℓ. The ciphertext is computed by running Enc(pk =
(Aid,y), b) with Gaussian parameter α = αλ(ℓ), which outputs the ciphertext

C = (p, c).

HIBEDec(usk id, (p, c)). Decryption uses only eid. It simply runs Dec(sk = eid, C = (p, c)). That
is, it computes b′ = c− eT

idp ∈ Zq, and outputs 0 if b′ is closer to 0 than q, and 1 otherwise.

The scheme’s correctness is inherited by LWE-PKE.

5.2 Security

We now formally state security of our construction. If the hash function H is collision-resistant
then we can prove the scheme selective-identity CPA secure. This results in λ = 2k and hence the
scheme is roughly a factor k less efficient than our random-oracle construction. If the hash function
fulfils the stronger security requirements of being admissable (to be defined in Section 5.3) then
we can prove the scheme (full-identity) CPA secure. Unfortunately, we only know constructions of
admissible hash functions that require λ = k2+ε so the resulting scheme is quite unpractical.

Theorem 5.1. Let q ≥ 5r(d)(m + 1), αλ(ℓ) be as above, and m ≥ 2n lg q. Assume LWEq,χ is hard,
where χ = Ψ̄α(d) and d is the maximal depth of the scheme. If H is a family of collision-resistant
hash functions, then SM-HIBE is selective-ID CPA-secure. If H is a family of admissible hash
functions, then SM-HIBE is CPA-secure.

5.3 Admissible hash functions

We give a variant of the definition from [BB04b]. Let H = {Hk} be a collection of distributions of
functions H : Ck → Dk = {0, 1}λ. For H ∈ Hk, K ∈ {0, 1,⊥}λ, and x ∈ Ck, define

FK,H(x) =

{
B if ∃u ∈ {1, . . . , λ} : tu = Ki

R if ∀u ∈ {1, . . . , λ} : tu 6= Ki

for (t1, . . . , tλ) = H(x). (5.4)

For µ ∈ {0, . . . , λ}, denote by Kµ the uniform distribution on all keys K ∈ {0, 1,⊥}λ with exactly
µ non-⊥ components.

We say that H is ∆-admissible (for ∆ : N
2 → R) if for every polynomial Q = Q(k), there

exists an efficiently computable function µ = µ(k), and efficiently recognizable sets badH ⊆ (Ck)∗
(H ∈ Hk), so that the following holds:

• For every PPT algorithm C that, on input a function H ∈ Hk, outputs a vector x ∈ CQ+1
k ,

the function
Advadm

H,C(k) := Pr[x ∈ badH | H ←Hk ; x← C(H)]

is negligible in k.

18

• For every H ∈ Hk and every x = (x0, . . . , xQ) ∈ CQ+1
k \ badH , we have that

Pr[FK,H(x0) = R ∧ FK,H(x1) = · · · = FK,H(xQ) = B] ≥ ∆(k,Q),

where the probability is over uniform K ∈ Kµ(k,Q).

We say that H is admissible if H is admissible for some ∆, such that ∆(k,Q) is significant for every
polynomial Q = Q(k).

Difference to the definition of [BB04b]. Note that our definition of admissibility is concep-
tually different from that of [BB04b]. The reason for our change is that our definition is better
suited for our purposes. Concretely, their definition is based upon indistinguishability from a (bi-
ased) random function. However, their construction only achieves asymptotic indistinguishability
(i.e., negligible distinguishing success) when the “target” random function is constant. (In their
notation, this corresponds to the case when γ is negligible, so that Pr[FK,H(x) = 1] ≈ 1.) Such a
function is not very useful for our (or their) purposes. In an asymptotic sense, their construction
becomes only useful with parameters that cause the distinguishing advantage to become significant
(but smaller than the inverse of a given polynomial). With that parameter choice, our definition
allows for a conceptually simpler analysis. Namely, it separates certain negligible error probabil-
ities (of x ∈ badH) from significant, but purely combinatorial bounds on the probability of the
“simulation-enabling” event

good := [FK,H(x0) = R ∧ FK,H(x1) = · · · = FK,H(xQ) = B].

