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Abstract

An identity-based encryption (IBE) scheme can greatly cedhe complexity of sending encrypted
messages over the Internet. However, an IBE scheme neibessguires a private-key generator (PKG),
which can create private keys for clients, and so can pdgsawesdrop on all encrypted communica-
tions. Although a distributed PKG has been suggested as aonaitigate this problem for Boneh and
Franklin's IBE scheme, the security of this distributedtpoml has not been proven and the proposed so-
lution does not work over the asynchronous Internet. Furthdistributed PKG has not been considered
for any other IBE scheme.

In this paper, we design distributed PKG setup and privateekgraction protocols in an asyn-
chronous communication model for three important IBE sab&mamely, Boneh and Franklin’s IBE,
Sakai and Kasahara’'s IBE, and Boneh and Boyen's-BEE. We give special attention to the applica-
bility of our protocols to all possible types of bilinear gags and prove their IND-ID-CCA security in
the random oracle model. Finally, we also perform a comperanalysis of these protocols and present
recommendations for their use.

1 Introduction

In 1984, Shamir [60] introduced the notion of identity-béheeyptography (IBC) as an approach to simplify
public-key and certificate management in a public-key siftecture (PKI) and presented an open problem
to provide an identity-based encryption (IBE) scheme. Affeventeen years, Boneh and Franklin [10]
proposed the first practical and secure IBE scheme (BF-IBEpwilinear maps. After this seminal work,
in the last few years, significant progress has been madedr(ftid details, refer a recent book on IBC [41]
and references therein).

In an IBC system, a client chooses an arbitrary string sudieag-mail address to be her public key.
Consequently, with a standardized public-key string fdarma IBC scheme completely eliminates the need
for public-key certificates. As an example, in an IBE scheangender can encrypt a message for a receiver
knowing just the identity of the receiver and importanthith@ut obtaining and verifying the receiver’s
public-key certificate. Naturally, in such a system, a ¢lieerself is not capable of generating a private key
for her identity. There is a trusted party calleghr@vate-key generatofPKG) which performs the system
setup, generates a secret called riinester keyand provides private keys to clients using it. As the PKG
computes a private key for a client, it can decrypt all of hexseages passively. This inher&ey escrow
property asks for complete trust in the PKG, which is difficalfind in many realistic scenarios.



Need for the Distributed PKG. Importantly, the amount of trust placed in the holder of af IBaster
key is far greater than that placed in the holder of the peikaty of a certifying authority (CA) in a PKI. In

a PKI, in order to attack a client, the CA has to actively gateer fake certificate for the client containing a
fake public-key. In this case, it is often possible for theml to detect and prove the malicious behaviour of
the CA. The CA cannot perform any passive attack; specifichitannot decrypt a message encrypted for
the client using a client-generated public key and it casigrt some document for the client, if the verifier
gets a correct certificate from the client. On the other hantBC,

¢ knowing the master key, the PKG can decrypt or sign the mesdag any client, without any active
attack and consequent detection (key escrow),

e the PKG can make clients’ private keys public without anysilds detection, and

e in a validity period-based key revocation system [10], girig down the PKG is sufficient to bring
the system to a complete hadlirfgle point of failurg, once the current validity period ends.

Therefore, the PKG in IBC needs to be far more trusted thalCthen a PKI. This has been considered as
a reason for the slow adoption of IBC schemes outside of dlogganizational settings.

Boneh and Franklin [10] suggest distributing a PKG in thé#IBE scheme to solve these problems. In
an(n, t)-distributed PKG the master key is distributed amond®KG nodes such that a set of nodes of size
t or smaller cannot compute the master key, while a clientetdrher private key by obtaining private-key
shares from any + 1 or more nodes; she can then use the system’s public key tiy ¥iee correctness
of her thus-extracted key. Boneh and Franklin [10] propasgfiable secret sharingvVSS) of the master
key among multiple PKGs using Shamir secret sharing wile@er[59] to design a distributed PKG and
also hint towards a completely distributed approach udiegdistributed (shared) key generation (DKG)
schemes of Gennaro et al. [33]; however, they do not providecarity proof. Further, none of the IBE
schemes defined after [10] consider the design of a distthBKG.

From a practicality standpoint, the DKG schemes [33] suiggkis [10] to design a distributed PKG are
not advisable for use over the Internet. These DKG schengededined for thesynchronous communica-
tion mode] having bounded message delivery delays and processaiss@al do not providsafety(the
protocol does not fail or produce incorrect results) iwehesgthe protocol eventually terminates) over the
asynchronous Internet, having no bounds on message traiesdg's or processor speeds.

As a whole, although various proposed practical applioatigsing IBE, such as key distribution in ad-
hoc networks [44], pairing-based onion routing [43] or fiakile random functions from identity-based key
encapsulation [1], require a distributed PKG as a fundaateeted, there is no distributed PKG available for
use over the Internet yet. Defining efficient distributed BK@ various IBE schemes which can correctly
function over the Internet has been an open problem for songe This practical need for distributed PKGs
for IBC schemes that can function over the Internet formanbévation of this work.

Contributions.  We present asynchronous distributed PKGs for all three itapblBE frameworks: namely,
full-domain-hash IBEs, exponent-inversion IBEs and coratine-blinding IBEs [12]. We propose dis-

tributed PKG setups and distributed private-key extractimtocols for Boneh and Franklin's BF-IBE [10],

Sakai and Kasahara’s SK-IBE [56], and Boneh and Boyen'’s {fiedljl BB, -IBE [13, 12] schemes for use

over the Internet. The novelty of our protocols lies in aeinig the secrecy of a client private key from
the generating PKG nodes without compromising the effigieWwe realize this with an appropriate use
of non-interactive proofs of knowledge, bilinear-pairibgsed verifications and DKG protocols with and
without the uniform randomness property. In terms of falisibwe ensure that our protocols work for all

three pairing types defined by Galbraith et. al. [29].



We prove adaptive chosen ciphertext security (IND-ID-CGAgurity of the defined three schemes in
the random oracle model. Interestingly, compared to tharggproofs for the respective IBE schemes with
a single PKG, there are no additional security reductiotofadn our proofs, even though the underlying
DKG protocol used in the distributed PKGs does not provideiarantee about the uniform randomness
for the generated master secrets. To the best of our knoey¢lgre is no threshold cryptographic protocol
available in the literature where a similar tight securigduction has been proven while using a DKG
without the (more expensive) uniform randomness property.

Observing that a distributed (shared) key generator (DKGhé single most important component of
distributed PKG, we implement a recently devised asynausrDKG protocol [42] and demonstrate its
efficiency and reliability with extensive testing over thiarietLab platform [54]. Finally, using operation
counts, key sizes, and possible pairing types, we compangettiormance of the distributed PKGs we define
and also briefly discuss the proactive security and groupfioation primitives for them.

In §2, we compare various technigues suggested to solve thesdoegve and single point of failure
problems in IBC. We also discuss previous work related to Di¢@ocols. In§3, we describe a realistic
asynchronous system model over the Internet and justifchioéces made, while we define and describe
cryptographic tools in our model ig4. With this background, i§5, we define and prove distributed PKG
protocols for the BF-IBE, SK-IBE and BBIBE schemes. We then implement a practical DKG protocol,
and test its performance over the PlanetLab platforrfi6in We also compare the IBE schemes based on
their distributed PKGs and touch upon proactive securitygmoup modification protocols for the system.

2 Related Work

We divide the related work into two parts. Distributed (&tBrkey generation is the most important com-
ponent for distributed private-key generation in idenbigsed cryptography. We first discuss the existing
work towards distributed key generation. As designingritisted PKGs is our main goal in this work, we
concentrate on protocols in computational (as opposed ¢ondfitional / information-theoretic) settings.
Although somewhat ignored, there have been some effortstigate the single point of failure and the key
escrow issues in IBC systems; in the latter part of this eectve compare these alternatives with distributed
PKG.

Although we are defining protocols for IBE schemes, as we aneentrating on distributed crypto-
graphic protocols and due to space constraints, we do nltd@@ comprehensive account of IBE here.
We refer readers to [12] for a detailed discussion on theouariBE schemes and frameworks defined in
the literature. Pursuant to this survey, we work in the ramawoacle model for efficiency and practicality
reasons.

Distributed Key Generation. The notion of secret sharing was introduced independemtigHamir [59]
and Blakley [7]in 1979. Since then, it has remained an ingartopic in security research. Significantly,
Chor et al. [22] introduced verifiability in secret sharifggldman [25] developed the first efficient and non-
interactive VSS protocol and Pedersen [52] presented aficaiiion to it. However, these VSS are defined
assuming a synchronous communication model. Foagymchronous communication magd€lachin et
al. (AVSS) [14], Zhou et al. (APSS) [64], and Schultz et al.RBIS) [58] defined VSS schemes in the
computational setting. Of these, the APSS protocol is iipral for any reasonable system size, as it
has an exponentie([?) factor in the message complexity (humber of messages &naiadj, while MPSS is
developed for a more mobile setting where set of the systadesibas to change completely between two
consecutive phases. AVSS by Cachin et al. with its seemiogiiynal communication complexiiphumber

of bits transferred) is certainly a suitable choice for aritiated PKG system.



Pedersen [53] introduced the concept of distributed kegggion and developed a DKG, where each
node runs a variation of Feldman’s VSS and distributed share added at the end to generate a combined
shared secret without a dealer. Gennaro et al. [33] preserdgemplification using just the original Feldman
VSS called the Joint Feldman DKG (JF-DKG). Further, theynfibthat DKGs based on the Feldman VSS
(or using Feldman commitments [25]) do not guarantee umifipprandom secret keys and define a new DKG
combining Feldman and Pedersen commitments [53] whicleasas thiatency(number of communication
rounds) by one. However, in [34], they observed that DKG&8am Feldman commitments produce hard
instances of discrete logarithm problems (DLPs), which tmagufficient for the security of some threshold
cryptographic schemes.

To the best of our knowledge, the first DKG scheme in an aspmcius setting was only defined recently
by Kate and Goldberg [42]. This protocol modifies the AVSS@col to a more realistic hybrid model and
performs leader-based agreement with a leader-changimpansm to decide which of the nodes’ VSS
will be included in the DKG calculation; that is, whereas ymshronous DKG schemes such as Pedersen’s
above, all of the successful VSSs can be added at the end pfdtexol to determine the final master key
shares, in the asynchronous setting, some global consenssisbe reached in order to find a sufficiently
large set of VSSs which all honest nodes have completed. \pkeiment this DKG protocol and verify its
efficiency and reliability. Consequently, this DKG systemmfis the basis of our distributed PKG protocols.
The original asynchronous DKG protocol uses Feldman comarits and consequently does not guarantee
uniform randomness of the key. However, we observe thatgnandom oracle model, using non-interactive
zero-knowledge proofs of knowledge based on the Fiat-Shaw@ihodology [26], if required, it is possible
to achieve uniform randomness in their scheme. In such anshEeldman commitments are initially
replaced by Pedersen commitments; the Feldman commitraenitstroduced only at the end of the protocol
to obtain the required private key. The zero-knowledge fsr@oe used to show that the Feldman and
Pedersen commitments both commit to the same values.

All of the above schemes are proved secure only againstia athtersary, which can only choose its
compromisable nodes before a protocol run. They are noidenesl secure against an adaptive adversary
because their simulation-based security proofs do not gmugih when the adversary can corrupt nodes
adaptively.[35,§4.4] Feldman claimed [25;9.3] that his VSS protocol is also secure against adaptive ad
versaries even though his simulation-based security mhobfiot work out. Canetti et al. [16] presented a
scheme provably secure against adaptive adversaries tiithst two more communication rounds as com-
pared to JF-DKG and with interactive zero-knowledge proDise to the inefficiency of adaptive (provably)
secure DKG protocols, we stick to protocols provably seanly against a static adversary, though they
have remained unattacked by an adaptive adversary forgt2lgears.

