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Abstract

An identity-based encryption (IBE) scheme can greatly reduce the complexity of sending encrypted
messages over the Internet. However, an IBE scheme necessarily requires a private-key generator (PKG),
which can create private keys for clients, and so can passively eavesdrop on all encrypted communica-
tions. Although a distributed PKG has been suggested as a wayto mitigate this problem for Boneh and
Franklin’s IBE scheme, the security of this distributed protocol has not been proven and the proposed so-
lution does not work over the asynchronous Internet. Further, a distributed PKG has not been considered
for any other IBE scheme.

In this paper, we design distributed PKG setup and private key extraction protocols in an asyn-
chronous communication model for three important IBE schemes; namely, Boneh and Franklin’s IBE,
Sakai and Kasahara’s IBE, and Boneh and Boyen’s BB1-IBE. We give special attention to the applica-
bility of our protocols to all possible types of bilinear pairings and prove their IND-ID-CCA security in
the random oracle model. Finally, we also perform a comparative analysis of these protocols and present
recommendations for their use.

1 Introduction

In 1984, Shamir [60] introduced the notion of identity-based cryptography (IBC) as an approach to simplify
public-key and certificate management in a public-key infrastructure (PKI) and presented an open problem
to provide an identity-based encryption (IBE) scheme. After seventeen years, Boneh and Franklin [10]
proposed the first practical and secure IBE scheme (BF-IBE) using bilinear maps. After this seminal work,
in the last few years, significant progress has been made in IBC (for details, refer a recent book on IBC [41]
and references therein).

In an IBC system, a client chooses an arbitrary string such asher e-mail address to be her public key.
Consequently, with a standardized public-key string format, an IBC scheme completely eliminates the need
for public-key certificates. As an example, in an IBE scheme,a sender can encrypt a message for a receiver
knowing just the identity of the receiver and importantly, without obtaining and verifying the receiver’s
public-key certificate. Naturally, in such a system, a client herself is not capable of generating a private key
for her identity. There is a trusted party called aprivate-key generator(PKG) which performs the system
setup, generates a secret called themaster keyand provides private keys to clients using it. As the PKG
computes a private key for a client, it can decrypt all of her messages passively. This inherentkey escrow
property asks for complete trust in the PKG, which is difficult to find in many realistic scenarios.
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Need for the Distributed PKG. Importantly, the amount of trust placed in the holder of an IBC master
key is far greater than that placed in the holder of the private key of a certifying authority (CA) in a PKI. In
a PKI, in order to attack a client, the CA has to actively generate a fake certificate for the client containing a
fake public-key. In this case, it is often possible for the client to detect and prove the malicious behaviour of
the CA. The CA cannot perform any passive attack; specifically, it cannot decrypt a message encrypted for
the client using a client-generated public key and it cannotsign some document for the client, if the verifier
gets a correct certificate from the client. On the other hand,in IBC,

• knowing the master key, the PKG can decrypt or sign the messages for any client, without any active
attack and consequent detection (key escrow),

• the PKG can make clients’ private keys public without any possible detection, and

• in a validity period-based key revocation system [10], bringing down the PKG is sufficient to bring
the system to a complete halt (single point of failure), once the current validity period ends.

Therefore, the PKG in IBC needs to be far more trusted than theCA in a PKI. This has been considered as
a reason for the slow adoption of IBC schemes outside of closed organizational settings.

Boneh and Franklin [10] suggest distributing a PKG in their BF-IBE scheme to solve these problems. In
an(n, t)-distributed PKG, the master key is distributed amongn PKG nodes such that a set of nodes of size
t or smaller cannot compute the master key, while a client extracts her private key by obtaining private-key
shares from anyt + 1 or more nodes; she can then use the system’s public key to verify the correctness
of her thus-extracted key. Boneh and Franklin [10] proposeverifiable secret sharing(VSS) of the master
key among multiple PKGs using Shamir secret sharing with adealer[59] to design a distributed PKG and
also hint towards a completely distributed approach using the distributed (shared) key generation (DKG)
schemes of Gennaro et al. [33]; however, they do not provide asecurity proof. Further, none of the IBE
schemes defined after [10] consider the design of a distributed PKG.

From a practicality standpoint, the DKG schemes [33] suggested in [10] to design a distributed PKG are
not advisable for use over the Internet. These DKG schemes are defined for thesynchronous communica-
tion model, having bounded message delivery delays and processor speeds, and do not providesafety(the
protocol does not fail or produce incorrect results) andliveness(the protocol eventually terminates) over the
asynchronous Internet, having no bounds on message transfer delays or processor speeds.

As a whole, although various proposed practical applications using IBE, such as key distribution in ad-
hoc networks [44], pairing-based onion routing [43] or verifiable random functions from identity-based key
encapsulation [1], require a distributed PKG as a fundamental need, there is no distributed PKG available for
use over the Internet yet. Defining efficient distributed PKGs for various IBE schemes which can correctly
function over the Internet has been an open problem for some time. This practical need for distributed PKGs
for IBC schemes that can function over the Internet forms themotivation of this work.

Contributions. We present asynchronous distributed PKGs for all three important IBE frameworks: namely,
full-domain-hash IBEs, exponent-inversion IBEs and commutative-blinding IBEs [12]. We propose dis-
tributed PKG setups and distributed private-key extraction protocols for Boneh and Franklin’s BF-IBE [10],
Sakai and Kasahara’s SK-IBE [56], and Boneh and Boyen’s (modified) BB1-IBE [13, 12] schemes for use
over the Internet. The novelty of our protocols lies in achieving the secrecy of a client private key from
the generating PKG nodes without compromising the efficiency. We realize this with an appropriate use
of non-interactive proofs of knowledge, bilinear-pairing-based verifications and DKG protocols with and
without the uniform randomness property. In terms of feasibility, we ensure that our protocols work for all
three pairing types defined by Galbraith et. al. [29].
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We prove adaptive chosen ciphertext security (IND-ID-CCA)security of the defined three schemes in
the random oracle model. Interestingly, compared to the security proofs for the respective IBE schemes with
a single PKG, there are no additional security reduction factors in our proofs, even though the underlying
DKG protocol used in the distributed PKGs does not provide a guarantee about the uniform randomness
for the generated master secrets. To the best of our knowledge, there is no threshold cryptographic protocol
available in the literature where a similar tight security reduction has been proven while using a DKG
without the (more expensive) uniform randomness property.

Observing that a distributed (shared) key generator (DKG) is the single most important component of
distributed PKG, we implement a recently devised asynchronous DKG protocol [42] and demonstrate its
efficiency and reliability with extensive testing over the PlanetLab platform [54]. Finally, using operation
counts, key sizes, and possible pairing types, we compare the performance of the distributed PKGs we define
and also briefly discuss the proactive security and group modification primitives for them.

In §2, we compare various techniques suggested to solve the key escrow and single point of failure
problems in IBC. We also discuss previous work related to DKGprotocols. In§3, we describe a realistic
asynchronous system model over the Internet and justify thechoices made, while we define and describe
cryptographic tools in our model in§4. With this background, in§5, we define and prove distributed PKG
protocols for the BF-IBE, SK-IBE and BB1-IBE schemes. We then implement a practical DKG protocol,
and test its performance over the PlanetLab platform in§6. We also compare the IBE schemes based on
their distributed PKGs and touch upon proactive security and group modification protocols for the system.

2 Related Work

We divide the related work into two parts. Distributed (shared) key generation is the most important com-
ponent for distributed private-key generation in identity-based cryptography. We first discuss the existing
work towards distributed key generation. As designing distributed PKGs is our main goal in this work, we
concentrate on protocols in computational (as opposed to unconditional / information-theoretic) settings.
Although somewhat ignored, there have been some efforts to mitigate the single point of failure and the key
escrow issues in IBC systems; in the latter part of this section, we compare these alternatives with distributed
PKG.

Although we are defining protocols for IBE schemes, as we are concentrating on distributed crypto-
graphic protocols and due to space constraints, we do not include a comprehensive account of IBE here.
We refer readers to [12] for a detailed discussion on the various IBE schemes and frameworks defined in
the literature. Pursuant to this survey, we work in the random oracle model for efficiency and practicality
reasons.

Distributed Key Generation. The notion of secret sharing was introduced independently by Shamir [59]
and Blakley [7] in 1979. Since then, it has remained an important topic in security research. Significantly,
Chor et al. [22] introduced verifiability in secret sharing.Feldman [25] developed the first efficient and non-
interactive VSS protocol and Pedersen [52] presented a modification to it. However, these VSS are defined
assuming a synchronous communication model. For anasynchronous communication model, Cachin et
al. (AVSS) [14], Zhou et al. (APSS) [64], and Schultz et al. (MPSS) [58] defined VSS schemes in the
computational setting. Of these, the APSS protocol is impractical for any reasonable system size, as it
has an exponential

(n
t

)

factor in the message complexity (number of messages transferred), while MPSS is
developed for a more mobile setting where set of the system nodes has to change completely between two
consecutive phases. AVSS by Cachin et al. with its seeminglyoptimalcommunication complexity(number
of bits transferred) is certainly a suitable choice for a distributed PKG system.
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Pedersen [53] introduced the concept of distributed key generation and developed a DKG, where each
node runs a variation of Feldman’s VSS and distributed shares are added at the end to generate a combined
shared secret without a dealer. Gennaro et al. [33] presented a simplification using just the original Feldman
VSS called the Joint Feldman DKG (JF-DKG). Further, they found that DKGs based on the Feldman VSS
(or using Feldman commitments [25]) do not guarantee uniformly random secret keys and define a new DKG
combining Feldman and Pedersen commitments [53] which increases thelatency(number of communication
rounds) by one. However, in [34], they observed that DKGs based on Feldman commitments produce hard
instances of discrete logarithm problems (DLPs), which maybe sufficient for the security of some threshold
cryptographic schemes.

To the best of our knowledge, the first DKG scheme in an asynchronous setting was only defined recently
by Kate and Goldberg [42]. This protocol modifies the AVSS protocol to a more realistic hybrid model and
performs leader-based agreement with a leader-changing mechanism to decide which of the nodes’ VSS
will be included in the DKG calculation; that is, whereas in synchronous DKG schemes such as Pedersen’s
above, all of the successful VSSs can be added at the end of theprotocol to determine the final master key
shares, in the asynchronous setting, some global consensusmust be reached in order to find a sufficiently
large set of VSSs which all honest nodes have completed. We implement this DKG protocol and verify its
efficiency and reliability. Consequently, this DKG system forms the basis of our distributed PKG protocols.
The original asynchronous DKG protocol uses Feldman commitments and consequently does not guarantee
uniform randomness of the key. However, we observe that, in the random oracle model, using non-interactive
zero-knowledge proofs of knowledge based on the Fiat-Shamir methodology [26], if required, it is possible
to achieve uniform randomness in their scheme. In such a scheme, Feldman commitments are initially
replaced by Pedersen commitments; the Feldman commitmentsare introduced only at the end of the protocol
to obtain the required private key. The zero-knowledge proofs are used to show that the Feldman and
Pedersen commitments both commit to the same values.

All of the above schemes are proved secure only against a static adversary, which can only choose itst
compromisable nodes before a protocol run. They are not considered secure against an adaptive adversary
because their simulation-based security proofs do not go through when the adversary can corrupt nodes
adaptively.[35,§4.4] Feldman claimed [25,§9.3] that his VSS protocol is also secure against adaptive ad-
versaries even though his simulation-based security proofdid not work out. Canetti et al. [16] presented a
scheme provably secure against adaptive adversaries with at least two more communication rounds as com-
pared to JF-DKG and with interactive zero-knowledge proofs. Due to the inefficiency of adaptive (provably)
secure DKG protocols, we stick to protocols provably secureonly against a static adversary, though they
have remained unattacked by an adaptive adversary for the last 22 years.

Alternatives to a Distributed PKG. None of the IBE schemes except BF-IBE considered distributed PKG
setup and key extraction protocols in their design. Recently, Geisler and Smart [32] defined a distributed
PKG for Sakai and Kasahara’s SK-IBE [56]; however, their solution against a Byzantine adversary has an
exponential communication complexity and a formal security proof is also not provided. We overcome both
of these barriers in our distributed PKG for SK-IBE: our scheme is secure against a Byzantine adversary
and has the same polynomial-time communication complexityas their scheme, which is secure only against
an honest-but-curious adversary; we also provide a formal security proof.