Specifically, we can bound Pr[good] for every x 6∈ badH , which simplifies the artificial abort step
below. Note that while the original analysis from [BB04b] does not incorporate an artificial abort
step, this actually would have been necessary to guarantee sufficient independence of (their version
of) event good. This becomes an issue in [BB04b, Claim 2], when the success probability of an
adversary conditioned on good is related to its original (unconditioned) success probability.

Constructions. [BB04b] show how to construct admissible hash functions from a given collision-
resistant hash function family. Since collision-resistant hash functions can be built from the LWE

problem (e.g., [Ajt04]), this does not entail extra assumptions in the encryption context. Specifi-
cally, for parameter choices as in [BB04b, Section 5.3], we get a single hash function with output
length λ = O(k2+ε) (for arbitrary ε > 0) that is ∆-admissible with ∆ = Θ(1/Q2).5

5.4 Proof of full-identity security

We prove the following lemma.

Lemma 5.2. Assume an adversary A on SM-HIBE’s CPA security that makes at most Q(k) user
secret key queries. Then, for every polynomial S = S(k), there exists an LWEq,χ-distinguisher D

and an adversary C on H’s admissibility such that

Advhibe-cpa
SM-HIBE,A(k) ≤ d ·Advadm

H,C(k) +
Advlwe

q,χ,D(k)

∆(k,Q)d
+

1

S(k)
+ negl . (5.5)

5In the notation of [BB04b], we replace the output length βH of the original hash function with k, and bound the

number Q of hash function queries by 2kε/2

. Note that Q will later correspond to the number of (online) user secret
key queries, so we bound Q by a comparatively small exponential function.

19

Here, the running time of C is roughly that of the IBE experiment Exphibe-cpa
SM-HIBE,A, and the running

time of D is roughly that of Exphibe-cpa
SM-HIBE,A plus O(k2QS/∆d) steps.

Note that for the admissible hash function from [BB04b], ∆(k,Q)d = Θ(1/Q2d) is significant.
Since S in Lemma 5.2 is arbitrary, we obtain:

Corollary 5.3 (SM-HIBE is CPA secure). If H is admissible, and if the LWEq,χ problem is hard,
then SM-HIBE is CPA secure.

Proof of Lemma 5.2. We proceed in games, with Game 0 being the original Exphibe-cpa
SM-HIBE,A experi-

ment with adversary A. We assume without loss of generality that A always makes exactly Q = Q(k)
user secret key queries. We denote these queries by by idj = (idj

1, . . . , id
j
ℓj

) (for 1 ≤ j ≤ Q), and

the challenge identity chosen by A as id∗ = (id∗1, . . . , id
∗
ℓ∗). By out i, we denote the experiment’s

output in Game i. By definition,

|Pr[out0 = 1]− 1/2| = Advhibe-cpa
SM-HIBE,A(k). (5.6)

In the following, let IDQ
i :=

⋃
j{id

j
i} be the set of all level-i identities contained in user secret

key queries. Let ID∗
i := {id∗i } be the level-i challenge identity (or the empty set if ℓ∗ < i). Note

that 1 ≤ |IDQ
i | ≤ Q and 0 ≤ |ID∗

i | ≤ 1. For our upcoming probabilistic argument we need

actually identity sets of a fixed size, so we pad all IDQ
i and ID∗

i in some canonical way with

unused identities. Concretely, for all i, let IDR

i ⊇ ID∗
i and IDB

i ⊇ IDQ
i \ ID∗

i be disjoint, and such

that |IDR

i | = 1 and |IDB

i | = Q. Let
−−→IDi ∈ ({0, 1}k)Q+1 be the vector whose first component is the

(unique) element of IDR

i , and whose remaining Q components are the elements of IDB

i (in some
canonical order).