Alternatives to a Distributed PKG. None of the IBE schemes except BF-IBE considered distribBteG
setup and key extraction protocols in their design. Rege@ikisler and Smart [32] defined a distributed
PKG for Sakai and Kasahara’'s SK-IBE [56]; however, theiusoh against a Byzantine adversary has an
exponential communication complexity and a formal segyorbof is also not provided. We overcome both
of these barriers in our distributed PKG for SK-IBE: our gtieeis secure against a Byzantine adversary
and has the same polynomial-time communication complestiheir scheme, which is secure only against
an honest-but-curious adversary; we also provide a fore@lrsty proof.

Other than [32], there have been a few other efforts in tleeditire to counter the inherent key escrow
and single point of failure issues in IBE. Al-Riyami and Ratm [2] introducecertificateless public-key
cryptography(CL-PKC) to address the key escrow problem by combining 1Bt wublic-key cryptogra-
phy. Their elegant approach, however, does not addressnigle point of failure problem. Although it is
possible to solve the problem by distributing their PKG gsarVSS (which employs a trusted dealer to gen-
erate and distribute the key shares), which is inherengaphr than a DKG-based PKG by a linear factor, it



is impossible to stop a dealer’s active attacks without detely distributed master-key generation. Further,
as private-key extractions are less frequent than enonygtiit is certainly advisable to use more efficient
options during encryption rather than private-key extoact Finally, with the requirement of online access
to the receiver’s public key, CL-PKC becomes ineffective dpstems without continuous network access,
where IBC is considered to be an important tool. Lee et al. @ Gangishetti et al. [31] propose variants
of the distributed PKG involving a more trustworthy key gextimn centre (KGC) and other key privacy au-
thorities (KPAs). As observed by Chunxiang et al. [23] f®][4hese approaches are, in general, vulnerable
to passive attack by the KGC. In addition, the trust guaemtequired by a KGC can be unattainable in
practice. Goyal [37] reduces the required trust in the PK@&syricting its ability to distribute a client’s pri-
vate key. This does not solve the problem of single pointitdfa. Further, the PKG in his system still can
decrypt the clients’ messages passively, which leaveswesand practical implementation of distributed
PKGs wanting.

Threshold versions of signature schemes obtained from $BEechemes using the Naor transform
have been proposed and proved previously [8, 61]. Howelieset solutions do not work for the corre-
sponding IBE scheme. This is due to the inherent secretenafua client’s private keys and corresponding
shares as compared to the inherent public nature of sigrsaturd corresponding signature shares. While
designing IBE schemes with a distributed PKG, we have to rsake that a PKG node cannot derive more
information than the private-key share it generates foremthnd that private-key shares are not available
in public as commitments.

3 System Model and Assumptions

In this section, we briefly discuss the assumptions and teesymodel for our distributed PKG system,
giving special attention to its practicality over the Imtet. We follow the system model of [42], which
closely depicts the Internet, and as their DKG forms theshaisour distributed PKGs.

3.1 Communication Model

In the theoretical sense, distributed protocols designéd a synchronous or gartially synchronous
(bounded message delivery delays and processor speedbehutunds are unknown and eventual [24])
communication assumption tend to be more efficient in terhtestency and message complexity than their
counterparts designed with an asynchronous communicassamption. However, protocols defined in
the synchronous or partially synchronous communicatiodehmvariably use some time bounds in their
definition. An adversary, knowing those bounds, may slowrdtve protocol by appropriately delaying its
messages, which makes deciding the time bounds correcifficld problem to solve. On the other hand,
protocols defined for the asynchronous communication maskbnly numbers and types of messages and
guarantee to finish quickly with only honest nodes commuimigapromptly. Therefore, we assume an
asynchronous communication model.

Weak Synchrony (only for liveness). Generating true randomness in a completely distributealédess)
asynchronous setting efficiently, without using a DKG, althh not impossible [17], is a difficult task to
perform; the known computational threshold coin-tossilygEthms [15] require a dealer or a synchronous
communications assumption. As observed in [42], asyn@duerDKG requires a protocol to solve the
agreement on a sgtroblem [5], which needs distributed randomness or a spmghassumption [27]. In
the absence of an efficient randomization procedure, [423 asieak synchrongssumption by Castro and
Liskov [18] for liveness, but not safety. According to thissamption, a functiomelay(t), defining the
message transmission delay of a message sent at,tuoes not grow faster thanndefinitely. Assuming



that network faults are eventually repaired and DoS attaslemtually stop, this assumption is valid in
practice. We further discuss this assumptiogari.

3.2 Hybrid Adversary Model

Instead of using a standateByzantine adversary in a system withnodesPy, P, ..., P,, we use ay-
brid adversary introduced in [3], having anothénon-Byzantine crashes, and modified in [42] to include
network link failures.

For the standard-Byzantine adversary,nodes compromised or crashed by the adversary remain com-
promised forever. This does not depict the adversary maaltbe Internet accurately. Along with arbitrary
behaviour byt Byzantine nodes, some nodes can just crash silently witklomtiing malicious behaviour
or just get disconnected from the system due to networkr&aidu partitioning. As the adversary does not
capture thes¢ nodes or their secret parameters, it is not computatioaaltycommunicationally optimal to
consider these nodes as Byzantine. It also gives rise to-airbal resilience ofi > 3(t + f) + 1 instead
of then > 3t + 2f + 1 bound effected by treating crashes and link failures ségigriom the Byzantine
adversary.

In this hybrid adversary modekrashes and link failures belong to the same sef nbdes, as from
a perspective of any other node of the system a crashed nbdedseexactly same as a node whose link
with it is broken. We recover secrets at theS@odes immediately after their trusted rebooting, which
gives us the assumption that all non-Byzantine nodes ma @ad recover repeatedly with a maximym
crashed nodes at any instant. If two nodes cannot commanittesn we treat at least one of two nodes as
being either Byzantine or one of the currently crashed nodlkat is, following the standard asynchronous
communication model literature, we assume that the adwecsmtrols the network, but faithfully delivers
all the messages between two honest uncrashed nodes.

3.3 Cryptographic Background

Bilinear Pairings. IBC extensively utilizes bilinear pairings over ellipticrwes. For three cyclic groups
G, G, andG (all of which we shall write multiplicatively) of the sameipre orderp, abilinear pairing e
isamape : G x G — Gp with following properties.

e Bilinearity: Forg € G, § € G anda,b € Z,, e(¢%, §°) = e(g, §)™.
e Non-degeneracy:The map does not send all pairsnx G to unity in G.

If there is an efficient algorithm to computgg, §) for anyg € G andg €< G, the pairinge is called
admissible We also expect that it is not feasible to invert a pairing eohe back taz or G. All pairings
considered in this paper are admissible and infeasibleviertin We call such group& andG pairing-
friendly groups. We refer readers to [6, Chap. IX and X] for a detailedh®mmatical discussion of bilinear
pairings.

Following [29], we consider three types of pairings for peiorder groups: namely, tyde 2, ands3. In
type1 pairings, an isomorphism : G — G as well as its inverse— are efficiently computable. These are
also calledsymmetric pairingsas for such pairings(g, 9) = e(¢(3), ¢ 1(g)) foranyg € G andg € G,
and we usually just identifys with G in this case. Irtype 2 pairings, only the isomorphisms, but not
¢!, is efficiently computable. Finally itype3 pairings, neither ofs nor ¢~! can be efficiently computed.
The efficiency of the pairing computation improves from typ type?2 to type3 pairings. For a detailed
discussion of the performance aspects of pairings we re¢erdader to [29, 19].



Cryptographic Assumptions. As mentioned irg2, for efficiency reasons, we assume the random oracle
framework. Further, our adversary is computationally mehwith a security parameter We assume an
instance of a pairing infrastructure of multiplicative gpsG, G andG, whose common orderis ar-bit
prime. For commitments and proofs of knowledge, we usedikerete logarithm(DLog) [49, Chap. 3]
assumption.

We assume an instance of a pairing infrastructure of midéipive groups, G andGr, whose common
orderp is such that the adversary has to perf@froperations to break the system. For the security of the
IBE schemes, we use thdinear Diffie-Hellman(BDH) [38] andbilinear Diffie-Hellman inversiofBDHI)

[50, 9] assumptions. Here, we recall the definitions of gengrsions (for asymmetric pairings) of these
two assumptions from [12]. Note that a functief) is callednegligibleif for all ¢ > 0 there exists &
such thak(x) < 1/xk¢ for all K > k.

BDH Assumption: Given a tuple(g, g, g%, §%, ¢°, §¢) in a bilinear groupg = <e,G,G,GT>, the BDH
problem is a problem to computég, §)*°. The BDH assumption then states that it is infeasible toesalv
random instance of the BDH problem, with non-negligiblebadoility, in time polynomial in the size of the
problem instance description.

BDHI Assumption: Given two tuples(g, g%, ¢, ..., ¢“") and (g, %, 4%, ...,§“") in a bilinear
groupg = (e, G,G,GT>, theg-BDHI problem is a problem to computég, §)'/*. The BDHI assumption
for some polynomially bounded states that it is infeasible to solve a random instance ofgtB®HI
problem, with non-negligible probability, in time polynaahin the size of the problem instance description.

4 Cryptographic Tools

In this section, we describe important cryptographic teetpiired to design distributed PKGs in the hybrid
model having an asynchronous networknof> 3t + 2f + 1 nodes with &-limited Byzantine adversary
and f-limited crashes and network failures. Note that thesestaoé also useful in other asynchronous
computational multiparty settings.

4.1 Homomorphic Commitments overzZ,

A verification mechanism for a consistent dealing is fundataleto VSS. It is achieved using distributed
computing techniques in the unconditional setting. In th@putational settindjomomorphic commitments
provide an efficient alternative. LE(«, [r]) € G be a homomorphic commitment toe Z,,, wherer is an
optional randomness parameter &nds a (multiplicative) group. For such a homomorphic comneitrt)
givenCq = C(Ozl, [rl]) andCy = C(Oég, [7‘2]), we haveC; - Cy = C(Oél + ao, [T])

VSS protocols utilize two forms of commitments. Leandh be two random generators @f. Feld-
man, for his VSS protocol [25], used a commitment schemeefdmC, (o) = g* with computational
security under théLog assumption and unconditional share integrity. Pedersghgfesented another
commitment of the forn€, 5 (o, 7) = g*h" with unconditional security but computational integrityder
the DLog assumption. In PKC based on computational assumptionk,aslitersarial access to the public
key, unconditional security of the secret (private key osteakey) is impossible. Further, in VSS schemes
based on Pedersen commitments, in order to randomly shkegeneratof, an additional round of com-
munication is required during bootstrapping. Conseqyeiril our scheme, we use simple and efficient
Feldman commitments, except during a special case deddrilire DKG discussion below.

In their VSSs, Feldman and Pedersen use commitmermisafficientsof shared polynomials. However,
following the computational multiparty computation provbby Gennaro et al. [36] and AVSS by Cachin et
al. [14], we instead use commitmentsssfaluationsof shared polynomials. This reduces the communication
complexity (the total bit length of messages exchangedM&®3\by a linear factor and makes verifications of
shares’ products easier in the distributed multiplicapootocol of [36]. To that end, we define theldman



E;; = [g°,¢*D), ..., g#(")] wherey is a randomly selected polynomial of degremrer

Z, with ©(0) = s. Similarly, thePedersen commitment vec@ﬁj’if = [g°h®, g?M YD) ... gem) i)
wherey is as above, and is similar, but withe(0) = s’. The;'" element of a Feldman commitment vector

(counting from0) will be denoted by(C&”; ) ~(and similarly for Pedersen commitment vectors).
J

commitment vecta®

4.2 Non-interactive Proofs of Knowledge

As we assume the random oracle model in this paper, we canamsiteractive zero-knowledge proofs
of knowledge (NIZKPK) based on the Fiat-Shamir methodol§2fy]. In particular, we use a variant of
NIZKPK of a discrete logarithm and one for proof of equalifytwo discrete logarithms.

