
1

Space Efficient Secret Sharing:

A Recursive Approach
Abhishek Parakh and Subhash Kak

Abstract

This paper presents a k-threshold secret sharing technique that distributes a secret S into shares of

size |S|
k−1 , where |S| denotes the secret size. This bound is close to the optimal bound of |S|k , if the secret

is to be recovered from k shares. The proposed scheme makes use of repeated polynomial interpolation.

Our technique has potential applications in secure and reliable storage of information on the Web and

in sensor networks.

I. INTRODUCTION

Information theoretically secure secret sharing schemes are space inefficient because a k-out-of-n secret

sharing technique generates n shares each of same size as that of the secret itself, leading to a n-fold

increase in required storage.

In order to improve space efficiency, computational secret sharing techniques have been developed [1],

[2], [3], [4] in which a symmetric key is used to encrypt the original secret and the encrypted secret

is divided into pieces to which redundancy is added by the use of block error correction techniques

[5], [6], [7]. The encryption key is split into shares using information theoretically secure methods of

secret sharing. This leads to an n-fold increase in key size, shares of which have to be stored with

every piece of the encrypted secret, hence incurring a burdensome overhead [7]. In order to recover the

secret in presence of wrong shares, robustness was added using hash-fuctions in [8] and more general

implementations of computational secret sharing appeared in [9], [10], [11], [12].

An efficient method for sharing multiple secrets with security based on assumption of hardness of

discrete logarithm problem is presented in [13]. Whereas [14] proposes a scheme based on systematic

A. Parakh and S. Kak are with the Computer Science Department, Oklahoma State University, Stillwater, OK, 74078 USA

e-mail: (see http://cs.okstate.edu/˜parakh and http://cs.okstate.edu/˜subhashk).

July 21, 2009 DRAFT

2

block codes and [15], [16] propose schemes based on Shamir’s secret sharing scheme but require a large

amount of side information to be stored as public information and futher [14], [15], [16], [17] attempt to

maintain ideal security. Other schemes [18], [19] focus at improving efficiency of computations involved

in share creation and secret reconstruction rather than space efficiency.

Here we propose a secret sharing scheme that encodes a secret S into shares of size |S|
k−1 , where |S|

is the size of the secret, without the use of any encryption key. This is close to the optimal bound of
|S|
k , if the secret is to be recovered from k shares (please see [7]). The proposal is based on recursion,

in which a secret is first divided into k− 1 pieces and then the pieces are encoded one by one in such a

manner that the shares of the already encoded pieces are reused to create new shares for the next piece.

We present an example from an earlier paper [20] that proposed a 2-out-of-2 (k = 2 and n = 2)

secret sharing scheme for binary secrets, based on recursion. Although the implementation in [20] is

quite different from the one proposed in this paper, it is useful in understanding the notion of recursion

in secret sharing. Suppose we wish to share a secret of size 7 bits, S = 1011011, into 2 shares such

that both of them are needed to reconstruct the secret. A simple implementation would use exclusive-OR

transformation to divide the secret into shares. Hence, using conventional scheme, we would create two

shares, say DS1 = 1001101 and DS2 = 0010110 of size 7 bits each. However, using recursion we can

create shares smaller than 7 bits each as is shown in table 1. To execute a recursive algorithm, we first

divide the 7 bit secret S into 3 pieces, s1, s2, and s3 of size 1, 2 and 4 bits respectively. A concatenation

of the pieces s1s2s3 is equal to S. In table 1, the bits that are in bold are the bits taken from the shares

created in the previous step. Only the final shares 0010 and 1001 are shared between players.

The final shares 0010 and 1001 contain the complete secret S. To recover the secret, the players

reconstruct the smaller pieces by properly aligning the shares and using exclusive-OR; the concatenation

of these pieces is the secret.