In Game 1, we eliminate the “bad H-queries.” Namely, Game 1 aborts (and outputs a uniform

bit) whenever
−−→IDi ∈ badHi

for some i. A straightforward reduction shows

|Pr[out1 = 1]− Pr[out0]| ≤ d ·Advadm
H,C(k). (5.7)

for a suitable adversary C on H’s admissibility.
In Game 2, after the adversary has terminated, we throw an event good2 independently with

probability ∆d. We abort the experiment (and output a uniformly random bit) if ¬good2 occurs.
We get

Pr[out2 = 1]− 1/2 = Pr[good2] (Pr[out1 = 1]− 1/2) = ∆d (Pr[out1 = 1]− 1/2) . (5.8)

In Game 3, we change the abort policy. Namely, after the adversary has terminated, we first

attach colors to the identities in all
−−→IDi. To this end, let

Fi(id) = FKi,Hi
(id) =

{
B if ∃u ∈ {1, . . . , λ} : tu = Ki

u

R if ∀u ∈ {1, . . . , λ} : tu 6= Ki
u

for (t1, . . . , tλ) = Hi(id),

associated with Hi. Here, for every i, Ki = (Ki
1, . . . ,K

i
λ) ∈ {0, 1,⊥}λ is initially chosen by the

experiment uniformly among all K ∈ {0, 1,⊥}λ with exactly µ non-⊥ components. If Fi(id) = B,
then id is blue, and if Fi(id) = R, then id is red. Later on, blue will correspond to trapdoor matrices,
while red will correspond to challenge matrices.

20

Let Ei denote the event that in Game 3, Fi(id) = B for all id ∈ IDB

i and Fi(id) = R for all
id ∈ IDR

i . Let E :=
∧d

i=1 Ei. By assumption about H, we know that Pr[E] ≥ ∆d.
Ideally, we would like to replace event good2 from Game 2 with event E. Unfortunately,

however, E might not be independent of A’s view, so we cannot (directly) proceed that way.

Instead, we use artificial abort techniques. That is, given the identities in all
−−→IDi, we approximate

pE := Pr
[
E | (−−→IDi)i

]
by sufficiently often sampling values of K and attaching colors. Hoeffding’s

inequality yields that with ⌈kS/∆d⌉ samples, we can obtain an approximation p̃E ≥ ∆d of pE that
satisfies

Pr

[
|pE − p̃E| ≥

∆d

S

]
≤ 1

2k
.

Now we finally abort if E does not occur. But even if E occurs (which might be with probability
pE > ∆d), we artificially enforce an abort with probability 1−∆d/p̃E . Call good3 the event that
we do not abort. We always have

Pr[good3] = pE ·
∆d

p̃E
= ∆d pE

p̃E
.

Hence, except with probability 1/2k,

|Pr[good3]− Pr[good2]| =
∣∣∣∣∆

d −∆d pE

p̃E

∣∣∣∣ = ∆d

∣∣∣∣
p̃E − pE

p̃E

∣∣∣∣ ≤ ∆d ∆d

Sp̃E
≤ ∆d

S
. (5.9)

Since (5.9) holds for arbitrary
−−→IDi except with probability 1/2k, we obtain that the statistical

distance between the output of Game 2 and Game 3 is bounded by ∆d/S + 2−k. Hence,

|Pr[out3 = 1]− Pr[out2 = 1]| ≤ ∆d

S
+

1

2k
. (5.10)

In Game 4, we set up the public key differently. We call matrices that are chosen uniformly
challenge, and matrices that are chosen along with a short basis (using algorithm TrapGen) trapdoor.
Now in Game 4, we will set up the public key as follows:

• A as trapdoor (as in the earlier games),

• Ci,u,b as trapdoor if Ki
u = b (and as challenge if Ki

u 6= b).