We employ a variant of NIZKPK of a discrete logarithm whereegi a Feldman commitmen (s)
and a Pedersen commitmegy, (s, r) for s,» € Z,, a prover proves that she knowsandr such that
Cigy(s) = g®> andCy, 1y (s,7) = g°h". Thatis, the prover proves that the Feldman commitment bed t
Pedersen commitment are to the same valu&/e denote this proof as

NIZKPK =ciom (5,7, Cg) (), Cigny (5,7)) = T=Com € Z. 1)

We describe it in detail in Appendix A; it is nearly equivaléa proving knowledge of two discrete loga-
rithms separately.

We also use another NIZKPK (proof of equality) of discretgdothms [20] such that given two Feldman
commitment&, (s) = g° andC (s) = h®, a prover proves equality of the associated discrete lthgasi
We denote this proof as

NlZKPKEDLOg(S,C<g>(8),C<h>(8)) = T=DLog € Z?) (2)

and refer readers to Appendix A for details. Note thaindh can belong two different groups of the same
order.

There exists an easier way to prove this equality of disdogfarithms if a pairing between the groups
generated by andh is available. Using a technigue due to Joux and Nguyen [483lwe theDDH problem

over pairing-friendly groups, giveg® andh*’ the verifier checks iB(g, hx') L q(gf, h). However, when
using a type3 pairing, in the absence of an efficient isomorphism betweemdG, if both g andh belong
to the same group (say without loss of generality), then the pairing-based veaifim scheme does not

work. In such a situation, the above NIZKPK provides a lefisieht but completely practical alternative.

4.3 DKG overZ,

Inan(n, t)-DKG protocol overZ,, a set ofr nodes generates an elemert Z,, in a distributed fashion with
its shares; € Z,, spread over the nodes such that any subset of size greater than a threistafdreveal or
use the shared secret, while smaller subsets cannot. A D&iGqmi consists of aharing(DKG-Sh) phase
and areconstruction(DKG-Rec) phase. In thdDKG-Sh phase, a distributed secrete Z, is generated
amongn nodes such that each node holds a share; and a commitment vecta@t®) of s and all of its

shares. During th®KG-Rec phase, each nodB; reveals its share; and reconstructs using verified

revealed shares.

Definition 4.1. For our hybrid model having an asynchronous networkof 3t + 2f + 1 nodes with a
t-limited Byzantine adversary anglimited crashes and network failures, We use a DKG protaesined
in [42] satisfying the following conditions:



Liveness: Once protocolDKG-Sh starts, all honest finally up nodes complete the protocatepik with
negligible probability.

Agreement: If some honest node completes protdo#lG-Sh then, except with negligible probability, all
honest finally up nodes will eventually complete protdaKiG-Sh .

Correctness: Once an honest node completes protdd&lG-Sh then there exists a fixed valuec Z,
such that, if an honest nodg reconstructs; € Z, during DKG-Rec, thenz; = s.

Secrecy: If no honest node has started protoddKG-Rec then, except with negligible probability, an
adversary cannot compute the shared segret

We assume that messages from all the honest and uncrashesl ameddelivered by the adversary.

A closer look at the secrecy property suggests that in theepiee of an adversary, the shared secret in the
above DKG may not beniformly random; this is a direct effect of using only Feldman comnaitis.[35,
§3] However, in many cases, we do not need a uniformly randamesk&ey; the security of these schemes
relies on the assumption that the adversary cannot competsecret. Most of the schemes in this paper
similarly only require the assumption that it is infeasitdecompute the secret given public parameters and
we stick with Feldman commitments those cases. Howeveronedked need a uniformly random shared
secret in few protocols In that case, we use Pedersen coremtitrbut we do not employ the methodology
defined by Gennaro et al. [35], which increases the latentlyarsystem. We observe instead that with the
random oracle assumption at our disposal, the communizdljodemanding technique by Gennaro et al.
can be replaced with the much simpler computational nagraative zero-knowledge proof of equality of
committed values NIZKPKc,,, described in Eq. 1.

We represent DKG protocols using Feldman commitments ani@érBen commitments d3KGgg|q
andDKGpggrespectively. For nodé;, the correspondin@KG-Sh andDKG-Rec schemes are defined as
follows.

(Chon Cls) . NIZKPK=com). 51,5}) = DKG-Shped(n.t. £, 9. h.ai, ) ©)
((2((;;,30 = DKG-Shggy(n:t, f,1, 9, i) )

$ = DKG‘ReCPedtaC(S’S/),Su82) (5)

s = DKG- RecFe|d( CE; Si) (6)

Here,? is the number of VSS instances to be chosen ¢ < 2t +1), g,h € G are commitment generators,
i, o, € 7, are respectively a secret and randomness sharég, laﬁdc(s andc'>*) are respectively the
Feldman and Pedersen commitment vectors describéd.in The opt|onal NI%KI%IQCOm is a vector of
zero-knowledge proofs of knowledge that the correspondimgies ofc<(9> andc(;’z) commit to the same
values. (The polynomiap for the two types of commitments will be the same in this gaSée liveness
and agreement proofs BKG-Shpggare the same as thoseDKG-Shgg g In Appendix B, we prove the
correctness and secrecy propertie©BG-Shpgy

The worst-case message and communication complexitie®tfqol DKG-Sh [42] areO (tdn?(n+d))
andO(ktdn?(n + d)) respectively, while those of protocBIKG-Rec areO(n?) andO(xn?) respectively.
Here, the functioni(-) bounds the number of crashes that the adversary is allowgettorm.

Distributed Random Sharing over Z,. This protocol generates shares of a seerehosen jointly at
random fromZ,. Every node generates a randeme Z, and shares that using ti#KG-Sh protocol



with Feldman or Pedersen commitmenta€G-Sh(n, ¢, f,t =t + 1, g, [h],7;, [r}]) where the generatdr
and randomnesg are only required if Pedersen commitments are used. Ligemagseement, correctness,
secrecy and message and communication complexities reheasame as those of tlEKG-Sh protocol.
We represent the corresponding protocols as follows:

(cg;, zi> — Randomggig(n t, f, 9) @)

(o[ NIZKPK=con], i, ) = Randompegn,t, f.g h). ®

(9)°

4.4 Distributed Addition over Z,

Let o, € Z, be two secrets shared amongnodes using théKG-Sh protocol. Let polynomials
f(z),9(z) € Zpy|z] be the respectively associated degrgmlynomials and let € Z, be a non-zero
constant. Due to the linearity of Shamir’'s secret sharirg],[& nodeP; with sharesy; and3; can locally
generate shares of + 5 andca by computinge; + 5; and ca;, where f(z) 4+ g(x) andcf(x) are the
respective polynomialsf(z) + g(x) is random if either one of (x) or g(x) is, andcf(x) is random if
f(x) is. Commitment entries for the resultant shares respégtare (C(O‘Jrﬁ))_ = (C(O‘)>_ (C(ﬁ))l and

(9) (9) (9)
(ca)) _ (p(@)°
(c6), = (c),
4.5 Distributed Multiplication over Z,

Unlike addition, local distributed multiplication of twdared secretsr and 3 looks unlikely. We use a
distributed multiplication protocol against a computatibadversary by Gennaro et al. [38]. However,
instead of their interactive zero-knowledge proof, weizgila pairing-base®DH problem solving tech-
nique [40] to verify the correctness of the product valuerstidoy a node non-interactively. For shargs
and §; with Feldman commitments® and §%, given a commitmeny®:? of the shared product, other

nodes can verify its correctness by checking(if*:, %) L e(g®%, ¢) provided the groups of andg are
pairing-friendly. We observe that it is also possible tofgen this verification when one of the involved
commitments is a Pedersen commitment. However, if both domments are Pedersen commitments, then
we have to compute Feldman commitments for one of the valneésmploy NIZKPK-c,,, t0 prove its
correctness in addition to using the pairing-based vetifina In such a case, the choice between the latter
technique and the non-interactive version of zero-knogdgoroof suggested by Gennaro et al. [36] depends
upon implementation efficiencies of the group operationaidng computations.

In our IBC schemes, we always use the multiplication prdtegth at least one Feldman commitment.
We denote the multiplication protocol involving two Feldmeommitments ablulgqqand the one involv-
ing a combination of the two types of commitmentsMslpoq4 Liveness and agreement properties are
exactly the same as those[@KG-Sh. For correctness, along with recoverability to a uniquaigdkays),
protocolMul also requires that = «5. For secrecy, along with the secrecyogf until DKG-Rec is started,
the protocol should not provide any additional informataiout the individual values ef or 3 oncea/ is
reconstructed.

<C((;«ﬁ>)a (Oéﬁ)z') = Mulggig(n.t. f, 9", ((3((;3),042‘) , (C<(§>),ﬁi)) 9
(o™ (@B, (aB);) = Mulpedn.t, £,g.h, (C{y) i), (¢, 5. 81)) (10)

For Mulgg|g 9 = g Or . ForMulpgy without loss of generality, we assume tigais distributed with the
Pedersen commitment. If insteaduses Pedersen commitment, then the Pedersen commitmepsdov
(aB) change tgy andh instead ofg andh.

10



Briefly, the protocol works as follows. Every honest nodesrtmeDKG-Sh(n, t, f,t = 2t + 1,4, [ﬁ],
a; (i, [e;8]]) from Eqg. 3 or 4. As discussed above, pairing-based DDH sglisrused to verify that the
shared value is equal to the producbgfand;.t At the end of theDKG-Sh protocol, instead of adding the
subshares of the selected VSS instances, every node ilate&pthem at indefl to get the new shargyj3);
of af.

Analysis. Here, we roughly prove the properties of protokbhll. This protocol is almost equivalent to the
share renewal protocol in [485.2] which is a slight modification of protoc@KG-Sh. The liveness and
agreement proofs are exactly the same as tho8K@-Sh [42, §4]. The basic correctness proof remains
the same as that of the share renewal protocol {B2] except the starting polynomial is of degr#e+ 1
here. On the other hand, the pairing-based DDH problemrapligchnique assures that the value shared
by a nodeP, is equal to the product of its sharas and ;. The basic secrecy proof is same as that of the
renewal protocol. Further, the adversary cannot determioes even aftern3 is reconstructed as the final
shared polynomial for,5 is independent of the shared polynomials doand 5 individually. The message
and communication complexities are the same as those ofKlt& wotocol.

As the distributed addition can be performed locally, thevedul protocols can be seamlessly extended
for distributed computation of any expression having hiraioducts. Fo¥ shared secrets;, xo, - - - , zy,

and their corresponding Feldman commitm@%‘),cgf), . ,Cg’f), shares of any binary produet =

ot kizq,xp, With known constants; and indicess;, b; can be easily computed by extending the protocol
in Eg. 9. We denote this generalization as follows.

(i) at) = Mulgp(n.t. £ g™ {(kisas, b)), (€0 (@0)i) s (€0 @a)i) oo (€l (@edi)) QD)

NodeP; sharesy , k;(xq,)j(xq,);. FOr atype 1 pairing, verification of the correctness of tharg is done
by other nodes as follows.

(g @mditan)s, g) L [T e((g), glon))

For type 2 and 3 pairings, NIZKPKy ., is used to provide Feldman commitments to thg,); with
generatorg, and then a pairing computation like the above is used. Weheserotocol in Eq. 11 during
distributed private-key extraction in the Boneh and BogeBB, -IBE scheme ir§5.5.

4.6 Sharing the Inverse of a Shared Secret

Given an(n, t, f)-distributed secret, computing shares of its inverse ! in distributed manner (without
reconstructingy) can be done trivially but inefficiently using a distributegimputation ofi?—!; this involves
O(log p) distributed multiplications. However, using a techniqyeBar-llan and Beaver [4], this can be
done using just onRandom, oneMul and oneDKG-Rec protocol.