Other than [32], there have been a few other efforts in the literature to counter the inherent key escrow
and single point of failure issues in IBE. Al-Riyami and Paterson [2] introducecertificateless public-key
cryptography(CL-PKC) to address the key escrow problem by combining IBC with public-key cryptogra-
phy. Their elegant approach, however, does not address the single point of failure problem. Although it is
possible to solve the problem by distributing their PKG using a VSS (which employs a trusted dealer to gen-
erate and distribute the key shares), which is inherently cheaper than a DKG-based PKG by a linear factor, it
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is impossible to stop a dealer’s active attacks without completely distributed master-key generation. Further,
as private-key extractions are less frequent than encryptions, it is certainly advisable to use more efficient
options during encryption rather than private-key extraction. Finally, with the requirement of online access
to the receiver’s public key, CL-PKC becomes ineffective for systems without continuous network access,
where IBC is considered to be an important tool. Lee et al. [46] and Gangishetti et al. [31] propose variants
of the distributed PKG involving a more trustworthy key generation centre (KGC) and other key privacy au-
thorities (KPAs). As observed by Chunxiang et al. [23] for [46], these approaches are, in general, vulnerable
to passive attack by the KGC. In addition, the trust guarantees required by a KGC can be unattainable in
practice. Goyal [37] reduces the required trust in the PKG byrestricting its ability to distribute a client’s pri-
vate key. This does not solve the problem of single point of failure. Further, the PKG in his system still can
decrypt the clients’ messages passively, which leaves a secure and practical implementation of distributed
PKGs wanting.

Threshold versions of signature schemes obtained from someIBE schemes using the Naor transform
have been proposed and proved previously [8, 61]. However, these solutions do not work for the corre-
sponding IBE scheme. This is due to the inherent secret nature of a client’s private keys and corresponding
shares as compared to the inherent public nature of signatures and corresponding signature shares. While
designing IBE schemes with a distributed PKG, we have to makesure that a PKG node cannot derive more
information than the private-key share it generates for a client and that private-key shares are not available
in public as commitments.

3 System Model and Assumptions

In this section, we briefly discuss the assumptions and the system model for our distributed PKG system,
giving special attention to its practicality over the Internet. We follow the system model of [42], which
closely depicts the Internet, and as their DKG forms the basis of our distributed PKGs.

3.1 Communication Model

In the theoretical sense, distributed protocols designed with a synchronous or apartially synchronous
(bounded message delivery delays and processor speeds, butthe bounds are unknown and eventual [24])
communication assumption tend to be more efficient in terms of latency and message complexity than their
counterparts designed with an asynchronous communicationassumption. However, protocols defined in
the synchronous or partially synchronous communication model invariably use some time bounds in their
definition. An adversary, knowing those bounds, may slow down the protocol by appropriately delaying its
messages, which makes deciding the time bounds correctly a difficult problem to solve. On the other hand,
protocols defined for the asynchronous communication modeluse only numbers and types of messages and
guarantee to finish quickly with only honest nodes communicating promptly. Therefore, we assume an
asynchronous communication model.

Weak Synchrony (only for liveness). Generating true randomness in a completely distributed (dealerless)
asynchronous setting efficiently, without using a DKG, although not impossible [17], is a difficult task to
perform; the known computational threshold coin-tossing algorithms [15] require a dealer or a synchronous
communications assumption. As observed in [42], asynchronous DKG requires a protocol to solve the
agreement on a setproblem [5], which needs distributed randomness or a synchrony assumption [27]. In
the absence of an efficient randomization procedure, [42] uses aweak synchronyassumption by Castro and
Liskov [18] for liveness, but not safety. According to this assumption, a functiondelay(t), defining the
message transmission delay of a message sent at timet, does not grow faster thant indefinitely. Assuming
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that network faults are eventually repaired and DoS attackseventually stop, this assumption is valid in
practice. We further discuss this assumption in§6.1.

3.2 Hybrid Adversary Model

Instead of using a standardt-Byzantine adversary in a system withn nodesP1, P2, . . . , Pn, we use ahy-
brid adversary introduced in [3], having anotherf non-Byzantine crashes, and modified in [42] to include
network link failures.

For the standardt-Byzantine adversary,t nodes compromised or crashed by the adversary remain com-
promised forever. This does not depict the adversary model over the Internet accurately. Along with arbitrary
behaviour byt Byzantine nodes, some nodes can just crash silently withoutshowing malicious behaviour
or just get disconnected from the system due to network failure or partitioning. As the adversary does not
capture thesef nodes or their secret parameters, it is not computationallyand communicationally optimal to
consider these nodes as Byzantine. It also gives rise to a sub-optimal resilience ofn ≥ 3(t+ f) + 1 instead
of then ≥ 3t + 2f + 1 bound effected by treating crashes and link failures separately from the Byzantine
adversary.

In this hybrid adversary model, crashes and link failures belong to the same set off nodes, as from
a perspective of any other node of the system a crashed node behaves exactly same as a node whose link
with it is broken. We recover secrets at thesef nodes immediately after their trusted rebooting, which
gives us the assumption that all non-Byzantine nodes may crash and recover repeatedly with a maximumf
crashed nodes at any instant. If two nodes cannot communicate, then we treat at least one of two nodes as
being either Byzantine or one of the currently crashed nodes. That is, following the standard asynchronous
communication model literature, we assume that the adversary controls the network, but faithfully delivers
all the messages between two honest uncrashed nodes.

3.3 Cryptographic Background

Bilinear Pairings. IBC extensively utilizes bilinear pairings over elliptic curves. For three cyclic groups
G, Ĝ, andGT (all of which we shall write multiplicatively) of the same prime orderp, abilinear pairing e
is a mape : G × Ĝ → GT with following properties.

• Bilinearity: Forg ∈ G, ĝ ∈ Ĝ anda, b ∈ Zp, e(ga, ĝb) = e(g, ĝ)ab.

• Non-degeneracy:The map does not send all pairs inG × Ĝ to unity inGT .

If there is an efficient algorithm to computee(g, ĝ) for any g ∈ G and ĝ ∈ Ĝ, the pairinge is called
admissible. We also expect that it is not feasible to invert a pairing andcome back toG or Ĝ. All pairings
considered in this paper are admissible and infeasible to invert. We call such groupsG and Ĝ pairing-
friendly groups. We refer readers to [6, Chap. IX and X] for a detailed mathematical discussion of bilinear
pairings.

Following [29], we consider three types of pairings for prime order groups: namely, type1, 2, and3. In
type1 pairings, an isomorphismφ : Ĝ → G as well as its inverseφ−1 are efficiently computable. These are
also calledsymmetric pairingsas for such pairingse(g, ĝ) = e(φ(ĝ), φ−1(g)) for any g ∈ G and ĝ ∈ Ĝ,
and we usually just identifyG with Ĝ in this case. Intype2 pairings, only the isomorphismφ, but not
φ−1, is efficiently computable. Finally intype3 pairings, neither ofφ norφ−1 can be efficiently computed.
The efficiency of the pairing computation improves from type1 to type2 to type3 pairings. For a detailed
discussion of the performance aspects of pairings we refer the reader to [29, 19].
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Cryptographic Assumptions. As mentioned in§2, for efficiency reasons, we assume the random oracle
framework. Further, our adversary is computationally bounded with a security parameterκ. We assume an
instance of a pairing infrastructure of multiplicative groupsG, Ĝ andGT , whose common orderp is aκ-bit
prime. For commitments and proofs of knowledge, we use thediscrete logarithm(DLog) [49, Chap. 3]
assumption.

We assume an instance of a pairing infrastructure of multiplicative groupsG, Ĝ andGT , whose common
orderp is such that the adversary has to perform2κ operations to break the system. For the security of the
IBE schemes, we use thebilinear Diffie-Hellman(BDH) [38] andbilinear Diffie-Hellman inversion(BDHI)
[50, 9] assumptions. Here, we recall the definitions of generic versions (for asymmetric pairings) of these
two assumptions from [12]. Note that a functionǫ(·) is callednegligible if for all c > 0 there exists aκ0

such thatǫ(κ) < 1/κc for all κ > κ0.
BDH Assumption: Given a tuple(g, ĝ, ga, ĝa, gb, ĝc) in a bilinear groupG = 〈e,G, Ĝ,GT 〉, the BDH
problem is a problem to computee(g, ĝ)abc. The BDH assumption then states that it is infeasible to solve a
random instance of the BDH problem, with non-negligible probability, in time polynomial in the size of the
problem instance description.
BDHI Assumption: Given two tuples(g, gx, g(x2), . . . , g(xq)) and (ĝ, ĝx, ĝ(x2), . . . , ĝ(xq)) in a bilinear
groupG = 〈e,G, Ĝ,GT 〉, theq-BDHI problem is a problem to computee(g, ĝ)1/x. The BDHI assumption
for some polynomially boundedq states that it is infeasible to solve a random instance of theq-BDHI
problem, with non-negligible probability, in time polynomial in the size of the problem instance description.

4 Cryptographic Tools

In this section, we describe important cryptographic toolsrequired to design distributed PKGs in the hybrid
model having an asynchronous network ofn ≥ 3t + 2f + 1 nodes with at-limited Byzantine adversary
andf -limited crashes and network failures. Note that these tools are also useful in other asynchronous
computational multiparty settings.

4.1 Homomorphic Commitments overZp

A verification mechanism for a consistent dealing is fundamental to VSS. It is achieved using distributed
computing techniques in the unconditional setting. In the computational setting,homomorphic commitments
provide an efficient alternative. LetC(α, [r]) ∈ G be a homomorphic commitment toα ∈ Zp, wherer is an
optional randomness parameter andG is a (multiplicative) group. For such a homomorphic commitment,
givenC1 = C(α1, [r1]) andC2 = C(α2, [r2]), we haveC1 · C2 = C(α1 + α2, [r]).

VSS protocols utilize two forms of commitments. Letg andh be two random generators ofG. Feld-
man, for his VSS protocol [25], used a commitment scheme of the formC〈g〉(α) = gα with computational
security under theDLog assumption and unconditional share integrity. Pedersen [53] presented another
commitment of the formC〈g,h〉(α, r) = gαhr with unconditional security but computational integrity under
theDLog assumption. In PKC based on computational assumptions, with adversarial access to the public
key, unconditional security of the secret (private key or master key) is impossible. Further, in VSS schemes
based on Pedersen commitments, in order to randomly select the generatorh, an additional round of com-
munication is required during bootstrapping. Consequently, in our scheme, we use simple and efficient
Feldman commitments, except during a special case described in the DKG discussion below.

In their VSSs, Feldman and Pedersen use commitments ofcoefficientsof shared polynomials. However,
following the computational multiparty computation protocol by Gennaro et al. [36] and AVSS by Cachin et
al. [14], we instead use commitments ofevaluationsof shared polynomials. This reduces the communication
complexity (the total bit length of messages exchanged) of AVSS by a linear factor and makes verifications of
shares’ products easier in the distributed multiplicationprotocol of [36]. To that end, we define theFeldman
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commitment vectorC(s)
〈g〉 = [gs, gϕ(1), · · · , gϕ(n)] whereϕ is a randomly selected polynomial of degreet over

Zp with ϕ(0) = s. Similarly, thePedersen commitment vectorC
(s,s′)
〈g,h〉 = [gshs

′
, gϕ(1)hψ(1), · · · , gϕ(n)hψ(n)]

whereϕ is as above, andψ is similar, but withψ(0) = s′. Thejth element of a Feldman commitment vector

(counting from0) will be denoted by
(

C
(s)
〈g〉

)

j
(and similarly for Pedersen commitment vectors).

4.2 Non-interactive Proofs of Knowledge

As we assume the random oracle model in this paper, we can use non-interactive zero-knowledge proofs
of knowledge (NIZKPK) based on the Fiat-Shamir methodology[26]. In particular, we use a variant of
NIZKPK of a discrete logarithm and one for proof of equality of two discrete logarithms.

We employ a variant of NIZKPK of a discrete logarithm where given a Feldman commitmentC〈g〉(s)
and a Pedersen commitmentC〈g,h〉(s, r) for s, r ∈ Zp, a prover proves that she knowss andr such that
C〈g〉(s) = gs andC〈g,h〉(s, r) = gshr. That is, the prover proves that the Feldman commitment and the
Pedersen commitment are to the same values. We denote this proof as

NIZKPK≡Com(s, r, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com ∈ Z
3
p. (1)

We describe it in detail in Appendix A; it is nearly equivalent to proving knowledge of two discrete loga-
rithms separately.

We also use another NIZKPK (proof of equality) of discrete logarithms [20] such that given two Feldman
commitmentsC〈g〉(s) = gs andC〈h〉(s) = hs, a prover proves equality of the associated discrete logarithms.
We denote this proof as

NIZKPK≡DLog(s, C〈g〉(s), C〈h〉(s)) = π≡DLog ∈ Z
2
p. (2)

and refer readers to Appendix A for details. Note thatg andh can belong two different groups of the same
order.

There exists an easier way to prove this equality of discretelogarithms if a pairing between the groups
generated byg andh is available. Using a technique due to Joux and Nguyen [40] tosolve theDDH problem

over pairing-friendly groups, givengx andhx
′

the verifier checks ife(g, hx
′
)

?
= e(gx, h). However, when

using a type3 pairing, in the absence of an efficient isomorphism betweenG andĜ, if both g andh belong
to the same group (sayG without loss of generality), then the pairing-based verification scheme does not
work. In such a situation, the above NIZKPK provides a less efficient but completely practical alternative.