By Lemma 3.1, this change affects the distribution of the public key only negligibly. (Note that
bases for the trapdoor Ci,u,b are generated, but never used in Game 4.) We obtain

|Pr[out4 = 1]− Pr[out3 = 1]| = negl . (5.11)

In Game 5, we make the following conceptual change regarding user secret key queries. Namely,
upon receiving a user secret key request for id = (id1, . . . , idℓ), the experiment immediately aborts
(with uniform output) if Fi(idi) = R for all i. This change is purely conceptual: since id is not a
prefix of the challenge identity id∗, there is an i with idi ∈ IDB

i ⊇ IDQ
i \ID∗

i . But since Fi(idi) = R,
event E cannot occur, so the experiment from Game 5 would eventually abort as well. We get

Pr[out5 = 1] = Pr[out4 = 1]. (5.12)

21

In Game 6, we change the way user secret keys queries id = (id1, . . . , idℓ) are answered.
By the change from Game 5, we may assume that Fi(idi) = B for some i. Hence, tu = Ki

u for
(t1, . . . , tλ) = Hi(idi) and some u. Thus, the matrix Ci,u,tu that appears in the decomposition of
Aid (see (5.1,5.2)) is trapdoor by our public key setup. To generate a user secret key, we have to
find a short basis for Aid. In Game 4, this is achieved by algorithms SampleBasis and GenSamplePre,
using the short basis of the first matrix A in the decomposition of Aid. In Game 6, we instead use
the short basis of Ci,u,tu that we have initially generated. By Theorem 3.3, this results in the same
distribution of bases usk id = (Bid, eid), up to negligible statistical distance. Hence

|Pr[out6 = 1]− Pr[out5 = 1]| = negl . (5.13)

In Game 7, we set up A as challenge instead of trapdoor. (Note that since Game 6, we do not
need a short basis of A anymore to generate user secret keys.) Again, by Lemma 3.1, this change
affects the distribution of the public key only negligibly. We get

|Pr[out7 = 1]− Pr[out6 = 1]| = negl . (5.14)

In Game 8, we generate the challenge ciphertext (p∗, c∗) ∈ Z
(ℓλ+1)m
q ×Zq uniformly at random.

Obviously, A’s view is then independent of the challenge bit b, so

Pr[out8 = 1] = 1/2. (5.15)

We furthermore claim that

|Pr[out8 = 1]− Pr[out7 = 1]| ≤ Advlwe
q,χ,D(k) (5.16)

for the following LWE distinguisher D. Recall that D has access to either

• a “real” oracle that gives out samples (a, 〈a, s〉 + x) for a fixed s ∈ Z
n
q , uniform a ∈ Z

n
q , and

an error x sampled from χ, or

• a “random” oracle that gives out samples (a, r) for uniform a ∈ Zn
q and r ∈ Zn

q .

D will simulate Game 7 and use its oracle to help set up parts of the public key and the challenge
ciphertext. First, D samples (y, cy) to obtain the y part of the public key. Then, D samples all
challenge matrices in the public key by querying its oracle m times respectively (and adjoining the
outputs). This way, D obtains (A,g) ∈ Z

n×m
q × Z

m
q from the oracle such that

g =

{
AT s + x if D runs with real oracle

uniformly random if D runs with random oracle.
(5.17)

(Similarly for values (Ci,u,b,gi,u,b) ∈ Z
n×m
q × Z

m
q obtained from the oracle for b 6= Ki

u.) D then
simulates Game 7 with these sampled values of y, A, and Ci,u,b in place. Since the first part of
the oracle’s output is always uniformly random, this yields the same distribution as in Game 7,
resp. Game 8.