In the above example we have achieved a significant improvement in share sizes from 7 bits each

in a conventional scheme to 4 bits each in a recursive scheme. However, the resulting shares have a

lower security compared to conventional exclusive-OR based implementation because each party now

only needs to determine 4 bits of the other share to recreate the complete secret on its own. Nevertheless,

for a file, say of size 211 − 1 bits (about 2Kb), that must be divided into shares, each share would be of

size 210 (1Kb) which may provide adequate security for many applications.

Although the example is a good representative to explain recursion in secret sharing, it, nonetheless,

has the following limitations. Firstly, it does not provide a threshold scheme. Secondly, secrets that are

encoded using the above method may only be of size 2t − 1 for some positive integer t; this is due to

July 21, 2009 DRAFT

3

Secret pieces Shares

s1: 1
0 Ds11

1 Ds12

s2: 01
0 0 Ds21

0 1 Ds22

s3: 1011
0 0 1 0 Ds31

1 0 0 1 Ds32

TABLE I

ILLUSTRATION OF RECURSIVE SECRET SHARING. A LARGE SECRET S = 1011011 IS DIVIDED INTO THREE CONSECUTIVE

PIECES AND THEN THE SHARES ARE RECURSIVELY ENCODED. ONLY THE FINAL SHARES 0010 AND 1001 NEED BE SHARED

BETWEEN PLAYERS.

the binary tree structure of the scheme (table 1). Thirdly, it does not provide a mechanism to control the

security of the resulting shares, i.e. if 2t − 1 bits are encoded, the resulting shares are always of size

2t−1.

It is to be noted that a threshold recursive scheme for 2-out-of-n secret sharing is discussed in [21].

In this paper we present a general k-out-of-n threshold recursive secret sharing scheme and relax the

size restrictions such that to share a secret S requires shares only of size |S|
k−1 , which is near optimal.

Further, we provide a mechanism to control the size of the resulting shares ranging from |S|
k−1 to |S| thus

controlling the final security level achieved by the shares (where shares of size |S| provide maximum

security).

The proposed recursive secret sharing scheme has applications in distributed online storage of informa-

tion discussed in [5], [6]. However, Rabin [5] discarded the possibility of using secret sharing schemes

because of the n-fold increase in storage space required by conventional implementations of secret sharing

techniques. Since our scheme provides a near optimal way to encode data into small shares, it becomes

an ideal candidate for use in secure online data storage. Such secure data storage scheme is an example of

implicit data security [22], implicit in that there is no explicit encryption of data and no encryption keys

are used. Data is so divided that each piece is implicitly secure in itself and reveals complete information

only when k or more of the pieces are brought together. k−1 pieces or less do not reveal any information

(in computational sense) [7]. Systems implementing such distributed data storage have appeared at CMU

July 21, 2009 DRAFT

4

and IBM [23], [24], [25], [26], [27], [2].

II. SPACE EFFICIENT SECRET SHARING

The proposed scheme recursively builds upon polynomial interpolation and sampling similar to [28].

However, Shamir’s scheme generates shares of size |S| for a secret S. By contrast, we generate shares

of size |S|
k−1 .

We first briefly review the scheme presented by Shamir [28] (Algorithm 1).

Algorithm 1(Shamir’s secret sharing scheme)

1) Choose a prime p, p > max(S, n), where S ∈ Zp is the secret.

2) Choose k − 1 random numbers a1, a2, ..., ak−1, uniformly and independently, from the field Zp.

3) Using ai, 1 ≤ i ≤ (k − 1) and secret S, generate polynomial p(x) of degree k − 1,

p(x) = S + a1x + a2x
2 + ... + ak−1x

k−1 (mod p).

4) Sample p(x) at n points Di = p(i), 1 ≤ i ≤ n such that the shares are given by (i, Di).

Reconstruction of the secret is performed by interpolating any k points (shares) and evaluating S =

p(0).

In our implementation, we first divide secret S into k − 1 pieces. The division of a secret file F is

discussed by Rabin in [5] with the aim of information dispersal. For example, to share a secret of size

|S| = 30 bits, we divide it into say 3 pieces of 10 bits each. In general, we divide the secret into pieces

of size d |S|k−1e. We assume the use of similar technique to create the pieces. These pieces will be denoted

by si, 1 ≤ i ≤ (k − 1), such that their concatenation s1s2...sk−1 = S.