This protocol involves KG-Rec which outputs the product of the shared seerstith a distributed
random element. If z is created using Feldman commitments and is not uniformigee, the product
az may leak some information abodt We avoid this by using Pedersen commitments while gemerati
We represent this protocol as follows:

(coy ™) = nverse(n.t, f,g,h, (C[3), 1)) (12)
Hereg* belongs to any group of order The liveness, agreement and secrecy properties of theqotaire
the same as those BIKG-Sh except secrecy is defined in the terms\oft instead ofv; for the correctness

For type3 pairings, a careful selection of commitment generatorsdsired to make the pairing-based verification possible.
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property, along with recoverability to a unique valsiethis protocol additionally mandates that= o~ '.
For a distributed secre{tcgg), ozi>, protocolinverse works as follows: every nodg;:

1. runs(C§;7’z;),zi,z§> = Randompgdn, t, f, §, h);

2. computes shares ¢fv,w') = (az,az’) as (ngl),wi,wg) = Mulpgdn,t, f. 4, h, <C<(;>),ai) ,
(Cloi=o28))

3. then send$w;, w}) to each node and reconstruets= DKG'RGCPeo(ECg}ZI;/),wi,wé)- If w=0,

repeats the above two steps, else locally comptes); = w='z;

4. finally, computes the commitmeﬁggl) usingw1!, Cg;) and if required, any of the NIZKPK

techniques.

A modified form of this protocol is used #b.4.

Analysis. This protocol is a combination of theandompgy Mulpgqand DKG-Rec protocols along
with some local computations. Therefore, its liveness agréeament properties follow directly from the
corresponding properties of protoddKG. Uniqueness of the recovered value follows from the conesg
property of protocoDKG, while its equality ton~! can be proven as follows: a share computed by a node

P; at the end of protocdhverse is equal toZ-, Wherecggz?;) is the associated commitment vector. When

reconstructed, it provides—! as follows:

) (&) 2y _ 1 hee. @) y_ % _ -1
DKG Rec,:e|d(t,(3<g> ,m) = ZQDKG RecFe|d(t,C<g>,z2) =_-=a
Secrecy of protocolnverse follows directly from secrecy of protocollul and DKG-Shpgq After the
reconstruction ofv = za, the distributed uniformly random elemenanda remain private by the secrecy
properties of protocaMul. As the final shares af~! are generated using a local computation, there is no
secrecy loss in the last step either. It has the same asymptessage and communication complexities as

those of protocoDKG-Sh.

5 Distributed PKG for IBE

We present and prove distributed PKG setup and private kegaton protocols for three IBE schemes:
BF-IBE [10], SK-IBE [56], and modified BB IBE [12]. Each of these schemes represents a distinct impor
tant category of an IBE classification defined by Boyen [1Xey respectively belong toill-domain-hash
IBE schemesexponent-inversiotBE schemes, andommutative-blindingBE schemes. Note that the dis-
tributed PKG architectures that we develop for each of theetlschemes apply to every scheme in their
respective categories. Our above choice of IBE schemeflugnted by a recent identity-based cryptogra-
phy standard (IBCS) [13] and also a comparative study by B¢y2], which finds the above three schemes
to be the most practical IBE schemes in their respectivegoats. In his classification, Boyen [11] also in-
cludes another category for quadratic-residuosity-b#Edschemes; however, none of the known schemes
in this category are practical enough to consider here.

The role of a PKG in an IBE scheme ends with a user’s privayedsgraction. The distributed form
of the PKG does not affect the encryption and decryptionsstépBE. Consequently, we concentrate only
the distributed PKG setup and private-key extraction stéphe three IBE schemes under consideration.
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However, we recall the original encryption and decryptiefirdtions for our proofs. We start by describing
a bootstrapping procedure required by all IBE schemes.

5.1 Bootstrapping Procedure

Each of the IBE schemes under consideration here requiedslitwing three bootstrapping steps.

1. Determine the node group sizethe security thresholtland the crashed-nodes threshglduch that
n>3t+2f+1.

2. Choose the pairing type to be used and compute three gfou@s gndGT of prime orderp such
that there exists a bilinear pairirgof the decided type with : G x G — Gp. The group ordep is
determined by the security parameteiVe will write all of the groups multiplicatively.

3. Choose two generatois € G and§ € G required to generate public parameters as well as the
commitments. With a typeé or 2 pairing, sety = ¢(g).

Any untrusted entity can perform these offline ta§ks. HommdsG nodes can verify the correctness of
the tuple(n,t, f) and confirm the group choicés, G, andGy as the first step of their distributed PKG
setup. If upsatisfied, they may decline to proceed. We detetegenerated bilinear pairing group as
G =(e,G,G,Gy).

5.2 Formal Security Model

An IBE scheme with arfn, ¢, f)-distributed PKG consists of the following components:

¢ A distributed PKG setup protocdbr node P; that takes the above bootstrapped parametets f,
andg as input and outputs a shatgof a shared master secretind a corresponding public-key vector
K., of a master public key and public-key shares.

e A distributed key-extraction protoc@br nodePF,; that takes a client identity D, the public key vector
K,.» and the master-secret shaseas input and outputs a verifiable private-key sh@lig);. The

client computes the private kelyp after verifying the received sharég p);.

e An encryption algorithnthat takes a receiver identityD, the master public key and a plaintext mes-
sageM as input and outputs a cipherteXt

e A decryption algorithnfor client with identityl Dthat takes a ciphertext and the private key, p as
input and outputs a plaintext/.

Note that the above distributed PKG setup protocol doesqitire anydealerand that we mandate ver-
ifiability for the private-key shares rather than obtainmgustness using error-correcting techniques. Dur-
ing private-key extractions, we insist on minimal interactbetween clients and PKG nodes—transferring
identity credentials from the client at the start and peviety shares from the nodes at the end.

To define security against an IND-ID-CCA attack, we consiither following game that a challenger
plays against a polynomially boundedimited adversary.

Setup: The adversary chooses to corrupt a fixed setraides. To run a distributed PKG setup protocol, the
challenger simulates the remaining- t nodes. Of these, the adversary can further crastfamdes at any
instance. Modelling thesg crashed nodes is trivial. The adversary informs the indi¢éise crashed nodes

to the challenger, who makes sure not to use the inputs pamding to thosg nodes during the period they
are crashed. It, however, computes the internal statesafrished nodes using the outputs corresponding
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to othern — t — f nodes that it runs. When the adversary modifies it choice efcthashed nodes, the
challenger models the associated recoveries using thmahtstates computed during the protocol. Note
that, for the simplicity and clarity of the protocols and fireofs, we ignore thesg crashes in exposition of
our distributed PKG setup and private-key extraction prots

At the end of the protocol execution, the adversary receiv@gres of a shared master secret for its
nodes and a public key vectéf,,,. The challenger knows the remaining- ¢ shares and can derive the
master secret as— ¢ — f > t + 1 in any communication setting.
Phase 1:The adversary adaptively issues private-key extracti@hdatryption queries to the challenger.
For a private-key extraction quety D), the challenger simulates the distributed key extractiatqgol for
its n — ¢t nodes and sends verifiable private-key shares fon itst — f nodes. For a decryption query
(I D, C), the challenger decrypts by generating the private kel p or using the master secret.
Challenger: The adversary chooses two equal-length plaintéf(sand M, and a challenge identityD,;,
such thatl D., does not appear in any private-key extraction query in Phas€he challenger chooses
b €r {0,1} and encryptsV/, for | D, and K, and gives the ciphertext,;, to the adversary.
Phase 2: The adversary adaptively issues more private-key extnacind decryption queries to the chal-
lenger except for key extraction query fdrD,;,) and decryption queries fat D, C.p).
Guess:Finally, the adversary outputs a guéss {0, 1} and wins the game i = b'.

Security against IND-ID-CCA attacks means that, for anypomially bounded adversarly, = b with
probability negligibly greater thah/2.

5.3 Boneh and Franklin's BF-IBE

BF-IBE [10] belongs to the full-domain-hash IBE family. InBE-IBE setup, a PKG generates a master
key s € Z, and an associated public key € G, and derives private keys (€ G) for clients using their
weII known identities D) ands. A client with identity | D receives the private ke p = (H,(1D)* =

ip€ G, WhereH1 {0,1}* — G* is a full-domain cryptographic hash functiot:{ denotes the set of all
elements irs except the identity.) The security of BF-IBE is based onBlzeH assumption.

Distributed PKG Setup. The distributed PKG setup involves generation of the systerster key and the
associated system public-key tuple in thet)-distributed form among nodes. Each nodE; participates
in a common DKG over., to generate its sharg € Z,, of the distributed master key The system public-
key tuple is of the forncgg = [¢9°,9%",--- ,g°"]. We obtain this using ouRandomgg|q protocol from
Eq. 7 as

Private-key Extraction. After a successful setup, PKG nodes are ready to extractprikeys for clients.
As a client needs + 1 correct shares, it is sufficient for the client to contact any- 1 nodes (say sep).
The private-key extraction protocol works as follows.

1. Once a client with identity D contacts every node i@, every honest nodg, € Q verifies the client’s
identity and returns a private-key shdrg, € G over a secure and authenticated channel.

2. Uponreceiving+1 valid shares, the client can construct her privatedsgyasd, p = HP eQ( NN

G, where the Lagrange coefficieht = [Ipco\ (i} 75-

3. The client can verify the correctness of the computedafeikeyd, p by checkinge(g, d; p) ~
e(g°, ip)). If unsuccessful, she can verify the correctness of eachivet 2 by checking if
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e(g,hi'p) L e(g®, hip). An equality proves the correctness of the share, while aquality indi-
cates misbehaviour by the nodeand its consequential removal frofh

In asymmetric pairings, elements @fgenerally have a shorter representation than those dfhere-
fore, we put the more frequently accessed system publickayes irG, while the occasionally transferred
client private-key shares belong@ This also leads to a reduction in the ciphertext size. Hewdur type
2 pairings, an efficient hash-t6-is not available for the grou [29]; in that case we compute the system
public key shares i and use the more feasible groGpfor the private key shares.

Encryption and Decryption. Boneh and Franklin obtain an IND-ID-CCA secure IBE encryptproto-
col (Fullldent) [10, §4.2] secure against thBDH assumption by applying the Fujisaki-Okamoto trans-
formation [28] to their IND-ID-CPA secure schemBgsicldent). Along with H; : {0,1}* — G*,
this scheme uses three more random oracls:: G, — {0,1}*, H; : {0,1}¢ x {0,1}* — Z,, and
Hy:{0,1}' — {0, 1}~

Encryption: To encrypt a messaglk!/ of some fixed bit lengtt for a receiver of identity D, a sender
choosess cx {0,1}¢, computesr = Hs3(o, M) andhjp = Hi(I D), and send€ = (u,v,w) =
(¢",0 ® Ha(e(g®, mp)"), M @ Hy(0)) to the receiver.

Decryption: To decrypt a ciphertext = (u,v,w) using the private keyl p, the receiver successively
computesr = v® Ha(e(u,dip)), M = w® Hy(o), andr = Hz(o, M). If g" # u, then the receiver rejects
C, else it acceptd/ as a valid message.

Proof of Security. We prove the IND-ID-CCA security of BF-IBE with the:, t)-distributed PKG (n, t)-
Fullldent) based on th&DH assumption in the random oracle model. Hereaftergp andqy, denote the
number of extraction, decryption and random ordgélequeries respectively.