4.3 DKG over Zp

In an(n, t)-DKG protocol overZp, a set ofn nodes generates an elements ∈ Zp in a distributed fashion with
its sharessi ∈ Zp spread over then nodes such that any subset of size greater than a thresholdt can reveal or
use the shared secret, while smaller subsets cannot. A DKG protocol consists of asharing(DKG-Sh) phase
and areconstruction(DKG-Rec) phase. In theDKG-Sh phase, a distributed secrets ∈ Zp is generated
amongn nodes such that each nodePi holds a sharesi and a commitment vectorC(s) of s and all of its
shares. During theDKG-Rec phase, each nodePi reveals its sharesi and reconstructss using verified
revealed shares.

Definition 4.1. For our hybrid model having an asynchronous network ofn ≥ 3t + 2f + 1 nodes with a
t-limited Byzantine adversary andf -limited crashes and network failures, We use a DKG protocoldefined
in [42] satisfying the following conditions:
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Liveness: Once protocolDKG-Sh starts, all honest finally up nodes complete the protocol, except with
negligible probability.

Agreement: If some honest node completes protocolDKG-Sh then, except with negligible probability, all
honest finally up nodes will eventually complete protocolDKG-Sh .

Correctness: Once an honest node completes protocolDKG-Sh then there exists a fixed values ∈ Zp

such that, if an honest nodePi reconstructszi ∈ Zp during DKG-Rec, thenzi = s.

Secrecy: If no honest node has started protocolDKG-Rec then, except with negligible probability, an
adversary cannot compute the shared secrets.

We assume that messages from all the honest and uncrashed nodes are delivered by the adversary.

A closer look at the secrecy property suggests that in the presence of an adversary, the shared secret in the
above DKG may not beuniformly random; this is a direct effect of using only Feldman commitments.[35,
§3] However, in many cases, we do not need a uniformly random secret key; the security of these schemes
relies on the assumption that the adversary cannot compute the secret. Most of the schemes in this paper
similarly only require the assumption that it is infeasibleto compute the secret given public parameters and
we stick with Feldman commitments those cases. However, we do indeed need a uniformly random shared
secret in few protocols In that case, we use Pedersen commitments, but we do not employ the methodology
defined by Gennaro et al. [35], which increases the latency inthe system. We observe instead that with the
random oracle assumption at our disposal, the communicationally demanding technique by Gennaro et al.
can be replaced with the much simpler computational non-interactive zero-knowledge proof of equality of
committed values NIZKPK≡Com described in Eq. 1.

We represent DKG protocols using Feldman commitments and Pedersen commitments asDKGFeld
andDKGPedrespectively. For nodePi, the correspondingDKG-Sh andDKG-Rec schemes are defined as
follows.

(

C
(s,s′)
〈g,h〉 , [C

(s)
〈g〉,NIZKPK≡Com], si, s

′
i

)

= DKG-ShPed(n, t, f, t̃, g, h, αi, α
′
i) (3)

(

C
(s)
〈g〉, si

)

= DKG-ShFeld(n, t, f, t̃, g, αi) (4)

s = DKG-RecPed(t, C
(s,s′)
〈g,h〉 , si, s

′
i) (5)

s = DKG-RecFeld(t, C
(s)
〈g〉, si) (6)

Here,t̃ is the number of VSS instances to be chosen (t < t̃ ≤ 2t+ 1), g, h ∈ G are commitment generators,

αi, α
′
i ∈ Zp are respectively a secret and randomness shared byPi, andC(s)

〈g〉 andC(s,s′)
〈g,h〉 are respectively the

Feldman and Pedersen commitment vectors described in§4.1. The optional NIZKPK≡Com is a vector of

zero-knowledge proofs of knowledge that the correspondingentries ofC(s)
〈g〉 andC(s,s′)

〈g,h〉 commit to the same
values. (The polynomialϕ for the two types of commitments will be the same in this case.) The liveness
and agreement proofs ofDKG-ShPedare the same as those ofDKG-ShFeld. In Appendix B, we prove the
correctness and secrecy properties ofDKG-ShPed.

The worst-case message and communication complexities of protocolDKG-Sh [42] areO(tdn2(n+d))
andO(κtdn3(n + d)) respectively, while those of protocolDKG-Rec areO(n2) andO(κn2) respectively.
Here, the functiond(·) bounds the number of crashes that the adversary is allowed toperform.

Distributed Random Sharing over Zp. This protocol generates shares of a secretz chosen jointly at
random fromZp. Every node generates a randomri ∈ Zp and shares that using theDKG-Sh protocol
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with Feldman or Pedersen commitments asDKG-Sh(n, t, f, t̃ = t+ 1, g, [h], ri , [r
′
i]) where the generatorh

and randomnessr′i are only required if Pedersen commitments are used. Liveness, agreement, correctness,
secrecy and message and communication complexities remainthe same as those of theDKG-Sh protocol.
We represent the corresponding protocols as follows:

(

C
(z)
〈g〉 , zi

)

= RandomFeld(n, t, f, g) (7)
(

C
(z,z′)
〈g,h〉 , [C

(z)
〈g〉 ,NIZKPK≡Com], zi, z

′
i

)

= RandomPed(n, t, f, g, h). (8)

4.4 Distributed Addition over Zp

Let α, β ∈ Zp be two secrets shared amongn nodes using theDKG-Sh protocol. Let polynomials
f(x), g(x) ∈ Zp[x] be the respectively associated degree-t polynomials and letc ∈ Zp be a non-zero
constant. Due to the linearity of Shamir’s secret sharing [59], a nodePi with sharesαi andβi can locally
generate shares ofα + β andcα by computingαi + βi and cαi, wheref(x) + g(x) and cf(x) are the
respective polynomials.f(x) + g(x) is random if either one off(x) or g(x) is, andcf(x) is random if

f(x) is. Commitment entries for the resultant shares respectively are
(

C
(α+β)
〈g〉

)

i
=

(

C
(α)
〈g〉

)

i

(

C
(β)
〈g〉

)

i
and

(

C
(cα)
〈g〉

)

i
=

(

C
(α)
〈g〉

)c

i
.

4.5 Distributed Multiplication over Zp

Unlike addition, local distributed multiplication of two shared secretsα andβ looks unlikely. We use a
distributed multiplication protocol against a computational adversary by Gennaro et al. [36,§4]. However,
instead of their interactive zero-knowledge proof, we utilize a pairing-basedDDH problem solving tech-
nique [40] to verify the correctness of the product value shared by a node non-interactively. For sharesαi
andβi with Feldman commitmentsgαi and ĝβi , given a commitmentgαiβi of the shared product, other

nodes can verify its correctness by checking ife(gαi , ĝβi)
?
= e(gαiβi , ĝ) provided the groups ofg andĝ are

pairing-friendly. We observe that it is also possible to perform this verification when one of the involved
commitments is a Pedersen commitment. However, if both commitments are Pedersen commitments, then
we have to compute Feldman commitments for one of the values and employ NIZKPK≡Com to prove its
correctness in addition to using the pairing-based verification. In such a case, the choice between the latter
technique and the non-interactive version of zero-knowledge proof suggested by Gennaro et al. [36] depends
upon implementation efficiencies of the group operation andpairing computations.

In our IBC schemes, we always use the multiplication protocol with at least one Feldman commitment.
We denote the multiplication protocol involving two Feldman commitments asMulFeldand the one involv-
ing a combination of the two types of commitments asMulPed. Liveness and agreement properties are
exactly the same as those ofDKG-Sh. For correctness, along with recoverability to a unique value (says),
protocolMul also requires thats = αβ. For secrecy, along with the secrecy ofαβ until DKG-Rec is started,
the protocol should not provide any additional informationabout the individual values ofα or β onceαβ is
reconstructed.

(

C
(αβ)
〈g∗〉 , (αβ)i

)

= MulFeld(n, t, f, g
∗,

(

C
(α)
〈g〉 , αi

)

,
(

C
(β)
〈ĝ〉 , βi

)

) (9)
(

C
(αβ,αβ′)

〈ĝ,ĥ〉
, (αβ)i, (αβ

′)i

)

= MulPed(n, t, f, ĝ, ĥ,
(

C
(α)
〈g〉
, αi

)

,
(

C
(β,β′)

〈ĝ,ĥ〉
, βi, β

′
i

)

) (10)

For MulFeld, g∗ = g or ĝ. ForMulPed, without loss of generality, we assume thatβ is distributed with the
Pedersen commitment. If insteadα uses Pedersen commitment, then the Pedersen commitment groups for
(αβ) change tog andh instead of̂g andĥ.

10



Briefly, the protocol works as follows. Every honest node runs theDKG-Sh(n, t, f, t̃ = 2t + 1, ĝ, [ĥ],
αiβi, [αiβ

′
i]) from Eq. 3 or 4. As discussed above, pairing-based DDH solving is used to verify that the

shared value is equal to the product ofαi andβi.1 At the end of theDKG-Sh protocol, instead of adding the
subshares of the selected VSS instances, every node interpolates them at index0 to get the new share(αβ)i
of αβ.

Analysis. Here, we roughly prove the properties of protocolMul. This protocol is almost equivalent to the
share renewal protocol in [42,§5.2] which is a slight modification of protocolDKG-Sh. The liveness and
agreement proofs are exactly the same as those ofDKG-Sh [42, §4]. The basic correctness proof remains
the same as that of the share renewal protocol [42,§5.2] except the starting polynomial is of degree2t + 1
here. On the other hand, the pairing-based DDH problem solving technique assures that the value shared
by a nodePi is equal to the product of its sharesαi andβi. The basic secrecy proof is same as that of the
renewal protocol. Further, the adversary cannot determineα or β even afterαβ is reconstructed as the final
shared polynomial forαβ is independent of the shared polynomials forα andβ individually. The message
and communication complexities are the same as those of the DKG protocol.

As the distributed addition can be performed locally, the aboveMul protocols can be seamlessly extended
for distributed computation of any expression having binary products. Forℓ shared secretsx1, x2, · · · , xℓ,
and their corresponding Feldman commitmentsC

(x1)
〈g〉

, C
(x2)
〈g〉

, · · · , C
(xℓ)
〈g〉

, shares of any binary productx′ =
∑m

i=1 kixai
xbi with known constantski and indicesai, bi can be easily computed by extending the protocol

in Eq. 9. We denote this generalization as follows.
(

C
(x′)
〈g∗〉

, x′i

)

= MulBP(n, t, f, g∗, {(ki, ai, bi)},
(

C
(x1)
〈g〉

, (x1)i

)

,
(

C
(x2)
〈g〉

, (x2)i

)

, · · · ,
(

C
(xℓ)
〈g〉

, (xℓ)i

)

) (11)

NodePj shares
∑

i ki(xai
)j(xai

)j . For a type 1 pairing, verification of the correctness of the sharing is done
by other nodes as follows.

e(g
P

i ki(xai
)j(xbi

)j , g)
?
=

∏

i

e((g(xai
)j )ki , g(xbi

)j )

For type 2 and 3 pairings, NIZKPK≡DLog is used to provide Feldman commitments to the(xbi)j with
generator̂g, and then a pairing computation like the above is used. We usethe protocol in Eq. 11 during
distributed private-key extraction in the Boneh and Boyen’s BB1-IBE scheme in§5.5.

4.6 Sharing the Inverse of a Shared Secret

Given an(n, t, f)-distributed secretα, computing shares of its inverseα−1 in distributed manner (without
reconstructingα) can be done trivially but inefficiently using a distributedcomputation ofαp−1; this involves
O(log p) distributed multiplications. However, using a technique by Bar-Ilan and Beaver [4], this can be
done using just oneRandom, oneMul and oneDKG-Rec protocol.

This protocol involves aDKG-Rec which outputs the product of the shared secretα with a distributed
random elementz. If z is created using Feldman commitments and is not uniformly random, the product
αz may leak some information aboutα. We avoid this by using Pedersen commitments while generating z.
We represent this protocol as follows:

(

C
(α−1)
〈g∗〉 , (α−1)i

)

= Inverse(n, t, f, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

) (12)

Hereg∗ belongs to any group of orderp. The liveness, agreement and secrecy properties of the protocol are
the same as those ofDKG-Sh except secrecy is defined in the terms ofα−1 instead ofα; for the correctness

1For type3 pairings, a careful selection of commitment generators is required to make the pairing-based verification possible.
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property, along with recoverability to a unique values, this protocol additionally mandates thats = α−1.

For a distributed secret
(

C
(α)
〈g〉 , αi

)

, protocolInverse works as follows: every nodePi:

1. runs
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

= RandomPed(n, t, f, ĝ, ĥ);

2. computes shares of(w,w′) = (αz, αz′) as
(

C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i

)

= MulPed(n, t, f, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

,
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

);

3. then sends(wi, w′
i) to each node and reconstructsw = DKG-RecPed(t, C

(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i). If w = 0,

repeats the above two steps, else locally computes(α−1)i = w−1zi;

4. finally, computes the commitmentC(α−1)
〈g∗〉 usingw−1, C(z,z′)

〈ĝ,ĥ〉
, and if required, any of the NIZKPK

techniques.