For the proposed scheme assume a finite field Zp, where p is a prime and p > max(smax, n), where

smax = max(si), 1 ≤ i ≤ (k − 1), and s1, s2, ..., sk−1 are the pieces of S. The shares will be denoted

as Dsi1, Dsi2, ...,Dsim at the intermediate stages, where 2 ≤ m ≤ k − 2 and D1, D2, ..., Dn at the

final stage. (Note that, as in Shamir’s scheme, Dsim are the y-coordinates only, while the respective

x-coordinates m, are tacitly known to all players.)

It is to be noted that since for all practical cases n < |S|
k , the stated share size |S|k is the optimal size

of a share for a k-out-of-n secret sharing scheme. But strictly speaking if n > |S|
k , then the shares would

be of size |n|. In this paper we will ignore the latter case and assume n < |S|
k .

Formally, a space optimal (k, n) secret sharing scheme is a secret sharing scheme that, for a secret S,

produces shares of size |S|k . And a space efficient secret sharing scheme is a secret sharing scheme that

July 21, 2009 DRAFT

5

approaches the optimal factor of |S|k in terms of share size.

The proposed scheme works as follows: We randomly and uniformly choose a number a1 ∈ Zp and

generate 1st degree polynomial p1(x) = a1x + s1. Then we sample p1(x) at two points Ds11 = p1(1)

and Ds12 = p1(2), to generate two shares for s1. This first step can be viewed as a direct execution

of Shamir’s (2, 2) secret sharing scheme. Next we use these two shares of s1 to generate polynomial

p2(x) = Ds12x
2 + Ds11x + s2, where the coefficients are the previous two shares and the free term is

the new piece. Sampling p2(x) at three points Ds21 = p2(1), Ds22 = p2(2), and Ds23 = p2(3), generates

three shares of s2. We can now delete Ds11 and Ds11 because the new shares Ds21, Ds22, and Ds23 have

the shares of s1 hidden within themselves. We then use the shares of s2 to create a 3rd degree polynomial

P3(x) with s3 as its free term, and generate shares for s3 by sampling the newly created polynomial at 4

points. These four points, Ds31, Ds32, Ds33, and Ds34 have the shares of s1, s2 as well as s3 and therefore

Ds21, Ds22 and Ds23 can now be deleted. The process is repeated for pieces s4, s5, ..., sk−1 by creating

p4(x), p5(x), ...,pk−2(x) and repetitive sampling and reusing of shares and deleting the older shares. At

the last step, we generate a polynomial pk−1(x) = Dsk−2(k−1)x
k−1+Dsk−2(k−2)x

k−2+...+Dsk−21x+sk−1

and sample it at n points D1 = pk−1(1), D2 = pk−1(2), ..., Dn = pk−1(n), such that the final shares are

given by (i, Di), 1 ≤ i ≤ n. These final n shares have recursively hidden k−1 secrets within themselves.

Algorithm 2 illustrates the process.

Algorithm 2 - Dealing Phase

1) Choose a prime p, p > max(smax, n), where where smax = max(si), 1 ≤ i ≤ (k − 1), and s1,

s2, ..., sk−1 are the pieces of secret S.

2) Randomly and uniformly choose a number a1 ∈ Zp and generate polynomial p1(x) = a1x + s1.

3) Sample p1(x) at two points Ds11 = p1(1) and Ds12 = p1(2), which represent two shares of s1.

4) Do for 2 ≤ i ≤ (k − 1)

a) Generate polynomial,

pi(x) = Dsi−1ix
i + Dsi−1(i−1)x

i−1 + ... + Dsi−11x + si.

b) Sample pi(x) to create new shares,

i) If i < k − 1, sample at i + 1 points:

Dsi1 = pi(1)

Dsi2 = pi(2)
...