Theorem 5.1. Let Hy, H,, H3 and H4 be random oracles. Lefl; be an IND-ID-CCA adversary that has
advantage:; (k) in running timet, (x) against(n, ¢t)-Fullldent making at mostz, ¢p, qu,, 9m,, qr,, and
qm, queries. Then, there an algorithBithat solves th&DH problem inG with advantage roughly equal to
€1(k)/(qm, 9, (qus + qm,)) and running ime) (1 (), qE, 4D, qu, > GH, > 4Hs, H, )-

For their proof, Boneh and Franklin define two additional lpukey encryption schemes: IND-CPA
secureBFBasicPub [10, Sec. 4.1], and its IND-CCA secure versiBfBasicPub™ [10, Sec. 4.2]. We
use distributed versions of these schentest)-BFBasicPub™ and(n, t)-BFBasicPub respectively. Both
(n, t)-BFBasicPubhy and(n, t)-BFBasicPub protocols have three stepkeygen, encrypt anddecrypt.
We first define the protocdh, t)-BFBasicPub:

keygen: Given a bilinear grou for a security parametey, a set ofn nodes runs the BF-IBE distributed
PKG setup for threshold (n > 3t + 1) to generate individual private keys and a public key

tuple Cg;. n nodes also run protoc@KG-Sh to generateiu b €r G. Assuming a random oracle

Hy : G — {0,1}, where/ is the message length, the system public keWi,SQ,g,CESS, I o, Ha).
Every node generates its private-key shafigy); = l}fiD corresponding to the system'’s private key
d| D-

encrypt: To encryptM < {0,1}*, choose" € Zy, and set the ciphertext = (g", M @© Ha(e(g°, hip)"))-

decrypt: To decrypt the ciphertext’ = (u,v) using the private key shar€s, p);, compute and share
e(u, (d p);) with every other node or with a common accumulator. Lagraénggpolate these pairing
values to generatg(u, dy p) and computeV] = v @ Hs(e(u,d) p)).
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Protocol(n,t)—BFBasicPub’“J only modifies theencrypt anddecrypt steps of the above protocol using
the Fujisaki-Okamoto transformation [28], and random le=él; : {0,1}¢ x {0,1}* — Z, andH, :
{0,1}¢ — {0, 1}*.

Boneh and Franklin prove the security Billildent in the following proof-sequenceFullident —
BFBasicPub™ — BFBasicPub — BDH. Galindo [30] corrects a flaw in their proof maintaining the
same proof-sequence. We also follow the same proof-sequenough Lemmas 5.1, 5.2 and 5.3 to prove
Theorem 5.1:

(n,t)-Fullldent — (n,t)-BFBasicPub™ — (n,t)-BFBasicPub — BDH.

Lemma 5.1. Let Hy, Ho, H3 and H, be random oracles. Letl; be an IND-ID-CCA adversary that has
advantagee(x) in running timet(x) against(n,t)-Fullldent. Supposed; makes at mosiz, ¢p, qm;,
qH,, qHs, andgg, queries. Then there is an IND-CCA adversaty that has advantage at leastx)/qm,
againstBFBasicPub™. Its running time is at mos{(«) + c(nqg + gp + gz, ) Wherec is the average time
of exponentiation it.

Proof. (Outline) The game between the challenger and the adversasyarts with the challenger running
thekeygen step of(n, t)-BFBasicPubhy. As simultaneously starts adversafly and forwards all messages
from the challenger tod; and vice versa. As a result, in this simulation gameut of » nodes are run by
A1, while the challenger runs the remaining— ¢ nodes. A,, however, knows all information gathered
by A;. At the end of the distributed PKG setup, along with's public parameters4, also knows secret
sharess; for thet nodes run by4;. The rest of the game and the analysis remains the same ad {8,
except during key extraction queries. Here, instead of\afmikeyd, p, A5 has to provide + 1 private-key
shares tod;. This is, however, easily possible knowirg's ¢ secret shares and the randomness used during
H, queries. Refer to [3G;3] for the rest of the proof. O

Lemma 5.2(Fujisaki-Okamoto [28]) Let H3 and H4 be random oracles. Leds be an IND-CCA adversary
that has advantage; () in running timet, () against(n, t)-BFBasicPubhy making at mostp, ¢x,, and

: ; 1
qm, queries. Then there is an IND-CPA adversafy that has advantage at |ea§m[(€2(l€) +
1)(1—2/p)9> — 1] against(n, t)-BFBasicPub. Its running time is at most (x) + O (¢ + qm, )¢), Where
£ is the message length.

Lemma 5.3. Let H, be a random oracle. Le#l; be an IND-CPA adversary that has advantagéx) in
running timet;(x) against(n, t)-BFBasicPub making at mosty, queries. Then there is an algorithm
B that solves thd8DH problem in(e, G, G, G;) with advantage at leastes(x)/qm, and a running time

O(t3(r))-

Proof. Algorithm B is given a random instance of tB&H problem(g, g, ¢, 3%, ¢°, §¢) in a bilinear group

G. LetD = e(g, §)*° € G, be the solution to this problem. Algorithififinds D by interacting withA; as
follows:

Setup: B runs thekeygen step of(n, t)-BFBasicPub using theBDH instance. LetPg,, be the set of
parties corrupted or owned bys. Let Poooq be the set of remaining good parties which will be run by
B. B wants to make sure that the challengeand g¢ are included respectively ig® < ng and’ p of
(n,t)-BFBasicPub. As in protocolDKG-Sh, the VSSs selection may not be und#s control, B uses
(g®)* and (§°)": for p;, i €r Z; as its contributions towards respectivaland hi b in keygen for every

P; € Pgo0q- More specifically, for every?; € Pgooq, B choOSeS;, 1t €R Z,, ands;j, sgj €Rr L, for every

Pj € Ppqa, Wheres; j ands;; are subshares faP; of VSSs run byP;. Although B does not know the

contributionsy;a and ¢, it can provide consistent commitment vectdlfgi“) andC%‘;C) to A3 knowing

Sijs s;j for P; € Ppaq, 1, 145, g%, andg®. For VSSs run by the adversary nodgsc Pg,q, B can reconstruct
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the exact contributions; andv; usingn — t subshares obtained froff}. Therefore, for any subset of VSSs
@ and Q' chosen finally,s = a> p g, Hi+ ZPJ_EQB v; andhip = § 2 PiEQp 0 Mt 2P Q0
Note thatB knowsv = Sp co,  Vis V' = Ypeqr Vi h = Y peqay i A0 = Ypegr 1
Let s; be the final share of for each nodeP;. Observe that the (unknown) associated private gy =
glantv)(ep'+v') — gu'(ac)tuw'(a)+u'v(e)+vv’ B runs random oracleéd, for Az creating a listHL*t of
(Gy,{0,1}). Anentry(z;, h;) indicates that; = H(z;). Finally, it is easy to see that this simulated view
of A3 is identically distributed as in a real executionkefygen.

The rest of the game and the analysis remains the same a$ fbat bemma 4.3], except duringGuess

step. Here, instead of returning from a random tupléz;, h;) from H4*! as answer to the BDH problem,

B returns .

T (p”)
3
(e(gb GO e(gb, ge)H ve(gb, g)' >

O

Here, ifz; is the correct choice, ther; is equal toe(g, §)*cH tabu/+bep'vbr” instead ofe(g, §)*°
in the original BF-IBE proof.

5.4 Sakai and Kasahara’'s SK-IBE

SK-IBE [56] belongs to the exponent-inversion IBE familyhefPKG setup here remains exactly same as
BF-IBE and the PKG generates a master keyZ, and an associated public key € G just as in BF-IBE.
However, the key-extraction differs significantly. Hereglnt with identity | D receives the private key

dp= ”H 0D ¢ G, whereH] : {0,1}* — Z,. Chen and Cheng [21] prove the security of SK-IBE based
on theBDHIassumptlon

Distributed PKG Setup. The distributed PKG setup remains the exactly same as tH2fF-4oBE, where
si € Z, is the master-key share for noﬂ’eandcgi = [g%, g%, -+, g°"] is the system public-key tuple.

Private-key Extraction. The private-key extraction for SK-IBE is not as straightiard as that for BF-
IBE. We modify thelnverse protocol described it§4.6; specifically, here a private-key extracting client
receivesw; from the node in stef and instead of PKG nodes, tloéent performs the interpolation step
of DKG-Rec. In step4, instead of publishing, PKG nodes forwajéi and the associated NIZKRk,,,,
directly to the client, which compute®® and thend,p = (gz)“fl. The reason behind this is to avoid
possible key escrow if the node computes bgttandw. Further, the nodes precompute another generator

h € G for Pedersen commitments usiégg;,ri> = Randomggg(n,t, §), and set = (Cg;) =4

1. Once a client with identity D contacts alln nodes the system, every nodie verifies the client’s
identity, runs(ng h>) 2 2 Z) = Randompgdn,t, g, h) and computes!® = s; + H/(I D) and for
|
0<ji<n (c®)) = (c®)) gHI(0D) — 4s;+H{(1D),
== <<g> )j (<>>»9 g
")

: (w,w (s'®) D (2,2") ID

2. P performs(C< h> , Wi, W ) Mulpedn., t, g, ,(C<g> )8 >,(C<g,h> 2y 2 Z)) wherew = s' °z
= (s+H;(I1 D)z andw' = (s+ H}(I D))z’ and sends{CE;”;L),w,-) along with NIZKPKzcom (w;, w},
(CE;)> . (Cg;”h“; )> ) to the client, which upon receiving+- 1 verifiably correct sharew;) recon-

structsw using Lagrange-interpolation. 4f # 0, then it computesy—! or else starts again from step
1.
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3. NodeP; sends(ng)‘ = g~ along with NIZKPK= o (2, 21, (C<(;>)> , (C<(;Z>)) ) to the client.

4. The client verifies<C<(;>)> “using the received NIZKPXc,,,, Lagrange-interpolatess+ 1 valid g% to

_ 1
computeg® and derives her private key*)" ' = GGTHUD),

This protocol can be used without any modification with amyetyf pairing. Further, online execution of
theRandompggcomputation can be eliminated using batch precomputafidiswibuted random elements

(cory=071):

Encryption and Decryption. Chen and Cheng [21] define an IND-ID-CCA secure version ofSKe
IBE scheme secure against tBBHI assumption. Here, the random oraéle in BF-IBE is replaced by
Hi : {0,1}* — Z,. The other random oracle€s,, Hs and H, remain the same. This scheme also uses
Fujisaki-Okamoto transformation [28] to achieve IND-IBEE security.

Encryption: To encrypt a messagk!/ of some fixed bit lengttf for a receiver of identity D, a sender
choosess €x {0,1}¢, computesr = Hs3(o, M) andhp = H;(I D), and send€ = (u,v,w) =
((g°g™°)", 0 @ Ha(e(g,§)"), M & Hy (o)) to the receiver.

Decryption: To decrypt a ciphertext = (u,v,w) using the private keyi p, the receiver successively
computesr = v® Hy(e(u, dip)), M = w® Hy(c), andr = Hs(o, M). If (g°g" )" # u, then the receiver
rejectsC, else it acceptd/ as a valid message.

Proof of Security. The security of SK-IBE with a distributed PK@{, t)-SK-IBE) is based on thBDHI
assumption.