A modified form of this protocol is used in§5.4.

Analysis. This protocol is a combination of theRandomPed, MulPedand DKG-Rec protocols along
with some local computations. Therefore, its liveness and agreement properties follow directly from the
corresponding properties of protocolDKG. Uniqueness of the recovered value follows from the correctness
property of protocolDKG, while its equality toα−1 can be proven as follows: a share computed by a node

Pi at the end of protocolInverse is equal to zi

zα , whereC
( z

zα
)

〈g∗〉 is the associated commitment vector. When

reconstructed, it providesα−1 as follows:

DKG-RecFeld(t, C
( z

zα
)

〈g〉 ,
zi
zα

) =
1

zα
DKG-RecFeld(t, C

(z)
〈g〉 , zi) =

z

zα
= α−1

Secrecy of protocolInverse follows directly from secrecy of protocolsMul andDKG-ShPed. After the
reconstruction ofw = zα, the distributed uniformly random elementz andα remain private by the secrecy
properties of protocolMul. As the final shares ofα−1 are generated using a local computation, there is no
secrecy loss in the last step either. It has the same asymptotic message and communication complexities as
those of protocolDKG-Sh.

5 Distributed PKG for IBE

We present and prove distributed PKG setup and private key extraction protocols for three IBE schemes:
BF-IBE [10], SK-IBE [56], and modified BB1-IBE [12]. Each of these schemes represents a distinct impor-
tant category of an IBE classification defined by Boyen [11]. They respectively belong tofull-domain-hash
IBE schemes,exponent-inversionIBE schemes, andcommutative-blindingIBE schemes. Note that the dis-
tributed PKG architectures that we develop for each of the three schemes apply to every scheme in their
respective categories. Our above choice of IBE schemes is influenced by a recent identity-based cryptogra-
phy standard (IBCS) [13] and also a comparative study by Boyen [12], which finds the above three schemes
to be the most practical IBE schemes in their respective categories. In his classification, Boyen [11] also in-
cludes another category for quadratic-residuosity-basedIBE schemes; however, none of the known schemes
in this category are practical enough to consider here.

The role of a PKG in an IBE scheme ends with a user’s private-key extraction. The distributed form
of the PKG does not affect the encryption and decryption steps of IBE. Consequently, we concentrate only
the distributed PKG setup and private-key extraction stepsof the three IBE schemes under consideration.
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However, we recall the original encryption and decryption definitions for our proofs. We start by describing
a bootstrapping procedure required by all IBE schemes.

5.1 Bootstrapping Procedure

Each of the IBE schemes under consideration here requires the following three bootstrapping steps.

1. Determine the node group sizen, the security thresholdt and the crashed-nodes thresholdf such that
n ≥ 3t+ 2f + 1.

2. Choose the pairing type to be used and compute three groupsG, Ĝ, andGT of prime orderp such
that there exists a bilinear pairinge of the decided type withe : G × Ĝ → GT . The group orderp is
determined by the security parameterκ. We will write all of the groups multiplicatively.

3. Choose two generatorsg ∈ G and ĝ ∈ Ĝ required to generate public parameters as well as the
commitments. With a type1 or 2 pairing, setg = φ(ĝ).

Any untrusted entity can perform these offline tasks. HonestDKG nodes can verify the correctness of
the tuple(n, t, f) and confirm the group choicesG, Ĝ, andGT as the first step of their distributed PKG
setup. If unsatisfied, they may decline to proceed. We denotethe generated bilinear pairing group as
G = 〈e,G, Ĝ,Gt〉.

5.2 Formal Security Model

An IBE scheme with an(n, t, f)-distributed PKG consists of the following components:

• A distributed PKG setup protocolfor nodePi that takes the above bootstrapped parametersn, t, f ,
andG as input and outputs a sharesi of a shared master secrets and a corresponding public-key vector
Kpub of a master public key andn public-key shares.

• A distributed key-extraction protocolfor nodePi that takes a client identityID, the public key vector
Kpub and the master-secret sharesi as input and outputs a verifiable private-key share(dID)i. The
client computes the private keydID after verifying the received shares(dID)i.

• An encryption algorithmthat takes a receiver identityID, the master public key and a plaintext mes-
sageM as input and outputs a ciphertextC.

• A decryption algorithmfor client with identityID that takes a ciphertextC and the private keydID as
input and outputs a plaintextM .

Note that the above distributed PKG setup protocol doesn’t require anydealerand that we mandate ver-
ifiability for the private-key shares rather than obtainingrobustness using error-correcting techniques. Dur-
ing private-key extractions, we insist on minimal interaction between clients and PKG nodes—transferring
identity credentials from the client at the start and private-key shares from the nodes at the end.

To define security against an IND-ID-CCA attack, we considerthe following game that a challenger
plays against a polynomially boundedt-limited adversary.
Setup: The adversary chooses to corrupt a fixed set oft nodes. To run a distributed PKG setup protocol, the
challenger simulates the remainingn− t nodes. Of these, the adversary can further crash anyf nodes at any
instance. Modelling thesef crashed nodes is trivial. The adversary informs the indicesof the crashed nodes
to the challenger, who makes sure not to use the inputs corresponding to thosef nodes during the period they
are crashed. It, however, computes the internal states of the crashed nodes using the outputs corresponding
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to othern − t − f nodes that it runs. When the adversary modifies it choice of the crashed nodes, the
challenger models the associated recoveries using the internal states computed during the protocol. Note
that, for the simplicity and clarity of the protocols and theproofs, we ignore thesef crashes in exposition of
our distributed PKG setup and private-key extraction protocols.

At the end of the protocol execution, the adversary receivest shares of a shared master secret for itst
nodes and a public key vectorKpub. The challenger knows the remainingn − t shares and can derive the
master secret asn− t− f ≥ t+ 1 in any communication setting.
Phase 1:The adversary adaptively issues private-key extraction and decryption queries to the challenger.
For a private-key extraction query〈ID〉, the challenger simulates the distributed key extraction protocol for
its n − t nodes and sends verifiable private-key shares for itsn − t − f nodes. For a decryption query
〈ID, C〉, the challenger decryptsC by generating the private keydID or using the master secret.
Challenger: The adversary chooses two equal-length plaintextsM0 andM1, and a challenge identityIDch
such thatIDch does not appear in any private-key extraction query in Phase1. The challenger chooses
b ∈R {0, 1} and encryptsMb for IDch andKpub, and gives the ciphertextCch to the adversary.
Phase 2:The adversary adaptively issues more private-key extraction and decryption queries to the chal-
lenger except for key extraction query for〈IDch〉 and decryption queries for〈IDch, Cch〉.
Guess:Finally, the adversary outputs a guessb′ ∈ {0, 1} and wins the game ifb = b′.

Security against IND-ID-CCA attacks means that, for any polynomially bounded adversary,b′ = b with
probability negligibly greater than1/2.

5.3 Boneh and Franklin’s BF-IBE

BF-IBE [10] belongs to the full-domain-hash IBE family. In aBF-IBE setup, a PKG generates a master
key s ∈ Zp and an associated public keygs ∈ G, and derives private keys (d ∈ Ĝ) for clients using their
well-known identities (ID) ands. A client with identityID receives the private keydID = (H1(ID))s =
hsID ∈ Ĝ, whereH1 : {0, 1}∗ → Ĝ

∗ is a full-domain cryptographic hash function. (Ĝ
∗ denotes the set of all

elements in̂G except the identity.) The security of BF-IBE is based on theBDH assumption.

Distributed PKG Setup. The distributed PKG setup involves generation of the systemmaster key and the
associated system public-key tuple in the(n, t)-distributed form amongn nodes. Each nodePi participates
in a common DKG overZp to generate its sharesi ∈ Zp of the distributed master keys. The system public-

key tuple is of the formC(s)
〈g〉 = [gs, gs1 , · · · , gsn ]. We obtain this using ourRandomFeld protocol from

Eq. 7 as
(

C
(s)
〈g〉, si

)

= RandomFeld(n, t, g)

Private-key Extraction. After a successful setup, PKG nodes are ready to extract private keys for clients.
As a client needst + 1 correct shares, it is sufficient for the client to contact any2t + 1 nodes (say setQ).
The private-key extraction protocol works as follows.

1. Once a client with identityID contacts every node inQ, every honest nodePi ∈ Q verifies the client’s
identity and returns a private-key sharehsi

ID ∈ Ĝ over a secure and authenticated channel.

2. Upon receivingt+1 valid shares, the client can construct her private keydID asdID =
∏

Pi∈Q
(hsi

ID)
λi ∈

Ĝ, where the Lagrange coefficientλi =
∏

Pj∈Q\{i}
j
j−i .

3. The client can verify the correctness of the computed private keydID by checkinge(g, dID)
?
=

e(gs, hID)). If unsuccessful, she can verify the correctness of each received hsi
ID by checking if
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e(g, hsi
ID)

?
= e(gsi , hID). An equality proves the correctness of the share, while an inequality indi-

cates misbehaviour by the nodePi and its consequential removal fromQ.

In asymmetric pairings, elements ofG generally have a shorter representation than those ofĜ. There-
fore, we put the more frequently accessed system public-keyshares inG, while the occasionally transferred
client private-key shares belong tôG. This also leads to a reduction in the ciphertext size. However, for type
2 pairings, an efficient hash-to-Ĝ is not available for the group̂G [29]; in that case we compute the system
public key shares in̂G and use the more feasible groupG for the private key shares.

Encryption and Decryption. Boneh and Franklin obtain an IND-ID-CCA secure IBE encryption proto-
col (FullIdent) [10, §4.2] secure against theBDH assumption by applying the Fujisaki-Okamoto trans-
formation [28] to their IND-ID-CPA secure scheme (BasicIdent). Along with H1 : {0, 1}∗ → Ĝ

∗,
this scheme uses three more random oracles:H2 : Gt → {0, 1}ℓ, H3 : {0, 1}ℓ × {0, 1}ℓ → Zp, and
H4 : {0, 1}ℓ → {0, 1}ℓ.
Encryption: To encrypt a messageM of some fixed bit lengthℓ for a receiver of identityID, a sender
choosesσ ∈R {0, 1}ℓ, computesr = H3(σ,M) and hID = H1(ID), and sendsC = (u, v,w) =
(gr, σ ⊕H2(e(g

s, hID)
r),M ⊕H4(σ)) to the receiver.

Decryption: To decrypt a ciphertextC = (u, v,w) using the private keydID, the receiver successively
computesσ = v⊕H2(e(u, dID)),M = w⊕H4(σ), andr = H3(σ,M). If gr 6= u, then the receiver rejects
C, else it acceptsM as a valid message.

Proof of Security. We prove the IND-ID-CCA security of BF-IBE with the(n, t)-distributed PKG ((n, t)-
FullIdent) based on theBDH assumption in the random oracle model. Hereafter,qE , qD andqHi

denote the
number of extraction, decryption and random oracleHi queries respectively.

Theorem 5.1. LetH1, H2, H3 andH4 be random oracles. LetA1 be an IND-ID-CCA adversary that has
advantageǫ1(κ) in running timet1(κ) against(n, t)-FullIdent making at mostqE , qD, qH1, qH2, qH3, and
qH4 queries. Then, there an algorithmB that solves theBDH problem inG with advantage roughly equal to
ǫ1(κ)/(qH1qH2(qH3 + qH4)) and running timeO(t1(κ), qE , qD, qH1 , qH2 , qH3 , qH4).

For their proof, Boneh and Franklin define two additional public key encryption schemes: IND-CPA
secureBFBasicPub [10, Sec. 4.1], and its IND-CCA secure versionBFBasicPubhy [10, Sec. 4.2]. We
use distributed versions of these schemes:(n, t)-BFBasicPubhy and(n, t)-BFBasicPub respectively. Both
(n, t)-BFBasicPubhy and(n, t)-BFBasicPub protocols have three steps:keygen, encrypt anddecrypt.
We first define the protocol(n, t)-BFBasicPub:

keygen: Given a bilinear groupG for a security parameterκ, a set ofn nodes runs the BF-IBE distributed
PKG setup for thresholdt (n ≥ 3t + 1) to generate individual private keyssi and a public key
tuple C

(s)
〈g〉

. n nodes also run protocolDKG-Sh to generatêhID ∈R Ĝ. Assuming a random oracle

H2 : G → {0, 1}ℓ, whereℓ is the message length, the system public key is〈G, g, ĝ, C
(s)
〈g〉, ĥID,H2〉.