July 21, 2009 DRAFT

6

Dsi(i+1) = pi(i + 1).

ii) If i = k − 1, sample at n points:

D1 = pi(1)

D2 = pi(2)
...

Dn = pi(n).

c) Delete old shares: Dsi−11, Dsi−12, ..., Dsi−1i.

5) The final n shares are given by (i, Di), 1 ≤ i ≤ n.

Algorithm 2 - Reconstruction Phase

1) Interpolate any k shares (i, Di) to generate the polynomial of degree k − 1,

pk−1(x) = Dsk−2(k−1)x
k−1 + Dsk−2(k−2)x

k−2 + ... + Dsk−21x + sk−1

and evaluate sk−1 = pk−1(0).

2) Do for all i = k − 2 down to 1

a) Interpolate i + 1 shares given by (m + 1, Dsi(m+1)), 0 ≤ m ≤ i obtained from coefficients of

pi+1(x) to generate polynomial of degree i,

pi(x) = Dsi−1ix
i + Dsi−1(i−1)x

i−1 + ... + Dsi−11x + si.

b) Evaluate si = pi(0).

As seen above the reconstruction of pieces is straightforward and it proceeds in a last-in, first-out

manner. Any k of the players can interpolate the polynomial of degree k − 1 such that the free term

represents sk−1 = pk−1(0). Then using the k − 1 coefficients of this polynomial as points (leaving out

the free term which is sk−1), interpolate the polynomial of degree k − 2 to obtain sk−2. This process is

repeated until we obtain s1.

Algorithm 2 clearly generates shares of size |si|. Since |si| = |S|
k−1 , for all i = 1 to k − 1, we have

achieved shares of size |S|
k−1 .

Security of the protocol: The security of the proposed protocol is predicated on the choice of the first

coefficient a1. Given that a1 is randomly and uniformly chosen, steps 1-3 of Algorithm 2, generate two

shares such that both of them are required for the reconstruction of s1. Steps 1-3 are similar to Shamir’s

(2,2) secret sharing scheme. Therefore, we can assume that given any number r ∈ Zp, Pr(r = Ds11) =

Pr(r = Ds12) = 1
p . These two shares are then used as random coefficients to generate a polynomial of

July 21, 2009 DRAFT

7

third degree with the next piece s2 as the free term and repeat the process of sampling. Thereon, we use

the shares that are generated in the present step to generate new shares at the next step. Therefore, the

final resulting pieces are random if a1 is chosen randomly with a uniform probability distribution from

the field.

For a secret message or file of size 3KB, with k = 4 and n = 7, we would create k − 1 = 3 pieces

of size 1KB (= 8 · 103bits) each and choose a prime p > 8 · 103bits. Therefore, when k − 1 players

collude, the resulting security is on the order of 1
p or 1

2103 . This implies that without the knowledge of

the kth share, k − 1 players can guess the kth share correctly only with a probability of 1
2103 .

Example. Assume that we have a secret S = 17280512 that is broken into 4 pieces s1 = 17, s2 = 28,

s3 = 05, and s4 = 12. Here the pieces are created with a decimal base, i.e. number of decimal digits in

the pieces (2 digits each). S is to be shared between 7 players such that any 5 of them can reconstruct

all the 4 secrets. We can now use a prime p = 31. (If one were to use a conventional method for secret

sharing, he would have to choose a large prime p > 17280512, which clearly will yield pieces of that

order; however here p = 31 suffices, yielding smaller pieces.)

Dealing phase.

1) Randomly and uniformly choose a number a1 ∈ Zp. Let a1 = 22. Generate polynomial, p1(x) =

a1x + s1 = 22x + 17 (mod 31).

2) Sample p1(x) at two points to generate two shares of piece s1, i.e. Ds11 = p1(1) = 8 and

Ds12 = p1(2) = 30.

3) Generate polynomial p2(x) = Ds12x
2 + Ds11x + s2 = 30x2 + 8x + 28.

4) Sample p2(x) at 3 points to generate three shares of s2, i.e. Ds21 = p2(1) = 4, Ds22 = p2(2) = 9,

and Ds23 = p2(3) = 12.