Theorem 5.2. Let H, H}, H2, H3 and H, be random oracles. Letl; be an IND-ID-CCA adversary that
has advantage () in running timet, (x) against(n,¢)-SK-IBE making at mostg, qp, qu;, q¢r,, QHs,
andqgy, queries. Then, there is an algorithththat solves thé&DHI problem inG with advantage roughly
equal toey () /(qm; qm, (qm; + qu,)) and running timeO(¢1(k), 4i, 4D, G, Gu;  AHs AHs  GH, )-

Chen and Cheng use the same technique as that of BF-IBE {weitmodification by Galindo) to obtain
the proof sequence SK-IBE SKBasicPub™ — SKBasicPub — BDHI. We also use the same proof se-
quence. Here, however, we divert from the proof of Theorehid.(n, t)-Fullldent. To prove Theorem 5.2
for (n,t)-SK-IBE, we show thatn, t)-SK-IBE — SKBasicPub”™, whereSKBasicPub™ is a public key
encryption scheme based on SK-IBE as defined in{22]. Note thatSKBasicPub™ is not a distributed
scheme. Therefore, recalling Lemrand 3 from [21] to proveSKBasicPubhy — SKBasicPub and
SKBasicPub — BDHI respectively we complete the proof of Theorem 5.2. Next, mee(n, t)-SK-IBE
— SKBasicPub™,

Lemma 5.4. Let H|, H» be random oracles. Led; be an IND-ID-CCA adversary that has advantage)
in running timet(x) against(n, t)-SK-IBE. Supposgl; makes at mosiz, ¢p, andqy; queries. Then there

is an IND-CCA adversaryd, that has advantage at Ieastn)/qu againstSKBasicPub™. Its running
time is at most(x) + c(ngg + qp + qH{) wherec is the average time of exponentiationGin

Proof. We construct an IND-CCA adversand, that uses4; to gain advantage againSKBasicPubhy.

(For the definition oBKBasicPub, refer to [21583.2].) The game between a challenger ahydstarts with

the challenger running algorithkeygen of SKBasicPub™ to generate a public kel .., = (G, 9,9, 9°, ho,
1

N th, +s

1 1 1
(h,g™%s), oy (hiy gRite), .o (hgy, g ™), Ha, H3, Hy). Let gho+= be the corresponding private
1
key. The challenger givek,,;, to A, which is supposed to launch an IND-CCA attack3#BasicPub”™

18



using.A;. A, simulates the challenger fot; as follows.
Setup: As the distributed PKG setup in SK-IBE is same as that of BE;I&e reuse much of the Setup
simulation of(n, t)-BFBasicPub in Lemma 5.3. However, we do not require thai® computation and
g is replaced by®. The master key finally generated is equakto= szpie%wd Wi + ZP]EQBM Vi,

1

where A, knowsy = ZP]EQBM viandu =3 p o di. To make the pairgh;, "+ ) compatible with
s', Ay definesh, = ph; — v andg’ = g*. To answerH| and key extraction queries fot;, A, uses pairs
1 1

(h%, g'"**"), whereA, usesh! as a hash value arid"i**" as the corresponding private key. Furthdy,is
providedy’ instead ofg as a public parameterd; also runs random oracld; and H for A;, whereH is a
random oracle required in NIZKPKc o

H queries: Same as in [21§3.2].

A~

1
Phasel - Extraction Queries: Though private keys in the form d., §’ "i+") tuples are availabled,
has to generate those fal; in a distributed way as defined in the private-key extracpostocol. This is
non-trivial for A as it has to provide shares of= (s’ + h})z to Ay without knowing its shares of. To

~

achieve this, it first chooses € Z; and computeg’ "i** = §'*, wherez, is the randomness which
Az wants to obtain frorRandompgq It then completes the actuRlandompgqand Mulpgqprotocols
normally by playing the part of good parties. It determineand 2’ generated byRandompgqusing its
n — t shares and also knows;, w, for P; € Ppaq. Usingw andw; for P; € Pp,q, it generatesy; and
g% for all parties. To provide the required NIZKRI&,,, for g*, As randomly generates challengeand
response€u, , uz), computes commitment$;, t2) and includes an entri(¢’, h,F,P, t1,t2),7) in the hash

~

table of H before forwardingr=com = (7, u1, us) to A;. Similarly, usingg’> = §'***" andg’w: = §'*
for P; € Pg,q, it generateg’*w: for eachP; and provides its NIZKPK ., which results in4; generating
1

A

§' "t asits private key.

The rest of the game and the analysis remains exactly the aaf2d ,53.2]. It is interesting to observe
that despite the different master keyddr SKBasicPub™ ands’ = sp+ v for (n, t)-SK-IBE), the cipher-
text queries” = (u,v,w) remain the same when transferred frotp to the challenger during decryption
gueries and from the challenger.t during the challenge phase. O

5.5 Boneh and Boyen’'s BB-IBE

BB;-IBE belongs to the commutative-blinding IBE family. Bonahd Boyen [9] proposed the original
scheme with a security reduction to the decisioBBIH assumption [39] in the standard model against
selective-identity attacks. However, with a practicaliegment of security against adaptive-identity chosen-
ciphertext attacks (IND-ID-CCA), in the recent IBCS starttil 3], Boyen and Martin proposed a modified
version of BB, which is IND-ID-CCA secure in the random oracle model uniterBDH assumption. In
[12], Boyen rightly claims that for practical applicatigriswould be preferable to rely on the random-oracle
assumption rather than using a less efficient IBE schemeandtinonger security assumption or a weaker
attack model. Here, we consider the modified;BBE scheme as described in [12] and [13].

In the BB, -IBE setup, the PKG generates a master-key trifilet3, v) € Z;’; and an associated public
key tuple(g®, g7, e(g, §)*?). A client with identityl Dreceives the private key tupligp = (§@0+(@H1( D)+)r,
§") € G2, whereH/ : {0,1}* — Z,,.

Distributed PKG Setup. In[12], Boyen does not include the parametgmndg® from the original BB
scheme [9] in his public key, as they are not required durgextraction, encryption or decryption (they
are not omitted for security reasons). In the distributetireg we in fact need those parameters to be public
for efficiency reasons; a verifiable distributed computatide(g, )’ becomes inefficient otherwise. To
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avoid key escrow of clients’ private-key componeng$), we also need and C(S); otherwise, parts of
clients’ private keys would appear in public commitmenttees. As in SK-IBE in§5.4, this extra generator
h € G is precomputed using tfeandompgg|q protocol. Distributed PKG setup of BBnvolves distributed

generation of the master-key tuple, 3,~). Distributed PKG nodeP; achieves this using the following
threeRandomgg|q protocol invocations:

(C<(ga>)7047,) = RandomFeld(nat7 f? g)’
<C<(§>),ﬁi) = Randomggg(n,t, £, 4),

(C<(;/>),’Y7,) = RandomFeld(nat7 f? g)

Here, (a;, 8;,7:) is the tuple of master-key shares for noBge We also needfgsg; each nodeP;
provides this by publishing(cgifj;)i — 1% and the associated NIZKRK 1, (3:, 3%, h%). The tuple
<C<(;>), e(g,g)aﬁ,c<(;>>,c<(§>>> forms the system public key, wheegg, §)*° can computed from the public
cpmmitment entries. The vectdrég;, although available publicly, is not required for any fentttomputa-
tion.

Private-key Extraction. The most obvious way to compute a BBrivate key seems to be faP; to
computea;3; + (o H} (1 D) + ~;)r; and provide the correspondirgg:% (@ Hi(l Di+v)ri g7 to the client,
who now needg¢ + 1 valid shares to obtain her private key. However3; + («;Hj(l D) + ~;)r; here is
not a share of a random degrgepolynomial. The possible availability @i to the adversary creates a
suspicion about secrecy of the master-key share with thikade

For private-key extraction in BBIBE with a distributed PKG, we instead use thillgp protocol in
which the client is provided withy":, wherew; = (o5 + (aHj(l D) 4+ ~)r); is a share of random degree
polynomial. The protocol works as follows.

1. Once a client with identity D contacts alk nodes the system, every nofteverifies the client’s iden-
tity and runs(C@g)(r, '), [ngi, NIZKPKECOm],m,ri> = Randompg(n,t, f, ﬁ,g). Randompgg
makes sure thatis uniformly random.

2. P; computes its share; of w = o3 + (aH{ (I D) + y)r using protocoMulgp in Eq. 11.
(w) ) _ * (o) B) 5 ™ . (r) ..
(C<g*>7w2> - MUIBP(TL? t7 f7 g ,desc, <C<g> 7a2> 9 (C<B> 9 ﬁl) 9 <C<g> 77!) 9 (C<ﬁ>7rl>)
wheredesc = {(1,1,2), (H/(l D),1,4),(1,3,4)} is the description of the required binary product
under the orderindo, 3, ~, r) of secrets. To justify our choices of commitment generatwespresent

the pairing-based verification in protoddulgp:

B +(cv; H! N 7y a: 36 a:\H! . A
e(gazﬁl'i'( 2H1(| D)""YL) L’ h) - e(g L7h/6L)e((g Z)Hl(l D)g'Yz7h L)

For type2 and3 pairings,g* = g, as there is no efficient isomorphism fraghto G. However, for
type 1 pairings, we usg* = h = ¢~ (h). Otherwise, the resultant commitments fo(which are
public) will contain the private-key pagt®?+(@Hi( D)+v)r,
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3. Once theMulgp protocol has succeeded, No#lggenerateg® andg™ and sends those to the client
over a secure and authenticated channel.

4. The client Lagrange-interpolates the valid receivedeshim generate her private kgy+(@ 1 (1 D+
g"). For typel and type2 pairings, the client can use the pairing-based DDH solvinghteck the
validity of the shares. However, for tyge pairings, without an efficient mapping frofi to G,
pairing-based DDH solving can only be employed to vefifyy. As a verification ofg":, node P;

A~

includes a NIZKPK pr.g(7i, iL"i,g”) along withg™: andg":.

As in SK-IBE in §5.4, online execution of thRandomgg g computation can be eliminated using batch

precomputation of distributed random eleme(ﬂ,’%;i,n).

Encryption and Decryption. Similar to the PKG setup and the key extraction protocolsB®Bi-IBE in
§5.5, we use the BBIBE version defined in [12] and [13] for the encryption andygtion protocols here.
Boyen [12] claims IND-ID-CCA security of this system agaitise BDH assumption. This scheme uses
H} =Gy x {0,1}* x G x G — Z,, along with /] and H, from SK-IBE.

Encryption: To encrypt a messagk/ of some fixed bit lengtl? for a receiver of identity D, a sender
choosess € {0,1}¢, computesk = (e(g,§)*’)? andh p = H;(l D), and sends the cipherte&t =
(p, po, p1,t) = (M @ Ha(k), g%, (g7 (g%)"°), o + Hj (K, p, po, p1)) to the receiver.

Decryption: To decrypt a ciphertex® = (p, po, p1,t) using the private key p = (§*°* (1 D+0)r gr)
= (dp, d1) (say), the receiver successively computes e(po, dy)/e(p1,dr) ando =t — Hz(k, p, po, p1)-
If k& # (e(g,§)*")” or pg # ¢°, then the receiver rejects, else it acceptd/ = p & Ho(k) as a valid
message.

Proof of Security. We prove IND-ID-CCA security of BB-IBE with the (n, ¢)-distributed PKG (n, t)-
BB;-IBE) based on th8DH assumption. To the best of our knowledge, an IND-ID-CCA sgcproof for
the modified BB-IBE scheme has not been published yet and a non-distritwgiesion of our proof is the
first to provide IND-ID-CCA security for this protocol.

Theorem 5.3. Let H}, H,, Hs and H) be random oracles. Letl be an IND-ID-CCA adversary that has
advantage: () in running timet(x) against(n, t)-BB; -IBE making at mostz, ¢p, qm;s dH» 4, andqg,
gueries. Then, there an algorithf that solves tha8DH problem inG with advantage roughly equal to
€(r)/(am;qm;) and running timeO (£(x), ¢&, 4D, Gy > 4Hz > Ary> GH)-

Proof. Algorithm B is given a random BDH problery, g, g%, §%, §°, ¢°) in bilinear groupg as input. Let
D = e(g,§)™ € Gy be the solution to this problem. Algorithififinds D by interacting withA as follows:
Setup: B makes a virtual network of parties and runs the distributed setup(oft)-BB;-IBE using the
given BDH instance. LetPg,; be the set of parties corrupted or owned b¥3. Let Pg.q be the set of
remaining good parties which will be run I8 B wants to make sure that the challengeis included in
bothg € C<(g°‘>) andg” € C<(;>), and the challengg” is included ing® ¢ C<(§>). Similar to the(n, t)-Fullldent
BF-IBE and(n, t)-SK-IBE proofs, the generated master key tuples, v) = (ui1a+vi, uab+ve, psa+vs).
Let usa +v3 = —ahip+ o/, whereh{n = —pus/ 1 is a challenge identity-hash and = v — vy us/py =
ahfp + v. o is completely random as the and v values are not undes’s control. Finally, B outputs

<C<(;>), e(g,g)aﬁ,(:g;, [C<(§>), NIZKPKEDLOQ]) as the system public key.