Every node generates its private-key share(dID)i = ĥsi
ID corresponding to the system’s private key

dID.

encrypt: To encryptM ∈ {0, 1}ℓ, chooser ∈R Z
∗
p and set the ciphertextC = (gr,M⊕H2(e(g

s, hID)
r)).

decrypt: To decrypt the ciphertextC = (u, v) using the private key shares(dID)i, compute and share
e(u, (dID)i) with every other node or with a common accumulator. Lagrange-interpolate these pairing
values to generatee(u, dID) and computeM = v ⊕H2(e(u, dID)).
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Protocol(n, t)-BFBasicPubhy only modifies theencrypt anddecrypt steps of the above protocol using
the Fujisaki-Okamoto transformation [28], and random oraclesH3 : {0, 1}ℓ × {0, 1}ℓ → Zp andH4 :
{0, 1}ℓ → {0, 1}ℓ.

Boneh and Franklin prove the security ofFullIdent in the following proof-sequence:FullIdent →
BFBasicPubhy → BFBasicPub → BDH. Galindo [30] corrects a flaw in their proof maintaining the
same proof-sequence. We also follow the same proof-sequence through Lemmas 5.1, 5.2 and 5.3 to prove
Theorem 5.1:

(n, t)-FullIdent → (n, t)-BFBasicPubhy → (n, t)-BFBasicPub → BDH.

Lemma 5.1. LetH1, H2, H3 andH4 be random oracles. LetA1 be an IND-ID-CCA adversary that has
advantageǫ(κ) in running timet(κ) against(n, t)-FullIdent. SupposeA1 makes at mostqE, qD, qH1,
qH2, qH3 , andqH4 queries. Then there is an IND-CCA adversaryA2 that has advantage at leastǫ(κ)/qH1

againstBFBasicPubhy. Its running time is at mostt(κ) + c(nqE + qD + qH1) wherec is the average time
of exponentiation in̂G.

Proof. (Outline) The game between the challenger and the adversaryA2 starts with the challenger running
thekeygen step of(n, t)-BFBasicPubhy. A2 simultaneously starts adversaryA1 and forwards all messages
from the challenger toA1 and vice versa. As a result, in this simulation game,t out ofn nodes are run by
A1, while the challenger runs the remainingn − t nodes.A2, however, knows all information gathered
by A1. At the end of the distributed PKG setup, along withA1’s public parameters,A2 also knows secret
sharessi for thet nodes run byA1. The rest of the game and the analysis remains the same as thatof [30],
except during key extraction queries. Here, instead of a private keydID, A2 has to providet+ 1 private-key
shares toA1. This is, however, easily possible knowingA1’s t secret shares and the randomness used during
H1 queries. Refer to [30,§3] for the rest of the proof.

Lemma 5.2(Fujisaki-Okamoto [28]). LetH3 andH4 be random oracles. LetA2 be an IND-CCA adversary
that has advantageǫ2(κ) in running timet2(κ) against(n, t)-BFBasicPubhy making at mostqD, qH3 , and
qH4 queries. Then there is an IND-CPA adversaryA3 that has advantage at least 1

2(qH3
+qH4

) [(ǫ2(κ) +

1)(1−2/p)qD −1] against(n, t)-BFBasicPub. Its running time is at mostt2(κ)+O((qH3 +qH4)ℓ), where
ℓ is the message length.

Lemma 5.3. LetH2 be a random oracle. LetA3 be an IND-CPA adversary that has advantageǫ3(κ) in
running timet3(κ) against(n, t)-BFBasicPub making at mostqH2 queries. Then there is an algorithm
B that solves theBDH problem in〈e,G, Ĝ,Gt〉 with advantage at least2ǫ3(κ)/qH2 and a running time
O(t3(κ)).

Proof. Algorithm B is given a random instance of theBDH problem〈g, ĝ, ga, ĝa, gb, ĝc〉 in a bilinear group
G. LetD = e(g, ĝ)abc ∈ Gt be the solution to this problem. AlgorithmB findsD by interacting withA3 as
follows:
Setup: B runs thekeygen step of(n, t)-BFBasicPub using theBDH instance. LetPBad be the set oft
parties corrupted or owned byA3. Let PGood be the set of remaining good parties which will be run by
B. B wants to make sure that the challengega and ĝc are included respectively ings ∈ C

(s)
〈g〉 and ĥID of

(n, t)-BFBasicPub. As in protocolDKG-Sh, the VSSs selection may not be underB’s control,B uses
(ga)µi and(ĝc)µ

′
i for µi, µ′i ∈R Z

∗
p as its contributions towards respectivelys andĥID in keygen for every

Pi ∈ PGood. More specifically, for everyPi ∈ PGood, B choosesµi, µ′i ∈R Z
∗
p andsij, s′ij ∈R Zp for every

Pj ∈ PBad, wheresi,j ands′ij are subshares forPj of VSSs run byPi. AlthoughB does not know the

contributionsµia andµ′ic, it can provide consistent commitment vectorsC
(µia)
〈g〉 andC

(µ′ic)

〈ĝ〉 to A3 knowing

sij, s
′
ij for Pj ∈ PBad, µi,µ′i, g

a, andĝc. For VSSs run by the adversary nodesPj ∈ PBad,B can reconstruct
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the exact contributionsνj andν ′j usingn− t subshares obtained fromPj . Therefore, for any subset of VSSs

Q andQ′ chosen finally,s = a
∑

Pi∈QGood
µi +

∑

Pj∈QBad
νi and ĥID = ĝ

c
P

Pi∈Q′
Good

µ′i+
P

Pj∈Q′
Bad

ν′i .
Note thatB knowsν =

∑

Pj∈QBad
νi, ν ′ =

∑

Pj∈Q′
Bad

ν ′i µ =
∑

Pi∈QGood
µi andµ′ =

∑

Pi∈Q′
Good

µ′i.
Let si be the final share ofs for each nodePi. Observe that the (unknown) associated private keydID =
ĝ(aµ+ν)(cµ′+ν′) = ĝµµ

′(ac)+µν′(a)+µ′ν(c)+νν′ . B runs random oracleH2 for A3 creating a listH list
2 of

〈Gt, {0, 1}
ℓ〉. An entry〈xi, hi〉 indicates thathi = H2(xi). Finally, it is easy to see that this simulated view

of A3 is identically distributed as in a real execution ofkeygen.
The rest of the game and the analysis remains the same as that of [10, Lemma 4.3], except duringGuess

step. Here, instead of returningxi from a random tuple〈xi, hi〉 fromH list
2 as answer to the BDH problem,

B returns
(

xi
e(gb, ĝa)µν

′
e(gb, ĝc)µ

′νe(gb, ĝ)νν
′

)(µµ′)−1

.

Here, ifxi is the correct choice, thenxi is equal toe(g, ĝ)abcµµ
′+abµν′+bcµ′ν+bνν′ instead ofe(g, ĝ)abc

in the original BF-IBE proof.

5.4 Sakai and Kasahara’s SK-IBE

SK-IBE [56] belongs to the exponent-inversion IBE family. The PKG setup here remains exactly same as
BF-IBE and the PKG generates a master keys ∈ Zp and an associated public keygs ∈ G just as in BF-IBE.
However, the key-extraction differs significantly. Here, aclient with identityID receives the private key

dID = ĝ
1

s+H′
1
(ID) ∈ Ĝ, whereH ′

1 : {0, 1}∗ → Zp. Chen and Cheng [21] prove the security of SK-IBE based
on theBDHIassumption.

Distributed PKG Setup. The distributed PKG setup remains the exactly same as that ofBF-IBE, where
si ∈ Zp is the master-key share for nodePi andC(s)

〈g〉 = [gs, gs1 , · · · , gsn ] is the system public-key tuple.

Private-key Extraction. The private-key extraction for SK-IBE is not as straightforward as that for BF-
IBE. We modify theInverse protocol described in§4.6; specifically, here a private-key extracting client
receiveswi from the node in step3 and instead of PKG nodes, theclient performs the interpolation step
of DKG-Rec. In step4, instead of publishing, PKG nodes forwardĝzi and the associated NIZKPK≡Com
directly to the client, which computeŝgz and thendID = (ĝz)w

−1
. The reason behind this is to avoid

possible key escrow if the node computes bothĝz andw. Further, the nodes precompute another generator

ĥ ∈ Ĝ for Pedersen commitments using
(

C
(r)
〈ĝ〉, ri

)

= RandomFeld(n, t, ĝ), and set̂h =
(

C
(r)
〈ĝ〉

)

0
= ĝr.

1. Once a client with identityID contacts alln nodes the system, every nodePi verifies the client’s

identity, runs
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

= RandomPed(n, t, ĝ, ĥ) and computessIDi = si + H ′
1(ID) and for

0 ≤ j ≤ n,
(

C
(sID)
〈g〉

)

j
=

(

C
(s)
〈g〉

)

j
gH

′
1(ID) = gsj+H′

1(ID).

2. Pi performs
(

C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i

)

= MulPed(n, t, ĝ, ĥ,
(

C
(sID)
〈g〉 , sIDi

)

,
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

), wherew = sIDz

= (s+H ′
1(ID))z andw′ = (s+H ′

1(ID))z′ and sends
(

C
(w)

〈ĝ,ĥ〉
, wi

)

along with NIZKPK≡Com(wi, w
′
i,

(

C
(w)
〈ĝ〉

)

i
,
(

C
(w,w′)

〈ĝ,ĥ〉

)

i
) to the client, which upon receivingt + 1 verifiably correct shares(wi) recon-

structsw using Lagrange-interpolation. Ifw 6= 0, then it computesw−1 or else starts again from step
1.
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3. NodePi sends
(

C
(z)
〈ĝ〉

)

i
= ĝzi along with NIZKPK≡Com(zi, z

′
i,

(

C
(z)
〈ĝ〉

)

i
,
(

C
(z,z′)

〈ĝ,ĥ〉

)

i
) to the client.

4. The client verifies
(

C
(z)
〈ĝ〉

)

i
using the received NIZKPK≡Com, Lagrange-interpolatest+ 1 valid ĝzi to

computêgz and derives her private key(ĝz)w
−1

= ĝ
1

(s+H(ID)) .

This protocol can be used without any modification with any type of pairing. Further, online execution of
theRandomPedcomputation can be eliminated using batch precomputation of distributed random elements
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

.

Encryption and Decryption. Chen and Cheng [21] define an IND-ID-CCA secure version of theSK-
IBE scheme secure against theBDHI assumption. Here, the random oracleH1 in BF-IBE is replaced by
H ′

1 : {0, 1}∗ → Zp. The other random oraclesH2, H3 andH4 remain the same. This scheme also uses
Fujisaki-Okamoto transformation [28] to achieve IND-ID-CCA security.
Encryption: To encrypt a messageM of some fixed bit lengthℓ for a receiver of identityID, a sender
choosesσ ∈R {0, 1}ℓ, computesr = H3(σ,M) and hID = H ′

1(ID), and sendsC = (u, v,w) =
((gsghID)r, σ ⊕H2(e(g, ĝ)

r),M ⊕H4(σ)) to the receiver.
Decryption: To decrypt a ciphertextC = (u, v,w) using the private keydID, the receiver successively
computesσ = v⊕H2(e(u, dID)),M = w⊕H4(σ), andr = H3(σ,M). If (gsghID)r 6= u, then the receiver
rejectsC, else it acceptsM as a valid message.

Proof of Security. The security of SK-IBE with a distributed PKG ((n, t)-SK-IBE) is based on theBDHI
assumption.

Theorem 5.2. LetH, H ′
1, H2, H3 andH4 be random oracles. LetA1 be an IND-ID-CCA adversary that

has advantageǫ1(κ) in running timet1(κ) against(n, t)-SK-IBE making at mostqE, qD, qH′
1
, qH2, qH3,

andqH4 queries. Then, there is an algorithmB that solves theBDHI problem inG with advantage roughly
equal toǫ1(κ)/(qH′

1
qH2(qH3 + qH4)) and running timeO(t1(κ), qE , qD, qH , qH′

1
, qH2, qH3 , qH4).

Chen and Cheng use the same technique as that of BF-IBE (with the modification by Galindo) to obtain
the proof sequence SK-IBE→ SKBasicPubhy → SKBasicPub → BDHI. We also use the same proof se-
quence. Here, however, we divert from the proof of Theorem 5.1 for (n, t)-FullIdent. To prove Theorem 5.2
for (n, t)-SK-IBE, we show that(n, t)-SK-IBE → SKBasicPubhy, whereSKBasicPubhy is a public key
encryption scheme based on SK-IBE as defined in [21,§3.2]. Note thatSKBasicPubhy is not a distributed
scheme. Therefore, recalling Lemma2 and3 from [21] to proveSKBasicPubhy → SKBasicPub and
SKBasicPub → BDHI respectively we complete the proof of Theorem 5.2. Next, we prove(n, t)-SK-IBE
→ SKBasicPubhy.