5) Delete Ds11 and Ds12.

6) Generate polynomial p3(x) = Ds23x
3 + Ds22x

2 + Ds21x + s3 = 12x3 + 9x2 + 4x + 5.

7) Sample p3(x) at 4 points to generate four shares of s3, i.e. Ds31 = p3(1) = 30, Ds32 = p3(2) = 21,

Ds33 = p3(3) = 19, and Ds34 = p3(4) = 3.

8) Delete Ds21, Ds22, and Ds23.

9) Generate polynomial

p4(x) = Ds34x
4 + Ds33x

3 + Ds32x
2 + Ds31x + s4 = 3x4 + 19x3 + 21x2 + 30x + 12.

10) Sample p4(x) at 7 points, which represents the final 7 shares. Hence, D1 = p4(1) = 23, D2 =

July 21, 2009 DRAFT

8

p4(2) = 15, D3 = p4(3) = 24, D4 = p4(4) = 3, D5 = p4(5) = 8, D6 = p4(6) = 12, and

D7 = p4(7) = 29.

11) Delete Ds31, Ds32, Ds33, and Ds34.

The final seven shares are given by (1, D1) = (1, 23); (2, D2) = (2, 15); (3, D3) = (3, 24); (4, D4) =

(4, 3); (5, D5) = (5, 8); (6, D6) = (6, 12); and (7, D7) = (7, 29).

Reconstruction phase.

All the four pieces can be reconstructed using any 5 out of 7 final shares.

Using 5 shares, say (1, 23), (3, 24), (4, 3), (5, 8), and (7, 29), we can interpolate the 4th degree

polynomial p4(x) = 3x4 + 19x3 + 21x2 + 30x + 12 (mod 31), thus retrieving piece s4 (the free term of

the polynomial) by evaluating s4 = p4(0).

Then extracting the coefficients of p4(x) and using them as y-coordinates of points x=1, 2, 3, and

4, i.e. (1, 30), (2, 21), (3, 19), and (4, 3) we can regenerate the 3rd degree polynomial p3(x) = 12x3 +

9x2 + 4x + 5 by interpolation and retrieve the s3 as the free term, s3 = p3(0).

The coefficients of p3(x) are then used as points (1, 4), (2, 9), (3, 13) to interpolate p2(x) = 30x2 +

8x + 28 and reconstruct s2 = p2(0).

The coefficients of p2(x) are used as (1, 8) and (2, 30) to interpolate p1(x) = 22x+17 and reconstruct

s1 = p1(0).

The algorithm simulates a Last In First Out (LIFO) data structure.

III. CONTROLLING THE SECURITY

It is clear from the construction provided in the previous section that we are trading security for share

size. Information theoretic security is achieved when the secret is not divided into pieces and Shamir’s

scheme is directly applied, creating shares of size as large as the complete secret itself. Consequently,

least security is achieved when the shares are 1
k

th the size the secret, which however may be an adequate

level of security for large secrets and certain applications. The proposed algorithm achieves a factor of
1

k−1 for the size of the share.

Instead of dividing the secret into k − 1 pieces we may divide the secret into k − 2 pieces, or k − 3

pieces, ..., or no pieces at all depending on desired level of security. Hence, if in general, we denote by

m the number of pieces into which the secret is divided then replacing all occurrences of k− 1 with m,

the algorithm proceed as follows:

July 21, 2009 DRAFT

9

1) Choose a prime p, p > max(smax, n), where smax = max(si), 1 ≤ i ≤ m, and s1, s2, ..., sm are

the pieces of secret S.

2) Randomly and uniformly choose k − m numbers ai ∈ Zp and generate polynomial p1(x) =

ak−mxk−m + ak−m−1x
k−m−1 + . . . + a1x + s1.

3) Sample p1(x) at k−m+1 points Ds11 = p1(1), . . ., Ds1(k−m+1) = p1(k−m+1), which represent

k −m + 1 shares of s1.