H{ queries: Before initializing H{"**!, B choosesj €x {1,...,qu,}. WhenA queriesH] for | D;, B
proceeds as follows: if # j, it picks b p, €r Z,, adds a tuplél D;, h p,) and gives back, p, to A. If i =
J, it sets(l D;, h{p). Note that multiple queries for the same identity are ansdievith the corresponding
entry in its H"st, Further, the output off{ is uniformly distributed irZ, and independent od’s view.
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H, and HY queries: Initially, these lists are empty. When a query g or Hj arrives, B first checks

if an entry for the query input already exists in the corregfog list. If it is presents]5 responds with
the associated response, elsesends a random element of the appropriate size as its respatds an
input and response tuple in the oracle list. The correspon@tandom) oracle list entries look as follows:
HESY Gy, {0,1}9) = (k;, hy,,), and HY4 Gy, {0,1},G, G) = (ki, pi, po;, p1;), Where/ is the message
length.

Phasel - Extraction Queries: When A asks for the private key fdrD;, B first getsH/ (I D;) = hp,. If

i = j, thenB aborts the game and the attack failsi ¥ j, B starts the distributed private-key extraction

protocol by running(C<Bg>(r, r'),ri,ri> = Randompgdn, t, f, fz,g). B knowsr, ' as well as shares of

the nodes as it runs — ¢ nodes. It then computes’ = W@’W — hr=P/Ah whereAh = hyp, — hip.

Using ™ andt adversary commitments’i for i € Pp,q, B computes the commitmerﬂig). To provide the

) h)
required NIZKPK_¢,,, for each entry |rC<(;3 A, randomly generates challengeand responséuy ;, us;),

computes commitments,;, t2;) and includes an entri(y’, h, h™i, h"i§"t t1;, t2;), ;) in the hash table of
H before forwardingr=com = (74, u1;, u2;) to A.

It then computesl) = (g*)~F%"/Ah(g*)ordhta’r — (gx)af+(ehin+7)7 and using known shares of,
B; and-; for P; € Ppqq, it runsMulgp for w = o3 + (ahy p, + 7)7. Note that3 does not know its shares,
but it can compute their commitments usidfgand the inputs fronPpz,q. With its (n, t) subshares, it also
knows the final shares; for P; ¢ Pg,q. It then computes the required private key shdfésand g™ for
P; € Pg,0q and forwards them tol.
Phasel - Decryption Queries: B answersA’s decryption queriegl D;, C;) as follows. B first gets
H!(I D;) = hy p,. If i # j, B obtains the private ke + (Mo, 97 57y and decrypt€; = (s, ps, po;» p1;)-
If i+ = j, thenB cannot compute the private key and it usés and H} instead. B searchesi4' for
(-, pis poi, p1;)- If this tuple belongs to a valid ciphertext by, then there must be one or more correspond-
ing entries inf}%!. For each such entry, retriewg and the hash valuk,,. Computes; = ¢; — hf, p, and

check if the component-wise equality;, po;) L (e(g,6)%, ¢g°) holds. Ase(g,g), g andpy, are fixed for a
query, this equality only holds for a single or hpvalue and correspondingly a single or no entry#gis.
If there is no such entry, thei discards the ciphertext, eléesearches fok; in Héist. If there is no entry,
then3 adds a random entry,; for k; in Hist. Finally, it returns the plaintext/ asM = p; @ ha;.
Challenge: A outputs an identity D, and two messagesl, and M. If | D, # | D;, then it aborts the
game and the attack fails, elesends(p, €r {0,1}¢, po, = g% p1, = (¢6°)%,t» €r Z,) as a challenge
ciphertextC}, to A.
Phase2 - Extraction Queries: B proceeds as in Phageexpect the extraction query foD,;, is rejected.
Phase2 - Decryption Queries: B proceeds as in Phase expect the decryption query fdr D, Cy) is
rejected.
Guess: A outputs its gues¥ € {0, 1}. Now, there must be one or more entries fopy, poy, p1,) in HY.
B randomly picks one of those tuplék;, p;, po;, p1;) @and returngs; as its answeb.

For a random BDH probleny, g, g%, %, §°, ¢°) in bilinear groupg, A’s view is identical to its view in
areal attack game. It is easy to observe fatutputs correcD with probability e(x)/(¢zr; ¢z )- O

Using a more expensive DKG protocol with uniformly randontpau, all of our proofs would become
relatively simpler. However, note that our use of DKG withomiformly random output does not affect
the security reduction factor in any proof. This is someaghiiot achieved for the known previous protocols
with non-uniform DKG such as threshold Schorr signaturég.[¥urther, we do not discuss the liveness
and agreement properties for our asynchronous protocdiseaess and agreement of all the distributed
primitives provides liveness and agreement for the disteth PKG setup and distributed key extraction
protocols. Finally, for simplicity of the discussion, it wio have been better to combine three proofs.

22



1oooo§ . . ' %%

1000 f b _

10 — %% ~

5 10 20 30 40
System Size (number of nodes)

Completion Time (s)
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However, that looks difficult, if not impossible, as the dlaited computation tools used in these distributed
PKGs and the original IBE security proofs vary a lot from aesole to scheme.

6 System Aspects

In this section, we discuss the system aspects of distdbRt€Gs. As DKG is by far the most important
component of our distributed PKGs, we first implement antttes DKG protocol [42] that we use in our
distributed PKGs. In the process, we propose several sylstarh optimizations for this DKG. We also
analyze practical aspects of our distributed PKGs and pteseomparative study. Finally, we mention
proactive security and group modification protocols for distributed PKGs.

Note that two distributed CAs for PK&) [55] and Cornell Online Certification Authority (COCA) [63]
have been designed previously. However, with their focu<és, the protocols they provide are mis-
matched to the requirements of a distributed PKG. As a reseltdo not design our distributed PKGs using
these solutions.

6.1 DKG Implementation on PlanetLab

We design our DKG nodes as state machines (using the statémaaeplication approach [45, 57]), where
nodes move from one state to another based on messagesdechlessages are categorized into three
types: operator messages, network messages and timelgags$he operator messages define interactions
between nodes and their operators, the network messadjes pratocol flows between nodes, and the timer
messages implement the weak synchrony assumption dabsanibe. 1.

We aim at building a distributed PKG for IBE schemes. Thaefwe develop our object-oriented C++
implementation over the PBC library [47] for the underlyialjptic-curve and finite-field operations and a
PKIl infrastructure with DSA signatures based on GnuTLS [fé8lconfidentiality and message authentica-
tion. (Note thathodeshave TLS PKI certificates, which does not conflict with the Igafgproviding IBE
private keys taclients) In order to examine its realistic performance, we testldi implementation on
the PlanetLab platform [54].

Performance Analysis. We test the performance of our DKG implementation for systefup to40
nodes and we observe an expected approximately cubic ginvite average completion tinfeFigure 1
presents our results in graphical form. In practical agpiims such as [43], these values, ranging from
seconds to a little over an hour, are small as compared to Di&Sepsizes (in days). Importantly, the use of
dedicated high-performance servers instead of unreli@deurce-shared PlanetLab nodes can drastically

2With cubic message complexity, larger distributed systéms 50) are not practical for the Internet.
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Table 1. Operation count and key sizes for distributed PKi@pseand distributed private-key extractions
(per key)

BF-IBE SK-IBE BB.-IBE
Setup Extraction| Setup Extraction| Setup Extraction
Operation Count:  Generatorh or h X Vv Vv
DKG-Sh?
(precomputed) - 0 - 17 - 17
(online) 1F 0 1F 17 37 ¥
Parings
@PKG Node 0 0 0 2n 1’ 2n
@cClient - 2(2t +2) - 0 - 2nb
NIZKPK 0 0 0 2n n® 2n®
Interpolations 0 1 0 2 1 2
Key Sizes PKG Public Key (n+2)G° (n+3)G (2n + 3)G, (n+ 2)G, (1)Gr
Private-key Shares (2t + 1)G® (3n)Zy, (3n+1)G (2n)Z,", (2n)G

#For DKG-Sh F indicates use of Feldman commitments, while P indicateei2en commitments.

PFor typel and2 pairings,n NIZKPKs can be replaced byn extra pairings and thén Z, elements are omitted from the
private-key shares.

‘For type 2 parings, the groups used for the PKG public key bhagbtivate-key shares are interchanged.

improve the performance. We also measure minimum and mawiocampletion times for the experiments.
Big gaps between those values demonstrate the robustnéss DKG system against the Internet’s asyn-
chronous nature and varied resource levels of the Planethdés.

To check the applicability of the weak synchrony assumpfid@j that we use in DKG, we also tested
the system with crashed leaders. In such scenarios, the DEiGopl successfully completed after a few
leader changes. However, we observe that the average damplene of a system critically varies with the
choice ofdelay(t) functions and we suggest that this should only be finalizedfsystem after rigorous
testing.

While implementing this system, we also found two systewelleptimizations for this DKG.

e To the original DKG protocol, we add a neskared network message from a node to a leader having
2t+ f+1 signedready messages for a completed VSS. The leader can then includ¢$id instance
in its DKG send without completion of the VSS instance at its own machine.

e During our experiments, we observed that the VSS instaneemare resource consuming than the
agreement required at the end. Except duringMiaéprotocol, we only need+ 1 VSS instances to
succeed. Assuming+ f VSS instances might fail during a DKG, it is sufficient to $ME6Ss at just
2t+ f + 1 nodes instead of at all nodes. Nodes that do not start a VSS initially may utilizevteak
synchrony assumption to determine to when to start a VS8&nuostif required.

6.2 Comparing Distributed PKGs

In this section, we concentrate on the performance of thepsatd key extraction procedures of the three
distributed PKGs defined i§b. For a detailed comparison of the encryption and decrymlgorithms of
BF-IBE, SK-IBE and BB-IBE, we refer readers to the survey by Boyen [12]. The gdmec@mmendations
from this survey are to avoid SK-IBE and other exponent4isies IBES due to their reliance on the strong
BDHI assumption, and that BBBE and BF-IBE both are good, but BBBE can be a better choice due to
BF-IBE's less efficient encryption.

Table 1 provides a detailed operation count and key size adsgm of our three distributed PKGs.
We countDKG-Sh instances, pairings, NIZKPKs, interpolations and pubhid grivate key sizes. We
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leave aside the comparatively small exponentiations amer group operations. As mentioneds5, for

BB, -IBE, with curves of type 1 and 2, there is a choice that can bdenbetween using NIZKPKs and

2n pairing computations. The table shows the NIZKPK choice hly option for type 3 pairings), and
footnoteb shows where NIZKPKs can be traded off for pairings. As disedsng5.3, for curves with type

2 pairings, an efficient algorithm for hash-is not available and we have to interchange the groups used
for the system public key shares and client private-keyeshdfootnote indicates how that affects the key
sizes.