Lemma 5.4. LetH ′
1,H2 be random oracles. LetA1 be an IND-ID-CCA adversary that has advantageǫ(κ)

in running timet(κ) against(n, t)-SK-IBE. SupposeA1 makes at mostqE, qD, andqH′
1

queries. Then there

is an IND-CCA adversaryA2 that has advantage at leastǫ(κ)/qH′
1

againstSKBasicPubhy. Its running

time is at mostt(κ) + c(nqE + qD + qH′
1
) wherec is the average time of exponentiation inĜ.

Proof. We construct an IND-CCA adversaryA2 that usesA1 to gain advantage againstSKBasicPubhy.
(For the definition ofSKBasicPubhy, refer to [21,§3.2].) The game between a challenger andA2 starts with
the challenger running algorithmkeygen of SKBasicPubhy to generate a public keyKpub = 〈G, g, ĝ, gs, h0,

(h1, ĝ
1

h1+s ), . . . , (hi, ĝ
1

hi+s ), . . . , (hqH′
1
, ĝ

1
hq

H′
1

+s

),H2,H3,H4〉. Let ĝ
1

h0+s be the corresponding private

key. The challenger givesKpub toA2, which is supposed to launch an IND-CCA attack onSKBasicPubhy
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usingA1. A2 simulates the challenger forA1 as follows.
Setup: As the distributed PKG setup in SK-IBE is same as that of BF-IBE, we reuse much of the Setup
simulation of(n, t)-BFBasicPub in Lemma 5.3. However, we do not require theirĥID computation and
ga is replaced bygs. The master key finally generated is equal tos′ = s

∑

Pi∈QGood
µi +

∑

Pj∈QBad
νi,

whereA2 knowsν =
∑

Pj∈QBad
νi andµ =

∑

Pi∈QGood
di. To make the pairs(hi, ĝ

1
hi+s ) compatible with

s′, A2 definesh′i = µhi − ν andĝ′ = ĝµ. To answerH ′
1 and key extraction queries forA1, A2 uses pairs

(h′i, ĝ
′

1
h′

i
+s′ ), whereA2 usesh′i as a hash value and̂g′

1
h′

i
+s′ as the corresponding private key. Further,A1 is

providedĝ′ instead of̂g as a public parameter.A2 also runs random oracleH ′
1 andH for A1, whereH is a

random oracle required in NIZKPK≡Com.
H ′

1 queries: Same as in [21,§3.2].

Phase1 - Extraction Queries: Though private keys in the form of(h′i, ĝ
′

1
h′

i
+s′ ) tuples are available,A2

has to generate those forA1 in a distributed way as defined in the private-key extractionprotocol. This is
non-trivial forA2 as it has to provide shares ofw = (s′ + h′i)z to A2 without knowing its shares ofs′. To

achieve this, it first choosesw ∈R Z
∗
p and computeŝg′

w

h′
i
+s′ = ĝ′zw , wherezw is the randomness which

A2 wants to obtain fromRandomPed. It then completes the actualRandomPedandMulPedprotocols
normally by playing the part of good parties. It determinesz andz′ generated byRandomPedusing its
n − t shares and also knowswi, w′

i for Pi ∈ PBad. Usingw andwi for Pi ∈ PBad, it generateswi and
ĝwi for all parties. To provide the required NIZKPK≡Com for ĝwi , A2 randomly generates challengeτ and
response(u1, u2), computes commitments(t1, t2) and includes an entry〈(ĝ′, ĥ, F, P, t1, t2), τ〉 in the hash

table ofH before forwardingπ≡Com = (τ, u1, u2) to A1. Similarly, usingĝ′zw = ĝ′
w

h′
i
+s′ andĝ′zwi = ĝ′zi

for Pi ∈ PBad, it generateŝg′zwi for eachPi and provides its NIZKPK≡Com, which results inA1 generating

ĝ′
1

h′
i
+s′ as its private key.
The rest of the game and the analysis remains exactly the sameas [21,§3.2]. It is interesting to observe

that despite the different master keys (s for SKBasicPubhy ands′ = sµ+ ν for (n, t)-SK-IBE), the cipher-
text queriesC = 〈u, v,w〉 remain the same when transferred fromA1 to the challenger during decryption
queries and from the challenger toA1 during the challenge phase.

5.5 Boneh and Boyen’s BB1-IBE

BB1-IBE belongs to the commutative-blinding IBE family. Bonehand Boyen [9] proposed the original
scheme with a security reduction to the decisionalBDH assumption [39] in the standard model against
selective-identity attacks. However, with a practical requirement of security against adaptive-identity chosen-
ciphertext attacks (IND-ID-CCA), in the recent IBCS standard [13], Boyen and Martin proposed a modified
version of BB1, which is IND-ID-CCA secure in the random oracle model undertheBDH assumption. In
[12], Boyen rightly claims that for practical applications, it would be preferable to rely on the random-oracle
assumption rather than using a less efficient IBE scheme witha stronger security assumption or a weaker
attack model. Here, we consider the modified BB1-IBE scheme as described in [12] and [13].

In the BB1-IBE setup, the PKG generates a master-key triplet(α, β, γ) ∈ Z
3
p and an associated public

key tuple(gα, gγ , e(g, ĝ)αβ). A client with identityID receives the private key tupledID = (ĝαβ+(αH′
1(ID)+γ)r,

ĝr) ∈ Ĝ
2, whereH ′

1 : {0, 1}∗ → Zp.

Distributed PKG Setup. In [12], Boyen does not include the parametersĝ andĝβ from the original BB1
scheme [9] in his public key, as they are not required during key extraction, encryption or decryption (they
are not omitted for security reasons). In the distributed setting, we in fact need those parameters to be public
for efficiency reasons; a verifiable distributed computation of e(g, ĝ)αβ becomes inefficient otherwise. To
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avoid key escrow of clients’ private-key components(ĝr), we also need̂h andC
(β)

〈ĥ〉
; otherwise, parts of

clients’ private keys would appear in public commitment vectors. As in SK-IBE in§5.4, this extra generator
ĥ ∈ Ĝ is precomputed using theRandomFeldprotocol. Distributed PKG setup of BB1 involves distributed
generation of the master-key tuple(α, β, γ). Distributed PKG nodePi achieves this using the following
threeRandomFeldprotocol invocations:

(

C
(α)
〈g〉 , αi

)

= RandomFeld(n, t, f, g),
(

C
(β)
〈ĝ〉 , βi

)

= RandomFeld(n, t, f, ĝ),
(

C
(γ)
〈g〉 , γi

)

= RandomFeld(n, t, f, g).

Here, (αi, βi, γi) is the tuple of master-key shares for nodePi. We also needC(β)

〈ĥ〉
; each nodePi

provides this by publishing
(

C
(β)

〈ĥ〉

)

i
= ĥβi and the associated NIZKPK≡DLog(βi, ĝβi , ĥβi). The tuple

(

C
(α)
〈g〉 , e(g, ĝ)

αβ, C
(γ)
〈g〉 , C

(β)

〈ĥ〉

)

forms the system public key, wheree(g, ĝ)αβ can computed from the public

commitment entries. The vectorC(β)
〈ĝ〉 , although available publicly, is not required for any further computa-

tion.

Private-key Extraction. The most obvious way to compute a BB1 private key seems to be forPi to
computeαiβi + (αiH

′
1(ID) + γi)ri and provide the correspondinĝgαiβi+(αiH′

1(ID)+γi)ri , ĝri to the client,
who now needs2t + 1 valid shares to obtain her private key. However,αiβi + (αiH

′
1(ID) + γi)ri here is

not a share of a random degree-2t polynomial. The possible availability of̂gri to the adversary creates a
suspicion about secrecy of the master-key share with this method.

For private-key extraction in BB1-IBE with a distributed PKG, we instead use theMulBP protocol in
which the client is provided witĥgwi , wherewi = (αβ + (αH ′

1(ID) + γ)r)i is a share of random degreet
polynomial. The protocol works as follows.

1. Once a client with identityID contacts alln nodes the system, every nodePi verifies the client’s iden-

tity and runs
(

C〈ĥ,ĝ,〉(r, r
′), [C

(r)

〈ĥ〉
,NIZKPK≡Com], ri, ri

)

= RandomPed(n, t, f, ĥ, ĝ). RandomPed
makes sure thatr is uniformly random.

2. Pi computes its sharewi of w = αβ + (αH ′
1(ID) + γ)r using protocolMulBP in Eq. 11.

(

C
(w)
〈g∗〉, wi

)

= MulBP(n, t, f, g∗, desc,
(

C
(α)
〈g〉 , αi

)

,
(

C
(β)

〈ĥ〉
, βi

)

,
(

C
(γ)
〈g〉 , γi

)

,
(

C
(r)

〈ĥ〉
, ri

)

)

wheredesc = {(1, 1, 2), (H ′
1(ID), 1, 4), (1, 3, 4)} is the description of the required binary product

under the ordering(α, β, γ, r) of secrets. To justify our choices of commitment generators, we present
the pairing-based verification in protocolMulBP:

e(gαiβi+(αiH′
1(ID)+γi)ri , ĥ)

?
= e(gαi , ĥβi)e((gαi )H

′
1(ID)gγi , ĥri)

.

For type2 and3 pairings,g∗ = g, as there is no efficient isomorphism fromG to Ĝ. However, for
type1 pairings, we useg∗ = ĥ = φ−1(h). Otherwise, the resultant commitments forw (which are
public) will contain the private-key partgαβ+(αH′

1(ID)+γ)r.
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3. Once theMulBP protocol has succeeded, NodePi generateŝgwi andĝri and sends those to the client
over a secure and authenticated channel.

4. The client Lagrange-interpolates the valid received shares to generate her private key(ĝαβ+(αH′
1(ID)+γ)r,

ĝr). For type1 and type2 pairings, the client can use the pairing-based DDH solving to check the
validity of the shares. However, for type3 pairings, without an efficient mapping from̂G to G,
pairing-based DDH solving can only be employed to verifyĝwi . As a verification ofĝri , nodePi
includes a NIZKPK≡DLog(ri, ĥri , ĝri) along withĝwi andĝri .

As in SK-IBE in §5.4, online execution of theRandomFeld computation can be eliminated using batch

precomputation of distributed random elements
(

C
(r)

〈ĥ〉
, ri

)

.

Encryption and Decryption. Similar to the PKG setup and the key extraction protocols forBB1-IBE in
§5.5, we use the BB1-IBE version defined in [12] and [13] for the encryption and decryption protocols here.
Boyen [12] claims IND-ID-CCA security of this system against the BDH assumption. This scheme uses
H ′

3 = Gt × {0, 1}ℓ × G × G → Zp along withH ′
1 andH2 from SK-IBE.

Encryption: To encrypt a messageM of some fixed bit lengthℓ for a receiver of identityID, a sender
choosesσ ∈R {0, 1}ℓ, computesk = (e(g, ĝ)αβ)σ andhID = H1(ID), and sends the ciphertextC =
(ρ, ρ0, ρ1, t) = (M ⊕H2(k), g

σ , (gγ(gα)hID)σ, σ +H ′
3(k, ρ, ρ0, ρ1)) to the receiver.

Decryption: To decrypt a ciphertextC = (ρ, ρ0, ρ1, t) using the private keydID = (ĝαβ+(αH′
1(ID)+γ)r, ĝr)

= (d0, d1) (say), the receiver successively computesk = e(ρ0, d0)/e(ρ1, d1) andσ = t−H3(k, ρ, ρ0, ρ1).
If k 6= (e(g, ĝ)αβ)σ or ρ0 6= gσ, then the receiver rejectsC, else it acceptsM = ρ ⊕ H2(k) as a valid
message.

Proof of Security. We prove IND-ID-CCA security of BB1-IBE with the (n, t)-distributed PKG ((n, t)-
BB1-IBE) based on theBDH assumption. To the best of our knowledge, an IND-ID-CCA security proof for
the modified BB1-IBE scheme has not been published yet and a non-distributedversion of our proof is the
first to provide IND-ID-CCA security for this protocol.

Theorem 5.3. LetH ′
1, H2, H3 andH ′

4 be random oracles. LetA be an IND-ID-CCA adversary that has
advantageǫ(κ) in running timet(κ) against(n, t)-BB1-IBE making at mostqE, qD, qH′

1
, qH2 , qH′

3
, andqH4

queries. Then, there an algorithmB that solves theBDH problem inG with advantage roughly equal to
ǫ(κ)/(qH′

1
qH′

3
) and running timeO(t(κ), qE , qD, qH′

1
, qH2 , qH′

3
, qH4).