4) If m ≥ (k −m + 1)

a) j = k −m + 1

b) Do for 2 ≤ i ≤ m

i) Generate polynomial,

pi(x) = Dsi−1jx
j + Dsi−1(j−1)x

j−1 + ... + Dsi−11x + si.

ii) Sample pi(x) to create new shares,

A) If i < m, sample at j + 1 points:

Dsi1 = pi(1)

Dsi2 = pi(2)
...

Dsi(j+1) = pi(j + 1)

B) If i = m, sample at n points:

D1 = pi(1)

D2 = pi(2)
...

Dn = pi(n).

iii) Delete old shares: Dsi−11, Dsi−12, ..., Dsi−1j .

iv) j = j + 1

5) The final n shares are explicitly given by (i, Di), 1 ≤ i ≤ n.

The reconstruction phase works in a manner similar to that presented in Algorithm 2 and the details

are omitted here.

The resulting security, when k − 1 players collude, in the general case, can be written as 1
p (which is

the probability of correctly guessing the kth share with only the knowledge of k − 1 shares) where the

size of p is on the order of | Sm |. Here, m may therefore be called a security factor.

July 21, 2009 DRAFT

10

IV. CONCLUSIONS

We have presented a recursive scheme that generates shares of size |S|
k−1 for any secret S. The scheme

is general and it places no restriction on the secret size. The results are close to the optimal factor of |S|k
and represent significant improvement over conventional secret sharing schemes that generate shares of

size |S|. Further, we have not used any key based encryption to achieve the reduction in share sizes.

A general case, when the shares are of size |S|m , m being the security factor varying from 1 to k − 1,

is presented. The security upon collusion of k − 1 players is 1
p where size of p depends on m.

The proposed scheme will have applications in secure distributed storage of information on the Web

and in sensor networks and in secure parallel transmission of data.

REFERENCES

[1] B. Schneier, Schneier’s Cryptography Classics Library: Applied Cryptography, Secrets and Lies, and Practical Cryptog-

raphy. Wiley, 2007.

[2] P. Rogaway and M. Bellare, “Robust computational secret sharing and a unified account of classical secret-sharing goals,”

in CCS ’07: Proceedings of the 14th ACM Conference on Computer and Communications Security. New York, NY, USA:

ACM, 2007, pp. 172–184.

[3] V. Vinod, A. Narayanan, K. Srinathan, C. P. Rangan, and K. Kim, “On the power of computational secret sharing,” Indocrypt

2003, vol. 2904, pp. 265–293, 2003.

[4] A. Cresti, “General short computational secret sharing schemes,” in Advances in Cryptology EUROCRYPT 95, volume

921 of Lecture Notes in Computer Science. Springer, 1995, pp. 194–208.

[5] M. O. Rabin, “Efficient dispersal of information for security, load balancing and fault tolerance,” Journal of the ACM,

vol. 36, no. 2, pp. 335–348, 1989.

[6] J. Garay, R. Gennaro, C. Jutla, and T. Rabin, “Secure distributed storage and retrieval,” Theoretical Computer Science, pp.

275–289, 1997.

[7] H. Krawczyk, “Secret sharing made short,” Proceedings of the 13th Annual International Cryptology Conference on

Advances in Cryptology, pp. 136–146, 1994.

[8] ——, “Distributed fingerprints and secure information dispersal,” in Twelfth Annual ACM Symposium on Principles of

Distributed Computing (PODC 1993). ACM Press, 1993, pp. 207–218.

[9] P. Beguin and A. Cresti, “General short computational secret sharing schemes,” in Advances in Cryptology EUROCRYPT

95, LNCS vol. 921. Springer, 1995, pp. 194–208.

[10] C. Cachin, “On-line secret sharing,” in IMA Conference on Cryptography and Coding, LNCS vol. 1025. Springer, 1995,

pp. 190–198.

[11] A. Mayer and M. Yung, “Generalized secret sharing and group-key distribution using short keys,” in Compression and

Complexity of Sequences 1997. IEEE Press, 1997, pp. 30–44.