The crucial change is the way D puts together the challenge ciphertext (p∗, c∗) for identity
id∗ = (id∗1, . . . , id

∗
ℓ∗). Since otherwise the experiment aborts with uniform output, we may assume

that E occurs. Hence, for all i, for (t1, . . . , tλ) = Hi(id
∗
i) and all u, Ki

u 6= tu. Thus, we can write

Aid∗ = [A,Ci1,u1,b1, . . . ,Ciℓλ,uℓλ,bℓλ
],

22

as a concatenation solely of challenge matrices, so D knows the corresponding values g, resp. giv ,uv,bv
.

Now D sets up the challenge encryption of a message b ∈ {0, 1} as

p∗ := g +

ℓλ∑

v=1

giv ,uv,bv

(5.17)
=

{
AT

id∗s + x if D runs with real oracle

uniformly random if D runs with random oracle,

c∗ := cy + b⌊q
2
⌋ (5.17)

=

{
yT s + x + b⌊ q

2⌋ if D runs with real oracle

uniformly random if D runs with random oracle.

(5.18)

Finally, D outputs whatever the experiment outputs. By (5.18), D’s outputs distribution is exactly
that of Game 7, resp. Game 8 if it interacts with the real, resp. random oracle. (5.16) follows.

Taking (5.6-5.16) together shows (5.5).

Doing without artificial abort. The reason why we needed an artificial abort step in Game
3 is that a certain event E (that determines whether we can carry through the simulation) is
not independent of A’s view. In Game 3, we changed the abort policy to make good3 (the event
that we do not abort) sufficiently independent. (This strategy resembles Waters’ strategy from
[Wat05].) Unfortunately, this results in a rather large computational overhead, since we need to

approximate the probability pE = Pr
[
E | (−−→IDi)i

]
on the fly. Observe that if we had better (i.e.,

tight lower and upper) bounds on pE in the first place (e.g., |pE −∆d| < ∆d/S always), we did not
need this approximation/abort step at all, since (5.9) and hence (5.10) followed directly by these
better bounds. The good news is that the analysis of H from [BB04b] provides such better bounds
for Pr[E], resp. pE . The bad news is that this comes at a price: Using the analysis of [BB04b],
|pE − ∆d|/∆d depends in an inversely polynomial way on Q, the number of H queries. Hence,
to achieve |pE − ∆d| < ∆d/S, we would need to consider arbitrary polynomial values of Q and
adjust the H parameters accordingly. Of course, in an asymptotic sense, we already do consider
arbitrary polynomial values of Q, because A may make up to Q user secret key queries. However, in
a concrete sense, the number of (online) user secret key queries will be much lower than the inverse
of A’s distinguishing advantage. Hence, when considering concrete parameters, we can work with
much smaller H parameters when implementing our artificial abort step, at the price of a worse
reduction. This is why we decided for an artificial abort step.

5.5 Proof of selective-identity security

The use of admissible hash functions makes SM-HIBE comparatively inefficient. Recall that we
used admissible hash functions solely to embed a challenge without knowing the challenge identity
in advance. If we knew the challenge identity in advance (as with selective-identity security), we
could set up the IBE public key so that only the challenge identity maps to a challenge matrix.
In particular, instead of an admissible hash function H, we could do with only a collision-resistant
H.6 Formally:

Lemma 5.4 (SM-HIBE is sID secure.). Assume an adversary A on SM-HIBE’s CPA security. Then
there exists an LWEq,χ-distinguisher D and an adversary C on H’s collision-resistance (both with
roughly the same complexity as A) such that

Advhibe-sid
SM-HIBE,A(k) ≤ d ·Advcrhf

H,C(k) + Advlwe
q,χ,D(k) + negl . (5.19)

6In fact, if only identities idi ∈ {0, 1}k are considered, H could even be the identity mapping.