Proof. Algorithm B is given a random BDH problem〈g, ĝ, ga, ĝa, ĝb, gc〉 in bilinear groupG as input. Let
D = e(g, ĝ)abc ∈ Gt be the solution to this problem. AlgorithmB findsD by interacting withA as follows:
Setup: B makes a virtual network ofn parties and runs the distributed setup of(n, t)-BB1-IBE using the
given BDH instance. LetPBad be the set oft parties corrupted or owned byA3. Let PGood be the set of
remaining good parties which will be run byB. B wants to make sure that the challengega is included in
bothgα ∈ C

(α)
〈g〉 andgγ ∈ C

(γ)
〈g〉 , and the challengêgb is included inĝβ ∈ C

(β)
〈ĝ〉 . Similar to the(n, t)-FullIdent

BF-IBE and(n, t)-SK-IBE proofs, the generated master key tuple(α, β, γ) = (µ1a+ν1, µ2b+ν2, µ3a+ν3).
Let µ3a+ ν3 = −αh∗ID +α′, whereh∗ID = −µ3/µ1 is a challenge identity-hash andα′ = ν3 − ν1µ3/µ1 =
αh∗ID + γ. α′ is completely random as theµ andν values are not underB’s control. Finally,B outputs
(

C
(α)
〈g〉 , e(g, ĝ)

αβ, C
(γ)
〈g〉 , [C

(β)

〈ĥ〉
,NIZKPK≡DLog]

)

as the system public key.

H ′
1 queries: Before initializingH ′list

1 , B choosesj ∈R {1, . . . , qH1}. WhenA queriesH ′
1 for IDi, B

proceeds as follows: ifi 6= j, it pickshIDi
∈R Zp, adds a tuple〈IDi, hIDi

〉 and gives backhIDi
toA. If i =

j, it sets〈IDj, h∗ID〉. Note that multiple queries for the same identity are answered with the corresponding
entry in itsH ′list

1 . Further, the output ofH ′
1 is uniformly distributed inZp and independent ofA’s view.
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H2 and H ′
3 queries: Initially, these lists are empty. When a query forH2 or H ′

3 arrives,B first checks
if an entry for the query input already exists in the corresponding list. If it is presents,B responds with
the associated response, elseB sends a random element of the appropriate size as its response, adds an
input and response tuple in the oracle list. The corresponding (random) oracle list entries look as follows:
H list

2 (Gt, {0, 1}
ℓ) = 〈ki, hki

〉, andH ′list
3 (Gt, {0, 1}

ℓ,G,G) = 〈ki, ρi, ρ0i, ρ1i〉, whereℓ is the message
length.
Phase1 - Extraction Queries: WhenA asks for the private key forIDi, B first getsH ′

1(IDi) = hIDi
. If

i = j, thenB aborts the game and the attack fails. Ifi 6= j, B starts the distributed private-key extraction

protocol by running
(

C〈ĥ,ĝ,〉(r, r
′), ri, ri

)

= RandomPed(n, t, f, ĥ, ĝ). B knowsr, r′ as well as shares of

the nodes as it runsn − t nodes. It then computeŝhr̃ = ĥr

(ĥβ)∆h
= ĥr−β/∆h where∆h = hIDi

− h∗ID.

Usingĥr̃ andt adversary commitmentŝhri for i ∈ PBad, B computes the commitmentsC(r̃)

〈ĥ〉
. To provide the

required NIZKPK≡Com for each entry inC(r̃)

〈ĥ〉
, A2 randomly generates challengeτi and response(u1i, u2i),

computes commitments(t1i, t2i) and includes an entry〈(ĝ′, ĥ, ĥr̃i , ĥri ĝr
′
i , t1i, t2i), τi〉 in the hash table of

H before forwardingπ≡Com = (τi, u1i, u2i) to A.
It then computesd′0 = (g∗)−βα

′/∆h(g∗)αr∆h+α′r = (g∗)αβ+(αhIDi
+γ)r̃ and using known shares ofαi,

βi andγi for Pi ∈ PBad, it runsMulBP for w = αβ + (αhIDi
+ γ)r̃. Note thatB does not know its shares,

but it can compute their commitments usingd′0 and the inputs fromPBad. With its (n, t) subshares, it also
knows the final shareswi for Pi ∈ PBad. It then computes the required private key sharesĝwi and ĝr̃i for
Pi ∈ PGood and forwards them toA.
Phase1 - Decryption Queries: B answersA’s decryption queries(IDi, Ci) as follows. B first gets
H ′

1(IDi) = hIDi
. If i 6= j,B obtains the private key(ĝαβ+(αhIDi

+γ)r̃, ĝr) and decryptsCi = (ti, ρi, ρ0i, ρ1i).
If i = j, thenB cannot compute the private key and it usesH2 andH ′

3 instead. B searchesH ′list
3 for

〈·, ρi, ρ0i, ρ1i〉. If this tuple belongs to a valid ciphertext byA, then there must be one or more correspond-
ing entries inH ′list

3 . For each such entry, retrieveki and the hash valueh′3i. Computesi = ti − h′3IDi
and

check if the component-wise equality(ki, ρ0i)
?
= (e(g, ĝ)s, gs) holds. Ase(g, ĝ), g andρ0i are fixed for a

query, this equality only holds for a single or noki value and correspondingly a single or no entry inH ′list
3 .

If there is no such entry, thenB discards the ciphertext, elseB searches forki in H list
2 . If there is no entry,

thenB adds a random entryh2i for ki in H list
2 . Finally, it returns the plaintextM asM = ρi ⊕ h2i.

Challenge: A outputs an identityIDch and two messagesM0 andM1. If IDch 6= IDj, then it aborts the
game and the attack fails, elseB sends(ρb ∈R {0, 1}ℓ, ρ0b = gc, ρ1b = (gc)α

′
, tb ∈R Zp) as a challenge

ciphertextCb toA.
Phase2 - Extraction Queries: B proceeds as in Phase1, expect the extraction query forIDch is rejected.
Phase2 - Decryption Queries: B proceeds as in Phase1, expect the decryption query for〈IDch, Cb〉 is
rejected.
Guess:A outputs its guessb′ ∈ {0, 1}. Now, there must be one or more entries for〈·, ρb, ρ0b, ρ1b〉 in H ′list

3 .
B randomly picks one of those tuples〈ki, ρi, ρ0i, ρ1i〉 and returnski as its answerD.

For a random BDH problem〈g, ĝ, ga, ĝa, ĝb, gc〉 in bilinear groupG, A’s view is identical to its view in
a real attack game. It is easy to observe thatB outputs correctD with probability ǫ(κ)/(qH′

1
qH′

3
).

Using a more expensive DKG protocol with uniformly random output, all of our proofs would become
relatively simpler. However, note that our use of DKG without uniformly random output does not affect
the security reduction factor in any proof. This is something not achieved for the known previous protocols
with non-uniform DKG such as threshold Schorr signatures [35]. Further, we do not discuss the liveness
and agreement properties for our asynchronous protocols asliveness and agreement of all the distributed
primitives provides liveness and agreement for the distributed PKG setup and distributed key extraction
protocols. Finally, for simplicity of the discussion, it would have been better to combine three proofs.
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Figure 1: Completion Time (with min/max bars) vs System Size(log-log plot)

However, that looks difficult, if not impossible, as the distributed computation tools used in these distributed
PKGs and the original IBE security proofs vary a lot from a scheme to scheme.

6 System Aspects

In this section, we discuss the system aspects of distributed PKGs. As DKG is by far the most important
component of our distributed PKGs, we first implement and test the DKG protocol [42] that we use in our
distributed PKGs. In the process, we propose several system-level optimizations for this DKG. We also
analyze practical aspects of our distributed PKGs and present a comparative study. Finally, we mention
proactive security and group modification protocols for ourdistributed PKGs.

Note that two distributed CAs for PKC,Ω [55] and Cornell Online Certification Authority (COCA) [63],
have been designed previously. However, with their focus onCAs, the protocols they provide are mis-
matched to the requirements of a distributed PKG. As a result, we do not design our distributed PKGs using
these solutions.

6.1 DKG Implementation on PlanetLab

We design our DKG nodes as state machines (using the state machine replication approach [45, 57]), where
nodes move from one state to another based on messages received. Messages are categorized into three
types: operator messages, network messages and timer messages. The operator messages define interactions
between nodes and their operators, the network messages realize protocol flows between nodes, and the timer
messages implement the weak synchrony assumption described in §3.1.

We aim at building a distributed PKG for IBE schemes. Therefore, we develop our object-oriented C++
implementation over the PBC library [47] for the underlyingelliptic-curve and finite-field operations and a
PKI infrastructure with DSA signatures based on GnuTLS [48]for confidentiality and message authentica-
tion. (Note thatnodeshave TLS PKI certificates, which does not conflict with the goal of providing IBE
private keys toclients.) In order to examine its realistic performance, we test ourDKG implementation on
the PlanetLab platform [54].

Performance Analysis. We test the performance of our DKG implementation for systems of up to40
nodes and we observe an expected approximately cubic growthin the average completion time.2 Figure 1
presents our results in graphical form. In practical applications such as [43], these values, ranging from
seconds to a little over an hour, are small as compared to DKG phase sizes (in days). Importantly, the use of
dedicated high-performance servers instead of unreliableresource-shared PlanetLab nodes can drastically

2With cubic message complexity, larger distributed systems(n > 50) are not practical for the Internet.
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Table 1: Operation count and key sizes for distributed PKG setups and distributed private-key extractions
(per key)

BF-IBE SK-IBE BB1-IBE
Setup Extraction Setup Extraction Setup Extraction

Operation Count: Generatorh or ĥ X
√ √

DKG-Sha

(precomputed) - 0 - 1P - 1P

(online) 1F 0 1F 1P 3F 1F

Parings
@PKG Node 0 0 0 2n 1b 2n

@Client - 2(2t + 2) - 0 - 2nb

NIZKPK 0 0 0 2n nb 2nb

Interpolations 0 1 0 2 1 2
Key Sizes: PKG Public Key (n + 2)Gc (n + 3)G (2n + 3)G, (n + 2)Ĝ, (1)GT

Private-key Shares (2t + 1)Ĝc (3n)Zp, (3n + 1)Ĝ (2n)Zp
b, (2n)Ĝ

aFor DKG-Sh F indicates use of Feldman commitments, while P indicates Pedersen commitments.
bFor type1 and2 pairings,n NIZKPKs can be replaced by2n extra pairings and the2n Zp elements are omitted from the

private-key shares.
cFor type 2 parings, the groups used for the PKG public key and the private-key shares are interchanged.

improve the performance. We also measure minimum and maximum completion times for the experiments.
Big gaps between those values demonstrate the robustness ofthe DKG system against the Internet’s asyn-
chronous nature and varied resource levels of the PlanetLabnodes.

To check the applicability of the weak synchrony assumption[18] that we use in DKG, we also tested
the system with crashed leaders. In such scenarios, the DKG protocol successfully completed after a few
leader changes. However, we observe that the average completion time of a system critically varies with the
choice ofdelay(t) functions and we suggest that this should only be finalized for a system after rigorous
testing.

While implementing this system, we also found two system-level optimizations for this DKG.

• To the original DKG protocol, we add a newshared network message from a node to a leader having
2t+f+1 signedready messages for a completed VSS. The leader can then include this VSS instance
in its DKG send without completion of the VSS instance at its own machine.

• During our experiments, we observed that the VSS instances are more resource consuming than the
agreement required at the end. Except during theMul protocol, we only needt+ 1 VSS instances to
succeed. Assumingt+ f VSS instances might fail during a DKG, it is sufficient to start VSSs at just
2t+f +1 nodes instead of at alln nodes. Nodes that do not start a VSS initially may utilize theweak
synchrony assumption to determine to when to start a VSS instance if required.

6.2 Comparing Distributed PKGs

In this section, we concentrate on the performance of the setup and key extraction procedures of the three
distributed PKGs defined in§5. For a detailed comparison of the encryption and decryption algorithms of
BF-IBE, SK-IBE and BB1-IBE, we refer readers to the survey by Boyen [12]. The general recommendations
from this survey are to avoid SK-IBE and other exponent-inversion IBEs due to their reliance on the strong
BDHI assumption, and that BB1-IBE and BF-IBE both are good, but BB1-IBE can be a better choice due to
BF-IBE’s less efficient encryption.

Table 1 provides a detailed operation count and key size comparison of our three distributed PKGs.
We countDKG-Sh instances, pairings, NIZKPKs, interpolations and public and private key sizes. We
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leave aside the comparatively small exponentiations and other group operations. As mentioned in§5.5, for
BB1-IBE, with curves of type 1 and 2, there is a choice that can be made between usingn NIZKPKs and
2n pairing computations. The table shows the NIZKPK choice (the only option for type 3 pairings), and
footnoteb shows where NIZKPKs can be traded off for pairings. As discussed in§5.3, for curves with type
2 pairings, an efficient algorithm for hash-to-Ĝ is not available and we have to interchange the groups used
for the system public key shares and client private-key shares. Footnotec indicates how that affects the key
sizes.