[12] V. Vinod, A. Narayanan, K. Srinathan, C. Rangan, and K. Kim, “On the power of computational secret sharing,” in Progress

in Cryptology INDOCRYPT 2003, LNCS vol. 2904. Springer,, 2003, pp. 162–176.

July 21, 2009 DRAFT

11

[13] L. Harn, “Efficient sharing (broadcasting) of multiple secrets,” IEE Proceedings - Computers and Digital Techniques, vol.

142, no. 3, pp. 237–240, May 1995.

[14] H.-Y. Chien, J.-K. Jan, and Y.-M. Tseng, “A practical (t,n) multi-secret sharing scheme,” IEICE transactions on fundamentals

of electronics, communications and computer sciences, vol. 83, no. 12, pp. 2762–2765, 2000.

[15] L.-J. Pang and Y.-M. Wang, “A new (t,n) multi-secret sharing scheme based on shamir’s secret sharing,” Applied

Mathematics and Computation, vol. 167, no. 2, pp. 840 – 848, 2005.

[16] C.-C. Yang, T.-Y. Chang, and M.-S. Hwang, “A (t,n) multi-secret sharing scheme,” Applied Mathematics and Computation,

vol. 151, no. 2, pp. 483 – 490, 2004.

[17] C.-W. Chan and C.-C. Chang, “A scheme for threshold multi-secret sharing,” Applied Mathematics and Computation, vol.

166, no. 1, pp. 1 – 14, 2005.

[18] M. Liu, L. Xiao, and Z. Zhang, “Linear multi-secret sharing schemes based on multi-party computation,” Finite Fields and

Their Applications, vol. 12, no. 4, pp. 704 – 713, 2006, special Issue Celebrating Prof. Zhe-Xian Wan’s 80th Birthday.

[19] M. H. Dehkordi and S. Mashhadi, “New efficient and practical verifiable multi-secret sharing schemes,” Information

Sciences, vol. 178, no. 9, pp. 2262 – 2274, 2008.

[20] M. Gnanaguruparan and S. Kak, “Recursive hiding of secrets in visual cryptography,” Cryptologia, vol. 26, pp. 68–76,

2002.

[21] A. Parakh and S. Kak, “A recursive threshold visual cryptography scheme,” Cryptology ePrint Archive, Report 535, 2008.

[22] ——, “Online data storage using implicit security,” Information Sciences, vol. In Press, Corrected Proof, pp. –, 2009. [On-

line]. Available: http://www.sciencedirect.com/science/article/B6V0C-4WF4J67-1/2/432f2904ee2b98d825db0f5b83761021

[23] G. R. Ganger, P. K. Khosla, M. Bakkaloglu, M. W. Bigrigg, G. R. Goodson, G. R, V. Pandurangan, S. Oguz, V. P, C. A. N.

Soules, J. D. Strunk, and J. J. Wylie, “Survivable storage systems,” in In DARPA Information Survivability Conference and

Exposition, IEEE. IEEE Computer Society, 2001, pp. 184–195.

[24] A. Iyengar, R. Cahn, J. A. Garay, and C. Jutla, “Design and implementation of a secure distributed data repository,” in In

Proc. of the 14th IFIP Internat. Information Security Conf, 1998, pp. 123–135.

[25] S. Lakshmanan, M. Ahamad, and H. Venkateswaran, “Responsive security for stored data,” International Conference on

Distributed Computing Systems, vol. 0, p. 146, 2003.

[26] A. P. Sameer, A. Paul, S. Adhikari, and U. Ramach, “Design of a secure and fault tolerant environment for distributed

storage,” 2004.

[27] M. Waldman, A. D. Rubin, and L. F. Cranor, “The architecture of robust publishing systems,” ACM Trans. Internet Technol.,

vol. 1, no. 2, pp. 199–230, 2001.

[28] A. Shamir, “How to share a secret,” Communications of ACM, vol. 22, no. 11, pp. 612–613, 1979.

July 21, 2009 DRAFT