23

Proof. The proof is very similar to the proof of Theorem 5.2, and we only detail the differences.
Game 0 is the original Exphibe-sid

SM-HIBE,A experiment. In Game 1, we let the experiment abort

upon H-collisions. (Hence we get the d ·Advcrhf
H,C term in (5.19) instead of the d ·Advadm

H,C term in
(5.5).) The abort and coloring steps that appear in Games 2 and 3 in the proof of Theorem 5.2
can be skipped in our case. For Game 4, note that in the selective-identity security experiment,
the adversary has to choose the challenge identity id∗ = (id∗1, . . . , id

∗
ℓ∗) in advance, before receiving

the public key. Hence, in Game 4, we are free to set up the public key in dependence of id∗.
Specifically, Ci,u,b is chosen as trapdoor iff the u-th bit of id∗i 6= b (or if i > ℓ∗). This way, all user
public keys Aid contain at least one trapdoor Ci,u,b unless id 6= id∗. Hence, Games 5-8 can be
implemented as in the proof of Theorem 5.2, and (5.19) follows.

We stress that the use of only collision-resistant hash functions (or omitting H altogether in
case idi ∈ {0, 1}k) leads to a much more efficient scheme. In particular, public keys and ciphertexts
now contain only O(d · k) matrices, resp. vectors.

6 Variants and Optimizations

6.1 Anonymous HIBE

Our two HIBE schemes RO-HIBE and SM-HIBE are not anonymous since their ciphertexts leak the
length of the recipiet’s identity. A straightforward padding scheme can be used to prevent this
attack. That is, one padds the c part of the ciphertext by uniform random elements from Zq to
make the ciphertext look as a ciphertext for an identity of maximal length d. Anonymity then
follows by the same reduction as CPA security, observing that the ciphertexts are pseudorandom
and therefore do not reveal any information about the recipient’s identity.

6.2 Chosen-ciphertext security

It is known how to construct CCA-secure PKE schemes from selective-identity secure IBE schemes
(see [BCHK06]). Specifically, if we set d = 1 and omit the hash function H in the selective-
identity secure HIBE scheme just discussed, we obtain a CCA-secure PKE scheme with the following
efficiency characteristics:
• the public key contains 2k + 1 matrices from Z

n×m
q ,

• the secret key contains a matrix from Z
m×m
q ,

• ciphertexts contain a vector p ∈ Z
(k+1)m
q , along with a padded message c ∈ Zq, and a

verification key and a signature from a one-time signature scheme.
The security of that scheme can be reduced solely to the LWE problem. (Assuming that a suitable
one-time signature scheme is chosen.) We remark that the resulting CCA-secure PKE scheme is
very similar to the one recently proposed by Peikert [Pei09b].

Similarly, the transformation from [BCHK06] can be used to turn any (fully) CPA-secure d-
level HIBE scheme7 into a (fully) CCA-secure (d − 1)-level HIBE scheme. Specifically, a 2-level
CPA-secure HIBE scheme (such as our SM-HIBE scheme with d = 2) can be transformed into a
fully CCA-secure IBE scheme.

7It is actually sufficient to provide full security at the first (d − 1) levels and only selective-ID security at the dth
level.

24

6.3 Signature schemes

As noted by Naor (see [BF03]), our IBE scheme SM-HIBE immediately gives rise to a signature
scheme. A signature for a message M is the user secret key for identity M which consist of a short
vector eM ∈ Λ⊥

q (AM). (Matrix AM is defined as in (5.1).) Signing is performed using the master
secret key, and verification is performed by encrypting random messages under identity M and
checking whether the signature works as a decryption key. We note that in our case the scheme
can be further optimized. First, one can set y = 0 in the master public-key and verification of a
signature eM is simply checking if ‖eM‖ ≤ r

√
m and if eM ∈ Λ⊥

q (AM). Furthermore, security of
this signature scheme can be reduced to the average-case hardness of SISq,2λm,2r

√
λm.

References

[AB09] Shweta Agrawal and Xavier Boyen. Identity-based encryption from lattices in the stan-
dard model. In manuscript, 2009.

[ABC+05] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja
Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable
Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Ex-
tensions. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 205–222. Springer, August 2005.