In Table 1, we observe that the distributed PKG setup and the distributed private-key extraction protocols
for BF-IBE are significantly more efficient than those for SK-IBE and BB1-IBE. Importantly, for BF-IBE,
distributed PKG nodes can extract a key for a client without interacting with each other, which is not possible
in the other two schemes; both BB1-IBE and SK-IBE require at least one DKG instance for every private-
key extraction; the second required instance can be batch precomputed. Therefore, for IBE applications in
the random oracle model, we suggest the use of the BF-IBE scheme, except in situations where private-key
extractions are rare and efficiency of the encryption step iscritical to the system. For such applications, we
suggest BB1-IBE as the small efficiency gains in the distributed PKG setup and extraction protocols of SK-
IBE do not well compensate for the strong security assumption required. BB1-IBE is also more suitable for
type2 and3 pairings, where an efficient map-to-group hash functionH1 is not available. Further, BB1-IBE
can also be proved secure in the standard model with selective-identity attacks. For applications demanding
security in the standard model, our distributed PKG for BB1-IBE also provides a solution to the key escrow
and single point of failure problems, using pairings of type1 or 2.

6.3 Proactive Security and Group Modification

With an endless supply of software and network security flaws, system attacks not only are prevalent but
have also been growing. The distributed nature of our protocols mitigates the effects of those attacks to some
extent, but their time-independence makes them vulnerableto agradual break-inby amobile attackerbreak-
ing into system nodes one by one. The concept of proactive security [51] has been introduced to counter
these attacks. Further, on a long-term basis, the set of PKG nodes will need to be modified, which can also
cause changes to the system’s security thresholdt and the crash-limitf . Therefore, for our distributed PKG
systems, we need proactive security and group modification protocols.

We observe that the proactive security and group modification protocols defined in [42], for the DKG
protocol used in our distributed PKGs, are directly applicable to our distributed PKGs. We suggest the use
of these protocols to achieve proactive security of our master keys and group modification of our PKGs.
Note that this is possible only due to the nature of the masterkeys for the three IBE schemes that we use.
All master key elements in these three schemes belong toZp, which is also the output domain for the DKG
protocol. In contrast to the three IBEs that we consider, we leave as an open problem the possibility of
providing proactive security and group modification protocols to the master keys for IBE schemes such as
the original BB1-IBE [9] or Waters’ IBE [62].

7 Conclusion

In this paper, we designed and compared distributed PKG setup and private key extraction protocols for
Boneh and Franklin’s BF-IBE, Sakai and Kasahara’s SK-IBE, and Boneh and Boyen’s BB1-IBE. We ob-
served that the distributed PKG implementation for BF-IBE is the most simple and efficient among all and
we suggest its use when the system can support its relativelycostly encryption step. For systems requiring
a faster encryption, we suggest the use of BB1-IBE instead. However, during every distributed private key
extraction, it requires a DKG and consequently, interaction among PKG nodes. That being said, during
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private-key extractions, we successfully avoid any interaction between clients and PKG nodes except the
necessary identity at the start and key share transfers at the end. Further, each of the above three schemes
represents a separate category of IBE schemes and our designs can be applied to other schemes in those
categories as well.

While developing our distributed PKGs, we also developed asynchronous computational protocols for
distributed multiplication and distributed inverse computation, which may have their own applications. To
confirm the feasibility of a distributed PKG in the asynchronous communication model, we also imple-
mented and verified the efficiency and the reliability of an asynchronous DKG protocol using extensive
testing over the PlanetLab platform. We also suggested proactive security and group modification protocols
for our distributed PKGs. In the future, we would like add those features to our implementation.
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A Non-interactive Zero-knowledge Proofs

We now present the details of the non-interactive zero-knowledge proofs of knowledge (NIZKPKs) intro-
duced in§4.2. Here,H is a hash function modelled by a random oracle.

The first proof is that a Feldman commitmentF = C〈g〉(s) = gs and a Pedersen commitmentP =
C〈g,h〉(s, r) = gshr are both committing to the same values. We denote this by NIZKPK≡Com(s, r, F, P ).
The proof is equivalent to zero-knowledge proofs of knowledge used by Canettiet al. in their adaptive
secure DKG [16].

The proof is generated as follows:

• Pick v1, v2 ∈R Zp
• Let t1 = gv1 , t2 = hv2

• Let τ = H(g, h, F, P, t1, t2)
• Let u1 = v1 − τ · s (mod p), u2 = v2 − τ · r (mod p)
• The proof isπ≡Com = (τ, u1, u2)

The verifier checks this proof (givenπ≡Com, g, h, F , P ) as follows:

• Let t′1 = gu1F τ , t′2 = hu2(P/F )τ

• Accept the proof as valid ifτ = H(g, h, F, P, t′1, t
′
2)

The second proofis that two Feldman commitmentsF1 = C〈g〉(s) = gs andF2 = C〈h〉(s) = hs commit
to the same value; that is, the discrete logs ofF1 andF2 to the bases ofg andh respectively are equal. We
denote this by NIZKPK≡DLog(s, F1, F2). The proof is standard [20]:

The proof is generated as follows:

• Pick v ∈R Zp
• Let t1 = gv, t2 = hv

• Let τ = H(g, h, F1, F2, t1, t2)
• Let u = v − τ · s (mod p)
• The proof isπ≡DLog = (τ, u)

The verifier checks this proof (givenπ≡DLog, g, h, F1, F2) as follows:

• Let t′1 = guF τ1 , t′2 = huF τ2
• Accept the proof as valid ifτ = H(g, h, F1, F2, t

′
1, t

′
2)
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Algorithm for Simulator S
LetB be the set of parties controlled by the adversary, andG be the set of honest parties (run by the simulator). Without loss
of generality,B = [P1, Pt′ ] andG = [Pt′+1, Pn], wheret′ ≤ t. Let Y ∈ G be the input public key andH : G

6 → Zp is a
random oracle hash table for NIZKPK≡Com.

1. Perform all steps on behalf of the uncorrupted partiesPt′+1, . . . , Pn exactly as in the DKG protocol until theDKG-
completed message. Once a node is ready to sent theDKG-completed message, the following holds:

• SetQ is well defined with at least one honest node in it.

• The adversary’s view consists of polynomialsφ(j)(x, y) for j ∈ B, the share polynomialsa(i)
j y = φ(i)(j, y)

for Pi ∈ Q, Pj ∈ B, and commitmentsCi for Pi ∈ Q.

• S knows all polynomialsφ(i)(x, y) for Pi ∈ Q as it knowsn − t′ shares for each of those.

2. Perform the following computations for eachi ∈ [t + 1, n] before starting Step6:

(a) Computes′j for Pj ∈ [1, n] andsj for Pj ∈ B. Interpolate (in exponent)(0, Y ) and(j, gsj ) for j ∈ [1, t] to
computeC〈g〉(s

∗
i ) = gs∗i .

(b) Compute the corresponding NIZKPK≡Com by generating random challengeci ∈R Zp and responses

ui,1, ui,2 ∈R Zp, computing the commitmentsti,1 = (gs∗i )cigui,1 andti,2 =
C〈g,h〉(si,ri)

C〈g〉(s
∗
i
)

ci

hui,2 and include

entry〈(g, h, C〈g〉(s
∗
i ), C〈g,h〉(si, ri), ti,1, ti,2), ci〉 in the hash tableH so thatπ≡Comn = (ci, ui,1, ui,2).

3. In the end,s =
P

Pi∈Q αi such thatY = gs.

Figure 2: Simulator for DKG with the uniform randomness property

B Uniform Randomness of The Shared Secret

B.1 Correctness

We need to prove the following three properties.

1. There is an efficient algorithm that on input shares from2t + 1 nodes and the public information
produced by the DKG protocol, output the same unique values, even if up tot shares are submitted
by malicious nodes.

2. At the end ofSh phase ofDKGPed, all honest nodes have the same value of public keyY = gs,
wheres the unique secret guaranteed above.

3. s andY are uniformly distributed inZp andG respectively.

The first two properties are the same as those inDKGFeldand we only need to prove the third property.
Here, s =

∑

Pi∈Q
αi. As long as there is one valueαi in this sum that is chosen at random and

independently from the other values in the sum, the uniform distribution ofs is guaranteed. Allαi values
are only available in the form a Pedersen commitment until set Q is finalized. From Theorem4.4 of [53],
in VSS using the Pedersen commitments, the view of thet-limited adversary is independent of the shared
secret. Therefore, with at least one VSS from the honest nodes in thet + 1 chosen VSSs,s is uniformly
distributed and so isY = gs.

B.2 Secrecy

We need to prove that no information abouts can be learned by the adversary except for what is implied by
Y = gs. More formally, we prove that for every PPT adversaryA that has up tot nodes, there exists a PPT
simulatorS that on inputY ∈ G produces an output distribution which is polynomially indistinguishable
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from A’s view of a run of the DKG protocol that ends withY as its public key. Our proof is based on the
proof of secrecy in [35, Section 4.3].

In Figure 2, we describe the simulatorS for our DKG protocol. An informal description is as follows.
S runs a DKG instance on behalf of all honest nodes. For the mostof the protocol (until messageDKG-
completed is to be sent), it follows the protocol DKG as instructed. ForDKG-completed messages, it
changes the public key sharesYi = gsi to “hit” the desired public keyY . S knows allgsj andgs

′
j values

for all Pj ∈ B, as it choosesφ(j)(x, y) for good nodes and has received enough shares from bad nodes to
reconstruct the bivariate polynomials shared by them. Fori ∈ [t + 1, n], S setsgs

∗
i as interpolation (in

exponent) of(0, Y ) and(j, gsj ) for j ∈ [1, t]. It creates the corresponding NIZKPK≡Com using the random
oracle hash table.

We show that the view of the adversaryA that interacts withS on inputY is the same as the view of
A that interacts with the honest nodes in a regular run of the protocol that outputs the givenY as the public
key.

In a regular run of protocol DKG,A sees the following probability distribution of data produced by the
honest nodes:

• Valuesφi(j, y), φ′i(j, y) for i ∈ G, j ∈ B, uniformly chosen inZp

• ValuesCi andgsi for Pi ∈ G, that correspond to randomly chosen polynomials.

As we are interested in runs of DKG that end withY as the public key, we note that the above distribution
of values is induced by the choice (of the good parties) of polynomialsφi(x, y), φ′i(x, y) for Pi ∈ Q,
uniformly distributed in the family oft-degree polynomials overZp such that

∏

Pi∈Q
gφi(0,0) = Y . Without

loss of generality, assumePn ∈ G belongs toQ. The above distribution is characterized by the choice
of polynomialsφi(x, y), φ∗i (x, y) for Pi ∈ (G ∩ Q) − {Pn} as random independentt-degree bivariate
polynomials overZp and ofφn(x, y) as a uniformly chosen polynomial from the family oft-degree bivariate
polynomials overZp that satisfy the constraintφn(0, 0) = s−

∑

Pi∈Q\{n} φi(0, 0).
We show that the simulatorS outputs a probability distribution which isidentical to the above distri-

bution. First note that the above distribution depends on the setQ decided as the broadcast by the current
leader is complete. Since all actions of the simulator untilQ is (eventually) delivered to all nodes are iden-
tical to the actions of honest parties interacting withA in a real run of the protocol, we are assured that the
setQ defined in this simulation is identical to its value in the real protocol.

We now describe the output distribution ofS in terms oft-degree bivariate polynomialsφ∗i correspond-
ing to the choices of the simulator. It is defined as follows: For Pi ∈ (Q − B − {Pn}), setφ∗i to φi and
φ′∗i to φ′i. Defineφ∗n such that the valuesφ∗n(0, 0) = logg(

Y
Q

j∈(Q−B−{Pn}) g
α∗

j
) andφ∗n(j, y) = φn(j, y)

for j ∈ [1, t]. Finally, defineφ′∗n(x, y) such thatφ∗n(x, y) + Λφ′∗n(x, y) = φn(x, y) + Λφ′n(x, y), where
Λ = logg(h). It can be seen by this definition that the univariate polynomial evaluations of these polyno-
mials evaluated at the indices forPj ∈ B coincide with the valuesφi(j, y) which are seen by the corrupted
parties in the protocol. Note that the aboveDLog valuesφ∗n(0, 0) andφ′n

∗(0, 0) are unknown to the simula-
tor. Also, the commitments of these polynomials agree withCi published by the simulated honest parties in
the protocol as well as with the exponentialsgs

∗
i for Pi ∈ G published by the simulator at the end on behalf

of the honest parties. Thus, these values pass the verifications in the real protocol.
It remains to be shown that polynomialsφ∗i andφ′∗i belong to the right distribution. Indeed, forQ −

G − {Pn} this is immediate since they are defined identically toφi which are chosen according to the
uniform distribution. Forφ∗n we see that this polynomial evaluates in pointsj = [1, t] to random values
(φn(j, y)) while at 0 it evaluateslogg(g

α∗
n) as required to hitY . Finally, φ′∗n is defined asφ′∗n(x, y) =

Λ−1(φn(x, y) − φ∗n(x, y) + φ′n(x, y)) and sinceφ′∗n(x, y) is random and independent then so isφ′∗n(x, y).
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