In Table 1, we observe that the distributed PKG setup andigieuited private-key extraction protocols
for BF-IBE are significantly more efficient than those for 8& and BB, -IBE. Importantly, for BF-IBE,
distributed PKG nodes can extract a key for a client withotériacting with each other, which is not possible
in the other two schemes; both BEBE and SK-IBE require at least one DKG instance for eveiyabe-
key extraction; the second required instance can be basdomputed. Therefore, for IBE applications in
the random oracle model, we suggest the use of the BF-IBEs&hexcept in situations where private-key
extractions are rare and efficiency of the encryption stepitical to the system. For such applications, we
suggest BB-IBE as the small efficiency gains in the distributed PKG petnd extraction protocols of SK-
IBE do not well compensate for the strong security assumptquired. BB-IBE is also more suitable for
type2 and3 pairings, where an efficient map-to-group hash funcfibnis not available. Further, BRIBE
can also be proved secure in the standard model with sedddintity attacks. For applications demanding
security in the standard model, our distributed PKG for; BBE also provides a solution to the key escrow
and single point of failure problems, using pairings of typar 2.

6.3 Proactive Security and Group Modification

With an endless supply of software and network security flaystem attacks not only are prevalent but
have also been growing. The distributed nature of our podéamitigates the effects of those attacks to some
extent, but their time-independence makes them vulnetalalgradual break-irby amobile attackebreak-

ing into system nodes one by one. The concept of proactivarisefs1] has been introduced to counter
these attacks. Further, on a long-term basis, the set of RiKiE@swill need to be modified, which can also
cause changes to the system'’s security threshaldl the crash-limiif. Therefore, for our distributed PKG
systems, we need proactive security and group modificatioiogols.

We observe that the proactive security and group modifiegtiotocols defined in [42], for the DKG
protocol used in our distributed PKGs, are directly appiego our distributed PKGs. We suggest the use
of these protocols to achieve proactive security of our ardstys and group modification of our PKGs.
Note that this is possible only due to the nature of the mastgs for the three IBE schemes that we use.
All master key elements in these three schemes belofg,tarhich is also the output domain for the DKG
protocol. In contrast to the three IBEs that we consider, @aé as an open problem the possibility of
providing proactive security and group modification praisdo the master keys for IBE schemes such as
the original BB -IBE [9] or Waters’ IBE [62].

7 Conclusion

In this paper, we designed and compared distributed PKG std private key extraction protocols for
Boneh and Franklin’s BF-IBE, Sakai and Kasahara’s SK-IBi Boneh and Boyen’'s BBIBE. We ob-

served that the distributed PKG implementation for BF-IBEhie most simple and efficient among all and
we suggest its use when the system can support its relateslly encryption step. For systems requiring
a faster encryption, we suggest the use of BBE instead. However, during every distributed privatg ke
extraction, it requires a DKG and consequently, interacamong PKG nodes. That being said, during
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private-key extractions, we successfully avoid any irdtoa between clients and PKG nodes except the
necessary identity at the start and key share transfer® a&nth. Further, each of the above three schemes
represents a separate category of IBE schemes and our slesigrbe applied to other schemes in those
categories as well.

While developing our distributed PKGs, we also developeahelsronous computational protocols for
distributed multiplication and distributed inverse cortgtion, which may have their own applications. To
confirm the feasibility of a distributed PKG in the asynctooa communication model, we also imple-
mented and verified the efficiency and the reliability of agnafironous DKG protocol using extensive
testing over the PlanetLab platform. We also suggestedcpveasecurity and group modification protocols
for our distributed PKGs. In the future, we would like addgbdeatures to our implementation.
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A Non-interactive Zero-knowledge Proofs

We now present the details of the non-interactive zero-kedge proofs of knowledge (NIZKPKS) intro-
duced ing4.2. Here H is a hash function modelled by a random oracle.

The first proof is that a Feldman commitmedt = C, (s) = ¢° and a Pedersen commitmeht =
Cg,ny(s,7) = g°h" are both committing to the same valsieWe denote this by NIZKPKcon (s, 7, F, P).
The proof is equivalent to zero-knowledge proofs of knowkedised by Canettit al. in their adaptive
secure DKG [16].

The proof is generated as follows:

PiCk’Ul,Ug €R Zp

Lett; = g”l, tog = h'2

Letr = H(g, h,F,P,tl,tg)

Letu; =v; —7 -5 (mod p),ug = vy — 7 -7 (mod p)
The proof ist=com = (7, u1, uz)

The verifier checks this proof (givetecom, g, h, F, P) as follows:

o Lett) = g F™, t) = h*2(P/F)
e Accept the proof as valid if = H(g, h, F, P, t},t})

The second proofis that two Feldman commitment§ = C,(s) = g° andFy = C,y(s) = h* commit
to the same value; that is, the discrete logg'ofand I, to the bases of andh respectively are equal. We
denote this by NIZKPK pr.o4(s, F1, F»). The proof is standard [20]:

The proof is generated as follows:

Pickv € Zp

Lett; = g”, to = hY
LetT:H(g, h,Fl,Fg,tl,tg)
Letu =v—7-s (mod p)
The proof ist=prog = (7, u)

The verifier checks this proof (giverepr.og, g, h, F1, F») as follows:

o Lett) = g“F],th = h"FJ
e Accept the proof as valid if = H(g, h, F1, F»,t},t})
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Algorithm for Simulator S
Let B be the set of parties controlled by the adversary, @ibe the set of honest parties (run by the simulator). Withoss |
of generality,3 = [P1, P,/] andG = [Py 1, P,], wheret’ < t. LetY € G be the input public key and : G® — Z, is a
random oracle hash table for NIZKR& .. .

1. Perform all steps on behalf of the uncorrupted paties, . .., P, exactly as in the DKG protocol until theKG-
completed message. Once a node is ready to senDiK&-completed message, the following holds:
e SetQ is well defined with at least one honest node in it.
e The adversary’s view consists of polynomia)l%?)(:g y) for j € B, the share polynomialezgi)y =9 (j,y)
for P; € Q, P; € B, and commitment§; for P; € Q.

e S knows all polynomialsb‘”(m, y) for P; € Q as it knowsn — t’ shares for each of those.
2. Perform the following computations for eack [t + 1, n] before starting Ste:

(@) Computes’; for P; € [1,n] ands; for P; € B. Interpolate (in exponentp, Y') and(j, g°/) for j € [1,t] to
computeC, (s}) = g% .

(b) Compute the corresponding NIZKR&.m by generating random challenge €r Z, and responses
Wi, ui2 €r Zp, COMpUting the commitments; = (g% ) g% ! andt; o = % "h*2 and include

g9 i

entry((g, h, Cg)(s7),Cig,ny (Si,7i), ti1, ti2), ci) in the hash tablél so thatr=com, = (¢i, wi 1, ui2).

3. Intheends = -, .5 ai such thatt” = g°.

Figure 2: Simulator for DKG with the uniform randomness @p

B Uniform Randomness of The Shared Secret

B.1 Correctness
We need to prove the following three properties.

1. There is an efficient algorithm that on input shares fttxm- 1 nodes and the public information
produced by the DKG protocol, output the same unique vaJuen if up tot shares are submitted
by malicious nodes.

2. At the end ofSh phase o DKGpgq all honest nodes have the same value of public Key- ¢°,
wheres the unique secret guaranteed above.

3. s andY are uniformly distributed ifZ,, andG respectively.

The first two properties are the same as thodeKiG g4 and we only need to prove the third property.
Here,s = Eﬂ-e@ «;. As long as there is one valug in this sum that is chosen at random and

independently from the other values in the sum, the unifoistridution of s is guaranteed. Alk; values

are only available in the form a Pedersen commitment urttiQsis finalized. From Theorem.4 of [53],

in VSS using the Pedersen commitments, the view oftlmited adversary is independent of the shared

secret. Therefore, with at least one VSS from the honestsimdthet + 1 chosen VSSss is uniformly

distributed and so i% = ¢°.

B.2 Secrecy

We need to prove that no information abasutan be learned by the adversary except for what is implied by
Y = ¢°. More formally, we prove that for every PPT adversatryhat has up t@ nodes, there exists a PPT
simulatorS that on inputY” € G produces an output distribution which is polynomially istitiguishable
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from A’'s view of a run of the DKG protocol that ends with as its public key. Our proof is based on the
proof of secrecy in [35, Section 4.3].

In Figure 2, we describe the simulatSrfor our DKG protocol. An informal description is as follows.
S runs a DKG instance on behalf of all honest nodes. For the ofdsie protocol (until messageKG-
completed is to be sent), it follows the protocol DKG as instructed. B#G-completed messages, it
changes the public key sharEs= ¢* to “hit” the desired public key". S knows all g*s andgs3 values
forall P; € B, as it choose$>(j)(ac,y) for good nodes and has received enough shares from bad modes t
reconstruct the bivariate polynomials shared by them. iFer[t + 1,n], S setsg® as interpolation (in
exponent) of 0,Y") and(j, g% ) for j € [1,¢]. It creates the corresponding NIZKRK,,,, using the random
oracle hash table.

We show that the view of the adversadythat interacts withS on inputY is the same as the view of
A that interacts with the honest nodes in a regular run of tb&opol that outputs the giveyi as the public
key.

In a regular run of protocol DKGA4 sees the following probability distribution of data prodddoy the
honest nodes:

e Valueso;(j,y), ¢';(j,y) fori € G, j € B, uniformly chosen irZ,
e ValuesC; andg® for P, € G, that correspond to randomly chosen polynomials.

As we are interested in runs of DKG that end withas the public key, we note that the above distribution
of values is induced by the choice (of the good parties) ofmahials ¢;(x,y), ¢';(z,y) for P, € Q,
uniformly distributed in the family of-degree polynomials ove#, such thaﬂpigg ¢%(00) =y Without
loss of generality, assumB, < G belongs toQ. The above distribution is characterized by the choice
of polynomials¢;(z,y), ¢ (z,y) for P, € (G N Q) — {P,} as random independentdegree bivariate
polynomials ovefZ, and of¢,,(z, y) as a uniformly chosen polynomial from the familyteflegree bivariate
polynomials ovetZ, that satisfy the constraint,, (0,0) = s — > p <o\ (3 ¢i(0,0).

We show that the simulata$ outputs a probability distribution which identical to the above distri-
bution. First note that the above distribution depends ers#tQ decided as the broadcast by the current
leader is complete. Since all actions of the simulator u@tis (eventually) delivered to all nodes are iden-
tical to the actions of honest parties interacting witlin a real run of the protocol, we are assured that the
setQ defined in this simulation is identical to its value in thelq@@tocol.

We now describe the output distribution 8fin terms oft-degree bivariate polynomialg’ correspond-
ing to the choices of the simulator. It is defined as followsr P, € (Q — B — {P,}), set¢; to ¢; and
¢'; to ¢/;. Define¢;, such that the values,(0,0) = log,( Y g‘ﬁ) and ¢ (7,y) = éon(J,y)

j€(Q—B—{Pn
for j € [1,t]. Finally, define¢’’ (z,y) such thaty} (x,y) + Aéﬁ’i(m,y{) :}) On(z,y) + AY', (z,y), where
A = log,(h). It can be seen by this definition that the univariate polyiab@valuations of these polyno-
mials evaluated at the indices &% < B coincide with the values;(j, y) which are seen by the corrupted
parties in the protocol. Note that the abd¥eog valuesy;; (0,0) andg¢!,*(0,0) are unknown to the simula-
tor. Also, the commitments of these polynomials agree @jthublished by the simulated honest parties in
the protocol as well as with the exponentiafs for P; € G published by the simulator at the end on behalf
of the honest parties. Thus, these values pass the vetfiedti the real protocol.

It remains to be shown that polynomiaf$ and ¢’} belong to the right distribution. Indeed, f@ —

G — {P,} this is immediate since they are defined identicallyptowhich are chosen according to the
uniform distribution. Forg! we see that this polynomial evaluates in poipts- [1,¢] to random values
(¢n(4,y)) while at0 it evaluateslog,(g*) as required to hit". Finally, ¢';, is defined asy’;,(z,y) =

A Y pn(z,y) — ¢%(x,y) + ¢, (7, y)) and sincep’, (z, y) is random and independent then s@§(z, y).
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