[Ajt99] Miklós Ajtai. Generating Hard Instances of the Short Basis Problem. In ICALP, pages
1–9, 1999.

[Ajt04] Miklós Ajtai. Generating Hard Instances of Lattice Problems. Quaderni di Matematica,
13:1–32, 2004. Preliminary version in STOC 1996.

[AP09] Joël Alwen and Chris Peikert. Generating Shorter Bases for Hard Random Lattices. In
STACS, pages 75–86, 2009.

[BB04a] Dan Boneh and Xavier Boyen. Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. In Christian Cachin and Jan Camenisch, editors, Advances in
Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 223–238. Springer, May 2004.

[BB04b] Dan Boneh and Xavier Boyen. Secure Identity Based Encryption Without Random
Oracles. In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 443–459. Springer, August 2004.

[BCHK06] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security
from Identity-Based Encryption. SIAM Journal on Computing, 36(5):915–942, 2006.

[BDOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public
Key Encryption with Keyword Search. In Christian Cachin and Jan Camenisch, edi-
tors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 506–522. Springer, May 2004.

25

[BF03] Dan Boneh and Matthew K. Franklin. Identity Based Encryption from the Weil Pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

[Coc01] Clifford Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues. In
Bahram Honary, editor, Cryptography and Coding, 8th IMA International Conference,
volume 2260 of Lecture Notes in Computer Science, pages 360–363, Cirencester, UK,
December 17–19, 2001. Springer.

[Cor02] Jean-Sébastien Coron. Optimal Security Proofs for PSS and Other Signature Schemes.
In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 272–287. Springer, April / May 2002.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In 23rd
Annual ACM Symposium on Theory of Computing, pages 542–552. ACM Press, May
1991.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In Yuliang
Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 548–566. Springer, December 2002.

[HL02] Jeremy Horwitz and Ben Lynn. Toward Hierarchical Identity-Based Encryption. In
Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 466–481. Springer, April / May 2002.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In SODA,
pages 937–941, 2000.

[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically Efficient Lattice-Based
Digital Signatures. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography
Conference, volume 4948 of Lecture Notes in Computer Science, pages 37–54. Springer,
March 2008.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a crypto-
graphic perspective, volume 671 of The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, 2002.

[MR07] Daniele Micciancio and Oded Regev. Worst-Case to Average-Case Reductions Based
on Gaussian Measures. SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in
FOCS 2004.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based Cryptography. In Daniel J. Bern-
stein, Johannes Buchmann, and Erik Dahmen, editors, Post Quantum Cryptography,
pages 147–191. Springer, February 2009.

[Pei09a] Chris Peikert. Bonsai Trees: Arboriculture in Lattice-Based Cryptography. In
manuscript, 2009.

26

[Pei09b] Chris Peikert. Public Key Cryptosystems from the Worst-Case Shortest Vector Problem.
In STOC, 2009. To appear.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
22nd Annual ACM Symposium on Theory of Computing, pages 387–394. ACM Press,
May 1990.

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on Pairing.
In SCIS 2000, Okinawa, Japan, January 2000.

[Wat05] Brent R. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 114–127. Springer, May 2005.

27

	Introduction
	Overview of Our Techniques
	Applications of Our Techniques
	Related Work

	Preliminaries
	Notation
	Cryptographic Notions
	Lattices
	Discrete Gaussian
	Hard Average Case Problems on Lattices
	Public-key encryption from learning with errors

	Basis Delegation
	Trapdoors for Lattices and Preimage Sampling
	Our Basis Delegation Algorithm

	HIBE in the random oracle model
	The HIBE Scheme RO-HIBE
	Security

	The HIBE Scheme in the Standard Model
	The scheme SM-HIBE
	Security
	Admissible hash functions
	Proof of full-identity security
	Proof of selective-identity security

	Variants and Optimizations
	Anonymous HIBE
	Chosen-ciphertext security
	Signature schemes

